当前位置:文档之家› 高功率脉冲磁控溅射技术的特点及其研究

高功率脉冲磁控溅射技术的特点及其研究

高功率脉冲磁控溅射技术的特点及其研究
高功率脉冲磁控溅射技术的特点及其研究

高功率脉冲磁控溅射技术的特点及其研究班级:机械工程学院材料1301班学号:0335******* 作者:程乾坤摘要:本论文主要介绍高功率脉冲磁控溅射技术的主要特点以及目前的研究状况和未来的发展方向。简介该技术到目前为止世界范围内的进展和发展历程,作者对该技术到目前为止的发展分析以及对该技术所作的一些想法。

关键词:高功率磁控脉冲、离化率、薄膜性能

一、高功率脉冲磁控溅射技术的介绍

磁控溅射(HIPIMS)是在溅射的基础上,运用靶板材料自身的电场与磁场的相互电磁交互作用,在靶板附近添加磁场,使得二次电离出更多的离子,增加溅射效率。这种技术应用于材料镀膜。其中高功率脉冲磁控溅射(high-power impulse magnetron sputtering (HiPIMS) 或 high-power pulsed magnetron sputtering (HPPMS))近来使用较为普遍。磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。高功率磁控溅射是著名已故俄罗斯科学家Vladimir Kouzentsov开发并且拥有专利的一种脉冲物理气象沉积(PVD)的方法。它的主要特点是离化率高,堆积致密,镀膜性能好。高功率,顾名思义,是用非常高的电压产生的脉冲撞击靶材表面而使得靶材离化率大幅增加的技术,但是发射高功率脉冲是对电极的一个考验,所以,这种高功率的发射不是连续的,而是在电极的可承受范围内断续而高频的发射,这种方法既增加了靶材的离化率,又相对延长了电极的使用寿命。由于击中基体的带正电荷的粒子能量和方向均受到施加于基体的负电压(偏压)的有利影响,因此,高的靶材金属离化率相对于传统方法,使涂层结构和特点上得到了改进。1

二、截止目前的发展及研究

1999年,瑞典的V,Kouznetsov及其团队[1]首次采用高功率磁控脉冲作为磁控溅射的供电模式,提出了HPPMS的方法,并沉积了Cu薄膜,相对于普通的直流溅射,HPPMS获得高的CU离化率,膜层高致密度,高的靶材利用率,均匀的厚度[2]。这时有很多做磁控溅射研究的学者开始关注这一研究方向,并且在试验中将这种设备逐渐完善。其中主要包括改进磁控放电的稳定性和改变脉冲结构增加沉积率两个方面。高功率脉冲磁控溅射技术(HPPMS)由于能够产生较高的离化率而受到人们的重视。为了提高离化率/沉积速率协同效应,基于直流和脉冲耦合叠加技术我们研制了高功率密度复合脉冲磁控溅射电源,并对高功率复合

脉冲磁控溅射放电特性进行研究。结果表明脉冲峰值电流随脉冲电压的增加而增加,但随着脉冲宽度的增加而减小。在高功率脉冲期间工件上获得的电流可以增加一个数量级以上,表明磁控离化率得到显著增强。[3]此外,国内的一些学者研究出了复合高功率脉冲磁控溅射,

采用高功率脉冲磁控溅射与直流磁控溅射并联的复合高功率脉冲磁控溅射技术,研究直流

磁控溅射部分耦合直流电流变化对Ti靶在Ar气氛中放电及等离子体特性的影响.采用表面轮廓仪、扫描探针显微镜、X射线衍射与纳米压痕仪对Ti薄膜厚度、结构特征以及力学性能进行表征.结果表明:耦合直流电流增加,靶平均功率增加,脉冲作用期间靶电流降低,等离子体电子密度增加;在耦合直流电流为2.0A时,等离子体电子密度和电子温度获得较大值,分别为2.98 V和0.93 eV;耦合直流电流增加,Ti薄膜沉积速率近似线性增加,粗糙度增加,硬度和弹性模量略有降低;相同靶平均功率时,采用复合高功率脉冲磁控溅射技术制备Ti薄膜与采用传统直流磁控溅射技术相比,沉积速率相当;靶平均功率650W时复合高功率脉冲磁控溅射所制Ti薄膜比传统直流磁控溅射所制Ti薄膜更加光滑,平均粗糙度降低1.32 nm,力学性能更加优异,硬度提高2.68GPa.[4]在HPPMS的放电方式研究方面,大连理工大学的三束材料改性实验室的直流诱导高功率脉冲非平衡磁控溅射[5]是一个亮点,采用直流电源放电,通过控制非平衡磁控靶的磁场分布和气压等放电参数,由放电不稳定性形成高功率脉冲。磁控溅射放电气体和溅射原子的电离主要发生在阴极鞘层区域,利用了E×B交叉场约束电子[6],导致了复杂等离子体的不稳定性和电磁效应,[7][8][9]通过调整磁场功率等放电参数诱发交叉场驱动霍尔漂移的电离不稳定性和磁绝缘机制形成高功率脉冲放电。采用同轴线圈电流控制非平衡磁控溅射系统的非平衡度放电电源为直流磁控溅射电源,研究调整放电过程中的气压、功率和磁场电流等参数控制放电脉冲的频率,采用示波器观察这种脉冲放电过程,研究了线圈电流、气压和脉冲频率之间的关系,采用圆形平面偏压电极研究了脉冲放电模式中的浮置电位和脉冲离子电流,分析了脉冲的波形的特征、形成原因及影响因素。高功率脉冲磁控溅射技术的关键是在磁控溅射阴极上施加高功率脉冲,根据施加脉冲的峰值功率和波形,分为常规的高功率脉冲磁控溅射(HIPIMS/HPPMS,Huettinger公司)和调制脉冲功率磁控溅射(ModulatedPulsedPowerMagneronSputtering(MPPMS),或HIPIMS+,Zpulser和Hauzer公司);电压在脉冲作用时间内快速上升至kV级,随后减小,放电电流可达kA,峰值功率05~10kW/cm2,空比05%~5%,脉冲宽度20~200μs;图3(b)是典型的MPPMS电压电流和功率波形,相对于HIPIMS,MPPMS降低峰值电流和峰值功率约一个量级,脉冲宽度增加至ms量级,最大可达3ms,占空比1%~30%,而且可以通过微脉冲调制脉冲位形,实现包括引等离子体的弱脉冲和增强等离子体的强脉冲在内的多段脉冲控制,提高了等离子体的稳定性和可控性.近几年来,除两种主流高功率脉冲溅射技术外,Magpuls、M e lec、PlasmaTech、Solvix、Zulser等公司和哈尔滨工业大学科研单位又展出了双极脉冲高功率脉冲磁控溅射、直流叠加高功率脉冲磁控溅射和高频高功率脉冲磁控溅射技术等,用于克服现有高功率脉冲溅射在阴极或沉积膜层导电性差时易打弧、沉积速率下降等不足.[10]

