当前位置:文档之家› 麻黄属植物染色体制片技术及核型分析研究

麻黄属植物染色体制片技术及核型分析研究

麻黄属植物染色体制片技术及核型分析研究
麻黄属植物染色体制片技术及核型分析研究

植物染色体制片与观察实验报告

植物染色体制片与观察实验报告(洋葱组) 姓名:蔡梦雅 1230170010 同组成员:曹鉴云陈锦容刘艳马彦霞 一、中文摘要:染色体(Chromosome),是细胞内具有遗传性质的物体,易被碱性染料染成深色,又叫染色质。其本质是脱氧核甘酸,是细胞核内由核蛋白组成、能用碱性染料染色、有结构的线状体,是遗传物质基因的载体。这里我们用洋葱染色体作为代表使用压片法制片并且进行观察。 二、关键词:染色体洋葱压片法 三、引言:洋葱(onion)是百合科(Liliaceae)葱属中以肉质鳞片和鳞芽构成鳞芽的2年生草本植物,其学名为Allium cepa L,染色体数为2n=2x=16。由表1和图1可见,洋葱的8对染色体中,有7对(第1~7对)染色体,臂比在1·01~1·70之间,为中部着丝点染色体,1对(第8对),臂比为4·74,为近端部着丝点且带随体的染色体;依据STEB-BINS[4]的核型分类标准,洋葱的染色体核型在遗传进化上属较古老的2A型。100多年来有关染色体与染色体组结构功能的研究一直是生命科学最活跃的研究领域之一,现今人们完成基因组测序后回到对染色体上进行基因定位和作图,因此有关染色体的研究在基因组合功能基因组时代都有重要意义,陈瑞阳教授历时25年的研究完成的《中国主要植物染色体研究》对我国2834种植物染色体数目进行了报道,完成了1045种植物的核型分析,积累了宝贵的染色体基础数据创建了我国植物染色体研究信息平台。研究染色体进化与生物进化的有不可分割的关系,国际对染色体的化学成分,DNA含量,碱基组成和以染色体数目、形态、结构、大小等为特征的核型进化与物种形成和演化关系的研究,为揭示生物进化趋势提供染色体方面的科学资料,总的来说对染色体的研究在各类学科领域内都有着重要的意义。国内外对洋葱的研究主要在其成分和药用方面,在细胞遗传上张自力和陈瑞阳等对洋葱的C带显示法进行过研究,田秋元等对洋葱的核型分析及有关制片方法进行了探讨。植物根尖的分生细胞的有丝分裂,每天都有分裂高峰时间,此时把根尖固定,经过染色和压片,再置放在显微镜下观察,可以看到大量处于有丝分裂各时期的细胞核染色体。我们设计了不同的实验方案探究如何制作优良的植物染色体玻片,掌握染色体技术。 四、材料与方法: 1.取材 洋葱(Aillum cepa)的鳞茎 2.实验器具和药品 2.1器具 a.载玻片 b.盖玻片 c.烧杯 d.量筒 e.培养皿 f.滤纸 g.玻璃棒 h.镊子i.手术刀 2.2药品 a.0.1mol/L醋酸钠溶液 b.0.25%秋水仙素 c.冰醋酸 d.无水乙醇 e.1mol/LHcl f.纤维素酶 g.果胶酶 h.卡宝品红 2.3试剂配制 卡诺固定液:用3份无水酒精,加入1份冰醋酸(现配现用)。 酸解液:一份无水乙醇与一份1mol/L 盐酸1:1进行配制。 酶解液:用0.4g的纤维素酶和0.15g的果胶酶溶解在20ml蒸馏水里。

人类染色体的识别及核型分析

生命与环境科学学院实验报告 实验课名称遗传学实验实验名称人类染色体的识别及核型分析成绩______________ 姓名王大锤实验报告系列年级学号组别一时间2015.温度6℃ 实验原理及目的 实验目的 1、学习并掌握染色体核型的分析方法; 2、熟悉人类染色体的特征; 3、了解人类染色体结构畸变的表示方法。 实验原理 1.染色体组型(核型)的基本含义 含义:生物体细胞所有可测定的染色体表型特征的总称。 包括:染色体的总数,染色体组的数量,每个染色体组内染色体基数,每条染色体的形态、长度、着丝粒的位置,随体或次缢痕等。 染色体组型是物种特有的染色体信息之一,具有很高的稳定性和再现性。 2.人类染色体特征 Denver体制 1960年,在美国Denver市召开了第一届国际遗传学会议,讨论并确定正常人核型(karyotype)的基本特点即Denver体制,成为识别人类各种染色体病的基础。 3.染色体显带标本 显带技术(banding technique):用各种不同方法,以及用不同染料处理染色体标本后,每条染色体上出现明暗相间或深浅不同带纹的技术。 每条染色体带纹相对固定,可用于鉴别。 显带技术种类:Q带、G带、C带、R带、T带. G带是目前被广泛应用的一种带型。主要是被Giemsa染色后而显带,故称之为G显带技术,其所显示的带纹分布在整个染色体上。 4.遗传学中一些常用于对染色体和核型分析的指标描述 界标(landmark):稳定、明显标记的指标.包括末端、着丝粒和带. 区(region):两相邻界标之间. 带(band):着色处.(浅、深;亮、暗). 臂(arm):p、q 实验材料、仪器及试剂 1.人类染色体标本——非显带标本和显带标本 2.直尺,剪刀,计算机等。 实验步骤 ①染色体制片 制片方法:植物染色体——压片法(酸解、酶解) 动物染色体——滴片法(骨髓细胞、外周血细胞)标本种类:非显带染色体;显带染色体 图片要求:染色体分散;数目全;形态好 ②选择最佳图象拍照 ③测量、计算 ④配对 ⑤剪贴 ⑥排列 排列原则:从大到小;短臂向上;着丝粒在一条线上;性染色体单排。

