当前位置:文档之家› 3二元合金的相结构与结晶-2013

3二元合金的相结构与结晶-2013

二元合金的相结构与结晶 - 答案

第三章 二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指 组成合金最基本的、独立的物质 。 3.固溶体的定义是 在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成 置换 固溶体。C 、N 则形成 间隙 固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要 差 些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是 由一定成分的恶液相同时结晶出成分一定的两个固相 ,其反应式为 L →a+β 8.匀晶反应的特征是 ,其反应式为 9.共析反应的特征是 ,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为 有限固溶体 和 无限固溶体 11.合金的相结构有 固溶体 和 金属化合物 两种,前者具有较高的 塑性变形 性能,适合于做 基体 相;后者有较高的 高硬度 性能,适合于做 增强 相 12.看图4—1,请写出反应式和相区: ABC 包晶反应 B A C L γα?+ ;DEF 共晶反应 F D C L βγ+? ;GHI 共析反应 I G H βαγ+? ; ① L +α ;② γα+ ;③βα+ ;④ βγ+ ;⑤ L +γ ;⑥ β+L ; 13.相的定义是 ,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型 相同,而间隙相的晶体结构与 溶剂组元晶体结构 不同。 15.根据图4—2填出: 水平线反应式 E C D βαγ+? ;有限固溶体 βα、 、 无限固溶体 γ 。 液相线 ,固相线 , 固溶线 CF 、 EG

最新第三章 二元合金的相结构与结晶 - 答案

第三章 二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指 组成合金最基本的、独立的物质 。 3.固溶体的定义是 在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成 置换 固溶体。C 、N 则形成 间隙 固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要 差 些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是 由一定成分的恶液相同时结晶出成分一定的两个固相 ,其反应式为 L →a+β 8.匀晶反应的特征是 ,其反应式为 9.共析反应的特征是 ,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为 有限固溶体 和 无限固溶体 11.合金的相结构有 固溶体 和 金属化合物 两种,前者具有较高的 塑性变形 性能,适合于做 基体 相;后者有较高的 高硬度 性能,适合于做 增强 相 12.看图4—1,请写出反应式和相区: ABC 包晶反应 B A C L γα?+ ;DEF 共晶反应 F D C L βγ+? ;GHI 共析反应 I G H βαγ+? ; ① L +α ;② γα+ ;③βα+ ;④ βγ+ ;⑤ L +γ ;⑥ β+L ; 13.相的定义是 ,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型 相同,而间隙相的晶体结构与 溶剂组元晶体结构 不同。 15.根据图4—2填出: 水平线反应式 E C D βαγ+? ;有限固溶体 βα、 、 无限固溶体 γ 。 液相线 ,固相线 , 固溶线 CF 、 EG

合金的相结构

教学课题合金的相结构 教学课时 2 教学目的让学生了解合金相的概念 掌握合金相的分类 教学难点合金相的分类 教学重点合金相的分类 教学方法讲解法 教具准备教材 教学过程

§2.1 固溶体 固溶体:以合金某一组元为溶剂,在其晶格中溶入其他组元原子(溶质)后所形成的一种合金相,其特征是仍保持溶剂晶格类型,结点上或间隙中含有其他组元原子。 主要讨论溶剂为纯金属的固溶体。 一、固溶体的分类 根据溶质原子在溶剂晶格中所占据 的位置:置换固溶体和间隙固溶体; 根据溶质原子在溶剂中的固溶能力 :有限固溶体和无限固溶体。固溶度(溶解度):在一定温度和压力下,溶质在固溶体中的浓度有一定限度,该浓度极限称为固溶度。 根据溶质原子在固溶体中的分布是否有规律:无序固溶体和有序固溶体。 二、置换固溶体 影响置换固溶体固溶度的主要因素 1.晶体结构因素 晶体结构相同是组元间形成无限固 溶体的必要条件。 2.原子尺寸因素 指溶剂、溶质原子半径之差与溶剂 原子半径之比,即△r = ∣r A-r B∣/ r A , A-溶剂,B-溶质,△r越小,即组元间原子半径越接近,固溶度越大。△r<0.14-0.15时,固溶度较大,或形成无限固溶体。3.电负性因素 电负性:原子接受电子形成负离子 的能力,即元素得失电子的能力。易得电子,电负性大。在周期表中,同一周期元素的电负性从左到右递增;同一族元素的电负性从下到上递增。两元素电负性越相近,固溶度越大。两元素电负性相差大,化学亲和力越强,易形成化合物。4.电子浓度因素 电子浓度:各组元价电子总数e与原子总数a之比, 即C电子= e/a=[V A(100-X)+V B X]/100 V A-溶剂原子价; 100-X-溶剂原子百分数; V A(100-X)-溶剂价电子数; V B-溶质原子价; X-溶质原子百分数; V B X-溶质价电子数. 电子浓度对固溶度的影响: 溶剂为一价FCC金属,不同溶质元素的最大固溶度所对应的极限电子浓度均为1.36左右; 溶剂为一价BCC金属,其极限电子浓度约为1.48. 所以,溶质的原子价越高,其固溶度越低. 举例 总之,组元元素的晶格类型相同,原子半径相差不大,在周期表中的位置邻近时,固溶度较大,甚至形成无限固溶体。 三、间隙固溶体 1.溶质、溶剂元素

