当前位置:文档之家› (完整版)配合物习题及答案

(完整版)配合物习题及答案

(完整版)配合物习题及答案
(完整版)配合物习题及答案

配合物习题及答案

一、判断题:

1.含有配离子的配合物,其带异号电荷离子的内界和外界之间以离子键结合,在水中几乎完全解离成内界和外界。 .... ()

2.在 1.0 L 6.0 mol·L-1氨水溶液中溶解0.10 mol CuSO4固体,假定Cu2+ 全部生成[ Cu (NH 3 )4 ]2+,则平衡时NH3的浓度至少为 5.6 mol·L-1 。.........................()

3.在M2+溶液中,加入含有X-和Y-的溶液,可生成MX2沉淀和[MY4]2-配离子。如果K( MX 2 )和K([ MY4]2- ) 越大,越有利于生成[MY4]2-。()

4.金属离子A3+、B2+可分别形成[ A(NH 3 )6 ]3+和[ B(NH 3 )6 ]2+,它们的稳定常数依次为 4 105 和 2 1010,则相同浓度的[ A(NH 3 )6 ]3+和[ B(NH 3 )6 ]2+溶液中,A3+和B2+ 的浓度关系是c ( A3+ ) > c ( B2+ ) 。()

5.在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结

合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)

和配体。.........................................................................................................................()

6. 已知K2 [ Ni (CN)4 ] 与Ni (CO)4均呈反磁性,所以这两种配合物的空间构型均为平面正方形。.....................................................................................()

7.某配离子的逐级稳定常数分别为K、K、K、K,则该配离子的不稳定常数K= K·K·K·K。.......................................................... ()

8.HgS 溶解在王水中是由于氧化还原反应和配合反应共同作用的结果。............ ()

9.在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结

合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)

和配体。.........................................................................................................................()

二、选择题:

1.下列配离子在水溶液中稳定性大小关系中正确的是 . ()。

(A) [ Zn (OH) 4 ]2- ( lg K= 17.66 ) > [Al (OH) 4 ]- ( lg K= 33.03 );

(B) [ HgI 4 ]2- ( lg K= 29.83 ) > [ PbI4 ]2- ( lg K= 4.47 );

(C) [ Cu (en)2 ]+ ( lg K= 10.8 ) > [ Cu (en)2 ]2+ ( lg K= 20.0 );

(D) [ Co (NH 3 )6 ]2+ ( lg K= 5.14 ) > [ CoY ]2- ( lg K= 16.31) 。

2.下列配合物中,属于内轨型配合物的是.............................................()。

(A) [ V(H2O)6 ]3+, = 2.8 B. M.;(B) [ Mn (CN)6 ]4-, = 1.8 B. M.;

(C) [Zn (OH)4]2-,= 0 B. M.;(D) [ Co(NH3)6 ]2+, = 4.2 B. M.。

3.在一定温度下,某配离子ML4的逐级稳定常数为K(1)、K(2)、K(3)、K(4),逐级不稳定常数为K(1)、K(2)、K(3)、K(4)。则下列关系式中错误的是.................................................................................. ()。

(A) K(1)·K(2)·K(3)·K(4) = [ K(1)·K(2)·K(3)·K(4) ]-1;

(B) K(1) = [K(1) ]-1;

(C) K(4) = [K(1) ]-1;

(D)K(2) = [K(3) ]-1。

4.下列叙述中错误的是............................................................................... ()。

(A) 配合物必定是含有配离子的化合物;

(B) 配位键由配体提供孤对电子,形成体接受孤对电子而形成;

(C) 配合物的内界常比外界更不易解离;

(D) 配位键与共价键没有本质区别。

5.配合物(NH4 )3 [ SbCl6 ]的中心离子氧化值和配离子电荷分别是......................... ()。

(A) + 2 和 3;(B) + 3 和 3;(C) 3 和+ 3;(D) 2 和+ 3。

6.下列配离子的形成体采用sp杂化轨道与配体成键且 = 0 B.M.的是.........()。

(A) [Cu (en)2]2+;(B)[CuCl2]-;(C)[AuCl4]-;(D) [BeCl4]2-。

7. [Ni(en)3]2+离子中镍的价态和配位数是( )

(A) +2,3 (B) +3,6 (C) +2,6 (D) +3,3

8. [Co(SCN)4]2-离子中钴的价态和配位数分别是( )

(A) -2,4 (B) +2,4 (C) +3,2 (D) +2,12

9. 0.01mol氯化铬( CrCl3·6H2O )在水溶液中用过量AgNO3处理,产生0.02molAgCl沉淀,此氯化铬最可能为( )

(A) [Cr(H2O)6]Cl3 (B) [Cr(H2O)5Cl]Cl2·H2O

(C) [Cr(H2O)4Cl2]Cl·2H2O (D) [Cr(H2O)3Cl3]·3H2O

10. 在[Co(en)(C2O4)2]配离子中,中心离子的配位数为( )

(A) 3 (B) 4 (C) 5 (D) 6

11. 在K[Co(NH3)2Cl4] 中,Co 的氧化数和配位数分别是( )

(A) +2 和 4 (B) +4 和 6 (C) +3 和 6 (D) +3 和 4

12. 在[Ru(NH3)4Br2]+中,Ru 的氧化数和配位数分别是( )

(A) +2 和 4 (B) +2 和 6 (C) +3 和 6 (D) +3 和 4

13. 在[Co(NH3)4Cl2]中,Co 的氧化数为( )

(A) 0 (B) +1 (C) +2 (D) +3

14. 假定下列配合物浓度相同,其中导电性(摩尔电导)最大的是( )

(A)[PtCl(NH3)5]Cl3 (B)[Pt(NH3)6]Cl4 (C)K2[PtCl6 ] (D) [PtCl4(NH3)2]

15. 下列配合物中,属于螯合物的是( )

(A) [Ni(en)2]Cl2 (B) K2[PtCl6] (C) (NH4)[Cr(NH3)2(SCN)4] (D) Li[AlH4]

16. [Ca(EDTA)]2-配离子中,Ca2+的配位数是( )

(A) 1 (B) 2 (C) 4 (D) 6

17. 已知水的Kf=1.86,0.005mol·kg-1化学式为FeK3C6N6的配合物水溶液,其凝固点为

-0.037℃,这个配合物在水中的离解方式( )

(A) Fe K3C6N6→Fe3++ K3(CN)63-(B) Fe K3C6N6→3K++ Fe(CN)63-

(C) Fe K3C6N6→3KCN+ Fe(CN)2++ CN-(D) Fe K3C6N6→3K++ Fe3++ 6CN-

18. 面体或正方形配合物中心原子的配位数有错误的是( )

(A) [PtNH2NO2(NH3)2] (B) [Co(NO2)2(en)2Cl2] 下列八

(C) K2[Fe(CN)5(NO)] (D) [PtCl(Br)(Py)(NH3)]

19. 当0.01 mol CrCl3·6H2O 在水溶液中用过量硝酸银处理时,有0.02 mol氯化银沉淀出来,此样品中配离子的最可能表示式是( )

(A) [Cr(H2O)6]2+ (B) [CrCl(H2O)5]2+ (C) [CrCl(H2O)3]2+ (D) [CrCl2(H2O)4]+

20. Fe3+具有d5电子构型,在八面体场中要使配合物为高自旋态,则分裂能△和电子成对

能P所要满足的条件是( )

(A) △和P越大越好(B) △>P (C) △

21. 根据晶体场理论,在八面体场中,由于场强的不同,有可能产生高自旋和低自+

旋的电子构型是( )

(A) d2 (B) d3 (C) d4 (D) d8

22. 在[Co(C2O4)2(en)]-中,中心离子Co3+的配位数为( )

(A) 3 (B) 4 (C) 5 (D) 6

23. 已知[PdCl2(OH)2]2-有两种不同的结构,成键电子所占据的杂化轨道是( )

(A) sp3 (B) d2s p3 (C) sp3和dsp2 (D) d s p2

24. Al3+与EDTA形成( )

(A) 螯合物(B) 聚合物(C) 非计量化合物(D) 夹心化合物

25. 已知[PtCl2(OH)2]有两种顺反异构体,成键电子所占据的杂化轨道应该是( )

