当前位置:文档之家› 蚁群算法原理与应用讲解

蚁群算法原理与应用讲解

蚁群算法在物流系统优化中的应用

——配送中心选址问题

LOGO

https://www.doczj.com/doc/ae10130983.html,

框架

蚁群算法概述

蚁群算法模型

物流系统中配送中心选择问题

蚁群算法应用与物流配送中心选址

算法举例

蚁群算法简介

?蚁群算法(Ant Algorithm简称AA)是近年来刚刚诞生的随机优化方法,它是一种源于大自然的新的仿生类算法。由意大利学者Dorigo最早提出,蚂蚁算法主要是通过蚂蚁群体之间的信息传递而达到寻优的目的,最初又称蚁群优化方法(Ant Colony Optimization简称ACO)。由于模拟仿真中使用了人工蚂蚁的概念,因此亦称蚂蚁系统(Ant System,简称AS)。

蚁群觅食图1

?How do I incorporate my LOGO and URL to a slide that will apply to all the other slides?

–On the [View]menu, point to [Master],and then

click [Slide Master]or [Notes Master].Change

images to the one you like, then it will apply to all

the other slides.

[ Image information in product ]

?Image : www.wizdata.co.kr

?Note to customers : This image has been licensed to be used within this PowerPoint template only.

You may not extract the image for any other use.

?蚁群算法是利用群集智能(swarm intelligence)解决组合优化问题的典型例子,作为一种新的仿生类进化算法,该算法模仿蚂蚁觅食时的行为,按照启发式思想,通过信息传媒—菲洛蒙(Pheromone)的诱导作用,逐步收敛到问题的全局最优解,迄今为止,蚂蚁算法己经被用于TSP问题,随后应用在二次分配问题(QAP)、工件排序问题、车辆调度等问题。

ACO优化机理

?蚂蚁有能力在没有任何提示下找到从其巢穴到食物源的最短路径,并且能随环境的变化而变化,适应性的搜索新的路径,产生新的选择。其根本原因是蚂蚁在寻找食物源时,能在其走过的路上释放特殊的信息素(Pheromone),随着时间的推移该物质会逐渐挥发,后来的蚂蚁选择该路径的概率与当时这条路径上该物质的强度成正比。当一定路径上通过的蚂蚁越来越多时,其留下的信息素轨迹也越来越多,后来蚂蚁选择该路径的概率也越高,从而更增加了该路径的信息素强度,而强度大的信息素会吸引更多的蚂蚁,从而形成一种正反馈机制。通过这种正反馈机制,蚂蚁最终可以发现最短路径。特别地,当蚂蚁巢穴与食物源之间出现障碍物时,蚂蚁不仅可以绕过障碍物,而且通过蚁群信息素轨迹在不同路径上的变化,经过一段时间的正反馈,最终收敛到最短路径上。

?在图中a点为食物源,而b点位蚂蚁巢穴,蚂蚁正往返于食物与巢穴之间,其路径为一条直线,如图2.1所示。假设在某一时刻在蚂蚁的路径中突然出现了一个障碍物,原有的路径被切断,这样,从a到b的蚂蚁就必须决定应该往左还是往右走,如图2.2所示。而从b到a的蚂蚁也必须选择一条路径。这种决定会受到各条路径上以往蚂蚁留下的信息素物质浓度的影响,如果向右的路径上的信息激素物质浓度较大,那么向右的路径被蚂蚁选中的可能性就大些。?障碍物出现后,对第一只从a到b的蚂蚁而言,因为没有信息素物质的影响,所以他选择向左或向右的概率是一样的。以从a到b的蚂蚁为例,由于路径acb比路径adb要短,因此选择acb的蚂蚁会比选择adb的蚂蚁早到b点,此时从b点向a点看,指向路径bca的信息素浓度比bda大。因此,从下一时刻起,从b点到a点的蚂蚁选择bca 路径比选择bda路径的可能性要大。从而使路径bca上信息浓度与路径bda上的差变大。而信息素物质浓度差变大的结果就是选择bca 路径的蚂蚁进一步增加,这又导致信息素物质浓度进一步加大。这就是巢穴到食物的最短路线,如图3所示,