合金的晶体结构与结晶过程

第八节合金的晶体结构与结晶过程 一、基本概念 ●组成合金最基本的、独立的物质称为组元。 ●由两种或两种以上的组元按不同比例配制而成的一系列不同化学成分的所有合金,称为合金系。 ●相是指在一个合金系统中具有相同的物理性能和化学性能,并与该系统的其余部分以界面分开的部分。 ●组织是指用金相观察方法,在金属及其合金内部看到的涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。 二、合金的晶体结构 根据合金中各组元之间的相互作用,合金中的晶体结构可分为固溶体、金属化合物及机械混合物三种类型。 (一)固溶体 ●合金在固态下一种组元的晶格内溶解了另一种原子而形成的晶体相,称为固溶体。 根据溶质原子在溶剂晶格中所占位置的不同,可将固溶体分为置换固溶体和间隙固溶体。 1.置换固溶体 ●溶质原子代替一部分溶剂原子,占据溶剂晶格的部分结点位置时,所形成的晶体相,称为置换固溶体。 按溶质溶解度的不同,置换固溶体又可分为有限固溶体和无限固溶体。 a) 置换固溶体 b) 间隙固溶体 图1-32 固溶体的类型 2.间隙固溶体 ●溶质原子在溶剂晶格中不占据溶剂晶格的结点位置,而是嵌入溶剂晶格的各结点之间的间隙内时,所形成的晶体相,称为间隙固溶体。 无论是置换固溶体,还是间隙固溶体,异类原子的插入都将使固溶体晶格发生畸变,增加位错运动的阻力,使固溶体的强度、硬度提高。这种通过溶入溶质原子形成固溶体,使合

金强度、硬度升高的现象称为固溶强化。固溶强化是强化金属材料的重要途径之一。 a)间隙固溶体 b)置换固溶体(大溶质原子) c)固溶体(小溶质原子) 图1-33 形成固溶体时产生的晶格畸变 (二)金属化合物 ●金属化合物是指合金中各组元之间发生相互作用而形成的具有金属特性的一种新相。 金属化合物具有与其构成组元晶格截然不同的特殊晶格,熔点高,硬而脆。 (三)机械混合物 ●由两相或两相以上组成的多相组织,称为机械混合物。 在机械混合物中各组成相仍保持着它原有晶格的类型和性能,而整个机械混合物的性能则介于各组成相的性能之间,并与各组成相的性能以及相的数量、形状、大小和分布状况等密切相关。 三、合金结晶过程 合金的结晶过程与纯金属一样,也是晶核形成和晶核长大两个过程。同时结晶时也需要一定的过冷度,结晶后形成由多晶体。合金的结晶过程中具有如下特点: (1)纯金属的结晶是在恒温下进行,只有一个结晶温度。而绝大多数合金是在一个温度范围内进行结晶的,一般结晶的开始温度与终止温度是不相同,一般有两个结晶温度。 (2)合金在结晶过程中,在局部范围内相的化学成分(即浓度)有差异,当结晶终止后,整个晶体的平均化学成分与原合金的化学成分相同。 (3)合金结晶后一般有三种情况:第一种情况是形成单相固溶体;第二种情况是形成单相金属化合物或同时结晶出两相机械混合物(如共晶体);第三种情况是结晶开始时形成单相固溶体,剩余液体又同时结晶出两相机械混合物(如共晶体)。 四、合金结晶冷却曲线 合金结晶过程比纯金属复杂得多,但其结晶过程仍可用结晶冷却曲线来描述。一般合金的结晶冷却曲线有以下三种形式:

