当前位置:文档之家› Linux_USB驱动框架分析

Linux_USB驱动框架分析

Linux_USB驱动框架分析
Linux_USB驱动框架分析

Linux USB驱动框架分析(一)

初次接触和OS相关的设备驱动编写,感觉还挺有意思的,为了不至于忘掉看过的东西,笔记跟总结当然不可缺,更何况我决定为嵌入式卖命了。好,言归正传,我说一说这段时间的收获,跟大家分享一下Linux的驱动研发。但这次只先针对Linux的USB子系统作分析,因为周五研讨老板催货。当然,还会顺带提一下其他的驱动程式写法。

事实上,Linux的设备驱动都遵循一个惯例??表征驱动程式(用driver更贴切一些,应该称为驱动器比较好吧)的结构体,结构体里面应该包含了驱动程式所需要的所有资源。用术语来说,就是这个驱动器对象所拥有的属性及成员。由于Linux的内核用c来编写,所以我们也按照这种结构化的思想来分析代码,但我还是希望从OO的角度来阐述这些细节。这个结构体的名字有驱动研发人员决定,比如说,鼠标可能有一个叫做mouse_dev的struct,键盘可能由一个keyboard_dev的struct(dev for device,我们做的只是设备驱动)。而这次我们来分析一下Linux内核源码中的一个usb-skeleton(就是usb驱动的骨架咯),自然,他定义的设备结构体就叫做usb-skel:

struct usb_skel{

struct usb_device*udev;/*the usb device for this device*/

struct usb_interface*interface;/*the interface for this device*/

struct semaphore limit_sem;/*limiting the number of writes in progress */

unsigned char*bulk_in_buffer;/*the buffer to receive data*/

size_t bulk_in_size;/*the size of the receive buffer*/

__u8bulk_in_endpointAddr;/*the address of the bulk in endpoint*/ __u8bulk_out_endpointAddr;/*the address of the bulk out endpoint*/ struct kref kref;

};

这里我们得补充说明一下一些USB的协议规范细节。USB能够自动监测设备,并调用相应得驱动程式处理设备,所以其规范实际上是相当复杂的,幸好,我们不必理会大部分细节问题,因为Linux已提供相应的解决方案。就我目前的理解来说,USB的驱动分为两块,一块是USB的bus驱动,这个东西,Linux内核已做好了,我们能不管,但我们至少要了解他的功能。形象得说,USB的bus驱动相当于铺出一条路来,让所有的信息都能通过这条USB通道到达该到的地方,这部分工作由usb_core来完成。当USB设备接到USB 控制器接口时,usb_core就检测该设备的一些信息,例如生产厂商ID和产品的ID,或是设备所属的class、subclass跟protocol,以便确定应该调用哪一个驱动处理该设备。里面复杂细节我们不用管,我们要做的是另一块工作??usb的设备驱动。也就是说,我们就等着usb_core告诉我们要工作了,我们才工作。

从研发人员的角度看,每一个usb设备有若干个设置(configuration)组成,每个设置又能有多个接口(interface),每个接口又有多个设置(setting图中没有给出),而接口本身可能没有端点或多个端点(end point)。USB的数据交换通过端点来进行,主机和各个端点之间建立起单向的管道来传输数据。而这些接口能分为四类:

控制(control)

用于设置设备、获取设备信息、发送命令或获取设备的状态报告

中断(interrupt)

当USB宿主需求设备传输数据时,中断端点会以一个固定的速率传送少量数据,还用于发送数据到USB设备以控制设备,一般不用于传送大量数据。

批量(bulk)

用于大量数据的可靠传输,如果总线上的空间不足以发送整个批量包,他会被分割成多个包传输。

等时(isochronous)

大量数据的不可靠传输,不确保数据的到达,但确保恒定的数据流,多用于数据采集。

Linux中用struct usb_host_endpoint来描述USB端点,每个usb_host_endpoint中包含一个struct usb_endpoint_descriptor结构体,当中包含该端点的信息及设备自定义的各种信息,这些信息包括:

bEndpointAddress(b for byte)

8位端点地址,其地址还隐藏了端点方向的信息(之前说过,端点是单向的),能用掩码USB_DIR_OUT和USB_DIR_IN来确定。

bmAttributes

端点的类型,结合USB_ENDPOINT_XFERTYPE_MASK能确定端点是USB_ENDPOINT_XFER_ISOC(等时)、USB_ENDPOINT_XFER_BULK(批量)还是USB_ENDPOINT_XFER_INT(中断)。

wMaxPacketSize

端点一次处理的最大字节数。发送的BULK包能大于这个数值,但会被分割传送。bInterval

如果端点是中断类型,该值是端点的间隔设置,以毫秒为单位。

在逻辑上,一个USB设备的功能划分是通过接口来完成的。比如说一个USB扬声器,可能会包括有两个接口:一个用于键盘控制,另外一个用于音频流传输。而事实上,这种设备需要用到不同的两个驱动程式来操作,一个控制键盘,一个控制音频流。但也有例外,比如蓝牙设备,需求有两个接口,第一用于ACL跟EVENT的传输,另外一个用于SCO链路,但两者通过一个驱动控制。在Linux上,接口使用struct usb_interface来描述,以下是该结构体中比较重要的字段:

struct usb_host_interface*altsetting(注意不是usb_interface)

其实据我理解,他应该是每个接口的设置,虽然名字上有点奇怪。该字段是个设置的数组(一个接口能有多个设置),每个usb_host_interface都包含一套由struct usb_host_endpoint定义的端点设置。但这些设置次序是不定的。

unsigned num_altstting

可选设置的数量,即altsetting所指数组的元素个数。

struct usb_host_interface*cur_altsetting

当前活动的设置,指向altsetting数组中的一个。

int minor

当捆绑到该接口的USB驱动程式使用USB主设备号时,USB core分配的次设备号。仅在成功调用usb_register_dev之后才有效。

除了他能用struct usb_host_config来描述之外,到目前为止,我对设置的了解不多。而整个USB设备则能用struct usb_device来描述,但基本上只会用他来初始化函数的接口,真正用到的应该是我们之前所提到的自定义的一个结构体。

Linux USB驱动框架分析(二)

好,了解过USB一些规范细节之后,我们目前来看看Linux的驱动框架。事实上,Linux 的设备驱动,特别是这种hotplug的USB设备驱动,会被编译成模块,然后在需要时挂在到内核。要写一个Linux的模块并不复杂,以一个helloworld为例:

#include

#include

MODULE_LICENSE(“GPL”);

static int hello_init(void)

{

printk(KERN_ALERT“Hello World!\n”);

return0;

}

static int hello_exit(void)

{

printk(KERN_ALERT“GOODBYE!\n”);

}

module_init(hello_init);

module_exit(hello_exit);

这个简单的程式告诉大家应该怎么写一个模块,MODULE_LICENSE告诉内核该模块的版权信息,非常多情况下,用GPL或BSD,或两个,因为一个私有模块一般非常难得到社区的帮助。module_init和module_exit用于向内核注册模块的初始化函数和模块推出函数。如程式所示,初始化函数是hello_init,而退出函数是hello_exit。

另外,要编译一个模块通常还需要用到内核源码树中的makefile,所以模块的Makefile 能写成:

ifneq($(KERNELRELEASE),)

obj-m:=hello.o#usb-dongle.o

else

KDIR:=/usr/src/linux-headers-$(shell uname-r)