目前所发展研究的高功率磁控脉冲溅射技术,主要是在高功率电磁脉冲的作用下是靶材大量离化,形成颗粒,在磁场和电厂的交互作用下撞击在基材表面形成薄膜,这种磁控溅射技术的沉积速率快,但是靶材在大功率的电离作用下离化的颗粒较大且不均匀是影响镀膜质量的主要因素,所以我的设想是从控制工作环境和气体氛围和离化颗粒在基材上的附着这两个方面来提高镀膜质量。

1)André Anders等人研究了高功率脉冲磁控溅射时电压- 电流- 时间关系,他们采用 Cu 、 T i i、Nb 、C、W、Al 及 Cr 等不同的靶材,对等离子体放电特性进行研究。研究发现,HPPMS放电主要有两个阶段组成:第一阶段与工作气压相关,主要是气体发生电离放电;第二阶段则取决于靶材材料和功率,与发生的自溅射密切相关。

A.P.Ehiasarian等人对HPPMS放电等离子体成分机型了研究,发现在纯Ar气体环境下,Ti+

浓度为46%,而直流磁控溅射只有10%。在氩气和10%氮气的混合气氛中,发现成膜离子含量大大增高,其中Ti+的含量大约是DCMS的5倍,反应性的N+含量是DCMS的四倍。此外,在离子传输过程中,波速与脉冲能量无关但是波振幅随脉冲能量的增加而增加。[11]因此,个人认为在进行高功率磁控溅射镀膜时,可以不使用单一保护气体气体,可以在气体中适量掺入适当气体增加成膜离子含量。

经电离出的离子在经过气体环境时与气体分子碰撞减小了动量,因此离子与基材的结合力会受到影响,假如对基材表面进行活化处理,可以使得离子与基材结合更加牢固。薄膜之所以能附着在基材上,是范德华力,扩散附着,和机械咬合综合作用的结果。由于基材的表面在微观下是凹凸不平的,镀膜与基材形成相互交错的咬合,这种咬合是单纯的机械结合,附着力较低;若离化粒子的速度较高,便可以与基材表面的原子或分子产生范德华力,这种力量较强,但是具有范德华力的部位仅仅是镀膜和基材的表层;由于溅射室的温度较高,一些镀膜材料可能与基材发生化学反应产生化学键,或者热扩散,镀膜与基材的结合是这些因素共同决定的。进行高功率磁控溅射时,基材温度过高,表面可能发生微变形,影响镀膜的均匀程度,造成应力不均匀,导致镀膜与基材结合不良。目前的研究普遍认为:1.不同的基材与镀膜材料组合对镀膜附着性有重要影响,对于膜基匹配性不好,材料性能差别大的,可以设置过渡层来改善;2.提高机体的表面清洁度有利于提高镀膜和基体的附着力,对基体进行离子轰击更好;3.制备镀膜时的各种工艺参数设置将对薄膜附着性有着综合的影响,适当的参数控制对提高薄膜与衬底间的附着力非常重要;4.薄膜沉积后进行适当的热处理有利于促进界面上原子间的扩散,提高镀膜的附着力;5.提高原料的纯度有利于提高附着力。[12]

2)涂层-基材界面处理[13]

图层的界面结合对涂层刀具在高速切削中的行为至关重要,通过界面设计可以改善图层对基材的结合强度和调整图层残余应力分布,改善刀具涂层切削性能,高功率磁控脉冲溅射等离子体具有高等离子体密度,在负偏压的作用下高速轰击基材表面,且无电弧离子镀常见的大颗粒污染,为基底表面蚀刻提供了良好的效果。Bouzikis等[14]研究了不同HIPIMS界面层和研磨/抛光/磨砂处理对涂层的抗冲击性能和涂层刀具的切削行为的影响,结果表明,不同的处理方法和不同的厚度、成分(Cr,Ti,W)的合金界面层改变了涂层界面结合强度和残余应力分布,极大的影响涂层的抗冲击性能,饥饿而影响刀具的切削行为;合适的涂层前处理和具有优化的成分,厚度的HIPIMS合金界面层可以使涂层刀具寿命成倍生长。

高功率磁控脉冲溅射技术制备涂层更致密,力学性能和高温稳定性更好,常规磁控溅射TiAlN涂层为柱状晶结构,硬度为30GPa,杨氏模量460GPa;HIPIMS-TiAlN涂层的硬度为34GPa,杨氏模量为377GPa;[15]硬度和杨氏模量之间的比例是衡量涂层韧性的一种方法,较高的硬度和较小的杨氏模量意味着更好的韧性。HIPIMS-TiAlN涂层具有更好的高温稳定性,经1000℃,4h高温退火处理后常规TiAlN图层中有AlN六方相析出,涂层高温下硬度降低,而HIPIMS-TiAlN涂层在相同的温度和时间热处理后涂层相保持不变;HIPIMS-TiAlN 图层的高温氧化开始温度也较常规涂层有较大提高。因此,HIPIMS-TiAlN涂层在高速切削刀具中表现出远优于其他PVD工艺制备的涂层刀具。[15]

三、结束语

高功率磁控脉冲溅射技术是一种飞速发展的材料表面处理技术,是一种等离子物理气相沉积技术。它具有靶材离化度高,镀膜与基材结合紧密,镀膜致密等优良特点。在世界范围内得到了广泛的应用和飞速发展。在工具表面处理,模具表面处理等技术上的应用都取得了一定的发展。但是设备造价和设备的稳定性仍待进一步改善。相信在未来的研究和优化下,该技术能给各种制造业和设备维护行业的发展提供更多益处,给各种机械零部件

和制造行业的发展带来更大的飞跃。

[1] 赛利涂层公司,HIPIMS——高功率磁控脉冲技术,《工具技术》2011-08-10 [2] Kouznetsov V,Maca’k,Schneider J M.A novel pulsed magnetron sputter technique utilizing very high target power densities [J].Surface and Coatings Technology 1999,(122):290-293.

[3] 吴忠振等,高功率脉冲磁控溅射的技术发展与研究,《真空》,2009年5月第46卷第三期,19-22,

[4] 李小婵 ;柯培玲;刘新才;汪爱英;复合高功率脉冲磁控溅射Ti的放电特性及薄膜制备,《金属学报》2014年第50卷第7期 879-885页,共7页 [5] 牟宗信;贾莉;牟晓东;董闯;直流诱导的高功率脉冲非

平衡磁控溅射[J],《中国科技论文在线精品论文》2010,3(14):1506-1510

[6]J.A.Thornton. Magnetron sputtering: basic physics and application to cylindrical magnetr ons. 1978 J.Vac.Sci.Technol. A15(2):171-177

[7] Rossnagel S M. Induced Drift Currents in Circular Planar MagnetronsJ.Vac.Sci.Tchnol. A

5(1),Jan/Feb 1987

[8] Mu Z X, Li G Q, Che D L, et al, Studies of the discharge properties of unbalanced magne

tron sputtering system. Surface and coatings Thecnol., 2005, 193: 46-49

[9] Mu Z X, Li G Q, Qin F W, The model of the magnetic mirror effect in the unbalanced magnet

ron sputteringion beams, Acta phynica sinica, 2005,54(3)1378-1384

[10] 王启民;张小波;张世宏;王成勇;伍尚华;高功率脉冲磁控溅射技术沉积硬质涂层研究进展,广

东工业大学学报,2013年2月第30卷第四期

[11] 吴忠振等,高功率脉冲磁控溅射的技术发展与研究,《真空》,2009年5月第46卷第三期,19-22,

[12] 于凤斌;陈莹磁控溅射对薄膜附着力的影响《绝缘材料》2008年第六期 41-46

[13] 王启民;张小波;张世宏;王成勇;伍尚华;高功率脉冲磁控溅射技术沉积硬质涂层研究进展,广

东工业大学学报,2013年2月第30卷第四期

[14] Bouzikas K D,Michailidis N,Skordaris G,et al.Cutting weith coated tools;Coating technologies,characterzation methods and performance optimization [J].CIRP