(A) sp3 (B) d2sp3 (C) dsp2 (D) sp3d2

26. 已知某金属离子配合物的磁矩为 4.90 B.M.,而同一氧化态的该金属离子形成的另一配

合物,其磁矩为零,则此金属离子可能为( )

(A) Cr(Ⅲ) (B) Mn(Ⅱ) (C) Fe(Ⅱ) (D) Mn(Ⅲ)

27. 已知巯基(-SH)与某些重金属离子形成强配位键,预计是重金属离子的最好的螯合剂的物

质为- ( )

(A) CH3-SH (B) H-SH (C) CH3-S-S-CH3 (D) HS-CH2-CH-CH2-OH

28. 第一过渡系列二价金属离子的水合热对原子序数作图时有两个峰,这是由于- ( )

(A) 前半系列是 6 配位,后半系列是 4 配位

(B) d电子有成对能

(C) 气态离子半径大小也有类似变化规律

(D) 由于晶体场稳定化能存在,使水合热呈现这样的规律

29. Fe(Ⅲ)形成的配位数为 6 的外轨配合物中,Fe3+离子接受孤对电子的空轨道是( )

(A) d2sp3 (B) sp3d2 (C) p3d3 (D) sd5

30. [NiCl4]2-是顺磁性分子,则它的几何形状为( )

(A) 平面正方形(B) 四面体形(C) 正八面体形(D) 四方锥形

三、填空题:

1.K( [ Zn (NH 3 )4 ]2+ ) 比K( [ Zn (en) 2 ]2+ ) __________。当在[ Zn (NH 3 )4 ]2+溶液中,加入足够量的乙二胺(en),可能发生的取代反应为(以离子方程式表示之)_______________________。

2.配合物[CoCl NH3 (en)2 ]Cl2的中心离子是__________;配离子是______________________;配位体是________________;配位原子是__________ 。

3.有两个化学组成均为CrCl3·6 H2O 的配合物,但它们的颜色不同。

呈亮绿色者加入AgNO3溶液可沉淀析出2

3

的氯;呈紫色者加入

AgNO3溶液可使全部氯沉淀析出。则:

亮绿色配合物的化学式为______________________________,

紫色配合物的化学式为_________________________________。

4.写出下列配合物的化学式:

(1) 六氟合铝(Ⅲ) 酸___________________;

(2) 二氯化三乙二胺合镍(Ⅱ) ______________________;

(3) 氯化二氯·四水合铬(Ⅲ) ________________________;

(4)六氰合铁(Ⅱ) 酸铵________________________。

5. 配合物[Cr(OH)(C2O4)(en)(H2O)]的系统命名法名称为________________________。

6. 四氯合铂(Ⅱ)酸四氨合铂(Ⅱ)的结构简式为_________________________。

7. 配位化合物H[PtCl3(NH3)]的中心离子是_________,配位原子是________,配位数为________,它的系统命名的名称为______________________________。

8. 配合物(NH4)2[FeF5(H2O)]的系统命名为_________________________,配离子的电荷是

____ ,配位体是________ ,配位原子是________ 。中心离子的配位数是___ 。根据晶体场理论,d5电子的排布为(△

为________ ,属_________型配合物。

9. 配合物CoCl3·5NH3·H2O,当用AgNO3溶液处理时,产生________ 沉淀,将过滤后的溶液加热至沸,再加入AgNO3溶液,无任何变化。当加入强碱并加热至沸,放出

___________,同时产生__________________沉淀。该配合物的结构简式为______________________,命名为______________________________,配离子异构体的数目

为________个。

10. 某配合物的化学式为CoCl3·4NH3·H2O,内界为正八面体构型配离子。 1 mol该化合物溶于水中,加入过量AgNO3,有 2 mol AgCl生成。它的结构式是_______________,按无机化合物系统命名原则,命名为_________________________。

11. [Co(en)3]Cl3的名称为_________________________________ ,中心离子及其价数为

_______,配位体的结构简式是_____________________________,配位数是________。

12. 已知∶[Co(NH3)6]Clx 呈抗磁性,[Co(NH3)6]Cly呈顺磁性,则x= _____,y=_____ 。

13. 已知CoCl3·xNH3的配合物有两种同分异构体。若用AgNO3沉淀0.05 molCoCl3·xNH3中的氯离子,其中一种同分异构体消耗了0.15 mol的AgNO3;另一种则消耗了0.10 mol 的AgNO3,这两种配合物的化学式分别是_________________和_________________________ 。

14. 四异硫氰根合钴(Ⅱ)酸钾和二氯化亚硝酸根.三氨.二水合钴(Ⅲ)两者的结构简式分别为

_________________________和____________________________ 。

15. 在配合物[Cr(H2O)(en)(C2O4)(OH)]中,中心原子的氧化态是_____,配位数是____,配位原子是____和____,按系统命名法应称为___________________ 。

16. 在水溶液中Fe3+易和K2C2O4生成K2[Fe(C2O4)3] ,此化合物应命名为____________ ____________________________________ 。Fe3+的配位数为______ ,配离子的空间构型

为______________。此配合物具有很强的顺磁性,中心离子磁矩为 5.9 B.M.,按晶体场理论,中心原子d电子排布为_____________________。

17. 向六水合铬(Ⅲ)离子水溶液中逐滴加入氢氧化钠水溶液,生成四羟基·二水合铬(Ⅲ)酸离子的逐级反应方程式分别为:

(1) ____________________________________________________________ ;

(2) ____________________________________________________________ ;

(3) ____________________________________________________________ ;

(4) ___________________________________________________________ 。

18. 五氰.一羰基合铁(Ⅱ)配离子、二氯.二羟基.二氨合铂(Ⅳ)、四硫氰根.二氨合铬(Ⅲ)酸铵、二水合一溴化二溴.四水合铬(Ⅲ)和六氰合钴(Ⅲ)酸六氨合铬(Ⅲ)的结构简式依次是

___________________、_________________________、____________________________、________________________________和_________________________________。

19. K2[PtCl6 ] 晶体具有反萤石的结构,PtCl62-按ABC,ABC,ABC 密堆积方式排列,K +填入所有四面体空隙:

(1) K+的配位数_______;(2)PtCl62-的配位数______;(3) 晶胞中K+的数目______;

(4) 晶胞中PtCl62-的数目_____;(5) 晶胞中八面体空隙数目为_______ 。

20. 经实验测定:MnPy2Cl2(Py为吡啶分子)的磁矩为 3.88 B.M. ,试指出:

(1) 中心原子氧化态______;(2) 中心原子的配位数______;(3) 中心原子的未成对电子数

______ ;(4) 配合物空间构型_________ ;(5) 中心原子的杂化轨道类型________。

四、计算题:

1. 固体CrCl3·6H2O 有三种水合异构体:[Cr(H2O)6]Cl3,[Cr(H2O)5Cl]Cl2·H2O ,[Cr(H2O)4Cl2]Cl·2H2O 。若将一份含0.5728gCrCl3·6H2O 的溶液通过一支酸型阳离子交

换柱,然后用标准NaOH溶液滴定取代出的酸,消耗了28.84cm3的0.1491mol·dm-3 NaOH。试确定此Cr(Ⅲ)配合物的正确化学式。( 原子量:Cr 52.00,H 1.008,Cl 35.45,O 16.00 )

2. 已知:

(a)某配合物的组成(质量分数)是:Cr 20.0%;NH3 39.2%;Cl 40.8%。它的化学式量是260.6 (原子量:Cr 52.0;Cl 35.5;N 14.0;H 1.00);

(b)25.0cm30.052mol·dm-3该溶液和32.5cm30.121mol·dm-3AgNO3恰好完全沉淀;

(c) 往盛有该溶液的试管中加NaOH,并加热,在试管口的湿pH试纸不变蓝。

根据上述情况

(1) 判断该配合物的结构式;(2) 写出此配合物的名称;

(3) 指出配离子杂化轨道类型;(4) 推算自旋磁矩。

3. 计算在 1.0 dm3 0.10 mol·dm-3 KCN 溶液中可溶解AgI 多少摩尔?

已知KspAgI =1.5×10-16,K稳Ag(CN)2- =1.0×1021

4. 200 cm31.0 mol·dm-3的氨水可溶解AgCl 多少克?

已知:AgCl摩尔质量为144 g·mol-1,KspAgCl =1.6×10-10,

KAg(NH3)2+= 1.0×107.