BDIR:=$(shell pwd)

default:

$(MAKE)-C$(KDIR)M=$(PWD)modules

.PHONY:clean

clean:

make-C$(KDIR)M=$(BDIR)clean

endif

能用insmod跟rmmod来验证模块的挂在跟卸载,但必须用root的身份登陆命令行,用普通用户加su或sudo在Ubuntu上的测试是不行的。

Linux USB驱动框架分析(三)

下面分析一下usb-skeleton的源码。这个范例程式能在linux-2.6.17/drivers/usb下找到,其他版本的内核程式源码可能有所不同,但相差不大。大家能先找到源码看一看,先有个整体印象。

之前已提到,模块先要向内核注册初始化跟销毁函数:

static int__init usb_skel_init(void)

{

int result;

/*register this driver with the USB subsystem*/

result=usb_register(&skel_driver);

if(result)

err("usb_register failed.Error number%d",result);

return result;

}

static void__exit usb_skel_exit(void)

{

/*deregister this driver with the USB subsystem*/

usb_deregister(&skel_driver);

}

module_init(usb_skel_init);

module_exit(usb_skel_exit);

MODULE_LICENSE("GPL");

从代码开来,这个init跟exit函数的作用只是用来注册驱动程式,这个描述驱动程式的结构体是系统定义的标准结构struct usb_driver,注册和注销的方法非常简单,usb_register(struct*usb_driver),usb_deregister(struct*usb_driver)。那这个结构体需要做些什么呢?他要向系统提供几个函数入口,跟驱动的名字:

static struct usb_driver skel_driver={

.name="skeleton",

.probe=skel_probe,

.disconnect=skel_disconnect,

.id_table=skel_table,

};

从代码看来,usb_driver需要初始化四个东西:模块的名字skeleton,probe函数skel_probe,disconnect函数skel_disconnect,及id_table。

在解释skel_driver各个成员之前,我们先来看看另外一个结构体。这个结构体的名字有研发人员自定义,他描述的是该驱动拥有的所有资源及状态:

struct usb_skel{

struct usb_device*udev;/*the usb device for this device*/

struct usb_interface*interface;/*the interface for this device*/

struct semaphore limit_sem;/*limiting the number of writes in progress */

unsigned char*bulk_in_buffer;/*the buffer to receive data*/

size_t bulk_in_size;/*the size of the receive buffer*/

__u8bulk_in_endpointAddr;/*the address of the bulk in endpoint*/ __u8bulk_out_endpointAddr;/*the address of the bulk out endpoint*/ struct kref kref;

};

我们先来对这个usb_skel作个简单分析,他拥有一个描述usb设备的结构体udev,一

个接口interface,用于并发访问控制的semaphore(信号量)limit_sem,用于接收数据的缓冲bulk_in_buffer及其尺寸bulk_in_size,然后是批量输入输出端口地址bulk_in_endpointAddr、bulk_out_endpointAddr,最后是个内核使用的引用计数器。他们的作用我们将在后面的代码中看到。

我们再回过头来看看skel_driver。

name用来告诉内核模块的名字是什么,这个注册之后有系统来使用,跟我们关系不大。

id_table用来告诉内核该模块支持的设备。usb子系统通过设备的production ID和vendor ID的组合或设备的class、subclass跟protocol的组合来识别设备,并调用相关的驱动程式作处理。我们能看看这个id_table到底是什么东西:

/*Define these values to match your devices*/

#define USB_SKEL_VENDOR_ID0xfff0

#define USB_SKEL_PRODUCT_ID0xfff0

/*table of devices that work with this driver*/

static struct usb_device_id skel_table[]={

{USB_DEVICE(USB_SKEL_VENDOR_ID,USB_SKEL_PRODUCT_ID)},

{}/*Terminating entry*/

};

MODULE_DEVICE_TABLE(usb,skel_table);

MODULE_DEVICE_TABLE的第一个参数是设备的类型,如果是USB设备,那自然是usb(如果是PCI设备,那将是pci,这两个子系统用同一个宏来注册所支持的设备。这涉及PCI设备的驱动了,在此先不深究)。后面一个参数是设备表,这个设备表的最后一个元素是空的,用于标识结束。代码定义了USB_SKEL_VENDOR_ID是0xfff0,USB_SKEL_PRODUCT_ID是0xfff0,也就是说,当有一个设备接到集线器时,usb子系统就会检查这个设备的vendor ID和product ID,如果他们的值是0xfff0时,那么子系统就会调用这个skeleton模块作为设备的驱动。

Linux USB驱动框架分析(四)

probe是usb子系统自动调用的一个函数,有USB设备接到硬件集线器时,usb子系统会根据production ID和vendor ID的组合或设备的class、subclass跟protocol的组合来识别设备调用相应驱动程式的probe(探测)函数,对于skeleton来说,就是skel_probe。系统会传递给探测函数一个usb_interface*跟一个struct usb_device_id*作为参数。他们分别是该USB设备的接口描述(一般会是该设备的第0号接口,该接口的默认设置也是第0号设置)跟他的设备ID描述(包括Vendor ID、Production ID等)。probe函数比较长,我们分段来分析这个函数:

dev->udev=usb_get_dev(interface_to_usbdev(interface));

dev->interface=interface;

在初始化了一些资源之后,能看到第一个关键的函数调用??interface_to_usbdev。他同uo 一个usb_interface来得到该接口所在设备的设备描述结构。本来,要得到一个usb_device只要用interface_to_usbdev就够了,但因为要增加对该usb_device的引用计数,我们应该在做一个usb_get_dev的操作,来增加引用计数,并在释放设备时用usb_put_dev来减少引用计数。这里要解释的是,该引用计数值是对该usb_device的计数,并不是对本模块的计数,本模块的计数要由kref来维护。所以,probe一开始就有初始化kref。事实上,kref_init操作不单只初始化kref,还将其置设成1。所以在出错处理代码中有kref_put,他把kref的计数减1,如果kref计数已为0,那么kref会被释放。kref_put的第二个参数是个函数指针,指向一个清理函数。注意,该指针不能为空,或kfree。该函数会在最后一个对kref的引用释

放时被调用(如果我的理解不准确,请指正)。下面是内核源码中的一段注释及代码:

/**

*kref_put-decrement refcount for object.

*@kref:object.

*@release:pointer to the function that will clean up the object when the

*last reference to the object is released.

*This pointer is required,and it is not acceptable to pass kfree

*in as this function.

*

*Decrement the refcount,and if0,call release().

*Return1if the object was removed,otherwise return0.Beware,if this

*function returns0,you still can not count on the kref from remaining in

*memory.Only use the return value if you want to see if the kref is now

*gone,not present.