Annals-Manufacturing Technology ,2012,61:703-723

[15] Bolz S,Fub H G,richert W.et https://www.doczj.com/doc/a86999367.html,test results in HPPMS thin film coating tools[C].1st International IJC-PISE Workshop,Riga,Lavia,June 9-10

[16] Bouzikas K D,Michailidis N,Skordaris G,et al.Cutting weith coated tools;Coating technologies,characterzation methods and performance optimization [J].CIRP

Annals-Manufacturing Technology ,2012,61:703-723

激光脉冲的平均功率和功率

激光脉冲的平均功率和功率, 设脉冲激光器输出的单个脉冲持续时间(脉冲宽度)为:t,(实际为FWHM宽度) 单个脉冲的能量:E, 输出激光的脉冲重复周期为:T, 那么,激光脉冲的平均功率Pav = E/T,(即在一个重复周期内的单位时间输出的能量) 脉冲激光讲峰值功率(peak power)Ppk = E/t 能量密度=(单脉冲能量*所用频率)/光斑面积算 通常也用单位时间内的总能量除以光斑面积 峰值功率=脉冲能量除以脉宽 平均功率=脉冲能量*重复频率(每秒钟脉冲的个数) 脉冲激光器的能量换算 脉冲激光器的发射激光是不连续,一般以高重频脉冲间隔发射。发射能量以功的单位焦耳J) 计,即每次脉冲做功多少焦耳。 连续激光器发射的能量以功率单位瓦特(W)计量,即每秒钟做功多少焦耳,表示单位时间内 做功多少。 瓦和焦耳的关系:1W=1J/秒。 一台脉冲激光器,脉冲发射能量是1焦耳/次,脉冲频率是50Hz,则每秒钟发射激光50次,每秒钟内做功的平均功率为:50X 1焦耳=50焦耳,所以,平均功率就换算为50瓦。再举例 说明峰值功率的计算,一台绿光脉冲激光器,脉冲能量是0.14mJ/次,每次脉宽20 ns,脉冲 频率100kHz, 平均功率为:0.14mJ X 100k=14J/s=14W,即平均功率为14瓦;峰值功率是每次脉冲能量与脉宽之比,即 峰值功率:0.14mJ/20ns=7000W=7kW,峰值功率为7千瓦。 要想知道镜片的脉冲激光损伤阈值是否在承受极限内,既要计算脉冲激光的峰值功率,也要计算脉冲激光的平均功率,综合考虑。 如某ZnSe镜片的激光损伤阈值时是500MW/cm2,使用在一台脉冲激光器中,脉冲激光器的 脉冲能量是10J/cm2,脉宽10ns,频率50kHz。首先,计算平均功率:10J/cm2 X 50kHz =0.5MW/cm2 其次,再计算峰值功率:10J/cm2 / 10ns = 1000MW/cm2 从脉冲激光器的平均功率看,该镜片是能承受不被损伤的,但从脉冲激光器的峰值功率看, 是大于该镜片的激光损伤阈值的。所以,综合判断,该ZnSe镜片不宜用于此脉冲激光器。如果有条件,对脉冲激光器镜片,应当分别测试平均功率和峰值功率的激光损伤阈值。 Ave. Power :平均功率Pulse energy :脉冲能量Pulse Width :脉宽Peak Power:峰值功率Rep. Rate :脉冲频率ps:皮秒,10-12 S ns:纳秒,10-9S M: 兆, 106 J:焦耳W:瓦 氙灯作为激光设备一个常用光源,通常被人们也叫做激光氙灯、脉冲氙灯。氙灯是一 种填充氙气的光电管或闪光电灯。氙气化学性质不活泼,不能燃烧,也不助燃。是天然的稀

高压大功率脉冲电源的设计

1绪论 1.1论文的研究背景 电源设备用以实现电能变换和功率传递,是一种技术含量高、知识面宽、更新换代快的产品。现今已广泛应用到工业、能源、交通、运输、信息、航空、航天、航运、国防、教育、文化等领域。在信息时代,上述各行各业都在迅猛地发展,发展的同时又对电源产业提出了更多更高的要求。显然,电源技术的发展将 带动相关技术的发展,而相关技术的发展反过来又推动了电源产业的发展。当前在电源产业,占主导地位的产品有各种线性稳压电源、通讯用的AC y DC开关电源、DC y DC开关电源、交流变频调速电源、电解电镀电源、高频逆变式整流焊接电源、中频感应加热电源、电力操作电源、正弦波逆变电源、大功率高频高压直流稳压电源、绿色照明电源、化学电源、UPS可靠高效低污染的光伏逆变电 源、风光互补型电源等。而与电源相关的技术有高频变换技术、功率转换技术、数字化控制技术、全谐振高频软开关变换技术、同步整流技术、高度智能化技术、电磁兼容技术、功率因数校正技术、保护技术、并联均流控制技术、脉宽调制技术、变频调速技术、智能监测技术、智能化充电技术、微机控制技术、集成化技术、网络技术、各种形式的驱动技术和先进的工艺技术。 1.2脉冲电源的特点及发展动态 脉冲电源是各种电源设备中比较特殊的一种,顾名思义,它的电压或电流波 形为脉冲状。按脉冲电源的输出特性分类,有高频、低频、单向、双向、高压、低压等不同的分类,具体选择怎样的输出电压、输出电流和开关频率,根据具体的应用场合而定。按脉冲波形分,有矩形波、三角波、梯形波、锯齿波等多种形式,如图1. 1所示。 图1 . 1各种脉冲波形 由于矩形波具有较好的可控性和易操作性,所以这种波形的应用居多。究其本质,