蚁群算法在优化过程中的两个重要规则?(1)蚂蚁在众多路径中转移路线的选择规则:蚂蚁倾向于选择信息素浓度高的路径,信息素类似于一种分布式的长期记忆,它不是局部地存在于单个的蚂蚁上,而是全局地分布在整个问题空间中,这就形成了一种间接联络方式。?(2)全局化信息素更新规则:路径段上的信息素浓度,一部分会因自然蒸发而逐渐减少,这样没有蚂蚁走过的路径上的信息素浓度会由于自然蒸发而越来越低,从而变得越来越不受欢迎。每只蚂蚁按路径的长短成比例地在其经过的路径上留下一定数量的信息素。信息素更新的实质就是人工蚂蚁根据真实蚂蚁在访问过的边上留下的信息素和蒸发的信息素来模拟真实信息素数量的变化,从而使得越好的解得到越多的增强。这就形成了一种自催化强化学习

(Autocatalytic Reinforcement Learning)的正反馈机制。

蚁群算法优化模型引入

?根据昆虫学家对蚂蚁觅食行为的观察,发现蚂蚁在行动中会留下一些信息激素,这些信息激素能被同一蚁群中后来的蚂蚁感受到,并会影响后到者的行动,这些信息素越多,后到的蚂蚁就越容易沿着信息素多的路径前进,而后到者留下的信息素又会对原有的信息素进行加强,并如此循环下去,一直持续到几乎所有的蚂蚁都走最短的那一条路径为止。这种选择过程被称为蚂蚁的自催化过程,其原理是一种正反馈机制(是指受控部分发出反馈信息,其方向与控制信息一致,可以促进或加强控制部分的活动),所以蚁群系统也是一种增强型学习系统。

ACO模型

?蚁群算法求解TSP的问题中,设蚂蚁数量为m,城市i与j间的距离为dij(ij=1,2,…,n),如果设路径(i,j)在t时刻的信息素轨迹强度为τij(t),蚂蚁k在路径(i,j)上留下的单位长度轨迹信息素数量△τ ij,且τ ij(0)=C(常量),随机将m只蚂蚁放于不同的城市,蚂蚁k(k=1,2,…,m)在搜索中根据路径上的信息量以(1)式中概率选择由城市i到城市j 。

?上式中,allowedk={0,1,…,n-1}--tabuk表示蚂蚁k下一步允许选择城市的集合,tabuk(k=1,2,…,m)用以记录蚂蚁k所走过的城市,tabuk的第一个元素赋值为它起初被放置的城市;参数1 -ρ表示信息量τ ij(t)随时间推移的消逝程度:α ,β分别表示蚂蚁所积累信息量及路径能见度启发式因子在选择路径中的影响程度;。ij(t)为由城市i到城市j 的期望程度,设为距离的倒数。为避免残留信息素过多引起残留信息淹没启发信息(即赋予所有蚂蚁一种对路径长短的先验知识)在每只蚂蚁走完一步或完成对n个城市的一次遍历后,对残留信息进行更新((称称为禁忌表)

?t+n时刻各路径上的信息素可据(2)式作调整τij(t+n)=p×τij(t)+△τij (2)

?其中

?式(3)中的△τ ij表示本次循环中路径ij上信息量的增量,△τ ij表示本次循环中蚂蚁k在路径ij上留下的信息量。

?按△τij的不同取法,可形成三种类型的蚂蚁算法模型

?其中,Q是体现轨迹数量的一个常数,Lk是第k个蚂蚁周游的路程长度,dij表示路径(ij)之间的长度。上述三种模型,其中蚁密模型和蚁量模型利用的是局部信息,而蚁周模型利用的是全局信息,对全局优化较好。

?蚁群算法的性能评价指标:

?算法的性能评价主要是指对时间复杂度和空间复杂度在量化意义上的性能分析。引入三个基本指标:

?(1)最佳性能指标。定义相对误差E。为最佳性能指标,其公式如下:Eo=(Cb一C*)/C**100%,cb表示算法多次运行时得到的最佳优化值,C’表示问题的理论最优值,公式值越小意味着优化性能越好。

?(2)时间性能指标。定义时间性能指标ET,其公式如下:ET=(Ia一T0)/Imax*100%,I。表示算法平均迭代次数,Imax表示最大迭代次数,T0表示一次迭代的平均时间。时间性能指标用以衡量算法的搜索快慢程度,在Imax固定的前提下,ET越小说明收敛速度越快。

?(3)鲁棒性能指标。定义鲁棒性能指标ER,其公式如下:?ER一(ea一e’)/e’*1000,0,e。表示算法得到的平均值?表示问题的理论最优值。

?鲁棒性能指标用以衡量算法对随机初值和操作的依赖程度。

?从而,基本蚁群算法的综合性能指标E可表示为上述三个性能指标的加权和:E二a。E。+aTET+aRER ,加权系数满足α 。+α 。+α R=1,E值越小,则蚁群算法的综合性能就越好。