*/

int kref_put(struct kref*kref,void(*release)(struct kref*kref))

{

WARN_ON(release==NULL);

WARN_ON(release==(void(*)(struct kref*))kfree);

/*

*if current count is one,we are the last user and can release object

*right now,avoiding an atomic operation on’refcount’

*/

if((atomic_read(&kref->refcount)==1)||

(atomic_dec_and_test(&kref->refcount))){

release(kref);

return1;

}

return0;

}

当我们执行打开操作时,我们要增加kref的计数,我们能用kref_get,来完成。所有对struct kref的操作都有内核代码确保其原子性。

得到了该usb_device之后,我们要对我们自定义的usb_skel各个状态跟资源作初始化。这部分工作的任务主要是向usb_skel注册该usb设备的端点。这里可能要补充以下一些关于usb_interface_descriptor的知识,但因为内核源码对该结构体的注释不多,所以只能靠个人猜测。在一个usb_host_interface结构里面有一个usb_interface_descriptor叫做desc的成员,他应该是用于描述该interface的一些属性,其中bNumEndpoints是个8位(b for byte)的数字,他代表了该接口的端点数。probe然后遍历所有的端点,检查他们的类型跟方向,注册到usb_skel中。

/*set up the endpoint information*/

/*use only the first bulk-in and bulk-out endpoints*/

iface_desc=interface->cur_altsetting;

for(i=0;i desc.bNumEndpoints;++i){

endpoint=&iface_desc->endpoint.desc;

if(!dev->bulk_in_endpointAddr&&

((endpoint->bEndpointAddress&USB_ENDPOINT_DIR_MASK)== USB_DIR_IN)&&

((endpoint->bmAttributes&USB_ENDPOINT_XFERTYPE_MASK)== USB_ENDPOINT_XFER_BULK)){

/*we found a bulk in endpoint*/

buffer_size=le16_to_cpu(endpoint->wMaxPacketSize);

dev->bulk_in_size=buffer_size;

dev->bulk_in_endpointAddr=endpoint->bEndpointAddress;

dev->bulk_in_buffer=kmalloc(buffer_size,GFP_KERNEL);

if(!dev->bulk_in_buffer){

err("Could not allocate bulk_in_buffer");

goto error;

}

}

if(!dev->bulk_out_endpointAddr&&

((endpoint->bEndpointAddress&USB_ENDPOINT_DIR_MASK)= =USB_DIR_OUT)&&

((endpoint->bmAttributes&USB_ENDPOINT_XFERTYPE_MASK)== USB_ENDPOINT_XFER_BULK)){

/*we found a bulk out endpoint*/

dev->bulk_out_endpointAddr=endpoint->bEndpointAddress;

}

}

if(!(dev->bulk_in_endpointAddr&&dev->bulk_out_endpointAddr)){

err("Could not find both bulk-in and bulk-out endpoints");

goto error;

}

Linux USB驱动框架分析(五)

接下来的工作是向系统注册一些以后会用的的信息。首先我们来说明一下usb_set_intfdata(),他向内核注册一个data,这个data的结构能是任意的,这段程式向内核注册了一个usb_skel结构,就是我们刚刚看到的被初始化的那个,这个data能在以后用usb_get_intfdata来得到。

usb_set_intfdata(interface,dev);

retval=usb_register_dev(interface,&skel_class);

然后我们向这个interface注册一个skel_class结构。这个结构又是什么?我们就来看看这到底是个什么东西:

static struct usb_class_driver skel_class={

.name="skel%d",

.fops=&skel_fops,

.minor_base=USB_SKEL_MINOR_BASE,

};

他其实是个系统定义的结构,里面包含了一名字、一个文件操作结构体更有一个次设备号的基准值。事实上他才是定义真正完成对设备IO操作的函数。所以他的核心内容应该是skel_fops。这里补充一些我个人的估计:因为usb设备能有多个interface,每个interface 所定义的IO操作可能不相同,所以向系统注册的usb_class_driver需求注册到某一个interface,而不是device,因此,usb_register_dev的第一个参数才是interface,而第二个参数就是某一个usb_class_driver。通常情况下,linux系统用主设备号来识别某类设备的驱动程式,用次设备号管理识别具体的设备,驱动程式能依照次设备号来区分不同的设备,所以,这里的次设备好其实是用来管理不同的interface的,但由于这个范例只有一个interface,在代码上无法求证这个猜想。

static struct file_operations skel_fops={

.owner=THIS_MODULE,

.read=skel_read,

.write=skel_write,

.open=skel_open,

.release=skel_release,

};

这个文件操作结构中定义了对设备的读写、打开、释放(USB设备通常使用这个术语release)。他们都是函数指针,分别指向skel_read、skel_write、skel_open、skel_release这四个函数,这四个函数应该有研发人员自己实现。

当设备被拔出集线器时,usb子系统会自动地调用disconnect,他做的事情不多,最重要的是注销class_driver(交还次设备号)和interface的data:

dev=usb_get_intfdata(interface);

usb_set_intfdata(interface,NULL);

/*give back our minor*/

usb_deregister_dev(interface,&skel_class);

然后他会用kref_put(&dev->kref,skel_delete)进行清理,kref_put的细节参见前文。

到目前为止,我们已分析完usb子系统需求的各个主要操作,下一部分我们在讨论一下对USB设备的IO操作。

Linux USB驱动框架分析(六)

说到usb子系统的IO操作,不得不说usb request block,简称urb。事实上,能打一个这样的比喻,usb总线就像一条高速公路,货物、人流之类的能看成是系统和设备交互的数据,而urb就能看成是汽车。在一开始对USB规范细节的介绍,我们就说过USB的endpoint 有4种不同类型,也就是说能在这条高速公路上流动的数据就有四种。不过这对汽车是没有需求的,所以urb能运载四种数据,不过你要先告诉司机你要运什么,目的地是什么。我们目前就看看struct urb的具体内容。他的内容非常多,为了不让我的理解误导各位,大家最佳还是看一看内核源码的注释,具体内容参见源码树下include/linux/usb.h。

在这里我们重点介绍程式中出现的几个关键字段:

struct usb_device*dev

urb所发送的目标设备。

unsigned int pipe

一个管道号码,该管道记录了目标设备的端点及管道的类型。每个管道只有一种类型和一个方向,他和他的目标设备的端点相对应,我们能通过以下几个函数来获得管道号并设置管道类型:

unsigned int usb_sndctrlpipe(struct usb_device*dev,unsigned int endpoint)

把指定USB设备的指定端点设置为一个控制OUT端点。

unsigned int usb_rcvctrlpipe(struct usb_device*dev,unsigned int endpoint)

把指定USB设备的指定端点设置为一个控制IN端点。

unsigned int usb_sndbulkpipe(struct usb_device*dev,unsigned int endpoint)

把指定USB设备的指定端点设置为一个批量OUT端点。

unsigned int usb_rcvbulkpipe(struct usb_device*dev,unsigned int endpoint)

把指定USB设备的指定端点设置为一个批量OUT端点。

unsigned int usb_sndintpipe(struct usb_device*dev,unsigned int endpoint)

把指定USB设备的指定端点设置为一个中断OUT端点。

unsigned int usb_rcvintpipe(struct usb_device*dev,unsigned int endpoint)

把指定USB设备的指定端点设置为一个中断OUT端点。

unsigned int usb_sndisocpipe(struct usb_device*dev,unsigned int endpoint)

把指定USB设备的指定端点设置为一个等时OUT端点。

unsigned int usb_rcvisocpipe(struct usb_device*dev,unsigned int endpoint)

把指定USB设备的指定端点设置为一个等时OUT端点。

unsigned int transfer_flags

当不使用DMA时,应该transfer_flags|=URB_NO_TRANSFER_DMA_MAP(按照代码的理解,希望没有错)。

int status

当一个urb把数据送到设备时,这个urb会由系统返回给驱动程式,并调用驱动程式的urb完成回调函数处理。这时,status记录了这次数据传输的有关状态,例如传送成功和否。成功的话会是0。