关于磁控溅射发展历程的综述

磁控溅射 1852年,格洛夫(grove)发现阴极溅射现象,自此以后溅射技术就开始建立起来了!磁控溅射沉积技术制取薄膜是上世纪三四十年代发展起来的,由于当时的溅射技术刚刚起步,其溅射的沉积率很低,而且溅射的压强基本上在1pa以上,因此溅射镀膜技术一度在产业话的竞争中处于劣势。1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置。1974年,j.chapin发现了平衡磁控溅射。这些新兴发展起来的技术使得高速、低温溅射成为现实,磁控溅射更加快速地发展起来了,如今它已经成为在工业上进行广泛的沉积覆层的重要技术,磁控技术在许多应用领域包括制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要的影响。 磁控溅射的发展历程: 溅射沉积是在真空环境下,利用等离子体中的荷能离子轰击靶材表面,使靶材上的原子或离子被轰击出来,被轰击出的粒子沉积在基体表面生长成薄膜。 溅射沉积技术的发展历程中有几个具有重要意义的技术创新应用,现在归结如下: (1)二级溅射: 二级溅射是所有溅射沉积技术的基础,它结构简单、便于控制、工艺重复性好主要应用于沉积原理的研究,由于该方法要求工作气压高(>1pa)、基体温升高和沉积速率低等缺点限制了它在生产中的应用。 (2)传统磁控溅射(也叫平衡磁控溅射): 平衡磁控溅射技术克服了二级溅射沉积速率低的缺点,使溅射镀膜技术在工业应用上具有了与蒸发镀膜相抗衡的能力。但是平衡磁控溅射镀膜同样也有缺点,它的缺点在于其对二次电子的控制过于严密,使等离子体被限制在阴极靶附近,不利于大面积镀膜。 (3)非平衡磁控溅射: B.Window在1985年开发出了“非平衡磁控溅射技术”,它克服了平衡磁控溅射技术的缺陷,适用于大面积镀膜。并且在上世纪90年代前期,在非平衡磁控溅射的基础上发展出了闭合非平衡系统(CFUBMS),采用多个靶以及非平衡结构构成的闭合磁场可以对电子进行有效地约束,使整个真空室的等离子体密度得以提高。这样可以使磁控溅射技术更适合工业生产。 (4)脉冲磁控溅射: 由于在通过直流反应溅射来制得高密、无缺陷的绝缘膜(尤其是氧化物薄膜)时,经常存在不少的问题。其结果会严重的影响膜的结构和性能。但是通过脉冲磁控溅射可以与制得金属薄膜同样的效率来制得高质量的绝缘体薄膜。近年来,随着脉冲中频电源的研发成功,使镀膜工艺技术又上了一个新的台阶;利用中频电源,采用中频对靶或者孪生靶,进行中频磁控溅射,有效地解决了靶中毒严重的现象,特别是在溅射绝缘材料的靶时,克服了溅射过程中,阳极消失的现象。 (5)磁控溅射技术新型应用: 磁控溅射技术的新型应用是指在以上基础上,再根据应用的需要,对磁控溅射系统进行改进而衍生出的多种多样的设备和装置。这些改进主要是在系统内磁力线的分布上以及磁控溅射靶的设置和分布上。

脉冲功率技术

脉冲功率技术 摘要:脉冲功率技术是以较慢的速度将能量储藏在电容器中或者电感线圈中,然后将此电场能获磁场能迅速的释放出来,产生幅值极高的,但持续时间极端的脉冲电压及脉冲电流,从而导致极高功率的脉冲。 关键词:脉冲功率,储能技术 引言:脉冲功率技术中的储能技术包括惯性储能,电容储能,电感储能 一.、脉冲功率技术的发展 脉冲功率技术正式作为一个独立的部门发展,还是近几年的事。事实上作为脉冲功率技术基础的脉冲放电, 早就存在于大自然中。而对脉冲放电的研究则开始于研究天然雷电特性, 以及它对输电线路、建筑物危害及其防护措施。当时这种放电仅限于毫秒级和微秒级。四十年代末期, 就有人开始注意到亚微秒及毫微秒级的高压强流脉冲放电形式。但是, 一方面由于当时客观要求并不迫切;另一方面, 这样快的脉冲放电, 无论在产生技术上, 或者在测量技术上都存在着一定的困难。因此, 其后十多年,这种技术发展并不迅速。六十年代初期, 由于闪光辐射照相和瞬时辐射效应研究的需要, 英国原子能武器研究中心的J.C.马丁所领导的研究小组,开拓了称之为脉冲功率加速器的研究领域, 使毫微秒级脉冲功率技术往前推进了一步。同时, 一些科学技术在发展中受到障碍, 急需找寻新的途径。以微波和激光的发展为例, 利用速调管、行波管等原理去产生大功率高效率毫米或亚毫米微波已经不可能。利用一般方法产生大功率、高效率、波长可调的激光束也不可能。正当人们探索和寻找新的解决途径的时候, 他们发现脉冲功率技术是解决这些问题的良好途径。为此, 美国许多单位, 为桑地亚实验室、物理国际公司、海军研究实验室、康乃尔大学、加利福尼亚大学和斯坦福大学等单位, 对脉冲功

磁控溅射镀膜技术的发展

第46卷第2期2009年3月 真空VACUUM Vol.46,No.2Mar.2009 收稿日期:2008-09-03 作者简介:余东海(1978-),男,广东省广州市人,博士生 联系人:王成勇,教授。 *基金项目:国家自然科学基金(50775045);东莞市科技计划项目(20071109)。 磁控溅射镀膜技术的发展 余东海,王成勇,成晓玲,宋月贤 (广东工业大学机电学院,广东 广州 510006) 摘 要:磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅 射技术与也取得了进一步的发展。 非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。 关键词:镀膜技术;磁控溅射;磁控溅射靶中图分类号:TB43 文献标识码:A 文章编号:1002-0322(2009)02-0019-07 Recent development of magnetron sputtering processes YU Dong-hai,WANG Cheng-yong,CHENG Xiao-ling,SONG Yue-xian (Guangdong Universily of Technology,Guangzhou 510006,China ) Abstract:Magnetron sputtering processes have been widely appleed to thin film deposition nowadays in various industrial fields due to its outstanding advantages,and the technology itself is progressing further.The unbalanced magnetron sputtering process can improve the plasma distribution in deposition chamber to make film quality better.The medium -frequency and pulsed magnetron sputtering proceses can efficiently avoid the hysteresis during reactive sputtering to eliminate target poisoning and arcing,thus improving the stability and depositing rate in preparing thin compound films.Higher utilization of target can be obtained by improved target design,and the high -speed sputtering and self -sputtering provide a new field of applications in magnetron sputtering coating processes. Key words:coating technology;magnetron sputtering;magnetron sputtering target 溅射镀膜的原理[1]是稀薄气体在异常辉光 放电产生的等离子体在电场的作用下,对阴极靶材表面进行轰击,把靶材表面的分子、原子、离子及电子等溅射出来,被溅射出来的粒子带有一定的动能,沿一定的方向射向基体表面,在基体表面形成镀层。 溅射镀膜最初出现的是简单的直流二极溅射,它的优点是装置简单,但是直流二极溅射沉积速率低;为了保持自持放电,不能在低气压(<0.1Pa )下进行;不能溅射绝缘材料等缺点限制了其应用。在直流二极溅射装置中增加一个热阴极和辅助阳极,就构成直流三极溅射。增加的热阴极和辅助阳极产生的热电子增强了溅射气体原子的电离,这样使溅射即使在低气压下 也能进行;另外,还可降低溅射电压,使溅射在低 气压,低电压状态下进行;同时放电电流也增大,并可独立控制,不受电压影响。在热阴极的前面增加一个电极(栅网状),构成四极溅射装置,可使放电趋于稳定。但是这些装置难以获得浓度较高的等离子体区,沉积速度较低,因而未获得广泛的工业应用。 磁控溅射是由二极溅射基础上发展而来,在靶材表面建立与电场正交磁场,解决了二极溅射沉积速率低,等离子体离化率低等问题,成为目前镀膜工业主要方法之一。磁控溅射与其它镀膜技术相比具有如下特点:可制备成靶的材料广,几乎所有金属,合金和陶瓷材料都可以制成靶材;在适当条件下多元靶材共溅射方式,可沉积