物流问题

?物流系统(Logistics system):物流系统是指在企业活动中各种物流功能,随着采购、生成、销售活动而发生,使物的流通效率提高的系统。

1.物流作业系统就是在配送、运输、贮藏、搬运、包装、流

通加工等作业中使用各种技能和技术,使生产点、物流据点、中心选址、运输配送路线、运输手段等网络化处理,进而提高物流活动的效率。

2.物流信息系统就是在保证订货、进货、库存、出货、配送

等信息畅通的基础上,来使通讯据点、通讯线路、通讯手段等网络化,来提高物流作业系统的效率。

蚁群算法简述及实现

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

粒子群算法和蚁群算法的结合及其在组合优化中的应用

2007年第2期空间电子技术收稿日期:2006-04-03;收修改稿日期:2006-04-30 粒子群算法和蚁群算法的结合及其在 组合优化中的应用 张长春苏昕易克初 (西安电子科技大学综合业务网国家重点实验室,西安710071) 摘要文章首次提出了一种用于求解组合优化问题的PAAA算法。该算法有效地 结合了粒子群算法和蚁群算法的优点,先利用粒子群算法的随机性、快速性、全局性得到初始信息素分布(即粗搜索),再利用蚁群算法的并行性、正反馈性、求解精度高等优点求精确解(即细搜索)。将文中提出的算法用于经典TSP问题的求解,仿真结果表明PAAA算法兼有两种算法的优点,同时抛弃了各自的缺点。该算法在时间效率上优于蚁群算法,在求精效率上优于粒子群算法,是综合了两种算法长处的一种新的启发式算法,达到时间性能和优化性能上的双赢,获得了非常好的效果。 主题词蚁群算法粒子群算法旅行商问题PAAA 0引言 近年来对生物启发式计算(Bio-inspiredComputing)的研究,越来越引起众多学者的关注和兴 趣,产生了神经网络、 遗传算法、模拟退火、粒子群算法、蚁群算法等许多用于解决复杂优化问题的新方法。然而,面对各种问题的特殊性和复杂性,每种算法都表现出了自身的优势和缺陷,都存在时间性能和优化性能不能兼得的矛盾。粒子群优化(ParticleSwarmOptimization,PSO)算法[1,2]是由Eberhart和Kennedy于1995年提出的一种全局优化算法,该算法源于对鸟群觅食行为的模拟。它的优势在于:(1)算法简洁,可调参数少,易于实现;(2)随机初始化种群,具有较强的全局搜索能力,类似于遗传算法;(3)利用评价函数衡量个体的优劣程度,搜索速度快;(4)具有较强的可扩展性。其缺点是:不能充分利用系统中的反馈信息,求解组合优化问题的能力不强。 蚁群算法[3,4](AntColonyOptimization,ACO)是由意大利学者M.Dorigo,V.Maniezzo和A.Colorni 于20世纪90年代初提出的一种新型的智能优化算法,已经被应用到TSP问题[5,6]、二次分配问题、工件调度问题、图着色问题等许多经典组合优化问题中,取得了很好的效果。它的优点是:(1)采用一种正反馈机制,通过信息素的不断更新,达到最终收敛于最优路径上的目的;(2)是一种分布式的优化方法,易于并行实现;(3)是一种全局优化的方法,不仅可用于求解单目标优化问题,而且可用于求解多目标优化问题;(4)适合于求解离散优化问题;(5)鲁棒性强。但由于在算法的初始阶段信息素匮乏,所以求解速度较慢。 文章将粒子群算法和蚁群算法有机地结合,提出了PAAA算法。它利用粒子群算法的较强的全局搜索能力生成信息素分布,再利用蚁群算法的正反馈机制求问题的精确解,汲取各自的优势,以达空间电子技术SPACEELECTRONICTECHNOLOGY76

基本蚁群算法

蚁群算法浅析 摘要:介绍了什么是蚁群算法,蚁群算法的种类,对四种不同的蚁群算法进行了分析对比。详细阐述了蚁群算法的基本原理,将其应用于旅行商问题,有效地解决了问题。通过对旅行商问题C++模拟仿真程序的详细分析,更加深刻地理解与掌握了蚁群算法。 关键词:蚁群算法;旅行商问题;信息素;轮盘选择 一、引言 蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。 蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且最多一次最后又回到第一个城市。寻找一条最短路径,使他从起点的城市到达所有城市一遍,最后回到起点的总路程最短。若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。 最基本的蚁群算法见第二节。目前典型的蚁群算法有随机蚁群算法、排序蚁群算法和最大最小蚁群算法,其中后两种蚁群算法是对前一种的优化。本文将终点介绍随机蚁群算法。 二、基本蚁群算法 (一)算法思想 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素。因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就找到了。 蚁群算法的基本思想如下图表示:

蚁群算法相关概念

蚁群算法,PSO算法以及两种算法可以融合的几种方法 蚁群算法(ACO)是受自然界中蚂蚁搜索食物行为的启发,是一种群智能优化算法。它基于对自然界真实蚁群的集体觅食行为的研究,模拟真实的蚁群协作过程。算法由若干个蚂蚁共同构造解路径,通过在解路径上遗留并交换信息素提高解的质量,进而达到优化的目的。蚁群算法作为通用随机优化方法,已经成功的应用于TSP等一系列组合优化问题中,并取得了较好的结果。但由于该算法是典型的概率算法,算法中的参数设定通常由实验方法确定,导致方法的优化性能与人的经验密切相关,很难使算法性能最优化。 蚁群算法中每只蚂蚁要选择下一步所要走的地方,在选路过程中,蚂蚁依据概率函数 选择将要去的地方,这个概率取决于地点间距离和信息素的强度。(t+n) = (t)+ Δ (t+n) 上述方程表示信息素的保留率,1-表示信息素的挥发率,为了防止信息的无限积累,取值范围限定在0~1。Δ ij 表示蚂蚁k在时间段t到(t +n)的过程中,在i到j的路径上留下的残留信息浓度。

在上述概率方程中,参数α和β:是通过实验确定的。它们对算法性能同样有很大的影响。α值的大小表明留在每个节点上信息量受重视的程度,其值越大,蚂蚁选择被选过的地点的可能性越大。β值的大小表明启发式信息受重视的程度。 这两个参数对蚁群算法性能的影响和作用是相互配合,密切相关的。但是这两个参数只能依靠经验或重复调试来选择。 在采用蚁群-粒子群混合算法时,我们可以利用PSO对蚁群系统参数α和β的进行训练。 具体训练过程:假设有n个粒子组成一个群落,其中第i个粒子表示为一个二维的向量xi = ( xi1 , xi2 ) , i = 1, 2, ?,n,即第i个粒子在搜索空间的中的位置是xi。换言之,每个粒子的位置就是一个潜在的解。将xi带入反馈到蚁群系统并按目标函数就可以计算出其适应值,根据适应值的大小衡量解的优劣。 蚁群算法的优点: 蚁群算法与其他启发式算法相比,在求解性能上,具有很强的鲁棒性(对基本蚁群算法模型稍加修改,便可以应用于其他问题)和搜索较好解的能力。 蚁群算法是一种基于种群的进化算法,具有本质并行性,易于并行实现。 蚁群算法很容易与多种启发式算法结合,以改善算法性能。

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP 中的应用 1 蚁群算法(ACA )原理 1.1 基本蚁群算法的数学模型 以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。对于其他问题,可以对此模型稍作修改便可应用。TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。 设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()n i i m b t ==∑;{(),}ij i i t c c C τΓ=?是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图 (,,)g C L =Γ实现的。 蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着 k tabu 进化过程作动态调整。在搜索过程中,蚂蚁根据各条路径上的信息量及路 径的启发信息来计算状态转移概率。()k ij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移 到元素(城市)j 的状态转移概率。 ()*()()*()()0k ij ij k k ij ij ij s allowed t t j allowed t t p t αβ αβτητη??????????? ∈?????=????? ??? ∑若否则 (1) 式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下: 1 ()ij ij t d η= (2)