要能够运货当然首先要有车,所以第一步当然要创建urb:

struct urb*usb_alloc_urb(int isoc_packets,int mem_flags);

第一个参数是等时包的数量,如果不是乘载等时包,应该为0,第二个参数和kmalloc 的标志相同。

要释放一个urb能用:

void usb_free_urb(struct urb*urb);

要承载数据,还要告诉司机目的地信息跟要运的货物,对于不同的数据,系统提供了不同的函数,对于中断urb,我们用

void usb_fill_int_urb(struct urb*urb,struct usb_device*dev,unsigned int pipe,

void*transfer_buffer,int buffer_length,

usb_complete_t complete,void*context,int interval);

这里要解释一下,transfer_buffer是个要送/收的数据的缓冲,buffer_length是他的长度,complete是urb完成回调函数的入口,context由用户定义,可能会在回调函数中使用的数据,interval就是urb被调度的间隔。

对于批量urb和控制urb,我们用:

void usb_fill_bulk_urb(struct urb*urb,struct usb_device*dev,unsigned int pipe,

void*transfer_buffer,int buffer_length, usb_complete_t complete,

void*context);

void usb_fill_bulk_urb(struct urb*urb,struct usb_device*dev,unsigned int pipe,

unsigned char*setup_packet,void*transfer_buffer,

int buffer_length,usb_complete_t complete,void*context);

控制包有一个特别参数setup_packet,他指向即将被发送到端点的设置数据报的数据。

对于等时urb,系统没有专门的fill函数,只能对各urb字段显示赋值。

有了汽车,有了司机,下一步就是要开始运货了,我们能用下面的函数来提交urb

int usb_submit_urb(struct urb*urb,int mem_flags);

mem_flags有几种:GFP_ATOMIC、GFP_NOIO、GFP_KERNEL,通常在中断上下文环境我们会用GFP_ATOMIC。

当我们的卡车运货之后,系统会把他调回来,并调用urb完成回调函数,并把这辆车作为函数传递给驱动程式。我们应该在回调函数里面检查status字段,以确定数据的成功传输和否。下面是用urb来传送数据的细节。

/*initialize the urb properly*/

usb_fill_bulk_urb(urb,dev->udev,

usb_sndbulkpipe(dev->udev,dev->bulk_out_endpointAddr),

buf,writesize,skel_write_bulk_callback,dev);

urb->transfer_flags|=URB_NO_TRANSFER_DMA_MAP;

/*send the data out the bulk port*/

retval=usb_submit_urb(urb,GFP_KERNEL);

这里skel_write_bulk_callback就是个完成回调函数,而他做的主要事情就是检查数据传输状态和释放urb:

dev=(struct usb_skel*)urb->context;

/*sync/async unlink faults aren’t errors*/

if(urb->status&&!(urb->status==-ENOENT||urb->status==-ECONNRESET||urb->status= =-ESHUTDOWN)){

dbg("%s-nonzero write bulk status received:%d",__FUNCTION__,urb->status);

}

/*free up our allocated buffer*/

usb_buffer_free(urb->dev,urb->transfer_buffer_length,

urb->transfer_buffer,urb->transfer_dma);

事实上,如果数据的量不大,那么能不一定用卡车来运货,系统还提供了一种不用urb 的传输方式,而usb-skeleton的读操作正是采用这种方式实现:

/*do a blocking bulk read to get data from the device*/

retval=usb_bulk_msg(dev->udev,

usb_rcvbulkpipe(dev->udev,dev->bulk_in_endpointAddr),

dev->bulk_in_buffer,

min(dev->bulk_in_size,count),

&bytes_read,10000);

/*if the read was successful,copy the data to userspace*/

if(!retval){

if(copy_to_user(buffer,dev->bulk_in_buffer,bytes_read))

retval=-EFAULT;

else

retval=bytes_read;

}

程式使用了usb_bulk_msg来传送数据,他的原型如下:

int usb_bulk_msg(struct usb_device*usb_dev,unsigned int pipe,void*data,

int len,int*actual length,int timeout)

这个函数会阻塞等待数据传输完成或等到超时,data是输入/输出缓冲,len是他的大小,actual length是实际传送的数据大小,timeout是阻塞超时。

对于控制数据,系统提供了另外一个函数,他的原型是:

Int usb_contrl_msg(struct usb_device*dev,unsigned int pipe,__u8request,

__u8requesttype,__u16value,__u16index,void*data,

__u16size,int timeout);

request是控制消息的USB请求值、requesttype是控制消息的USB请求类型,value是控制消息的USB消息值,index是控制消息的USB消息索引。具体是什么,暂时不是非常清晰,希望大家提供说明。

至此,Linux下的USB驱动框架分析基本完成了。

usb驱动程序教程

编写Windows https://www.doczj.com/doc/a39533661.html,的usb驱动程序教程 Windows https://www.doczj.com/doc/a39533661.html, 是微软推出的功能强大的嵌入式操作系统,国内采用此操作系统的厂商已经很多了,本文就以windows https://www.doczj.com/doc/a39533661.html,为例,简单介绍一下如何开发windows https://www.doczj.com/doc/a39533661.html, 下的USB驱动程序。 Windows https://www.doczj.com/doc/a39533661.html, 的USB系统软件分为两层: USB Client设备驱动程序和底层的Windows CE实现的函数层。USB设备驱动程序主要负责利用系统提供的底层接口配置设备,和设备进行通讯。底层的函数提本身又由两部分组成,通用串行总线驱动程序(USBD)模块和较低的主控制器驱动程序(HCD)模块。HCD负责最最底层的处理,USBD模块实现较高的USBD函数接口。USB设备驱动主要利用 USBD接口函数和他们的外围设备打交道。 USB设备驱动程序主要和USBD打交道,所以我们必须详细的了解USBD提供的函数。 主要的传输函数有: abourttransfer issuecontroltransfer closetransfer issuein te rruptransfer getisochresult issueisochtransfer gettransferstatus istransfercomplete issuebulktransfer issuevendortransfer 主要的用于打开和关闭usbd和usb设备之间的通信通道的函数有: abortpipetransfers closepipe isdefaultpipehalted ispipehalted openpipe resetdefaultpipe resetpipe 相应的打包函数接口有: getframelength getframenumber releaseframelengthcontrol setframelength takeframelengthcontrol 取得设置设备配置函数: clearfeature setdescriptor getdescriptor setfeature