第三章 二元合金的相结构与结晶 - 答案

第三章二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指组成合金最基本的、独立的物质。 3.固溶体的定义是在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成置换固溶体。C 、N 则形成间隙固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要差些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是由一定成分的恶液相同时结晶出成分一定的两个固相,其反应式为L →a+β 8.匀晶反应的特征是,其反应式为 9.共析反应的特征是,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为有限固溶体和无限固溶体 11.合金的相结构有固溶体和金属化合物两种,前者具有较高的塑性变形性能,适合于做基体相;后者有较高的高硬度性能,适合于做增强相 12.看图4—1,请写出反应式和相区: ABC 包晶反应B A C L γα?+;DEF 共晶反应F D C L βγ+?;GHI 共析反应I G H βαγ+?; ①L +α;②γα+;③βα+;④βγ+;⑤L +γ;⑥β+L ; 13.相的定义是,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型相同,而间隙相的晶体结构与溶剂组元晶体结构不同。 15.根据图4—2填出: 水平线反应式E C D βαγ+?;有限固溶体βα、、无限固溶体γ。 液相线,固相线,固溶线CF 、EG

16.接近共晶成分的合金,其铸造性能较好;但要进行压力加工的合金常选用匀晶成分的合金。 17.共晶组织的一般形态是片状。 (二)判断题 1.共晶反应和共析反应的反应相和产物都是相同的。( N) 2.铸造合金常选用共晶或接近共晶成分的合金,要进行塑性变形的合金常选用具有单相固溶体成分的合金。( Y) 3.合金的强度与硬度不仅取决于相图类型,还与组织的细密程度有较密切的关系。( Y) 4.置换固溶体可能形成无限固溶体,间隙固溶体只可能是有限固溶体。( Y) 5.合金中的固溶体一般说塑性较好,而金属化合物的硬度较高。( Y ) 6.共晶反应和共析反应都是在一定浓度和温度下进行的。( Y) 7.共晶点成分的合金冷却到室温下为单相组织。( N) 8.初生晶和次生晶的晶体结构是相同的。( Y ) 9.根据相图,我们不仅能够了解各种合金成分的合金在不同温度下所处的状态及相的相对量,而且还能知道相的大小及其相互配置的情况。( Y ) 10.亚共晶合金的共晶转变温度与共晶合金的共晶转变温度相同。( Y ) 11.过共晶合金发生共晶转变的液相成分与共晶合金成分是一致的。( Y) (三)选择题 1.固溶体的晶体结构是A A.溶剂的晶型B.溶质的晶型 C 复杂晶型D.其他晶型 2 金属化合物的特点是C A.高塑性B.高韧性 C 高硬度D.高强度 3.当匀晶合金在较快的冷却条件下结晶时将产生D A.匀晶偏析 B 比重偏析C.枝晶偏析D.区域偏析 4.当二元合金进行共晶反应时,其相组成是C A.由单相组成 B 两相共存 C 三相共存D.四相组成 5.当共晶成分的合金在刚完成共晶反应后的组织组成物为C A. α+βB.(α+L) C.(α+β) D.L+α+β 6.具有匀晶型相图的单相固溶体合金B A.铸造性能好B.锻压性能好 C 热处理性能好D.切削性能好 7.二元合金中,共晶成分的合金A A.铸造性能好 B 锻造性能好 C 焊接性能好D.热处理性能好 8.共析反应是指B A.液相→固相Ⅰ+固相Ⅱ B 固相→固相Ⅰ+固相Ⅱ C.从一个固相内析出另一个固相 D 从一个液相中析出另一个固相 9.共晶反应是指A

合金相结构

.3.4合金相结构 纯金属的强度较低,所以工业广泛应用的是合金。合金是两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其他方法组合而成,并具有金属特性的物质,如黄铜是铜锌合金,钢、铸铁是铁碳合金。 组成合金最基本的独立物质叫组元,组元间由于物理的和化学的相互作用,可形成各种“相”。“相”是合金中具有同一聚集状态,成分和性能均一,并以界面互相分开的组成部分。由一种相组成的合金叫单相台金,如含锌30%Wc的Cu—Zn台金是单相合金。而含锌40%Wc时则是两相合金,除生成了固溶体外,还形成了金属间化合物。 1.固溶体 凡溶质原子完全溶于固态溶剂中,并能保持溶剂元素的晶格类型所形成的合金相称为固溶体。固溶体的成分可在一定范围内连续变化,随异类原子的溶入,将引起溶剂晶格常数的改变及晶格畸变,致使合金性能发生变化。通常把形成固溶体使强度,硬度升高的现象叫固溶强化。 根据溶质原子在溶剂中是占结点位置,还是占间隙位置,可将其分为置换固溶体与间隙固溶体;若溶质与溶剂以任何比例都能互溶,固溶度达100%,则称为无限固溶体,否则为有限固溶体;若溶质原子有规则地占据溶剂结构中的固定位置,溶质与溶剂原子数之比为一定值时,所形成的固溶体称为有序固溶体。 (1)置换固溶体 (a)组元的晶体结构类型 溶质与溶剂晶格结构相同则固溶度较大,反之较小。 (b)原子尺寸因素 溶剂原子半径rA与溶质原子半径rB的相对差(rA—rB)/rA不超过14%。15%有利于大量固溶,反之固溶度非常有限。 (c)电负性因素 两元素的电负性相差越大,化学亲和力越强,所生成的化合物也越稳定。 (d)电子浓度因素 电子浓度定义为合金中价电子数目与原子数目的比值。 (2)间隙固溶体 一些原子半径小于0.1nm的非金属元素如H,O,N,C,B等受原子尺寸因素的影响,不能与过渡族金属元素形成置换固溶体,却可处于