蚁群算法综述

《智能计算—蚁群算法基本综述》 班级:研1102班 专业:计算数学 姓名:刘鑫 学号: 1107010036 2012年

蚁群算法基本综述 刘鑫 (西安理工大学理学院,研1102班,西安市,710054) 摘要:蚁群算法( ACA)是一种广泛应用于优化领域的仿生进化算法。ACA发展背景着手,分析比较国内外ACA研究团队与发展情况立足于基本原理,分析其数学模型,介绍了六种经典的改进模型,对其优缺点进行分析,简要总结其应用领域并对其今后的发展、应用做出展望。 关键词:蚁群;算法;优化;改进;应用 0引言 专家发现单个蚂蚁只具有一些简单的行为能力。但整个蚁群却能完成一系列复杂的任务。这种现象是通过高度组织协调完成的1991年。意大利学者M.Dorigo 首次提出一种新型仿生算法ACA。研究了蚂蚁的行为。提出其基本原理及数学模型。并将之应用于寻求旅行商问题(TSP)的解。 通过实验及相关理论证明,ACA有着有着优化的选择机制的本质。而这种适应和协作机制使之具有良好的发现能力及其它算法所没有的优点。如较强的鲁棒性、分布式计算、易与其他方法结合等;但同时也不应忽略其不足。如搜索时间较长,若每步进行信息素更新,计算仿真时所占用CPU时间过长:若当前最优路径不是全局最优路径,但其信息素浓度过高时。靠公式对信息素浓度的调整不能缓解这种现象。会陷人局部收敛无法寻找到全局最优解:转移概率过大时,虽有较快的收敛速度,但会导致早熟收敛。所以正反馈原理所引起的自催化现象意在强化性能好的解,却容易出现停滞现象。笔者综述性地介绍了ACA对一些已有的提出自己的想法,并对其应用及发展前景提出了展望。 1 蚁群算法概述 ACA源自于蚁群的觅食行为。S.Goss的“双桥”实验说明蚂蚁总会选择距食物源较短的分支蚂蚁之间通过信息素进行信息的传递,捷径上的信息素越多,吸引的蚂蚁越多。形成正反馈机制,达到一种协调化的高组织状态该行为称集体自催化目前研究的多为大规模征兵,即仅靠化学追踪的征兵。 1 .1 蚁群算法的基本原理

遗传-模拟退火-蚁群三个算法求解TSP的对比讲解

数学与统计学院 智能计算及应用课程设计 设计题目:智能计算解决旅行商问题 摘要 本文以遗传算法、模拟退火、蚁群算法三个算法解决旅行商问题,将三个算法进行比较分析。目前这三个算法广泛应用于各个领域中,本文以31个城市为例,运用遗传算法、模拟退火、蚁群算法分别进行了计算,将他们的计算结果进行了比较分析。 关键词:遗传算法模拟退火蚁群算法旅行商问题 背景: 遗传算法: 20世纪60年代初,美国Michigan大学的John Holland教授开始研究自然和人工系统的自适应行为,在从事如何建立能学习的机器的研究过程中,受达尔文进化论的启发,逐渐意识到为获得一个好的算法仅靠单个策略建立和改进是不够的,还要依赖于一个包含许多候选策略的群体的繁殖,从而提出了遗传算法的基本思想。 20世纪60年代中期,基于语言智能和逻辑数学智能的传统人工智能十分兴盛,而基于自然进化思想的模拟进化算法则遭到怀疑与反对,但Holland及其指导的博士仍坚持这一领域的研究。Bagley发表了第一篇有关遗传算法应用的论文,并首先提出“遗传算法”这一术语,在其博士论文中采用双倍体编码,发展了复制、交叉、变异、显性、倒位等基因操作算子,并敏锐地察觉到防止早熟的机理,发展了自组织遗传算法的概念。与此同时,Rosenberg在其博士论文中进行了单细胞生物群体的计算机仿真研究,对以后函数优化颇有启发,并发展了自适应交换策略,在遗传操作方面提出了许多独特的设想。Hollistien在其1971年发表的《计算机控制系统的人工遗传自适应方法》论文中首次将遗传算法应用于函数优化,并对优势基因控制、交叉、变异以及编码技术进行了深入的研究。 人们经过长期的研究,在20世纪}o年代初形成了遗传算法的基本框架。1975年Holland 出版了经典著作“Adaptation in Nature and Artificial System",该书详细阐述了遗传算

蚁群算法综述

智能控制之蚁群算法 1引言 进入21世纪以来,随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 蚁群算法是近些年来迅速发展起来的,并得到广泛应用的一种新型模拟进化优化算法。研究表明该算法具有并行性,鲁棒性等优良性质。它广泛应用于求解组合优化问题,所以本文着重介绍了这种智能计算方法,即蚁群算法,阐述了其工作原理和特点,同时对蚁群算法的前景进行了展望。 2 蚁群算法概述 1、起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 Deneubourg及其同事(Deneubourg et al.,1990; Goss et al.,1989)在可监控实验条件下研究了蚂蚁的觅食行为,实验结果显示这些蚂蚁可以通过使用一种称为信息素的化学物质来标记走过的路径,从而找出从蚁穴到食物源之间的最短路径。 在蚂蚁寻找食物的实验中发现,信息素的蒸发速度相对于蚁群收敛到最短路径所需的时间来说过于缓慢,因此在模型构建时,可以忽略信息素的蒸发。然而当考虑的对象是人工蚂蚁时,情况就不同了。实验结果显示,对于双桥模型和扩展双桥模型这些简单的连接图来说,同样不需要考虑信息素的蒸发。相反,在更复杂的连接图上,对于最小成本路径问题来说,信息素的蒸发可以提高算法找到好解的性能。 2、基于蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的环境作出反应,也只对其周围的局部环境产生影响。 (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的自适应表现,即蚂蚁是反应型适应性主体。 (3)在个体水平上,每只蚂蚁仅根据环境作出独立选择;在群体水平上,单