PCI驱动编程基本框架

Linux将所有外部设备看成是一类特殊文件,称之为“设备文件”,如果说系统调用是Linux 内核和应用程序之间的接口,那么设备驱动程序则可以看成是Linux内核与外部设备之间的接口。设备驱动程序向应用程序屏蔽了硬件在实现上的细节,使得应用程序可以像操作普通文件一样来操作外部设备。 1. 字符设备和块设备 Linux抽象了对硬件的处理,所有的硬件设备都可以像普通文件一样来看待:它们可以使用和操作文件相同的、标准的系统调用接口来完成打开、关闭、读写和I/O控制操作,而驱动程序的主要任务也就是要实现这些系统调用函数。Linux系统中的所有硬件设备都使用一个特殊的设备文件来表示,例如,系统中的第一个IDE硬盘使用/dev/hda表示。每个设备文件对应有两个设备号:一个是主设备号,标识该设备的种类,也标识了该设备所使用的驱动程序;另一个是次设备号,标识使用同一设备驱动程序的不同硬件设备。设备文件的主设备号必须与设备驱动程序在登录该设备时申请的主设备号一致,否则用户进程将无法访问到设备驱动程序。 在Linux操作系统下有两类主要的设备文件:一类是字符设备,另一类则是块设备。字符设备是以字节为单位逐个进行I/O操作的设备,在对字符设备发出读写请求时,实际的硬件I/O紧接着就发生了,一般来说字符设备中的缓存是可有可无的,而且也不支持随机访问。块设备则是利用一块系统内存作为缓冲区,当用户进程对设备进行读写请求时,驱动程序先查看缓冲区中的内容,如果缓冲区中的数据能满足用户的要求就返回相应的数据,否则就调用相应的请求函数来进行实际的I/O操作。块设备主要是针对磁盘等慢速设备设计的,其目的是避免耗费过多的CPU时间来等待操作的完成。一般说来,PCI卡通常都属于字符设备。 2. 设备驱动程序接口 Linux中的I/O子系统向内核中的其他部分提供了一个统一的标准设备接口,这是通过include/linux/fs.h中的数据结构file_operations来完成的: struct file_operations { struct module *owner; loff_t (*llseek) (struct file *, loff_t, int); ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

各种系统框架图简介

各种系统框架图简介 以下文字和架构图均在本人相关系统设计和架构方案中有所应用。 原文出处:https://www.doczj.com/doc/a39533661.html,/6517/viewspace-609654 1.Spring 架构图 Spring 是一个开源框架,是为了解决企业应用程序开发复杂性而创建的。框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为J2EE 应用程序开发提供集成的框架。Spring 框架的功能可以用在任何 J2EE 服务器中,大多数功能也适用于不受管理的环境。Spring 的核心要点是:支持不绑定到特定J2EE 服务的可重用业务和数据访问对象。这样的对象可以在不同J2EE 环境(Web或EJB )、独立应用程序、测试环境之间重用。 组成Spring 框架的每个模块(或组件)都可以单独存在,或者与其他一个或多个模块联合实现。每个模块的功能如下: 核心容器:核心容器提供Spring 框架的基本功能。核心容器的主要组件是BeanFactory ,它是工厂模式的实现。BeanFactory 使用控制反转 (IOC )模式将应用程序的配置和依赖性规范与实际的应用程序代码分开。

?Spring 上下文:Spring 上下文是一个配置文件,向Spring 框架提供上下文信息。Spring 上下文包括企业服务,例如JNDI 、EJB 、电子邮件、国际化、校验和调度功能。 ?Spring AOP :通过配置管理特性,Spring AOP 模块直接将面向方面的编程功能集成到了Spring 框架中。所以,可以很容易地使Spring 框架管理的任何对象支持AOP 。Spring AOP 模块为基于Spring 的应用程序 中的对象提供了事务管理服务。通过使用Spring AOP ,不用依赖EJB 组件,就可以将声明性事务管理集成到应用程序中。 ?Spring DAO :JDBC DAO 抽象层提供了有意义的异常层次结构,可用该结构来管理异常处理和不同数据库供应商抛出的错误消息。异常层次结构 简化了错误处理,并且极大地降低了需要编写的异常代码数量(例如打 开和关闭连接)。Spring DAO 的面向JDBC 的异常遵从通用的DAO 异常 层次结构。 ?Spring ORM :Spring 框架插入了若干个ORM 框架,从而提供了ORM 的对象关系工具,其中包括JDO 、Hibernate 和iBatis SQL Map 。所有这些都遵从Spring 的通用事务和DAO 异常层次结构。 2.ibatis 架构图 ibatis 是一个基于Java的持久层框架。 iBATIS 提供的持久层框架包括SQL Maps 和Data Access Objects ( DAO ),同时还提供一个利用这个框架开发的 JPetStore 实例。

USB驱动程序源代码

项目报告7 USB驱动程序源代码作者:罗仕波 一.头文件go7007sb.h /* *go7007sb.h - this file includes all relative header files that *will be used in go7007sb vedio usb interface driver, and it *also defines all relative driver private data structures and *it's io control commands. */ #ifndef _GO7007SB_H #define _GO7007SB_H #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG #define DRIVER_VERSION "1.0.0" #define DRIVER_DESC "USB GO7007SB Driver" #include MODULE_AUTHOR("Luo Shibo"); MODULE_DESCRIPTION(DRIVER_DESC" "DRIVER_VERSION); MODULE_LICENSE("GPL"); /* *io control commands definition,these commands will be *used to control the device in function iocntl_go7007sb */ #define GO7007SB_IOC_MAGIC 'U' //command magic number #define GO7007SB_IOC_RESET _IO(GO7007SB_IOC_MAGIC,0) //software reset the device

Linux驱动程序工作原理简介

Linux驱动程序工作原理简介 一、linux驱动程序的数据结构 (1) 二、设备节点如何产生? (2) 三、应用程序是如何访问设备驱动程序的? (2) 四、为什么要有设备文件系统? (3) 五、设备文件系统如何实现? (4) 六、如何使用设备文件系统? (4) 七、具体设备驱动程序分析 (5) 1、驱动程序初始化时,要注册设备节点,创建子设备文件 (5) 2、驱动程序卸载时要注销设备节点,删除设备文件 (7) 参考书目 (8) 一、linux驱动程序的数据结构 设备驱动程序实质上是提供一组供应用程序操作设备的接口函数。 各种设备由于功能不同,驱动程序提供的函数接口也不相同,但linux为了能够统一管理,规定了linux下设备驱动程序必须使用统一的接口函数file_operations 。 所以,一种设备的驱动程序主要内容就是提供这样的一组file_operations 接口函数。 那么,linux是如何管理种类繁多的设备驱动程序呢? linux下设备大体分为块设备和字符设备两类。 内核中用2个全局数组存放这2类驱动程序。 #define MAX_CHRDEV 255 #define MAX_BLKDEV 255 struct device_struct { const char * name; struct file_operations * fops; }; static struct device_struct chrdevs[MAX_CHRDEV]; static struct { const char *name; struct block_device_operations *bdops; } blkdevs[MAX_BLKDEV]; //此处说明一下,struct block_device_operations是块设备驱动程序内部的接口函数,上层文件系统还是通过struct file_operations访问的。