5. 欲用100 cm3氨水溶解0.717 g AgCl(式量为143.4),求氨水的原始浓度至少为多少(mol·dm-3)? (K稳Ag(NH3)2 =1.1×107;KspAgCl =1.8×10-10 )

6. 1.0dm30.10mol·dm-3CuSO4溶液中加入 6.0mol·dm-3的NH3·H2O 1.0dm3,求平衡时溶液中Cu2+的浓度。(K稳=2.09×1013 )

7. 在0.20 mol·dm-3 Ag(CN)2-的溶液中,加入等体积0.20 mol·dm-3的KI 溶液,问可否形成AgI 沉淀? (K稳[Ag(CN)2-] =1.0×1.021,Ksp(AgI)=1.5×10-16 )

8. 在50cm30.10mol·dm-3AgNO3溶液中加入30cm3密度为0.932 g·cm-3含NH318.24%的氨水,冲稀到100cm3后再加入0.10mol·dm-3KCl溶液10cm3,问有无AgCl沉淀析出? (K稳[Ag(NH3)2]+=1.7×107,Ksp AgCl =1.5×10-10)

9. 已知下列数据:

Co3++ e-= Co2+ j φ= 1.808 V

Co2++ 6CN-= Co(CN)64-K稳=1.00×1019

Co3++ 6CN-= Co(CN)63-K稳=1.00×1064

H2 + 2H2O + 4e-= 4OH-j φ= 0.402 V

(1) 求Co(CN)63-+ e-= Co(CN)64-的j φ值

(2) 讨论Co(CN)64-在空气中的稳定性

问答题

1、为何四面体型的Ni(Ⅱ)配离子NiCl42-为顺磁性的,而平面型的四配位的Ni(Ⅱ)配离子

Ni(CN)42-为反磁性的?

答案

一.1.对2.对3.对4.错5.对6.对7.错8.对9.对

二.1B 2.B 3.B 4.D 5.B 6.A 7.C 8.B 9.B 10.B 11.C

12.B 13.C 14.B 15.A 16.D 17.B 18.B 19.B 20.C

21.C 22D 23D 24.A 25.C 26.B 27.B 28.D 29.B

30.B

三.1.小[ Zn (NH 3 )4 ]2++2en[ Zn (en)2 ]2+ +4NH3

2.Co3+[CoCl(NH3)(en)2]2+Cl NH3 en ClNN

3.[Cr(H2O)6]Cl2[Cr(H2O)6]Cl3

4.(1)H3AlF6(2)[Ni(en)2]Cl2(3)[CrCl2(H2O)4]Cl

5.一羟基水草算根二亏合铬(III)

6.[Pt(NH3)4][PtCl4]

7.Pt2+Cl N 4 三氯合氨铂()酸

8.五氨化水合铁(II)酸铵-2 F H2O F O 6

dr d sp3d2外轨

9.白色有刺激性气体生成Co2O3 [Co(NH3)6]Cl3 三氯化六氨合钴(III) 6

10.[Co(NH3)4H2O]Cl2二氯化一水四氨合钴(II)

11.三氯化三乙胺合钴(II) Co3++3

12.2 3

13.[Co(NH3)x]Cl3[Co(NH3)x]Cl2

14.K[Co(H2O)4] [CoCl2(NO)(NH3)3(H2O)2]

15.+3 6 O N C 一水羟基以草算根乙二亏合铬(II)

16.三草酸根合铁(III)酸钾 6 八面体sp3d2

17[Cr(H2O)6]3++OH-[Cr(H2O)5OH]2+

[Cr(H2O)5OH]2++OH-[Cr(H2O)4(OH)2] +

[Cr(H2O)4(OH)2] ++OH-[Cr(H2O)3(OH)3] +

[Cr(H2O)3(OH)3] ++OH-[Cr(H2O)4(OH)2] -

18.[Fe(CO)(CN)5]3-[PtCl2(OH)2(NH3)2]+NH4[Cr(NH3)2(SCN)4]

[CrBr2(H2O)4]Br(H2O)2[Cr(NH3)6][Co(CN)6]

19. 0 6 1 2 2

20.+2 4 3 正四面体sp3

四.1.28.840.1491/100=0.0043 0.5728/266.5=0.00215

所以为[Cr(H2O)5Cl]Cl2·H2O

2.(1)[Cr(NH3)6]Cl (2)三氯化六氨合铬(Ⅲ) (3)d2sp3(4)

3.87

3.K=KspAgIK稳Ag(CN)2- 0.05mol

4.K=KspAgCl KAg(NH3)2+ 1.28g

5.nAgCl=0.005mol

AgCl + 2NH3[Ag(NH3)2]++ Cl-

x-0.01 0.005 0.005

K=0.0052/(x-0.01)2x=0.01mol C=0.01/0.1=0.1molL-1

6. Cu2++ 4NH3[Cu(NH3)4]2+

0.1-X 6.0-4X X

K=X/(0.1-X)(6.0-4X) 4 =2.09×1013X=2.7×1016

10-6

7.K=1/K稳[Ag(CN)2]-Ksp AgI=6.67×

所以不可能发生反应

8.K=1/K稳[Ag(NH3)2]+Ksp AgCl=392 所以有沉淀生成

9.(1) Co3++ e-= Co2+①

Co2++ 6CN-= Co(CN)64-②

Co3++ 6CN-= Co(CN)63-③

②+ ①- ③得:Co(CN)64-+ e = Co(CN)63-

rG=82.37Kj.mol-1

E=-0.854<0.402 所以不稳定

工程测量学试题库160题(附答案)..

工程测量学试题库(附答案) 1. ( D )处处与铅垂线垂直。 A.水平面 B.参考椭球面 C.铅垂面 D.大地水准面 2. 地球的长半径约为( A )千米。 A.6371 B.6400 C.6378 D.6356 3. 在测量直角坐标系中,纵轴为( C )。 A.x轴,向东为正 B.y轴,向东为正 C.x轴,向北为正 D.y轴,向北为正 4. 对高程测量,用水平面代替水准面的限度是( D )。 A. 在以10km为半径的范围内可以代替 B. 在以20km为半径的范围内可以代替 C. 不论多大距离都可代替 D. 不能代替 5. 在以( B )km为半径的范围内,可以用水平面代替水准面进行距离测量。 A.5 B.10 C.15 D.20 6. 在测量平面直角坐标系中,x轴表示什么方向?(C)。 A.东西 B.左右 C.南北 D.前后 7. 测定点的坐标的主要工作是( C )。 A.测量水平距离B.测量水平角 C.测量水平距离和水平角D.测量竖直角 8. 确定地面点的空间位置,就是确定该点的平面坐标和( A )。 A.高程B.方位角 C.已知坐标D.未知点坐标 9. 高斯投影属于( C )。 A.等面积投影B.等距离投影 C.等角投影D.等长度投影 10. 在测量直角坐标系中,横轴为( C )。 A. x轴,向东为正 B. x轴,向北为正 C. y轴,向东为正 D. y轴,向北为正 11. 在测量坐标系中,Y轴向(D)为正。 A、北 B、南 C、西 D、东 12. 假设的平均的静止海平面称为(D)。 A、基准面 B、水准面 C、水平面 D、大地水准面