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

蚁群算法

蚁群算法的改进与应用 摘要:蚁群算法是一种仿生优化算法,其本质是一个复杂的智能系统,它具有较强的鲁棒性、优良的分布式计算机制和易于与其他方法结合等优点。但是现在蚁群算法还是存在着缺点和不足,需要我们进一歩改进,如:搜索时间长、容易出现搜索停滞现象、数学基础还不完整。本文首先说明蚁群算法的基本思想,阐述了蚁群算法的原始模型及其特点,其次讨论如何利用遗传算法选取蚁群算法的参数,然后结合对边缘检测的蚁群算法具体实现过程进行研究分析,最后对本论文所做的工作进行全面总结,提出不足之处,并展望了今后要继续研究学习的工作内容。 关键词:蚁群算法;边缘检测;阈值;信息素;遗传算法; 1 前言 蚁群算法是近年来提出的一种群体智能仿生优化算法,是受到自然界中真实的蚂蚁群寻觅食物过程的启发而发现的。蚂蚁之所以能够找到蚁穴到食物之间的最短路径是因为它们的个体之间通过一种化学物质来传递信息,蚁群算法正是利用了真实蚁群的这种行为特征,解决了在离散系统中存在的一些寻优问题。该算法起源于意大利学者 Dorigo M 等人于 1991 年首先提出的一种基于种群寻优的启发式搜索算法,经观察发现,蚂蚁在寻找食物的过程中其自身能够将一种化学物质遗留在它们所经过的路径上,这种化学物质被学者们称为信息素。这种信息素能够沉积在路径表面,并且可以随着时间慢慢的挥发。在蚂蚁寻觅食物的过程中,蚂蚁会向着积累信息素多的方向移动,这样下去最终所有蚂蚁都会选择最短路径。该算法首先用于求解著名的旅行商问题(Traveling Salesman Problem,简称 TSP)并获得了较好的效果,随后该算法被用于求解组合优化、函数优化、系统辨识、机器人路径规划、数据挖掘、网络路由等问题。 尽管目前对 ACO 的研究刚刚起步,一些思想尚处于萌芽时期,但人们已隐隐约约认识到,人类诞生于大自然,解决问题的灵感似乎也应该来自大自然,因此越来越多人开始关注和研究 ACO,初步的研究结果已显示出该算法在求解复杂优化问题(特别是离散优化问题)方面的优越性。虽然 ACO 的严格理论基础尚未奠定,国内外的有关研究仍停留在实验探索阶段,但从当前的应用效果来看,这种自然生物的新型系统寻优思想无疑具有十分光明的前景。但该算法存在收敛速度慢且容易出现停滞现象的缺点,这是因为并不是所有的候选解都是最优解,而候选解却影响了蚂蚁的判断以及在蚂蚁群体中,单个蚂蚁的运动没有固定的规则,是随机的,蚂蚁与蚂蚁之间通过信息素来交换信息,但是对于较大规模的优化问题,这个信息传递和搜索过程比较繁琐,难以在较短的时间内找到一个最优的解。 由于依靠经验来选择蚁群参数存在复杂性和随机性,因此本文最后讨论如何利用遗传算法选取蚁群算法的参数。遗传算法得到的蚁群参数减少了人工选参的不确定性以及盲目性。 2 基本蚁群算法 2.1 蚁群算法基本原理 根据仿生学家的研究结果表明,单只蚂蚁不能找到从巢穴到食物源的最短路 径,而大量蚂蚁之间通过相互适应与协作组成的群体则可以,蚂蚁是没有视觉的,但是是通过蚂蚁在它经过的路径上留下一种彼此可以识别的物质,叫信息素,来相互传递信息,达到协作的。蚂蚁在搜索食物源的过程中,在所经过的路径上留下信息素,同时又可以感知并根据信息素的浓度来选择下一条路径,一条路径上的浓度越浓,蚂蚁选择该条路径的概率越大,并留下信息素使这条路径上的浓度加强,这样会有更多的蚂蚁选择次路径。相反,信息素浓度少的路