第四章 二元合金相图与合金凝固答案

第四章二元合金相图与合金凝固 一、本章主要内容: 相图基本原理:相,相平衡,相律,相图的表示与测定方法,杠杆定律; 二元匀晶相图:相图分析,固溶体平衡凝固过程及组织,固溶体的非平衡凝固与微观偏析固溶体的正常凝固过程与宏观偏析:成分过冷,溶质原子再分配,成分过冷的形成及对组织的影响,区域熔炼; 二元共晶相图:相图分析,共晶系合金的平衡凝固和组织,共晶组织及形成机理:粗糙—粗糙界面,粗糙—光滑界面,光滑—光滑界面; 共晶系非平衡凝固与组织:伪共晶,离异共晶,非平衡共晶; 二元包晶相图:相图分析,包晶合金的平衡凝固与组织,包晶反应的应用 铸锭:铸锭的三层典型组织,铸锭组织控制,铸锭中的偏析 其它二元相图:形成化合物的二元相图,有三相平衡恒温转变的其它二元相图:共析,偏晶,熔晶,包析,合晶,有序、无序转变,磁性转变,同素异晶转变 ( 二元相图总结及分析方法 二元相图实例:Fe-Fe3C亚稳平衡相图, 相图与合金性能的关系 相图热力学基础:自由能—成分曲线,异相平衡条件,公切线法则,由成分—自由能曲线绘制二元相图 二、 1.填空 1 相律表达式为___f=C-P+ 2 ___。 2. 固溶体合金凝固时,除了需要结构起伏和能量起伏外,还要有___成分_______起伏。 3. 按液固界面微观结构,界面可分为____光滑界面_____和_______粗糙界面___。 4. 液态金属凝固时,粗糙界面晶体的长大机制是______垂直长大机制_____,光滑界面晶体的长大机制是____二维平面长大____和_____依靠晶体缺陷长大___。 > 5 在一般铸造条件下固溶体合金容易产生__枝晶____偏析,用____均匀化退火___热处理方法可以消除。 6 液态金属凝固时,若温度梯度dT/dX>0(正温度梯度下),其固、液界面呈___平直状___状,dT/dX<0时(负温度梯度下),则固、液界面为______树枝___状。 7. 靠近共晶点的亚共晶或过共晶合金,快冷时可能得到全部共晶组织,这称为____伪共晶。 8 共晶,包晶,偏晶,熔晶反应式分别为_______L1→+β______, __ L+→____, ______ L1—L2+________, ___________γ→+ L _______。

7 第七章合金与相图

第七章二元合金的相结构与结晶 (一)填空题 1 合金的定义是 2.合金中的组元是指。 3.固溶体的定义是 4.Cr、V在γ-Fe中将形成固溶体。C、N则形成固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的组元。7.共晶反应的特征是,其反应式为 8.匀晶反应的特征是,其反应式为 9.共析反应的特征是,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为,按原子溶入量可以分为和 11.合金的相结构有和两种,前者具有较高的性能,适合于 做相;后者有较高的性能,适合于做相 12.看图4—1,请写出反应式和相区: ABC ;DEF ;GHI ; ①;②;③;④;⑤;⑥; 13.相的定义是,组织的定义是 14.间隙固溶体的晶体结构与相同,而间隙相的晶体结构与不同。15.根据图4—2填出: 水平线反应式;有限固溶体、无限固溶体。 液相线,固相线,固溶线、 16.接近共晶成分的合金,其性能较好;但要进行压力加工的合金常选 用的合金。 17.共晶组织的一般形态是。 18.固溶体合金,在铸造条件下,容易产生_______ 偏析,用__________ 方法处理可以消除。 19.AL-CuAL 2 共晶属于_ _ 型共晶,AL-Si共晶属于 __型共晶, Pb-Sn共晶属于_ _型共晶。 20.固溶体合金凝固时有效分配系数k e 的定义 是_ _。当凝固速率无限缓慢时,k e 趋于_ _;当凝固速率很大时,则 k e 趋于 __ 。 21.K 0<1的固溶体合金非平衡凝固的过程中,K 越小,成分偏析越____ , 提纯效 果越_____;而K 0>1的固溶体合金非平衡凝固的过程中,K 越大,成分偏析越____ , 提纯效果越_____。 22.固溶体合金_____ 凝固时成分最均匀,液相完全混合时固溶体成分偏析(宏观偏析)最___ ,液相完全无混合时固溶体成分偏析最____ ,液相部分混合时固溶体成分偏析_________。