微服务框架的设计与实现

微服务框架的设计与实现① 张晶1, 黄小锋2, 李春阳3 1(北京中电普华信息技术有限公司, 北京100192) 2(中国电建集团国际工程有限公司, 北京100048) 3(国网信息通信产业集团有限公司, 北京100031) 摘 要: 相对于传统单块架构, 微服务框架具有技术选型灵活, 独立部署, 按需独立扩展等优点, 更适合当前互联网时代需求. 但微服务架构的使用引入了新的问题, 如服务注册发现、服务容错等. 对微服务框架引入的问题进行分析, 并给出了微服务框架的一种实现方案, 在框架层面解决服务注册发现、服务容错等共性问题, 使业务系统开发人员专注于业务逻辑实现, 简化系统开发的难度, 提高开发效率. 关键词: 微服务框架; 服务注册; 服务发现; 服务容错 Design and Implementation of Microservice Architecture ZHANG Jing1, HUANG Xiao-Feng2, LI Chun-Yang3 1(Beijing China Power Information Technology Co. Ltd., Beijing 100192, China) 2(PowerChina International Group Limited, Beijing 100048, China) 3(State Grid Information & Telecommunication Industry Group Co. Ltd., Beijing 100031, China) Abstract: Compared with traditional single block architecture, microservice architecture has many advantages, such as flexible technology selection, independent deployment, and independent scalability more suitability for the current needs of the internet age, etc. But microservice architecture also introduces new problems such as service registration, service discovery, service fault tolerance. On the basis of the analysis for problems mentioned above, this paper proposes one implementation of microservice framework, which can solve service registration, service discovery, service fault tolerance and other common problems. Based on this, developers only need to focus on the development of business functions, so that it can simplify the difficulty of system development and improve development effectiveness. Key words: microservice architecture; service registration; service discover; fault tolerance 传统信息化系统的典型架构是单块架构(Monolithic Architecture), 即将应用程序的所有功能都打包成一个应用, 每个应用是最小的交付和部署单元, 应用部署后运行在同一进程中. 单块架构应用具有IDE友好、易于测试和部署等优势, 但是, 随着互联网的迅速发展, 单块架构临着越来越多的挑战, 主要表现在维护成本高、持续交付周期长、可伸缩性差等方面[1]. 微服务架构(Microservices)的出现以及在国内外的成功应用, 成为系统架构的一种新选择. 很多大型宝等都已经从传统单块架构迁移到微服务架构[2]. 微服务架构提倡将单块架构的应用划分成一组小的服务, 互联网公司如Twitter、Netflix、Amazon 、eBay、淘服务之间互相协调、互相配合, 为用户提供最终价值. 1 微服务架构 微服务架构是一种架构模式, 采用一组服务的方式来构建一个应用, 服务独立部署在不同的进程中, 不同服务通过一些轻量级交互机制来通信, 例如RPC、HTTP等, 服务可独立扩展伸缩, 每个服务定义了明确的边界, 不同的服务甚至可以采用不同的编程语言来实现, 由独立的团队来维护[3]. 相对于传统的单体应用架构, 微服务架构具有单个服务易于开发、理解和维护; 复杂度可控; 技术选 ①收稿时间:2016-09-18;收到修改稿时间:2016-11-03 [doi: 10.15888/https://www.doczj.com/doc/a39533661.html,ki.csa.005796]

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

NDIS驱动框架探究

NDIS驱动框架探究 By AntBean Fearless,Passion,Endure 在我看来NDIS驱动有几个难点:1.框架难,NDIS驱动的整体框架跟接触的文件过滤驱动很不一样,你需要考虑的比较多,整个框架的堆叠不再是向文件过滤驱动那样,使用AttachDevice堆叠设备,然后IoCallDriver传递请求;2.硬件操作的敏感性,网卡设备的热插拔,电源状态的变化都会影响到驱动程序;3.系统资源使用的敏感性,NDIS驱动本身是要收包发包,网络包的数据量是非常大的,如果在分配网络封包时没有及时释放,很有可能导致系统资源不足。本篇文章主要对NDIS驱动框架进行探究。 在介绍内容之前,先说明一些概念。 1.面向连接的网络和无连接的网络与面向连接的协议和无连接的协议 面向连接的网络是指通过电路交换进行的局域网。一台机器如果需要给另外一台机器发送信息,就需要先像打电话一样呼叫另外一台机器,另外一台机器可以接受或者拒绝。一旦接受,就会使用一个专用的线路维持该连接。该连接的容量是固定的,而且只归该连接所有。这种局域网最典型的例子是A TM网络。 无连接的网络是指通过分组交换传输信息的局域网。一台机器如果给另外一台机器发送信息,需要传输的数据组织成一个分组,发送出去。所有正在通信的计算机共用一个连接。典型的例子是以太网和FDDI。 (参见《用TCP/IP进行网际互联第四版》第一卷第二章底层网络技术回顾) 以上的面向连接和无连接针对的是物理上的网络硬件,属于OSI七层模型中的物理层;而面向连接的协议和无连接的协议则是针对协议的,与硬件是无关的,属于协议层。常见的面向连接的协议有TCP协议,无连接的协议有UDP协议。 2. 电源状态D0 D1 D2 D3 ACPI规定,设备处于四种状态之一,D0到D3。D0是完全打开,D3是完全关闭。D1和D2由驱动程序自己定义。 (参见《深入解析windows操作系统第四版》第九章第五小节电源管理器) 3.序列化NDIS驱动和非序列化NDIS驱动 对NDIS驱动的请求不再是IRP的形式,而是Packet的形式。其他驱动例如TDI驱动通过NDIS库函数如NdisSend向NDIS驱动发送请求,事实上NDIS库会对Packet进行排队,保证对NDIS驱动的调用是串行的,一个Packet处理完才会发送另一个Packet给NDIS驱动。这样的NDIS驱动就叫做序列化的NDIS驱动。 而一个非序列化的NDIS驱动则是指,NDIS库不负责对Packet进行排队和串行化,需要NDIS驱动自己处理同时多个Packet请求的情形。排队和管理多个并发请求的任务落到了NDIS驱动程序的头上。 (参见《深入解析windows操作系统第四版》第十三章第六小节NDIS驱动程序) NDIS驱动本身分为两种,Protocol Driver和Miniport Driver。至于NDIS中间层驱动,则是由前两种演化而来。Miniport Driver用来驱动网卡,Protocol Driver是协议驱动,负责将要

最新开发usb驱动程序的方法连载一

最新开发usb驱动程序的方法连载一 开发usb驱动程序的方法(连载二) NT还有更多其他的对象,例如中断对象、Controller对象、定时器对象等等,但在我们开发的驱动程序中并没有用到,因此在这里不做介绍。 I/O缓冲策略 很明显的,驱动程序和客户应用程序经常需要进行数据交换,但我们知道驱动程序和客户应用程序可能不在同一个地址空间,因此操作系统必须解决两者之间的数据交换。这就就设计到设备的I/O缓冲策略。 读写请求的I/O缓冲策略 前面说到通过设置Device对象的Flag可以选择控制处理读写请求的I/O缓冲策略。下面对这些缓冲策略分别做一介绍。 1、缓冲I/O(DO_BUFFERED_IO) 在读写请求的一开始,I/O管理器检查用户缓冲区的可访问性,然后分配与调用者的缓冲区一样大的非分页池,并把它的地址放在IRP的AssociatedIrp.SystemBuffer域中。驱动程序就利用这个域来进行实际数据的传输。 对于IRP_MJ_READ读请求,I/O管理器还把IRP的UserBuffer域设置成调用者缓冲区的用户空间地址。当请求完成时,I/O管理器利用这个地址将数据从驱动程序的系统空间拷贝回调用者的缓冲区。对于IRP_MJ_WRITE写请求,UserBuffer被设置为NULL,并把用户缓冲区的数据拷贝到系统缓冲区中。 2、直接I/O(DO_DIRECT_IO) I/O管理器首先检查用户缓冲区的可访问性,并在物理内存中锁定它。然后它为该缓冲区创建一个内存描述表(MDL),并把MDL的地址存放在IRP的MdlAddress域中。AssociatedIrp.SystemBuffer和 UserBuffer 都被设置为NULL。驱动程序可以调用函数 MmGetSystemAddressForMdl得到用户缓冲区的系统空间地址,从而进行数据操作。这个函数将调用者的缓冲区映射到非份页的地址空间。驱动程序完成I/O请求后,系统自动从系统空间解除缓冲区的映射。 3、这两种方法都不是 这种情况比较少用,因为这需要驱动程序自己来处理缓冲问题。 I/O管理器仅把调用者缓冲区的用户空间地址放到IRP的UserBuffer 域中。我们并不推荐这种方式。 IOCTL缓冲区的缓冲策略 IOCTL请求涉及来自调用者的输入缓冲区和返回到调用者的输出缓冲区。为了理解IOCTL请求,我们先来看看WIN32 API DeviceIoControl函数的原型。 BOOL DeviceIoControl ( HANDLE hDevice, // 设备句柄 DWORD dwIoControlCode, // IOCTL请求操作代码 LPVOID lpInBuffer, // 输入缓冲区地址 DWORD nInBufferSize, // 输入缓冲区大小 LPVOID lpOutBuffer, // 输出缓冲区地址 DWORD nOutBufferSize, // 输出缓冲区大小 LPDWORD lpBytesReturned, // 存放返回字节数的指针