13. ( B )的基准面是大地水准面。 A. 竖直角 B. 高程 C. 水平距离 D. 水平角 14. 建筑工程施工测量的基本工作是(B)。 A.测图 B.测设 C.用图 D.识图 15. 大地水准面处处与铅垂线(A)交。 A、正 B、平行 C、重合 D、斜 16. A、B两点,HA为115.032m,HB为114.729m,则hAB为(A)。 A、-0.303 B、0.303 C、29.761 D、-29.761 17. 建筑施工图中标注的某部位标高,一般都是指(B)。 A、绝对高程 B、相对高程 C、高差 18. 水在静止时的表面叫( B )。 A. 静水面 B. 水准面 C. 大地水准面 D. 水平面 19. ( B )的投影是大地水准面。 A. 竖直角 B. 高斯平面坐标 C. 水平距离 D. 水平角 20. 我国目前采用的高程基准是(D)。 A.高斯平面直角坐标 B.1980年国家大地坐标系 C.黄海高程系统 D.1985年国家高程基准 21. 地面上有一点A,任意取一个水准面,则点A到该水准面的铅垂距离为(D)。 A.绝对高程 B.海拔 C.高差 D.相对高程 22. 地面某点的经度为85°32′,该点应在三度带的第几带?( B ) 。 A.28 B.29 C.27 D.30 23. 在水准测量中,若后视点A读数小,前视点B读数大,则( D )。 A.A点比B点低 B.A、B可能同高 C.A、B的高程取决于仪器高度 D.A点比B点高 24. 水准测量中,设A为后视点,B为前视点,A尺读数为2.713m,B尺读数为1.401,已知A点高程为15.000m,则视线高程为( D )m。 A.13.688 B.16.312 C.16.401 D.17.713 25. 在水准测量中,若后视点A的读数大,前视点B的读数小,则有( A )。 A.A点比B点低 B.A点比B点高 C.A点与B点可能同高 D.A、B点的高低取决于仪器高度 26. 水准仪的分划值越大,说明( B )。 A. 圆弧半径大 B. 其灵敏度低 C. 气泡整平困难 D. 整平精度高 27. DS1水准仪的观测精度( A )DS3水准仪。

普通混凝土配合比设计方法及例题

普通混凝土配合比设计方法[1] 一、基本要求 1.普通混凝土要兼顾性能与经济成本,最主要的是要控制每立方米胶凝材料用量及水泥用量,走低水胶比、大掺合料用量、高砂率的设计路线; 2.普通塑性混凝土配合比设计时,主要参数参考下表 ; ②普通混凝土掺合料不宜使用多孔、含碳量、含泥量、泥块含量超标的掺合料; ③确保外加剂与水泥及掺合料相容性良好,其中重点关注缓凝剂、膨胀剂等与水泥及掺合料的相容性,相容性不良的外加剂,不得用于配制混凝土; 3 设计普通混凝土配合比时,应用excel编计算公式,计算过程中通过调整参数以符合表1给出的范围。

2 术语、符号 2.1 术语 2.1.1普通混凝土ordinary concrete 干表观密度为2000~2800kg/m3的水泥混凝土。 2.1.2 干硬性混凝土stiff concrete 拌合物坍落度小于10mm且须用维勃时间(s)表示其稠度的混凝土。 2.1.3塑性混凝土plastic concrete 拌合物坍落度为10mm~90mm的混凝土。 2.1.4流动性混凝土pasty concrete 拌合物坍落度为100mm~150mm的混凝土。 2.1.5大流动性混凝土flowing concrete 拌合物坍落度不小于160mm的混凝土。 2.1.6抗渗混凝土impermeable concrete 抗渗等级不低于P6的混凝土。 2.1.7抗冻混凝土frost-resistant concrete 抗冻等级不低于F50的混凝土。 2.1.8高强混凝土high-strength concrete 强度等级不小于C60的混凝土。 2.1.9泵送混凝土pumped concrete 可在施工现场通过压力泵及输送管道进行浇筑的混凝土。 2.1.10大体积混凝土mass concrete 体积较大的、可能由胶凝材料水化热引起的温度应力导致有害裂缝的结构混凝土。 2.1.11 胶凝材料binder 混凝土中水泥和矿物掺合料的总称。 2.1.12 胶凝材料用量binder content 混凝土中水泥用量和矿物掺合料用量之和。 2.1.13 水胶比water-binder ratio 混凝土中用水量与胶凝材料用量的质量比。 2.1.14 矿物掺合料掺量percentage of mineral admixture 矿物掺合料用量占胶凝材料用量的质量百分比。 2.1.15 外加剂掺量percentage of chemical admixture 外加剂用量相对于胶凝材料用量的质量百分比。

《测量学》试题库含详细答案

《测量学》试题库 一、填空题:(每小题2分,任抽14小题,计28分) 1、测量学是研究地球的形状和大小及确定地面点位置的科学,它的主要内容包括测定和测设两部分。 2、地形测量学是研究测绘地形图的科学,它的研究对象是地球表面。 3、目前测绘界习惯上将遥感(RS)、地理信息系统(GIS)、全球定位系统(GPS)等新技术简称为“3S”技术。 4、铅垂线是测量工作的基准线,大地水准面是测量工作的基准面。 5、人们习惯上将地球椭球体的长半径a和短半径 b ,或由一个半径a 和扁率α称为旋转椭球体元素。 6、通过英国格林尼治天文台的子午线,称为首子午线(或起始子午线),垂直于地轴的各平面与地球表面的交线,称为纬线。 7、我国目前采用的平面坐标系为“1980年国家大地坐标系”,高程系统是“1985年国家高程基” 。 8、根据钢尺的零分划位置不同将钢尺分成端点尺和刻线尺。 9、地球表面某点的磁子午线方向和真子午线方向之间的夹角称为磁偏角,某点的真子午线北方向与该点坐标纵线北方向之间的夹角,称为子午线收敛角。 10、由标准方向的北端顺时针方向量到某直线的夹角,称为该直线的方位角,直线与标准方向线所夹的锐角称为象限角。

11、方位角的变化范围是0°~360°,而象限角的取值范围为0°~90°。 12、两点间的高程差称为高差,水准测量时高差等于后视读数减去前视读数。 13、水准仪上的水准器是用来指示视准轴是 竖轴是否竖直的装置。通过水准管零点作水准管圆弧的切线,称为水准管轴。 14、在水准仪粗略整平中,左手拇指旋转脚螺旋的运动方向就是气泡移动的方向。 15变更仪器高法或双面尺法。 16、水准测量的实测高差与其理论值往往不相符,其差值称为水准路线的闭合差。 17、6"级光学经纬仪的读数装置常见的有两种,一种是单平板玻璃测微器,另一种是测微尺。 18、水准测量时前后视距大致相等主要是消除端点尺与刻线尺不平行而引起的误差。 19、经纬仪的安置主要包括对中和敕平两方面。 20、三角高程测量中所讲的“两差”改正指球差和气差两项改正。 21、通常把外界环境、测量仪器和观测者的技术水平三方面综合起来称为观测条件。 22、测量误差按其对测量结果影响的性质,可分为系统误差和偶然误差。 23、系统误差具有明显的规律性和累积性,对测量结果影响很大。

最新17.3混凝土配合比试配试验步骤及注意事项

水泥混凝土配合比试配试验步骤及注意事项 1 一、检查检测试验室环境条件:合理的温度应为20±5℃,湿度50%以上,2 温湿度计是否符合要求,后置水球是否有水,布条是否入水球内; 3 二、检查检测试验所用仪器设备以及辅助设备是否齐全,设备性能是否完4 好:对搅拌机进行试转,对电子秤进行整平和归零等,需要用到的设备有100Kg 5 电子称(称量骨料)、30Kg电子称(称量胶材及水)、1Kg电子天平(称量外加6 剂);称量材料用的器具(托盘、筒、水盆);取料用的器具(铁锹、小铲、抹7 刀、铁勺);塌落度试验工具(塌落度筒、捣棒、钢直尺、抹刀、湿抹布);容8 重试验工具(5升容积筒、捣棒、橡皮锤、抹布)等; 9 三、试验步骤 10 1.计算理论配合比 11 1.1计算试配强度f cu,o =f cu,k +1.645σ 12 1.2计算水胶比W/B,计算完毕后要体现耐久性技术要求13 1.3选择单位用水量m w,并根据减水剂的减水率,换算所需用水量 14 1.4计算胶材总用量,并根据粉煤灰掺量比例(等量替代法),分别计算水15 泥m c 及粉煤灰m f 的单位用量,计算完毕后要体现耐久性技术要求;计算外加剂 16 用量 17 1.5选择合理砂率β s 18 1.6根据体积法或者假定容重法,结合砂率计算公式,计算骨料的单位用量19 m s 、m g 20 2.根据理论计算配合比进行试拌、调整、提出基准配合比21