环形磁芯快脉冲动态参数测量方法

第16卷 第10期强激光与粒子束Vol.16,No.10 2004年10月HIGH POWER LASER AND PARTIC LE BE AMS Oct.,2004  文章编号: 100124322(2004)1021345204 环形磁芯快脉冲动态参数测量方法X 丁臻捷, 苏建仓, 丁永忠, 俞建国 (西北核技术研究所,陕西西安710024) 摘 要: 磁开关压缩脉冲过程中,磁芯磁参数需历经非饱和与饱和两个阶段,磁滞回线变化经历半个周 期,通过测量这一变化过程中通过磁开关绕组的电流和磁通量变化率,可以计算出磁芯的磁滞回线,确定饱和 磁通密度、剩磁等动态参数。讨论了基于高电压放电和脉冲压缩方法测量磁芯动态参数的原理,给出了测试装 置的电路原理和电路元件参数的选择方法,测量了大型磁开关磁芯快脉冲条件下的电参数,计算了相关的磁参 数,给出了实验结果。 关键词: 磁开关; 磁滞回线; 饱和磁通密度; 剩磁; 磁脉冲压缩法 中图分类号: T N78 文献标识码: A 随着材料科学和脉冲功率技术的发展,磁开关技术在铜蒸气激光产生装置[1~3]及全固态高重频脉冲发生器[5]等重复频率脉冲功率技术领域得到了普遍的应用。 磁开关工作时,磁芯需在饱和与非饱和两种状态间来回转化。因此设计磁开关时,不仅要考虑磁芯饱和和非饱和时的磁参数,而且要关心两者之间的转变过程。随着磁芯磁化时间的缩短,变化的磁场会在构成磁芯的薄带之间产生一定的感应电压,因此必须在薄带之间加上适当的涂层用以减小涡流损耗。这样,磁开关磁芯表现的不仅是磁芯的材料性能,还间接反映了磁芯的制造工艺。由于工艺条件的限制,较大体积的磁芯与同种磁性材料小样环的性能有相当大的差别。因此,不能用小样环的性能来表征较大磁芯的整体性能水平。 一般实验室和工厂所用磁芯性能测试设备,由于电源功率的限制,励磁磁场强度在几百A/m到几千A/m 之间,这样的励磁磁场强度对于测试小样环静态、动态特性或较大磁芯的静态特性是足够了,而对于大型磁开关磁芯在快脉冲磁化条件下的性能测试就无能为力了。 本文讨论了基于脉冲压缩方法测量磁芯动态参数的原理,给出了测试装置电路原理和电路元件参数的选择方法,测量了大型磁开关磁芯快脉冲磁化条件下的电参数,计算了相关的磁参数,给出了实测结果。 1 测量原理 1.1 磁性参数测量原理 环形磁芯磁开关的截面如图1所示[5]。图中R i和R o分别为磁开关绕组的内外半径,H为高,r i和r o分别为磁开关磁芯的内外半径,h为高,磁开关绕组匝数为N,通过绕组的电流为i。考虑环形磁芯的对称性,根据安培环路定律,磁芯截面上的平均磁场强度为 H m= Ni 2π(r o-r i) ln( r o r i )(1) Fig.1 Illustration of magnetic switch 图1 磁开关截面图 则磁开关绕组截面上的磁通量 <=μ0M m S m+μ0H t S t(2)式中:M m为磁芯截面上磁化强度的平均值;S m为磁芯的截面积;S t为绕组的截面积;μ0为真空磁导率;H t为磁开关绕组内不含磁芯时的平均磁场强度 H t= Ni 2π(R o-R i) ln( R o R i )(3) 利用公式(2)可以求得与磁开关绕组面积相等的感应线圈 上的感应电压 X收稿日期:2003212226; 修订日期:2004204215 基金项目:国家863计划项目资助课题 作者简介:丁臻捷(1974—),男,硕士,工程师,主要从事脉冲功率技术研究;西安市69226信箱;E2mail:ding family@https://www.doczj.com/doc/a86999367.html,。

高功率脉冲激光应用

高功率脉冲激光应用 High peak power, low power consumption and compact package 峰值功率高,功耗低,紧密封装 Mining, Civil Engineering, Manufacturing, Forest Management, Underwater Topography, … require long range 3D laser scanning and with the most advanced lasers. Keopsys’s KULT (Ultra compact Laser Transmitter) series are the world's most used laser in 3D scanning applications. 采矿、土木工程、制造、森林管理、水下地形等需要远程三维激光扫描和最先进的激光器。Keopsys KULT(超紧凑型激光发射机)系列是世界上使用最多的三维激光扫描设备。 The KULT series, pulsed fiber lasers, cover the major eye safe wavelengths 1,5μm and 2μm but also 532nm and 1μm for specific applications. The KULT lasers provide high energy per pulse in an extremely compact package, making them the preferred lasers in many 3D scanning systems. KULT系列脉冲光纤激光器覆盖主要的人眼安全波长1.5μm、2μm以及532 nm和1μm,用于特定应用场合。KULT激光器在极其紧凑封装的条件下能提供高能量脉冲,使其成为三维激光扫描系统的首选。 In terms of high peak power, power consumption and compact package, KEOPSYS has one of the best offers on the market. We have developed very strong partnership with the leading manufacturers of 3D scanning systems. Our experienced and highly educated team will work with you to design custom solutions for your next generation scanner. 在高峰值功率、低功耗、紧凑封装方面,KEOPSYS拥有市场上最好的产品之一。我们已经和领先的三维扫描系统制造商建立了强力合作关系。我们的经验和高精尖团队将与您合作,为您的下一代扫描设备制定解决方案。 Telemetry for environmental and industrial surveys Range-Finding and Speed sensing for collission avoidance