二元合金的结晶过程

在固溶体中,为何先结晶的部分含高熔点组元数量多,后结晶 的部分含低熔点组元多 固溶体的结晶依赖组元的扩散,要达到平衡结晶,必须有足够的时间使扩散充分进行。但是实际生产中,合金溶液的冷却是在砂模或金属模中进行,冷却速度较快,扩散过程来不及充分进行,使结晶过程偏离了平衡状态,称为非平衡结晶。 课本图4.6(a)为非平衡结晶过程及结晶时液固两相成分变化的示意图。I合金的温度降至t1时首先结晶出成分为a1的固相,液相成分变为L1。当温度降至t2时,在a1的表面上结晶出一层a2,由于冷速快,固相中扩散不充分,出现成分不均匀现象,故晶体的平均成分为a‘2,介于a1与a2之间,而液相的平均成分L’2介于L1与L2之间。当温度继续降至t3时,固溶体表面又出现成分为a3的结晶层,固溶体的实际成分为a1,a2,a3的平均值a’3,而液相的成分为L1,L2,L3的平均值L’3。依次类推,合金冷却到t4温度结晶结束,此时固相的平均成分从a’3变成a’4,即原合金的成分。将各个温度下固相的平均成分点a1a’2a’3a’4连接成虚线,称为固相平均成分线;而将 L1L’2L’3L’4连成的虚线,称为液相平均成分线。 从上述分析可知,固溶体非平衡结晶有以下特点。 (1)固相平均成分线和液相平均成分线将偏离平衡相图中的液相线和固相线,其偏离程度主要取决于冷却速度,冷速越快,偏离程度越大。 由于固相内组元扩散较液相内组元扩散慢得多,故偏离固相线的程度要大得多。 (2)先结晶的部分总是富含高熔点组元,后结晶的部分富含低熔点组元。

(3)非平衡结晶总是导致结晶结束温度低于平衡结晶时的结束温度。 固溶体非平衡结晶时,由于从液相中先后结晶出来的固相成分不同,结果使得一个晶粒内部化学成分不均匀,这种现象称为晶内偏析。由于固溶相通常以树枝状生长方式结晶,导致先结晶的枝干含高熔点组元较多,而后结晶的枝间含低熔点组元较多,故称为枝晶偏析。由于一个树枝晶是由一个核心结晶而成的,故枝晶偏析属于晶内偏析。树枝晶形貌的显示是由于枝干海和枝间的成分差异引起浸蚀后颜色的深浅不同所致,枝干富镍不易浸蚀而呈白色,枝间富铜易受浸蚀而呈黑色,枝晶偏析的特征十分清晰。 晶内偏析的程度取决于以下因素。 (1)冷却速度越大,扩散进行得越不充分,偏析程度越大。 (2)相图中的结晶范围越大,偏析成分的范围越大。 具有枝晶偏析的合金,会导致合金塑性,韧性下降;易于引起晶内腐蚀,降低合金的抗蚀能力;特别是给合金的热加工带来困难。生产上为了消除其影响,常把合金加热到高温(低于固相线100摄氏度左右)并进行长时间保温,使原子充分扩散,获得成分均匀的固溶体,着种工艺过程称之为?均匀化退火?或称为?扩散退火?。 研究二元合金的结晶过程必须借鉴二元相图,因此有必要研究二元合金相图及其应用。 在常压下,二元合金的相状态决定于温度和成分。因此,二元合金相图可用温度-成分坐标系的平面图形来表示。二元相图是反映二组元系统相的平衡状态与温度,成分关系的平面图形。 二元合金相图又称二元系相图,是表示系统中两个组元在热力学平衡状态

相关主题
文本预览
相关文档 最新文档