22 3.测定混凝土拌合物工作性,制取规定龄期试件,确定最终配合比 23 4.施工配合比调整 24 (注:以上所牵涉到的计算和步骤,计算公式要详细,并辅以必要的文字说25 明) 26 四、注意事项 27 1.试拌开始时,先采用试拌配合比的胶材、、细集料、水及外加剂比例进行28 涮膛,一般称取7-10L,时间满足整个搅拌机内身充分被浆体湿润,并清除膛内29 浆体,不得有稀浆留置膛内; 30 2.正式称取各种材料用量(按20L计算),注意计量精度,称量过程中注意31 去除皮重即归零; 32 3.将称量物倒入搅拌机内,注意倒料顺序:砂---胶材(可含外加剂)---33 碎石---外加剂(粉剂),盖好盖子进行干拌均匀,一般时间在1-2min,再加入34 水进行正式搅拌,设定搅拌时间一般为2-3min; 35 4.搅拌完毕后倒入事先湿润的拌盘内,先目测拌合物塌落度,然后用湿润36 的铁锹将拌合物来回翻拌均匀; 37 5.工作性检测:检测流动性即塌落度试验:器具要事先润湿,注意装料次38 数、插捣次数、插捣方法,砂率体现、提筒时间和方式,测定塌落度值的位置39 以及精确读数;检测粘聚性:用捣棒轻轻敲打侧面,观测拌合物倒塌方式;检40 测保水性:拌合物底层及周边是否有水析出;另外还要目测拌合物的包裹性能,41 看砂率是否适中; 42 6.拌合物容重测取:容积升湿润后称皮重,装料次数分两层,每层插捣25 43 下,螺旋式方式从外至中,每层完毕后在容积升壁外用橡皮锤敲打5-10下,称

测量学_计算题库及参考答案

计算题库及参考答案 1、设A 点高程为15.023m ,欲测设设计高程为16.000m 的B 点,水准仪安置在A 、B 两点之间,读得A 尺读数a=2.340m ,B 尺读数b 为多少时,才能使尺底高程为B 点高程。 【解】水准仪的仪器高为=i H +=17.363m ,则B 尺的后视读数应为 b==1.363m ,此时,B 尺零点的高程为16m 。 2、在1∶2000地形图上,量得一段距离d =23.2cm ,其测量中误差=d m ±0.1cm ,求该段距离的实地长度 D 及中误差D m 。 【解】==dM D ×2000=464m ,==d D Mm m 2000×=200cm=2m 。 3、已知图中AB 的坐标方位角,观测了图中四个水平角,试计算边长B →1,1→2,2→3, 3→4的坐标方位角。 【解】=1B α197°15′27″+90°29′25″-180°=107°44′52″ =12α107°44′52″+106°16′32″-180°=34°01′24″ =23α34°01′24″+270°52′48″-180°=124°54′12″ =34α124°54′12″+299°35′46″ -180°=244°29′58″ 4、在同一观测条件下,对某水平角观测了五测回,观测值分别为:39°40′30″,39°40′48″,39°40′54″,39°40′42″,39°40′36″,试计算: ① 该角的算术平均值——39°40′42″; ② 一测回水平角观测中误差——±″; ③ 五测回算术平均值的中误差——±″。 6、已知=AB α89°12′01″,=B x 3065.347m ,=B y 2135.265m ,坐标推算路线为B →1→2,测得坐标推算路线的右角分别为=B β32°30′12″,=1β261°06′16″,水平距离分别为=1B D 123.704m , =12D 98.506m ,试计算1,2点的平面坐标。 【解】 1) 推算坐标方位角 =1B α89°12′01″-32°30′12″+180°=236°41′49″ =12α236°41′49″-261°06′16″+180°=155°35′33″ 2) 计算坐标增量 =?1B x ×cos236°41′49″=-67.922m , =?1B y ×sin236°41′49″=-103.389m 。 =?12x ×cos155°35′33″=-89.702m , =?12y ×sin155°35′33″=40.705m 。 3) 计算1,2点的平面坐标 =1x 2997.425m =1y 2031.876m =2x 2907.723m =2y 2072.581m 、试完成下列测回法水平角观测手簿的计算。 测站 目标 竖盘位置 水平度盘读数 (°′″) 半测回角值 (°′″) 一测回平均角值 (°′″) 一测回 B A 左 0 06 24 111 39 54 111 39 51 C 111 46 18 A 右 180 06 48 111 39 48 C 291 46 36 8、完成下列竖直角观测手簿的计算,不需要写公式,全部计算均在表格中完成。 测站 目标 竖盘 位置 竖盘读 (° ′ ″) 半测回竖直角 (° ′ ″) 指标差 (″) 一测回竖直角 (° ′ ″ ) A B 左 81 18 42 8 41 18 6 8 41 24 图 推算支导线的坐标方位角

混凝土配合比的调整方式

新拌混凝土配合比调整 混凝土拌合物的初始状态是衡量配合比好坏最直观的方法,在混凝土配合比试拌的过程中,往往会遇到一些工作性不能满足要求的情况。引起这些现象的原因多种多样,有混凝土配合比设计方面的,有原材料质量方面的,也有外加剂与混凝土原材料相容性方面的。要找到问题的原因所在,才能有效调整混凝土的工作性,以下几点是根据一些混凝土拌合物常见的状态而采取的一些方法,希望有所帮助,同时也需要大家多多总结。(一)混凝土坍落度不符合要求,黏聚性和保水性合适 混凝土体系中浆体填充砂石混合骨料的空隙略有富裕才能在骨料表 面形成润滑层,使浆体推动骨料运动。富裕浆体增大,混凝土的坍落度也随之增大,有研究表明,包裹在骨料表面的浆体厚度每增加3μm,混凝土坍落度增大30~50mm。混凝土浆体用量每增加10L/m3,混凝土坍落度增大20mm左右。当混凝土坍落度小于设计坍落度时,黏聚性和保水性较好时,应保持水胶比不变,增大浆体用量或适当提高外加剂用量;当坍落度大于混凝土设计坍落度时,应保持水胶比不变,减少浆体用量或适当降低外加剂用量。 (二)混凝土坍落度合适,黏聚性和保水性不好 混凝土坍落度可以满足设计要求,混凝土拌合物黏度较低,保水性能较差,虽然没有明显泌水现象,但存在部分粗骨料无浆体包裹。遇到这种情况一般可以从两方面着手:一方面增加细骨料用量,降低粗骨料用量;另一方面是保持水胶比不变适当增加浆体用量,相应调整砂石用量。(三)混凝土砂浆含量过多

混凝土拌合物砂浆过多,石子含量较少,造成混凝土发散,流动性较差。针对这一现象,可以降低砂的用量,增加石子用量。如果调整后砂石用量比例合适,但混凝土仍然发散,流动性差,应适当增加浆体用量,增加混凝土黏聚性。 (四)混凝土泌水、抓底 混凝土拌合物拌合时流动性和保水性都很好,一旦停止拌合就慢慢泌水,下沉的石子紧紧地与铁板黏结在一起,很难用铁锹等工具铲动,这一现象称为抓底、板结。产生抓底、板结的主要原因是外加剂掺量敏感,外加剂用量或用水量提高2~3kg/m3,就会出现泌水。遇到这种情况,应适当降低外加剂掺量,或提高砂率,使用细度模数较小的砂。 (五)混凝土流动性差 混凝土拌合物坍落度、保水性均可以满足要求,就是混凝土拌合物看起来像用水拌合的,动感不足。造成这种现象的原因很可能是混凝土中起分散作用的外加剂有效成分不足,可以适当提高外加剂用量,必要时需要降低用水量,提高混凝土的流动性,又不至于泌水。 混凝土在生产过程中应根据实际情况,对“混凝土配合比”所规定的配合比进行调整。 (一)配合比调整的原因 (1)砂、石含水率、颗粒级配、粒径、含泥量等发生变化 砂、石含水率会因砂、石所处的不同区域及进料时间发生变化,造成混凝土坍落度发生变化。砂子的细度模数变化0.2,砂率相应增减1%~2%;砂石级配不合格或采用单级配时,砂率应适当提高2%~3%;石子最大粒径