磁控溅射镀膜技术的发展_余东海

第46卷第2期2009年3月 真 空 VACUUM Vol.46,No.2Mar.2009 收稿日期:2008-09-03 作者简介:余东海(1978-),男,广东省广州市人,博士生 联系人:王成勇,教授。 *基金项目:国家自然科学基金(50775045);东莞市科技计划项目(20071109)。 磁控溅射镀膜技术的发展 余东海,王成勇,成晓玲,宋月贤 (广东工业大学机电学院,广东 广州 510006) 摘 要:磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅 射技术与也取得了进一步的发展。 非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。 关键词:镀膜技术;磁控溅射;磁控溅射靶中图分类号:TB43 文献标识码:A 文章编号:1002-0322(2009)02-0019-07 Recent development of magnetron sputtering processes YU Dong-hai,WANG Cheng-yong,CHENG Xiao-ling,SONG Yue-xian (Guangdong Universily of Technology,Guangzhou 510006,China ) Abstract:Magnetron sputtering processes have been widely appleed to thin film deposition nowadays in various industrial fields due to its outstanding advantages,and the technology itself is progressing further.The unbalanced magnetron sputtering process can improve the plasma distribution in deposition chamber to make film quality better.The medium -frequency and pulsed magnetron sputtering proceses can efficiently avoid the hysteresis during reactive sputtering to eliminate target poisoning and arcing,thus improving the stability and depositing rate in preparing thin compound films.Higher utilization of target can be obtained by improved target design,and the high -speed sputtering and self -sputtering provide a new field of applications in magnetron sputtering coating processes. Key words:coating technology;magnetron sputtering;magnetron sputtering target 溅射镀膜的原理[1]是稀薄气体在异常辉光 放电产生的等离子体在电场的作用下,对阴极靶材表面进行轰击,把靶材表面的分子、原子、离子及电子等溅射出来,被溅射出来的粒子带有一定的动能,沿一定的方向射向基体表面,在基体表面形成镀层。 溅射镀膜最初出现的是简单的直流二极溅射,它的优点是装置简单,但是直流二极溅射沉积速率低;为了保持自持放电,不能在低气压(<0.1Pa )下进行;不能溅射绝缘材料等缺点限制了其应用。在直流二极溅射装置中增加一个热阴极和辅助阳极,就构成直流三极溅射。增加的热阴极和辅助阳极产生的热电子增强了溅射气体原子的电离,这样使溅射即使在低气压下 也能进行;另外,还可降低溅射电压,使溅射在低 气压,低电压状态下进行;同时放电电流也增大,并可独立控制,不受电压影响。在热阴极的前面增加一个电极(栅网状),构成四极溅射装置,可使放电趋于稳定。但是这些装置难以获得浓度较高的等离子体区,沉积速度较低,因而未获得广泛的工业应用。 磁控溅射是由二极溅射基础上发展而来,在靶材表面建立与电场正交磁场,解决了二极溅射沉积速率低,等离子体离化率低等问题,成为目前镀膜工业主要方法之一。磁控溅射与其它镀膜技术相比具有如下特点:可制备成靶的材料广,几乎所有金属,合金和陶瓷材料都可以制成靶材;在适当条件下多元靶材共溅射方式,可沉积 DOI:10.13385/https://www.doczj.com/doc/a86999367.html,ki.vacuum.2009.02.026

磁控溅射高频脉冲(A-2K)电源的研制1

中南民族大学 硕士学位论文 磁控溅射高频脉冲(A<'2>K)电源的研制 姓名:刘亚东 申请学位级别:硕士 专业:等离子体物理 指导教师:孙奉娄 20080501

摘要 根据调研和文献,对不同的溅射技术进行了比较,针对脉冲磁控溅射(Pulse Megnetron Sputtering(PMS))的特点及受限于电源技术的瓶颈,提出了A2K(Active Arc Killer)电源指标:输出频率最高达300kHz,负向电压在0~-500V可调,负向最大峰值电流达2A,正向电压在0~100V可调,正向最大峰值电流达1A,负向占空比10%~60%范围可调的双向脉冲电源。 为了实现电源指标,分析了拟设计电源的难点:主要是受电力电子器件的限制,电压、电流和频率同时达到所需水平的电力电子器件目前在国内无法找到,即使找到了成本也是相当高。因此,本文从结构上入手,提出了整体的电源解决方案,它由两个独立的DC/DC变换(分别用于调节正、负向电压)、一个斩波系统(用于形成正向脉冲)和一个逆变倍频系统(用于形成负向脉冲)构成。逆变倍频系统及其与斩波系统的配合是核心问题,方案在一定程度上突破了电力电子器件的限制,为溅射电源设计提供了新的方案。 根据总体方案,详细论述了主电路的拓扑选择、功率器件的选择、磁性器件的设计、缓冲电路的选择、控制电路和驱动电路的设计。在比较了各种拓扑优缺点之后,根据电源指标要求,选择了全桥电路作为负向调压系统的DC/DC变换拓扑,正激电路作为正向调压系统的DC/DC变换拓扑,逆变倍频系统也采用全桥逆变,副边采用可控整流。由于对频率有较高要求,功率开关管全部采用功率MOSFET。讨论了中高频下Miller效应对功率开关管驱动的影响及其解决方案,还讨论了缓冲电路的作用及参数选择。 本文还从工程经验上详细描述了电源调试中出现的问题和如何解决这些问题的详细过程。通过示波器检测驱动信号实时波形,验证了Miller效应的影响。通过检测负载电压和电流波形、电源在功能上达到了设计指标。 实际用于磁控溅射实验,与RF、DC溅射进行比较,验证了脉冲溅射的优势和电源的实用性,此电源可作为实验室磁控溅射试验电源。 关键词:脉冲磁控溅射;高频脉冲电源;逆变倍频;Miller效应

磁控溅射法沉积TCO薄膜的电源技术

磁控溅射法沉积TCO薄膜的电源技术1前言 透明导电氧化物薄膜(TCO薄膜)有着广泛的用途,如作为LCD、OLED显示器面板的电极,作为触摸屏的感应电极,作为薄膜太阳能电池的电极以及作为LED芯片前电极等[1]。 目前,主要的TCO薄膜有氧化铟锡(ITO)、氧化锡(SnO2)、氧化锌铝(AZO)三种[2],其中SnO2薄膜是最早应用的TCO薄膜,但由于其光电特性相对较差,目前主要应用在一些较低端的使用领域。ITO薄膜是目前光电特性最好,使用范围最广的TCO薄膜,但其同时存在使用稀有元素In,生产成本较高、In元素有毒、在氢等离子工艺氛围中性能退化等缺点。近年来,成本低、性能优良、无毒害的ZnO:Al(AZO)薄膜[3]得到了广泛的关注与研究,有希望替代ITO薄膜。 因此,ITO与AZO材料是当前研究和生产的最主要的TCO材料。 目前,产业界制备ITO、AZO薄膜主要是采用磁控溅射镀膜技术[4][5]。磁控溅射技术基于等离子技术,通常是在存在高电势差的靶(阴极)与阳极之间注入气体(一般为Ar气),通过等离子辉光放电实现对气体原子的离化,电场与磁场对离子加速和变向,进而轰击靶材表面,导致靶材原子被轰击到空间中,溅射在一块衬底材料上聚集形成薄膜[6]。 对于磁控溅射装置,磁控溅射电源决定了磁控溅射工艺过程等离子体状态,对镀膜工艺和膜层生长质量起着至关重要的作用[7]。随着生产和科技不断发展,用户对产品质量性能的要求越来越高。所以要求磁控溅射镀膜设备具有良好的可靠性、稳定性,有较高的镀膜效率和镀膜质量。 本文将主要描述磁控溅射ITO、AZO两大主要TCO薄膜的核心电源技术的发展现状、最新进展以及未来面临的挑战。 2磁控溅射TCO薄膜的电源技术发展概述 2.1磁控溅射直流电源 磁控溅射电源类型有直流电源、中频电源和射频电源。其中中频电源与射频电源成本较高,且沉积速率偏慢,尤其是射频电源沉积速率慢且由于驻波效应等,不适宜进行大面积镀膜,因此在制备大面积TCO薄膜技术领域应用较少。 TCO薄膜制备以直流磁控溅射技术为主。直流磁控电源简单可靠、工作稳定、功率大、沉积速率快。直流电源主要有恒流、恒压、恒功率等控制模式以恒流磁控溅射直流电源系统为例,其基本原理如图1所示。电路由主电路部分和控制部分组成。电网输入单相交流电,通过工频整流,电感电容整流后为直流电。功率电子器件在控制电路的控制下将直流转换为脉冲交流电。经高频变压器,将交流脉冲升压。然后通过二极管整流和电感滤波输出直流。控制部分由PWM控制、IGBT驱动、恒流控制、过流保护等部分组成。