分布式服务框架Dubbo及相关组件集成

1.D ubbo介绍 1.1.简介 Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,是阿里巴巴SOA服务化治理方案的核心框架,每天为2,000+个服务提供3,000,000,000+次访问量支持,并被广泛应用于阿里巴巴集团的各成员站点。 Dubbo最大的特点是按照分层的方式来架构,使用这种方式可以使各个层之间解耦合(或者最大限度地松耦合)。从服务模型的角度来看,Dubbo采用的是一种非常简单的模型,要么是提供方提供服务,要么是消费方消费服务,所以基于这一点可以抽象出服务提供方(Provider)和服务消费方(Consumer)两个角色。 上图中,蓝色方块表示与业务有交互,绿色方块表示只对Dubbo内部交互。上述图所描述的调用流程如下: 1)服务提供方发布服务到服务注册中心; 2)服务消费方从服务注册中心订阅服务; 3)服务消费方调用已经注册的可用服务; 1.2.核心功能 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持。 自动发现: 基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。 1.3.Dubbo能做什么? 透明化的远程方法调用:就像调用本地方法一样调用远程方法,只需简单配置,没有任何API 侵入。 软负载均衡及容错机制:可在内网替代F5等硬件负载均衡器,降低成本,减少单点。 服务自动注册与发现:不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的IP地址,并且能够平滑添加或删除服务提供者。

USB键盘驱动程序

/* * $Id: usbkbd.c,v 1.27 2001/12/27 10:37:41 vojtech Exp $ * * Copyright (c) 1999-2001 Vojtech Pavlik * * USB HIDBP Keyboard support */ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Should you need to contact me, the author, you can do so either by * e-mail - mail your message to <>, or by paper mail: * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic */ #include #include #include #include #include #include #include /* * Version Information */ #define DRIVER_VERSION "" #define DRIVER_AUTHOR "Vojtech Pavlik <>" #define DRIVER_DESC "USB HID Boot Protocol keyboard driver" #define DRIVER_LICENSE "GPL"

Windows驱动程序开发环境配置

Windows驱动程序开发笔记 一、WDK与DDK环境 最新版的WDK 微软已经不提供下载了这里:https://https://www.doczj.com/doc/a39533661.html,/ 可以下并且这里有好多好东东! 不要走进一个误区:下最新版的就好,虽然最新版是Windows Driver Kit (WDK) 7_0_0,支持windows7,vista 2003 xp等但是它的意思是指在windows7操作系统下安装能编写针对windows xp vista的驱动程序, 但是不能在xp 2003环境下安装Windows Driver Kit (WDK) 7_0_0这个高版本,否则你在build的时候会有好多好多的问题. 上文build指:首先安装好WDK/DDK,然后进入"开始"->"所有程序"->"Windows Driver Kits"->"WDK XXXX.XXXX.X" ->"Windows XP"->"x86 Checked Build Environment"在弹出来的命令行窗口中输入"Build",让它自动生成所需要的库 如果你是要给xp下的开发环境还是老老实实的找针对xp的老版DDK吧,并且xp无WDK 版只有DDK版build自己的demo 有个常见问题: 'jvc' 不是内部或外部命令,也不是可运行的程序。 解决办法:去掉build路径中的空格。 二、下载 WDK 开发包的步骤 1、访问Microsoft Connect Web site站点 2、使用微软 Passport 账户登录站点 3、登录进入之后,点击站点目录链接 4、在左侧的类别列表中选择开发人员工具,在右侧打开的类别:开发人员工具目录中找到Windows Driver Kit (WDK) and Windows Driver Framework (WDF)并添加到您的控制面板中 5、添加该项完毕后,选择您的控制面板,就可以看到新添加进来的项了。 6、点击Windows Driver Kit (WDK) and Windows Driver Framework (WDF),看到下面有下载链接,OK,下载开始。下载后的文件名为: 6.1.6001.18002.081017-1400_wdksp-WDK18002SP_EN_DVD.iso将近600M大小。

Linux驱动框架及驱动加载

本讲主要概述Linux设备驱动框架、驱动程序的配置文件及常用的加载驱动程序的方法;并且介绍Red Hat Linux安装程序是如何加载驱动的,通过了解这个过程,我们可以自己将驱动程序放到引导盘中;安装完系统后,使用kudzu自动配置硬件程序。 Linux设备驱动概述 1. 内核和驱动模块 操作系统是通过各种驱动程序来驾驭硬件设备,它为用户屏蔽了各种各样的设备,驱动硬件是操作系统最基本的功能,并且提供统一的操作方式。正如我们查看屏幕上的文档时,不用去管到底使用nVIDIA芯片,还是ATI芯片的显示卡,只需知道输入命令后,需要的文字就显示在屏幕上。硬件驱动程序是操作系统最基本的组成部分,在Linux内核源程序中也占有较高的比例。 Linux内核中采用可加载的模块化设计(LKMs ,Loadable Kernel Modules),一般情况下编译的Linux内核是支持可插入式模块的,也就是将最基本的核心代码编译在内核中,其它的代码可以选择是在内核中,或者编译为内核的模块文件。 如果需要某种功能,比如需要访问一个NTFS分区,就加载相应的NTFS模块。这种设计可以使内核文件不至于太大,但是又可以支持很多的功能,必要时动态地加载。这是一种跟微内核设计不太一样,但却是切实可行的内核设计方案。 我们常见的驱动程序就是作为内核模块动态加载的,比如声卡驱动和网卡驱动等,而Linux最基础的驱动,如CPU、PCI总线、TCP/IP协议、APM(高级电源管理)、VFS等驱动程序则编译在内核文件中。有时也把内核模块就叫做驱动程序,只不过驱动的内容不一定是硬件罢了,比如ext3文件系统的驱动。 理解这一点很重要。因此,加载驱动时就是加载内核模块。下面来看一下有关模块的命令,在加载驱动程序要用到它们:lsmod、modprob、insmod、rmmod、modinfo。 lsmod