测量学_选择题库及参考答案

选择题库及参考答案 第1章 绪论 1-1、我国使用高程系的标准名称是(BD 。 A.1956黄海高程系 B.1956年黄海高程系 C.1985年国家高程基准 D.1985国家高程基准 1-2、我国使用平面坐标系的标准名称是(AC 。 A.1954北京坐标系 B. 1954年北京坐标系 C.1980西安坐标系 D. 1980年西安坐标系 1-2、在高斯平面直角坐标系中,纵轴为( C )。 A.x 轴,向东为正 B.y 轴,向东为正 C.x 轴,向北为正 D.y 轴,向北为正 1-3、A 点的高斯坐标为=A x 112240m ,=A y 19343800m ,则A 点所在6°带的带号及中央子午线的经度分别为( D ) A 11带,66 B 11带,63 C 19带,117 D 19带,111 1-4、在( D )为半径的圆面积之内进行平面坐标测量时,可以用过测区中心点的切平面代替大地水准面,而不必考虑地球曲率对距离的投影。 A 100km B 50km C 25km D 10km 1-5、对高程测量,用水平面代替水准面的限度是( D )。 A 在以10km 为半径的范围内可以代替 B 在以20km 为半径的范围内可以代替 C 不论多大距离都可代替 D 不能代替 1-6、高斯平面直角坐标系中直线的坐标方位角是按以下哪种方式量取的?( C ) A 纵坐标北端起逆时针 B 横坐标东端起逆时针 C 纵坐标北端起顺时针 D 横坐标东端起顺时针 1-7、地理坐标分为( A )。 A 天文坐标和大地坐标 B 天文坐标和参考坐标 C 参考坐标和大地坐标 D 三维坐标和二维坐标 1-8、地面某点的经度为东经85°32′,该点应在三度带的第几带?( B ) A 28 B 29 C 27 D 30 1-9、高斯投影属于( C )。 A 等面积投影 B 等距离投影 C 等角投影 D 等长度投影 1-10、测量使用的高斯平面直角坐标系与数学使用的笛卡尔坐标系的区别是( B )。 A x 与y 轴互换,第一象限相同,象限逆时针编号 B x 与y 轴互换,第一象限相同,象限顺时针编号 C x 与y 轴不变,第一象限相同,象限顺时针编号 D x 与y 轴互换,第一象限不同,象限顺时针编号 第2章 水准测量 2-1、水准仪的( B )应平行于仪器竖轴。 A 视准轴 B 圆水准器轴 C 十字丝横丝 D 管水准器轴 2-2、水准器的分划值越大,说明( B )。 A 内圆弧的半径大 B 其灵敏度低 C 气泡整平困难 D 整平精度高 2-3、在普通水准测量中,应在水准尺上读取( D )位数。 A 5 B 3 C 2 D 4 2-4、水准测量中,设后尺A 的读数a=2.713m ,前尺B 的读数为b=1.401m ,已知A 点高程为15.000m ,则视线高程为( B )m 。 A.13.688 B.16.312 C.16.401 D.17.713 2-5、在水准测量中,若后视点A 的读数大,前视点B 的读数小,则有( A )。 A.A 点比B 点低 B.A 点比B 点高 C.A 点与B 点可能同高 D.A 、B 点的高低取决于仪器高度 2-6、自动安平水准仪,( D )。 A.既没有圆水准器也没有管水准器 B.没有圆水准器 C. 既有圆水准器也有管水准器 D.没有管水准器

混凝土配合比试配试验步骤及注意事项

一、检查检测试验室环境条件:合理的温度应为20±5℃,湿度50%以上,温湿度计是否符合要求,后置水球是否有水,布条是否入水球内; 二、检查检测试验所用仪器设备以及辅助设备是否齐全,设备性能是否完好:对搅拌机进行试转,对电子秤进行整平和归零等,需要用到的设备有100Kg电子称(称量骨料)、30Kg电子称(称量胶材及水)、1Kg电子天平(称量外加剂);称量材料用的器具(托盘、筒、水盆);取料用的器具(铁锹、小铲、抹刀、铁勺);塌落度试验工具(塌落度筒、捣棒、钢直尺、抹刀、湿抹布);容重试验工具(5升容积筒、捣棒、橡皮锤、抹布)等; 三、试验步骤 1.计算理论配合比 计算试配强度f cu,o =f cu,k +σ 计算水胶比W/B,计算完毕后要体现耐久性技术要求 选择单位用水量m w, 并根据减水剂的减水率,换算所需用水量 计算胶材总用量,并根据粉煤灰掺量比例(等量替代法),分别计算水泥m c 及粉 煤灰m f 的单位用量,计算完毕后要体现耐久性技术要求;计算外加剂用量 选择合理砂率β s 根据体积法或者假定容重法,结合砂率计算公式,计算骨料的单位用量m s 、m g 2.根据理论计算配合比进行试拌、调整、提出基准配合比 3.测定混凝土拌合物工作性,制取规定龄期试件,确定最终配合比 4.施工配合比调整 (注:以上所牵涉到的计算和步骤,计算公式要详细,并辅以必要的文字说明) 四、注意事项 1.试拌开始时,先采用试拌配合比的胶材、、细集料、水及外加剂比例进行涮膛,一般称取7-10L,时间满足整个搅拌机内身充分被浆体湿润,并清除膛内浆体,不得有稀浆留置膛内; 2.正式称取各种材料用量(按20L计算),注意计量精度,称量过程中注意去除皮重即归零; 3.将称量物倒入搅拌机内,注意倒料顺序:砂---胶材(可含外加剂)---碎石---外加剂(粉剂),盖好盖子进行干拌均匀,一般时间在1-2min,再加入水进行正式搅拌,设定搅拌时间一般为2-3min; 4.搅拌完毕后倒入事先湿润的拌盘内,先目测拌合物塌落度,然后用湿润的铁锹将拌合物来回翻拌均匀; 5.工作性检测:检测流动性即塌落度试验:器具要事先润湿,注意装料次数、插捣次数、插捣方法,砂率体现、提筒时间和方式,测定塌落度值的位置以及精确读数;检测粘聚性:用捣棒轻轻敲打侧面,观测拌合物倒塌方式;检测保水性:拌合物底层及周边是否有水析出;另外还要目测拌合物的包裹性能,看砂率是否适中; 6.拌合物容重测取:容积升湿润后称皮重,装料次数分两层,每层插捣25下,螺旋式方式从外至中,每层完毕后在容积升壁外用橡皮锤敲打5-10下,称取重量精确至50g,容重精确至10Kg/m3;注意容重的修正,当实测值与实际重量值相差超过±2%时,需进行修正,各种材料量需乘以修正系数,反之则不必要修正; 7.若所检测拌合物塌落度偏离所需值,需对配合比进行调整,即重新设计调整配合比,保持水胶比不变,调整水泥浆用量(实测塌落度偏小)或保持砂率不变调整砂石量以降低水泥浆用量(实测塌落度偏大)或同时调整水胶比和砂率(整体

混凝土配合比试验

吉林省天达水利水电工程质量检测有限公司 编号:TDJ C—SYBG—04 200807013R 试验报告 报告名称混凝土配合比试验 委托单位白城市众信水利水电建筑有限责任公司 工程名称白城市洮儿河灌区2008年度节水改造与续建配套工程(二期)(第二标段) (公章) 报告完成日期 201 年月日

试验报告:共10页 委托编号:TD2010-016-01 试验编号:TDD10029、030 试验依据:SL 352-2006 批准: 审核: 试验:

一、概述 2010年2月2日,吉林省天达水利水电工程质量检测有限公司受白城市众信水利水电建筑有限责任公司委托,于2010年2月2日至4月2日,承担了白城市洮儿河灌区2008年度节水改造与续建配套工程(二期)(第二标段)的混凝土配合比设计任务。试验所用水泥、砂、石和外加剂等材料均由委托单位现场抽样提供,拌和用水均为试验室所在地饮用水。 二、委托要求 具体委托要求见表1. 三、原材料品质检验 (1)水泥:四平金隅水泥有限公司生产的《金隅》牌普通硅盐酸泥,强度等级42.5.主要物理性能符合GB175-2007的要求,见表2. (2)细骨料:砂为粗砂(产地:白城镇西)。颗粒级配合格。所检各项指

标符合SL38-92和GB/T14684-2001要求,见表3和表4. (3)粗骨料:二级配卵石。所检各项指标符合 SL38-92、GB/T14685-2001、SL352-2006和DL/T5144-2001,见表5。

(四)外加剂:TNA高效减水剂和SJC引气剂(产地:吉林省化学建

筑材料公司)。所检各项指标符合GB8076-2008和DL5100-1999的要求,见表6和表7。

测量学考试题库(附附答案解析)