磁控溅射制膜技术的原理及应用和发展-郭聪

磁控溅射制膜技术的原理及应用和发展 郭聪 (黄石理工学院机电工程学院黄石 435000) 摘要:磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。探讨了磁控溅射技术在非平衡磁场溅射、脉冲磁控溅射等方面的进步,说明利用新型的磁控溅射技术能够实现薄膜的高速沉积、高纯薄膜制备、提高反应溅射沉积薄膜的质量等,并进一步取代电镀等传统表面处理技术。阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。 关键词:非平衡磁控溅射脉冲磁控溅射薄膜制备工艺应用 中图分类号:O484.1 0 前言 薄膜是指存在于衬底上的一层厚度一般为零点几个纳米到数十微米的薄层材料。薄膜材料种类很多,根据不同使用目的可以是金属、半导体硅、锗、绝缘体玻璃、陶瓷等。从导电性考虑,可以是金属、半导体、绝缘体或超导体;从结构考虑,可以是单晶、多晶、非晶或超晶格材料;从化学组成来考虑,可以是单质、化合物或无机材料、有机材料等。制备薄膜的方法有很多,归纳起来有如下几种:1)气相方法制模,包括化学气相淀积(CVD),如热、光或等离子体CVD和物理气相淀积(PVD),如真空蒸发、溅射镀膜、离子镀膜、分子束外延、离子注入成膜等; 2)液相方法制膜,包括化学镀、电镀、浸喷涂等; 3)其他方法制膜,包括喷涂、涂覆、压延、印刷、挤出等。[1] 而在溅射镀膜的发展过程中,新型的磁控溅射技术能够实现薄膜的高速沉积、高纯薄膜制备、提高反应溅射沉积薄膜的质量等。辉光等离子体溅射的基本过程是负极的靶材在位于其上的辉光等离子体中的载能离子作用下,靶材原子从靶材溅射出来,然后在衬底上凝聚形成薄膜;在此过程中靶材表面同时发射二次电子,这些电子在保持等离子体稳定存在方面具有关键作用。溅射技术的出现和应用已经经历了许多阶段,最初,只是简单的二极、三极放电溅射沉积;经过30多年的发展,磁控溅射技术已经发展成为制备超硬、耐磨、低摩擦系数、耐蚀、装饰以及光学、电学等功能性薄膜的一种不可替代的方法,脉冲磁控溅射技术是该领域的另一项重大进展。利用直流反应溅射沉积致密、无缺陷绝缘薄膜尤其是陶瓷薄膜几乎难以实现,原因在于沉积速度低、靶材容易出现电弧放电并导致结构、组成及性能发生改变。利用脉冲磁控溅射技术可以克服这些缺点,脉冲频率为中频10~200kHz,可以有效防止靶材电弧放电及稳定反应溅射沉积工艺,实现高速沉积高质量反应薄膜。 1 基本原理 磁控溅射(Magnetlon Sputtering)是70年代迅速发展起来的一种“高速低温溅射技术”。磁控溅射镀膜采用在靶材表面设置一个平行于靶表面的横向磁场,磁场由置于靶内的磁体产生。在真空室中,基材端接阳极极,靶材端接阴极,阴极靶的下面即放置着一个强力磁铁。溅射时持续通入氩气,使之作为气体放电的载体(溅射气体),同时通入氧气,作为与被溅射出来的锌原子发生反应的反应气体。在真空室内,电子e在电场E的作用下,在加速飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子(二次电子)e。Ar+计在电场作用下加速飞向阴极靶,以高能量轰击Zn靶表面使其发生溅射,溅射出来的锌原子吸收Ar离子的动能而脱离原晶格束缚,飞往基材方向,途中与O 2 发生反应并释放部分能量,最后反应产物继续飞行最终沉积在基材表面。我们需要通过不断的实验调整工艺参数,从而 使得溅射出来的历原子能与O 2 充分反应,制得纯度较高的薄膜。另一方面,二次电子在磁场的作用下围绕靶面作回旋运动,该电子的运动路径很长,在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在

脉冲功率技术

华中科技大学研究生课程考试答题本 考生姓名李猛虎 考生学号 M201371361 系、年级高电压与绝缘技术2013级类别硕士 考试科目脉冲功率技术 考试日期 2013年12月15日

脉冲功率技术是指把较小功率的能量以较长时间慢慢输入到能储存能量的设备中,然后通过动作时间在毫微秒左右的快速开关将此能量在毫微秒至微秒时间内释放到负载上,以得到极高的功率,实质上是输出功率对输入功率的放大。脉冲功率系统中能量的储存方式有许多种,如电容储能,电感储能,脉冲电机储能以及电池储能等。脉冲功率技术研究的技术指标为:电压1kV~10MV,电子能量0.3~15MeV(电子伏),述流大小1kA~10MA,脉冲宽度0.1~100ns,束流功率0.1~100TW,总能量:1kJ~15MJ。脉冲功率技术的特征是:高脉冲功率,短脉冲持续时间,高电压,大电流。 脉冲功率技术,是以电气科学技术为基础,把电工新技术和高电压-大电流技术融为一体的新型学科。脉冲功率技术在国防科研和高新技术领域有着极为重要的应用,而且现在已经越来越多地应用于工业和民用部门,它是高新技术研究的重要技术基础之一,有着极其广泛的发展和应用前景。 脉冲功率的发展历程 脉冲放电现象存在于大自然。人们最早是在20世纪30年代开始研究脉冲功率现象。1938年,美国人Kingdon和Tanis第一次提出用高压脉冲电源放电产生微秒级脉宽的闪光X 射线;1939年,苏联人制成真空脉冲X射线管,并把闪光X 射线照相技术用于弹道学和爆轰物理学实验。采用高压脉冲电容器并联充电、串联放电方式来获得较高电压脉冲。第二次世界大战期间,企图将脉冲功率技术应用于军事的电磁炮和其他研究再度兴起,也促进了脉冲功率科学技术的形成和发展。1947年,英国人A.D.Blumlien以专利的形式,把传输线波的折反射原理用于脉冲形成线,在纳秒脉冲放电方面取得了突破。1962年,英国原子能研究中心的J.C.Martin领导的研究小组,将Marx发生器与Blumlien的专利结合起来,建造了世界上第一台强流相对论电子束加速器SOMG(3MV,50kA,30ns),脉冲功率达TW(1012W)量级,开创了高功率脉冲技术的新纪元。1986年建成PBFA-II 装置,其峰值电压为12MV、电流8.4MA、脉宽40ns,其二极管束能为4.3MJ,脉冲功率1014W,是世界上第一台功率闯过100TW 大关的脉冲功率装置。 美国和俄罗斯目前在脉冲功率技术上处于领先地位。美国从事脉冲功率技术研究的机构有Sandia国家实验室、Lawrence Livermore国家实验室、Maxwell实验室、Los Alamos科学实验室、海军武器研究中心、Texas技术大学等。1967年在Sandia 实验室建成的Hermes2I 为当时最大的脉冲功率装置;1972年美国陆军的Hary Diamond实验室建成了Aurora装置,这个设备由4台Marx发生器组成,是脉冲功率史上的一个里程碑;1986年Sandia实验室又建成了FBFA2II,是世界上第1个闯过100TW 大关的装置。俄罗斯从事脉冲功率技术研究的机构有库尔恰托夫研究所、新西伯利亚核物理所、托姆斯科大电流电子学研究所、电物理装备所、列别捷夫所等, 建造了许多大型的Marx成形线型联合装置,1985 年建成的AHrapa25就是其中之一。日本的脉冲功率技术主要应用于强流粒子束加速器,特别重视轻离子的惯性约束聚变。从事脉冲功率技术研究的机构有东京大学、熊本大学、大阪大学、长岗技术大学等, 较著名的装置有大阪大学的Raiden2IV和1986年长岗技术大学建成ETIGO 2II。