蚁群算法原理与应用讲解

蚁群算法在物流系统优化中的应用 ——配送中心选址问题 LOGO https://www.doczj.com/doc/ae10130983.html,

框架 蚁群算法概述 蚁群算法模型 物流系统中配送中心选择问题 蚁群算法应用与物流配送中心选址 算法举例

蚁群算法简介 ?蚁群算法(Ant Algorithm简称AA)是近年来刚刚诞生的随机优化方法,它是一种源于大自然的新的仿生类算法。由意大利学者Dorigo最早提出,蚂蚁算法主要是通过蚂蚁群体之间的信息传递而达到寻优的目的,最初又称蚁群优化方法(Ant Colony Optimization简称ACO)。由于模拟仿真中使用了人工蚂蚁的概念,因此亦称蚂蚁系统(Ant System,简称AS)。

蚁群觅食图1 ?How do I incorporate my LOGO and URL to a slide that will apply to all the other slides? –On the [View]menu, point to [Master],and then click [Slide Master]or [Notes Master].Change images to the one you like, then it will apply to all the other slides. [ Image information in product ] ?Image : www.wizdata.co.kr ?Note to customers : This image has been licensed to be used within this PowerPoint template only. You may not extract the image for any other use.

蚁群算法的基本原理

2.1 蚁群算法的基本原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。 (a) 蚁穴 1 2 食物源 A B (b) 人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。 (2)蚂蚁利用信息素进行相互通信。蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。 (3)蚂蚁的集群活动。通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。3.3.1蚂蚁系统 蚂蚁系统是最早的蚁群算法。其搜索过程大致如下: 在初始时刻,m 只蚂蚁随机放置于城市中, 各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启发式方法构 造的路径长度。其次,蚂蚁(1,2,)k k m = ,按照随机比例规则选择下一步要转

多目标蚁群算法及其实现

多目标蚁群算法及其实现 李首帅(2012101020019) 指导老师:张勇 【摘要】多目标优化问题对于现阶段来说,是十分热门的。本文将对多目标规划当中的旅行商问题,通过基于MATLAB的蚁群算法来解决,对多目标问题进行局部优化。 【关键词】旅行商问题;蚁群算法;MATLAB 一、背景介绍 旅行商问题是物流领域当中的典型问题,它的求解十分重要。蚁群算法是受自然界中真实蚁群的集体行为的启发而提出的一种基于群体的模拟进化算法,属于随机搜索算法。M. Dorigo等人充分利用了蚁群搜索食物的过程与旅行商问题(TSP)之间的相似性,通过人工模拟蚁群搜索食物的行为(即蚂蚁个体之间通过间接通讯与相互协作最终找到从蚁穴到食物源的最短路径)来求解TSP问题。为区别于真实蚁群,称算法中的蚂蚁为“人工蚂蚁”。人们经过大量研究发现,蚂蚁个体之间是通过一种称之为信息素(pheromone)的物质进行信息传递,从而能相互协作,完成复杂的任务。蚁群之所以表现出复杂有序的行为,个体之间的信息交流与相互协作起着重要的作用。蚂蚁在运动过程中,能够在它所经过的路径上留下该种物质,而且能够感知这种物质的存在及其强度,并以此指导自己的运动方向。蚂蚁倾向于朝着该物质强度高的方向移动。因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。蚂蚁个体之间就是通过这种信息的交流达到搜索食物的目的。 二、蚁群算法原理介绍 1.蚁群在路径上释放信息素; 2.碰到还没走过的路口,就随机挑选一条路走。同时释放与路径长度有关的信息素; 3.信息素浓度与路长成反比; 4.最优路径上的信息浓度越来越大; 5.最终蚁群找到最优路径。 其实自然界中,蚁群这种寻找路径的过程表现是一种正反馈的过程,与人工蚁群的优化算法很相近。所以我们简单功能的工作单元视为蚂蚁,则上述的搜寻路径过程可以用来解释人工蚁群搜寻过程。 人工蚁群和自然界蚁群各具特点。人工蚁群具有一定的记忆能力。它能够记忆已经访问过的节点;另外,人工蚁群在选择下一条路径的时候并不是完全盲目的,而是按一定的算法规律有意识地寻找最短路径。而自然界蚁群不具有记忆的能力,它们的选路凭借外激素,或者

KNN算法原理及应用

KNN分类算法(理论)

目录 1.KNN算法 (1) 2.KNN算法描述 (1) 3.KNN主要的应用领域 (2) 4.KNN算法的优、缺点 (2)