第一章绪论 试题 名词解释题 (1)水准面(2)大地水准面 (3)参考椭球面 (4)绝对高程(5)相对高程 填空题 (1)地形图测绘工作程序,首先应作___________________________,然后才做 _________________________,这样做的好处是________________________ ____________________________和_________________________。 (2)确定地面点的空间位置必须有三个参量:(a)____________, (b)____________ (c)_______________。 (3)小区域独立测区坐标系可用______________________________坐标系; 大 区域测量坐标系应采用_______________________坐标系。 (4)测量工作的组织原则是______________________,_____________________ 和____________________________。 (5)普通工程测绘工作中,大比例尺是指_______________________________, 中比例尺是指_______________________________________,小比例尺是指 _________________________________________。 (6)测量工作内容的三要素是指:____________测量,____________测量以及 ___________测量。 (7)测量工作中使用的坐标系,其X、Y坐标轴位置与数学上正相反,其原因是 __________________________________________________________。 (8)测量的任务包括测绘与放样两方面,测绘是___________________________

混凝土配合比设计继续教育自测试题答案

第1题 抗冻混凝土应掺()外加剂。 A.缓凝剂 B.早强剂 C.引气剂 D.膨胀剂 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第2题 一般地,混凝土强度的标准值为保证率为()的强度值。 A.50% B.85% C.95% D.100% 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第3题 进行混凝土配合比配置强度计算时,根据统计资料计算的标准差,一般有()的限制。 A.最大值 B.最小值 C.最大值和最小值 D.以上均不对 答案:B 您的答案:B 题目分数:2 此题得分:2.0 批注: 第4题 在混凝土掺加粉煤灰主要为改善混凝土和易性时,应采用()。 A.外加法 B.等量取代法

C.超量取代法 D.减量取代法 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第5题 进行水下混凝土配合比设计时,配制强度应比相对应的陆上混凝土()。 A.高 B.低 C.相同 D.以上均不对 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第6题 大体积混凝土中,一定不能加入的外加剂为()。 A.减水剂 B.引气剂 C.早强剂 D.膨胀剂 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第7题 在配制混凝土时,对于砂石的选择下列说法正确的是()。 A.采用的砂粒较粗时,混凝土保水性差,宜适当降低砂率,确保混凝土不离析 B.采用的砂粒较细时,混凝土保水性好,使用时宜适当提高砂率,以提高拌合物和易性 C.在保证混凝土不离析的情况下可选择中断级配的粗骨料 D.采用粗细搭配的集料可使混凝土中集料的总表面积变大,减少水

混凝土配合比设计及其强度检测探讨.

混凝土配合比设计及其强度检测探讨 摘要 :混凝土的各项质量指标中 , 混凝土的强度与其他性能有较好的相关性 , 能够较好地反映混凝土的质量情况。本文概述了混凝土的配合比设计 , 探讨了混凝土强度的检测方法。 关键词 强度检测 ; 水泥 ; 浇筑 1 前言 普通混凝土是由水泥、水、砂、石 4 种材料组成的 4种 材料用量的 3个比例 . 即水灰比、砂率、胶骨比 (胶凝体与骨料的比例。在实际工程中做好混凝土结构分项工程的质量控制 , 是保证混凝土结构质量的一项非常重要的工作。 2 配合比设计前的准备工作 在配合比设计前 , 设计人员要做好下列工作 : 掌握设计图纸对混凝土结构的全部要求 , 重点是各种强度和耐久性要求及结构件截面的大小、钢筋布置的疏密 , 以考虑采用水泥品种及石子粒径的大小等参数 ; 了解是否有特殊性能要求 , 便于决定所用水泥的品种和粗骨料粒径的大小 ; 了解施工工艺 , 如输送、浇筑的措施 , 使用机械化的程度 , 主要是对工作性和凝结时间的要求 , 便于选用外加剂及其掺量 ; 了解所能采购到的材料品种、质量和供应能力。根据这些资料合理地选用适当的设计参数 , 进行配合比设计。

3 混凝土混合比设计 , 是以采用标准试验方法所得的经过 28d 期龄标准养护 这种方法存在着试配周期长、不能适应材料变化和现代快速施工的需要等缺点。为了解决这个问题 , 试验室可采用早期推定混凝土强度进行快速配制的方法 , 即通过检测水泥 3d 强度值来推算水泥 28d 的强度值 , 具体为按公式 : 来推测出混凝土 28d 的强度值。 3.1水灰比的确定 根据水灰比定律可知 , 在材料品种相同的条件下 , 混凝土的强度随着水灰比的增大而降低 , 其变化规律呈曲线关系 , 而混凝土强度与水灰比的变化规律呈直线关系。在关系曲线未建立之前 , 可以采用《凝土配合比设计技术规定》 JGJ 55-2000(以下简称《规定》提供的公式进行初步计算 , 该式中的回归系数 A 和 B 随所用材料的品种及质量不同而异 , 在试验条件许可的情况下 , 应结合丁程实际使用的材料通过试验求出 ; 当缺乏试验条件时 , 可参照《规定》中的有关数据 :碎石混凝土 A 取 0.46,B 取 0.48; 卵石混凝土 ,A 取 0.07,B 取 0.33。为水泥 28d 抗压强度实测值。 但是 , 从多年来水泥的实测 28d 强度结果看 , 不同水泥厂的水泥富裕强度不尽相同 , 同一水泥厂同一品种水泥在不同时期也存在着一定的差异 ; 同时 , 大部分施工企业为节省试验费用 , 不能严格按施工检验程序送检 , 一般仅在一个单项工程开工前进行一次原料检验。若仅以这一次送检结果作为整个工程的材料质量指标是不适宜的 , 因此 , 可以将此次检测结果仅作为一个参考性的指标 , 在实际配合比设计时采用一个系数加以折算修正 , 该系数可取 0.7~0.9,这样既考虑到水泥富裕强度的变化 , 又可以不使折减值低于标准值以致影响合格判定。

测量学深刻复习试题和答案解析

测量学试题库 一、填空题 1.地面点到铅垂距离称为该点的相对高程。 答案:假定水准面 2.通过海水面的称为大地水准面。 答案:平均水准面 3.测量工作的基本内容是、、。 答案:高程测量角度测量距离测量 4.测量使用的平面直角坐标是以为坐标原点,为x轴,以为y轴。答案:两条互相垂直线的交点南北方向的纵轴东西方向的横轴 5.地面点位若用地理坐标表示,应为、和绝对高程。 答案:经度纬度 6.地面两点间高程之差,称为该两点间的。 答案:高差 7.在测量中,将地表面当平面对待,指的是在范围内时,距离测量数据不至于影响测量成果的精度。 答案:100平方千米 8.测量学的分类,大致可分为,,,。 答案:大地测量学普通测量学摄影测量学工程测量学 9.地球是一个旋转的椭球体,如果把它看作圆球,其半径的概值为km。 答案:6371 10.地面点的经度为该点的子午面与所夹的角。 答案:首子午面二面

11.地面点的纬度为该点的铅垂线与所组成的角度。 答案:赤道平面 12.测量工作的程序是、。 答案:从整体到局部先控制后碎部 13.测量学的任务是。 答案:测绘和测设 14.直线定向的标准方向有、、。 答案:真子午线方向磁子午线方向坐标纵轴方向 15.由方向顺时针转到测线的水平夹角为直线的坐标方位角。 答案:坐标纵轴线北端 16.坐标方位角的取值范围是。 答案:0°到360° 17.确定直线方向的工作称为,用目估法或经纬仪法把许多点标定在某一已知直线上的工作为。 答案:直线定向直线定线 18.距离丈量是用误差来衡量其精度的,该误差是用分子为的 形式来表示。 答案:相对 1 分数 19.用钢尺平量法丈量距离的三个基本要求是、、。答案:尺子要拉平标杆要立直且定线要直对点投点和读数要准确 20.直线的象限角是指直线与标准方向的北端或南端所夹的角,并要标注所在象限。 答案:锐 21.某点磁偏角为该点的方向与该点的方向的夹角。 答案:磁北真北