磁控溅射技术的基本原理

张继成吴卫东许华唐晓红 中国工程物理研究院激光聚变研究中心绵阳 材料导报, 2004, 18(4): 56-59 介绍磁控溅射技术的基本原理、装置及近年出现的新技术。 1 基本原理 磁控溅射技术是在普通直流(射频)溅射技术的基础上发展起来的。早期的直流(射频)溅射技术是利用辉光放电产生的离子轰击靶材来实现薄膜沉积的。但这种溅射技术的成膜速率较低,工作气压高(2~10Pa)。为了提高成膜速率和降低工作气压,在靶材的背面加上了磁场,这就是最初的磁控溅射技术。 磁控溅射法在阴极位极区加上与电场垂直的磁场后,电子在既与电场垂直又与磁场垂直的方向上做回旋运动,其轨迹是一圆滚线,这样增加了电子和带电粒子以及气体分子相撞的几率,提高了气体的离化率,降低了工作气压,同时,电子又被约束在靶表面附近,不会达到阴(阳)极,从而减小了电子对基片的轰击,降低了由于电子轰击而引起基片温度的升高。 2 基本装置 (1) 电源 采用直流磁控溅射时,对于制备金属薄膜没有多大的问题,但对于绝缘材料,会出现电弧放电和“微液滴溅射”现象,严重影响了系统的稳定性和膜层质量。为了解决这一问题,人们采用了射频磁控溅射技术,这样靶材和基底在射频磁控溅射过程中相当于一个电容的充放电过程,从而克服了由于电荷积累而引起的电弧放电和“微液滴溅射”现象的发生。 (2) 靶的冷却 在磁控溅射过程中,靶不断受到带电粒子的轰击,温度较高,其冷却是一个很重要的问题,一般采用水冷管间接冷却的方法。但对于传热性能较差的材料,则要在靶材与水冷系统的连接上多加考虑,同时需要考虑不同材料的热膨胀系数的差异,这对于复合靶尤为重要(可能会破裂损坏)。 (3) 磁短路现象 利用磁控溅射技术溅射高导磁率的材料时,磁力线会直接通过靶的内部,发生刺短路现象,从而使磁控放电难以进行,这时需要在装置的某些部分做些改动以产生空间凝

电阻脉冲功率计算和参考的详细资料

Yageo RC Series Pulse Load Capability November 2010

RC0402 Pulse Limit Power

Peak Pulse Power RC0402 0,1 1 100,0000010,000010,00010,0010,010,11 T(Sec) P (W )Maximum permissible peak pulse power as a function of pulse duration for typical 0402 resistor (R ≦10k Ω) Single Pulse rep. Pulse

Peak Pulse Voltage RC0402 1 10 100 10000,0000010,000010,00010,0010,010,11 T(Sec) V (M a x .) Maximum permissible peak pulse voltage (Vmax.) as a function of pulse duration (T) for a typical 0402 resistor .

RC0603 Pulse Limit Power

Peak Pulse Voltage RC0603 1 10 100 10000,0000010,000010,00010,0010,010,11 T(Sec) V (M a x .) Maximum permissible peak pulse voltage (Vmax.) as a function of pulse duration (T) for a typical 0603 resistor .

脉冲

-1- 磁控溅射技术广泛应用于薄膜制备领域,可以制备工业上所需要的超硬薄膜、耐腐蚀耐摩擦薄膜、超导薄膜、磁性薄膜、光学薄膜,以及各种具有特殊电学性能的薄膜等[1~3]。但传统的磁控溅射处理技术有很多的局限性,例如,直流磁控溅射靶功率密度受靶热负荷的限制,即当溅射电流较大时,过多的阳离子对靶进行轰击使溅射靶过热而烧损。所以,传统的直流磁控溅射的溅射电流不能太大,一般在0.3~1A左右,溅射靶功率密度在50W/cm2。 近年来国外发展起来了一种高速率溅射—高功率脉冲磁控溅射(high power impulse magnetron sputtering(HIPIMS))技术,大大弱化了这种限制。高功率脉冲磁控溅射的峰值功率是普通磁控溅射的100倍,约为1000~3000W/cm2,溅射材料离化率极高,且这个高度离子化的束流不含大颗粒。对于大型磁控靶,更是可以产生兆瓦级溅射功率。由于脉冲作用时间在几百微秒以内,故平均功率与普通磁控溅射相当,这样就不会增加对磁控靶冷却的要求。一般溅射材料能级只有5~10电子伏特,而高功率脉冲磁控溅射材料能级最大可达100电子伏特。高功率脉冲磁控溅射的瞬时功率虽然很高,但其平均功率并不高,一般在600W左右。为了进一步提高脉冲磁控溅射的溅射速率,可以采用两步脉冲,第一步脉冲的功率密度与普通脉冲溅射相当,第二步则达1000~3000W/cm2。但是,高功率脉冲磁控溅射存在打弧现象和脉冲起辉延迟。为解决这些问题,近几年又发展了高功率复合脉冲磁控溅射技术,这种技术是将直流磁控溅射和高功率脉冲磁控溅射叠加起来。其中的直流磁控溅射部分有两个作用:第一、离子预离化,使脉冲到来时脉冲起辉容易,缩短脉冲起辉延迟时间;第二、提够一个持续的直流溅射功率,提高了磁控溅射的平均功率。所以,高功率复合脉冲磁控溅射同时具有直流磁控溅射和脉冲磁控溅射的优点。现在,高功率脉冲磁控溅射技术已成为全世界磁控溅射领域的研究前沿和研究热点,高功率复合脉冲磁控溅射更是倍受关注。 国外关于高功率复合脉冲磁控溅射的研究和文献还较少,对其溅射机理、溅射规律和工艺优化都有待于更深入地研究,国内还没有这方面的研究报道。为了促进高功率复合脉冲磁控溅射技术的发展,本文研制了一台用于该技术的高功率电源,将有助于了解复合脉冲作用下等离子行为,为高功率复合脉冲磁控溅射技术提供理论依据。 1.2磁控溅射 1852年Grove首次描述了溅射这种物理现象,20世纪40年代溅射技术作为一种

相关主题
文本预览
相关文档 最新文档