USB驱动程序安装说明

USB编程电缆驱动程序安装说明 概述 USB编程电缆或USB接口产品是通过将电脑的USB接口模拟成传统的串行口(通常为COM3),从而使用现有的编程软件或通信软件,通过编程电缆与PLC 等设备的传统接口进行通信。 功能 ●支持的操作系统Windows2000/Windows XP ●完全兼容USB 2.0规范 ●USB总线供电(非隔离产品)、或USB总线供电与PLC的编程口同时供 电(隔离型产品) ●波特率:300bps~1Mbps自动适应 ●每台PC只支持一个USB接口转换产品(如一台电脑需使用多个USB 接口产品,需为各个USB接口产品设置不同的序列号,请咨询生产厂家 索取序列号设置工具软件) 系统要求 请在使用USB编程电缆之前确认你的电脑是IBM PC兼容型并具备以下最低系统要求: ●Intel兼容586DX4-100MHz中央处理器或更高 ●一个标准的USB接口(4-pin A型插座) ●运行操作系统为Windows2000或Windows XP 驱动程序的安装 驱动程序的安装非常简单,只需按提示进行即可,以Windows XP为例,按以下步骤进行: 1、打开将要连接USB编程电缆或USB接口产品的电脑电源,并确认电脑 的USB口已经启动并正常工作。 2、将USB编程电缆或USB接口产品插入电脑的USB接口,Windows将检 测到设备并运行添加新硬件向导帮助你设置新设备,插入驱动程序光盘 并单击下一步继续。 如果Windows没有提示找到新硬件,那么在设备管理器的硬件列表中, 展开“通用串行总线控制器”,选择带问号的USB设备,单击鼠标右键 并运行更新驱动程序。

Linux设备驱动程序学习(18)-USB 驱动程序(三)

Linux设备驱动程序学习(18)-USB 驱动程序(三) (2009-07-14 11:45) 分类:Linux设备驱动程序 USB urb (USB request block) 内核使用2.6.29.4 USB 设备驱动代码通过urb和所有的 USB 设备通讯。urb用 struct urb 结构描述(include/linux/usb.h )。 urb以一种异步的方式同一个特定USB设备的特定端点发送或接受数据。一个USB 设备驱动可根据驱动的需要,分配多个 urb 给一个端点或重用单个 urb 给多个不同的端点。设备中的每个端点都处理一个 urb 队列, 所以多个 urb 可在队列清空之前被发送到相同的端点。 一个 urb 的典型生命循环如下: (1)被创建; (2)被分配给一个特定 USB 设备的特定端点; (3)被提交给 USB 核心; (4)被 USB 核心提交给特定设备的特定 USB 主机控制器驱动; (5)被 USB 主机控制器驱动处理, 并传送到设备; (6)以上操作完成后,USB主机控制器驱动通知 USB 设备驱动。 urb 也可被提交它的驱动在任何时间取消;如果设备被移除,urb 可以被USB 核心取消。urb 被动态创建并包含一个内部引用计数,使它们可以在最后一个用户释放它们时被自动释放。 struct urb

struct list_head urb_list;/* list head for use by the urb's * current owner */ struct list_head anchor_list;/* the URB may be anchored */ struct usb_anchor *anchor; struct usb_device *dev;/* 指向这个 urb 要发送的目标 struct usb_device 的指针,这个变量必须在这个 urb 被发送到 USB 核心之前被USB 驱动初始化.*/ struct usb_host_endpoint *ep;/* (internal) pointer to endpoint */ unsigned int pipe;/* 这个 urb 所要发送到的特定struct usb_device 的端点消息,这个变量必须在这个 urb 被发送到 USB 核心之前被 USB 驱动初始化.必须由下面的函数生成*/ int status;/*当 urb开始由 USB 核心处理或处理结束, 这个变量被设置为 urb 的当前状态. USB 驱动可安全访问这个变量的唯一时间是在 urb 结束处理例程函数中. 这个限制是为防止竞态. 对于等时 urb, 在这个变量中成功值(0)只表示这个 urb 是否已被去链. 为获得等时 urb 的详细状态, 应当检查 iso_frame_desc 变量. */ unsigned int transfer_flags;/* 传输设置*/ void*transfer_buffer;/* 指向用于发送数据到设备(OUT urb)或者从设备接收数据(IN urb)的缓冲区指针。为了主机控制器驱动正确访问这个缓冲, 它必须使用 kmalloc 调用来创建, 不是在堆栈或者静态内存中。对控制端点, 这个缓冲区用于数据中转*/ dma_addr_t transfer_dma;/* 用于以 DMA 方式传送数据到 USB 设备的缓冲区*/ int transfer_buffer_length;/* transfer_buffer 或者 transfer_dma 变量指向的缓冲区大小。如果这是 0, 传送缓冲没有被 USB 核心所使用。对于一个 OUT 端点, 如果这个端点大小比这个变量指定的值小, 对这个USB 设备的传输将被分成更小的块,以正确地传送数据。这种大的传送以连续的 USB 帧进行。在一个 urb 中提交一个大块数据, 并且使 USB 主机控制器去划分为更小的块, 比以连续地顺序发送小缓冲的速度快得多*/

Windows驱动程序框架理解_经典入门

标题: 【原创】Windows驱动程序框架 windows驱动程序入门比较坑爹一点,本文旨在降低入门的门槛。注:下面的主要以NT式驱动为例,部分涉及到WDM驱动的差别会有特别说明。 首先,肯定是配置好对应的开发环境啦,不懂的就百度下吧,这里不再次描述了。 在Console控制台下,我们的有一个入口函数main;在Windows图形界面平台下,有另外一个入口函数Winmain。我们只要在这入口函数里面调用其他相关的函数,程序就会按照我们的意愿跑起来了。在我们用IDE开发的时候,也许你不会发现这些细微之处是如何配置出来的,一般来说我们也不用理会,因为在新建工程的时候,IDE已经帮我们把编译器(Compiler)以及连接器(Linker)的相关参数设置好,在正式编程的时候,我们只要按照规定的框架编程就行了。 同样,在驱动程序也有一个入口函数DriverEntry,这并不是一定的,但这是微软默认的、推荐使用的。在我们配置开发环境的时候我们有机会指定入口函数,这是链接器的参数/entry:"DriverEntry"。 入口函数的声明 代码: DriverEntry主要是对驱动程序进行初始化工作,它由系统进程(System)创建,系统启动的时候System系统进程就被创建了。 驱动加载的时候,系统进程将会创建新的线程,然后调用执行体组件中的对象管理器,创建一个驱动对象(DRIVER_OBJECT)。另外,系统进程还得调用执行体组件中的配置管理程序,查询此驱动程序在注册表中对应项。系统进程在调用驱动程序的Driv erEntry的时候就会将这两个值传到pDriverObject和pRegistryPath。 接下来,我们介绍下上面出现的几个数据结构: typedef LONG NTSTATUS 在驱动开发中,我们应习惯于用NTSTATUS返回信息,NTSTATUS各个位有不同的含义,我们可以也应该用宏NT_SUCCESS来判断是否返回成功。 代码: NTSTAUS的编码意义: 其中 Ser是Serviity的缩写,代表严重程度。 00:成功01:信息10:警告11:错误 C是Customer的缩写,代表自定义的位。

相关主题
文本预览
相关文档 最新文档