1.KNN算法 KNN算法,右又叫K最邻近分类算法,是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 KNN算法概括来说,就是已知一个样本空间里的部分样本分成几个类,然后,给定一个待分类的数据,通过计算找出与自己最接近的K个样本,由这K个样本投票决定待分类数据归为哪一类。kNN算法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。 2.KNN算法描述 一个比较经典的KNN图如下: 从上图中我们可以看到,图中的有两个类型的样本数据,一类是蓝色的正方形,另一类是红色的三角形。而那个绿色的圆形是我们待分类的数据。 如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形。

如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿色的这个待分类点属于蓝色的正方形。 3.KNN主要的应用领域 文本分类、聚类分析、预测分析、模式识别、图像处理。 KNN算法不仅可以用于分类,还可以用于预测。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。 4.KNN算法的优、缺点 优点 (1) 简单,易于理解,易于实现,无需估计参数,无需训练; (2) 适合对稀有事件进行分类; (3) 特别适合于多分类问题(multi-modal,对象具有多个类别标签),kNN比SVM的表现要好。 缺点 (1) 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 (2) 计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。

猴群算法讲解学习

猴群算法 1. 选题背景 自然界的智慧无穷无尽. 受自然规律的启迪, 人类进行了各种发明创造, 智能算法就是其一. 经典的智能算法主要包括人工神经网络、遗传算法、粒子群算法、蚁群算法等等. 2008年Zhao和Tang根据自然界中猴群爬山过程中爬、望、跳几个动作, 设计开发了另外一种群体智能搜索算法—猴群算法. 该算法除具有经典智能搜索算法的消耗低、效率高的特性外, 其优势表现在求解高维数、多峰值的大规模优化问题时能够逃脱“维数灾难”, 快速搜索到最优或近似最优解. (1)人工神经网络. “人工神经网络”是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统. 这种网络依靠系统的复杂程度, 通过调整内部大量节点之间相互连接的关系, 从而达到处理信息的目的. 心理学家McCulloch、数学家Pitts提出了第一个人工神经网络的数学模型.其后, Rosenblatt、Widrow和Hopfield等学者又先后提出了感知模型, 使得人工神经网络技术得以蓬勃发展. 到目前为止, 已有近40种神经网络模型, 其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等[1, 2].人工神经网络具有四个基本特征:非线性、非局限性、非常定性和非凸性.这四个特征决定了其具备很强的自学习和自适应能力, 可以通过预先提供的一批相互对应的输入-输出数据, 分析掌握两者之间潜在的规律, 最终根据这些规律, 用新的输入数据来推算输出结果.人工神经网络特有的非线性适应性信息处理能力, 克服了传统人工智能方法对于直觉, 如模式、语音识别、非结构化信息处理方面的不足, 使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用. (2)遗传算法. 遗传算法是基于对达尔文生物进化论的“优胜劣汰”的模拟而发展起来的一种广为应用的、高效的随机搜索与优化的方法. 遗传算法最早是由Holland教授[3]于1975年提出的, 随后被众多学者推广[4–6]. 其主要特点是群体搜索策略和群体中个体之间的信息交换, 搜索不依赖于梯度信息. 进入90年代, 遗传算法迎来了兴盛发展时期, 无论是理论研究还是应用研究都成了十分热门的课题. 尤其是遗传算法的应用研究显得格外活跃, 不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高. 迄今为止,遗传算法是进化算法中最广为人知的算法. 近些年关于遗传算法的研究主要集中在以下几个方面:i), 遗传算法在机器学习方面的应用. 这一方向把把遗传算法扩展到具有独特的规则生成功能的崭新的机器学习算法中. ii), 遗传算法和神经网络、模糊推理以及混沌理论等计算方法的结合. iii), 遗传算法的并行处理研究. iv),遗传算法和进化计算理论的结合. 同时, 遗传算法本质上是一种随机搜索优化算法, 当问题规模较大或问题较复杂时, 由于被搜索的空间非常之大, 从而导致遗传算法的收敛速度很慢. 加之遗传算法本身存在着群体分散性和GA的早熟之间的矛盾, 这给遗传算法的实时应用带来了很大的不便. 另外, 收敛过早也是遗传算法的一个较难克服的不足.由于遗传算法中选择及杂交变异等算子的作用, 使得一些优秀的基因片段过早丢失, 从而限制了搜索范围, 使得搜索只能在局部范围内找到最优值, 而不能得到满意的全局最优值.

四.蚁群算法的基本原理

四.蚁群算法基本原理 引言: 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。这就是要讲的蚁群算法。 一.蚁群算法 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID 控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。 二.蚁群算法原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,

相关主题
文本预览
相关文档 最新文档