混凝土配合比设计计算实例JGJ552011

混凝土配合比设计计算实例(JGJ/T55-2011) 一、已知:某现浇钢筋混凝土梁,混凝土设计强度等级C30,施工要求坍落度为75~90mm, 使用环境为室内正常环境使用。施工单位混凝土强度标准差σ取5.0MPa。所用的原材料情况如下: 1.水泥:4 2.5级普通水泥,实测28d抗压强度f ce为46.0MPa,密度ρc=3100kg/m3; 2.砂:级配合格,μf=2.7的中砂,表观密度ρs=2650kg/m3;砂率βs取33%; 3.石子:5~20mm的卵石,表观密度ρg=2720 kg/m3;回归系数αa取0.49、αb取0.13; 4. 拌合及养护用水:饮用水; 试求:(一)该混凝土的设计配合比(试验室配合比)。 (二)如果此砼采用泵送施工,施工要求坍落度为120~150mm,砂率βs取36%,外加剂选用UNF-FK高效减水剂,掺量0.8%,实测减水率20%,试确定该混凝土的设计配合比(假定砼容重2400 kg/m3)。

解:(一) 1、确定砼配制强度 f cu , 0 =f cuk+1.645σ=30+1.645×5 = 38.2MPa 2.计算水胶比: f b = γf γs f ce =1×1×46=46 MPa W/B = 0.49×46/(38.2+0.49×0.13×46)= 0.55 求出水胶比以后复核耐久性(为了使混凝土耐久性符合要求,按强度要求计的水灰比值不得超过规定的最大水灰比值,否则混凝土耐久性不合格,此时取规定的最大水灰比值作为混凝土的水灰比值。) 0.55小于0.60,此配合比W/B 采用计算值0.55; 3、计算用水量(查表选用) 查表用水量取m w0 =195Kg /m 3 4.计算胶凝材料用量 m c0 = 195 / 0.55 =355Kg 5.选定砂率(查表或给定) 砂率 βs 取33; 6. 计算砂、石用量(据已知采用体积法) 355/3100+ m s0/2650+ m g0/2720+195/1000+0.11×1=1 a b cu,0a b b /f W B f f ααα= +

混凝土配合比设计 继续教育答案

混凝土配合比设计 第1题 抗冻混凝土应掺()外加剂。 A.缓凝剂 B.早强剂 C.引气剂 D.膨胀剂 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第2题 一般地,混凝土强度的标准值为保证率为()的强度值。 A.50% B.85% C.95% D.100% 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第3题 进行混凝土配合比配置强度计算时,根据统计资料计算的标准差,一般有()的限制。 A.最大值 B.最小值 C.最大值和最小值 D.以上均不对 答案:B 您的答案:B 题目分数:2 此题得分:2.0 批注: 第4题 在混凝土掺加粉煤灰主要为改善混凝土和易性时,应采用()。 A.外加法

B.等量取代法 C.超量取代法 D.减量取代法 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第5题 进行水下混凝土配合比设计时,配制强度应比相对应的陆上混凝土()。 A.高 B.低 C.相同 D.以上均不对 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第6题 大体积混凝土中,一定不能加入的外加剂为()。 A.减水剂 B.引气剂 C.早强剂 D.膨胀剂 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第7题 在配制混凝土时,对于砂石的选择下列说法正确的是()。 A.采用的砂粒较粗时,混凝土保水性差,宜适当降低砂率,确保混凝土不离析 B.采用的砂粒较细时,混凝土保水性好,使用时宜适当提高砂率,以提高拌合物和易性 C.在保证混凝土不离析的情况下可选择中断级配的粗骨料

D.采用粗细搭配的集料可使混凝土中集料的总表面积变大,减少水泥用量,且混凝土密实 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第8题 抗冻混凝土中必须添加的外加剂为()。 A.减水剂 B.膨胀剂 C.防冻剂 D.引气剂 答案:D 您的答案:D 题目分数:2 此题得分:2.0 批注: 第9题 高性能混凝土中水泥熟料中铝酸三钙含量限制在6%~12%的原因是()。 A.铝酸三钙含量高造成强度降低 B.铝酸三钙容易造成闪凝 C.铝酸三钙含量高易造成混凝土凝结硬化快 D.铝酸三钙含量高易造成体积安定性不良 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第10题 抗渗混凝土中必须添加的外加剂为()。 A.减水剂 B.膨胀剂 C.早强剂 D.引气剂 答案:B 您的答案:B

测量学课后习题答案完整版

测量学课后习题答案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

《测量学》习题答案 一、测量基本知识 [题1-1] 测量学研究的对象和任务是什么? 答:测量学是研究地球的形状与大小,确定地球表面各种物体的形状、大小和空间位置的科学。 测量学的主要任务是测定和测设。 测定——使用测量仪器和工具,通过测量与计算将地物和地貌的位置按一定比例尺、规定的符号缩小绘制成地形图,供科学研究和工程建设规划设计使用。 测设——将在地形图上设计出的建筑物和构筑物的位置在实地标定出来,作为施工的依据。 [题1-2] 熟悉和理解铅垂线、水准面、大地水准面、参考椭球面、法线的概念。 答:铅垂线——地表任意点万有引力与离心力的合力称重力,重力方向为铅垂线方向。 水准面——处处与铅垂线垂直的连续封闭曲面。 大地水准面——通过平均海水面的水准面。 参考椭球面——为了解决投影计算问题,通常选择一个与大地水准面非常接近的、能用数学方程表示的椭球面作为投影的基准面,这个椭球面是由长半轴为a 、短半轴为b 的

椭圆NESW 绕其短轴NS 旋转而成的旋转椭球面,旋转椭球又称为参考椭球,其表面称为参考椭球面。 法线——垂直于参考椭球面的直线。 [题1-3] 绝对高程和相对高程的基准面是什么? 答:绝对高程的基准面——大地水准面。 相对高程的基准面——水准面。 [题1-4] “1956 年黄海高程系”使用的平均海水面与“1985 国家高程基准”使用的平均海水面有何关系? 答:在青岛大港一号码头验潮站,“1985 国家高程基准”使用的平均海水面高出“1956 年黄海高程系”使用的平均海水面0.029m。 [题1-5] 测量中所使用的高斯平面坐标系与数学上使用的笛卡尔坐标系有何区别? 答:x 与y 轴的位置互换,第Ⅰ象限位置相同,Ⅰ→Ⅱ→Ⅲ→Ⅳ象限顺指针编号,这样可以使在数学上使用的三角函数在高斯平面直角坐标系中照常使用。

混凝土配合比作业指导书

1. 检验项目名称: 普通砼配合比设计,包括:抗渗砼,高强砼,泵送砼,大体积砼。 2.适应范围: 本试验细则适用于工业与民用建筑和一般构筑物中所使用普通砼的配合比设计。 3. 引用标准:《普通混凝土配合比设计规程》(JGJ 55-2011)。 4. 混凝土配制强度的确定 4.1 混凝土配制强度应按下列规定确定式: a 当混凝土的设计强度等级小于C60时,配制强度应按下式确定: f cu,o≥f cu,k+1.645σ 式中f cu,o——混凝土配制强度(MPa); f cu,k——混凝土立方体抗压强度标准值(MPa); σ——混凝土强度标准值差(MPa)。 b 当设计强度等级不小于C60时,配制强度应按下式确定: f cu,o≥1.15f cu,k 4.2 混凝土强度标准差应按下列规定确定: a 当具有近1个月~3个月的同一品种、同一强度等级混凝土的强度资料,且试件组数不小于30时,其混凝土强度标准差σ应按下式进行计算。 式中: σ——混凝土强度标准值差(MPa)。 f cu,i——统计周期内同一品种混凝土第i组试件的强度值,MPa; mf cu——统计周期内同一品种混凝土n组试件的强度平均值,MPa; n ——统计周期内同品种混凝土试件的总组数。 对于强度等级不大于C30的混凝土,当混凝土强度标准差计算值不小于3.0MPa时,应按混凝土强度标准差计算公式计算结果取值;当混凝土强度标准差计算值小于3.0MPa时,应取3.0MPa。 对于强度等级大于C30且小于C60的混凝土,当混凝土强度标准差计算值不小于4.0MPa 时,应按混凝土强度标准差计算公式计算结果取值;当混凝土强度标准差计算值小于4.0MPa 时,应取4.0MPa。 b当没有近期的同一品种、同一强度等级混凝土强度资料时,其强度标准差σ可按表1取值。

相关主题
文本预览
相关文档 最新文档