实验十人类染色体g显带技术及g带核型分析

实验十人类染色体G显带技术及G带核型分析 实验目的 1、初步掌握染色体G带标本的制备技术。 2、了解人类染色体的G显带的带型特征。 实验用品 1、材料:常规方法制备的中期人类染色体标本(标本片龄不超过30天为宜)。 2、器材:显微镜、恒温培养箱、烤箱、恒温水浴箱、冰箱、染色缸、小镊子、玻片架、香柏油、二甲苯、擦镜纸、吸水纸。 3、试剂:%胰蛋白酶溶液、%EDTA溶液、胰蛋白酶一EDTA混合液、%生理盐水、蒸馏水、Giemsa原液、Giemsa稀释液、1/15mol /L磷酸缓冲液。 实验原理 人们将用各种不同的方法,以及用不同的染料处理染色体标本后,使每条染色体上出现明暗相间,或深浅不同带纹的技术称为显带技术(banding technique)。本世纪70年代以来,显带技术得到了很大发展,且在众多的显带技术中(Q带、G带、C带、R带、T带),G带是目前被广泛应用的一种带型。因为它主要是被Giemsa染料染色后而显带,故称之为G显带技术,其所显示的带纹分布在整个染色体上。 研究发现,人染色体标本经胰蛋白酶、Na0H、柠檬酸盐或尿素等试剂处理后,再用Giemsa 染色,可使每条染色体上显示出深浅交替的横纹,这就是染色体的G带。每条染色体都有其较为恒定的带纹特征,所以G显带后,可以较为准确的识别每条染色体,并可发现染色体上较细微的结构畸变。关于G显带的机理目前有多种说法,例如,Lee等(1973)认为染色体上与DNA结合疏松的组蛋白易被胰蛋白酶分解掉,染色后这些区段成为浅带,而那些组蛋白和DNA结合牢固的区段可被染成深带。有人认为,染色体显带现象是染色体本身存在着带的结构。比如用相差显微镜观察未染色的染色体时,就能直接观察到带的存在。用特殊方法处理后,再用染料染色,则带更加清楚,随显带方法不同,显出来的带特点也不一样,说明带的出现又与染料特异结合有关。一般认为,易着色的阳性带为含有AT多的染色体节段,相反,含GC多的染色体段则不易着色。总的来说,G显带的机理还未搞清。 内容与方法 一、人类染色体G显带标本制备 1、胰蛋白酶法 ①将常规制备的人染色体玻片标本(未染色的白片)置70℃烤箱中处理2小时,然后转入37℃培养箱中备用,一般在第3~7天进行显带。 ②取%的胰蛋白酶原液加生理盐水至50ml,配成%的工作液并用NaHCO3调pH值至7左右。 ③将配好的胰蛋白酶工作液放入37℃水浴箱中预热。 ④将玻片标本浸入胰蛋白酶中,不断摆动使胰蛋白酶的作用均匀,处理1~2分钟(精确的时间自行摸索)。 ⑤立即取出玻片,放入生理盐水中漂洗两次。 ⑥染色。将标本浸入37℃预温的Giemsa染液(1:10的Giemsa原液和的磷酸缓冲液)

人类染色体组型分析-实验报告

【实验题目】 染色体组型分析 【实验目的】 1. 掌握染色体组型分析的各种数据指标。 2. 学习染色体组型分析的基本方法。 3.对照标准图型,学习识别人体各对染色体的带型特征。 4.初步掌握人体染色体组型带型分析方法。 5.了解染色体组型与带型分析的意义。 【实验材料与用品】 1.器材:直尺、剪刀、胶水、计算器、白纸 2.材料:人体细胞染色体放大图 【实验原理】 染色体组型又称核型,是指将动物、植物、真菌等的某一个体或某一分类群(亚种、种、属等)的体细胞内的整套染色体,按它们相对恒定的特征排列起来的图像。核型模式图是指将一个染色体组的全部染色体逐个按其特征绘制下来,再按长短、形态等特征排列起来的图像。 (一)描述染色体的四个参数: 1.相对长度= 每条染色体长度 单倍常染色体之和+X 2.臂指数= 长臂的长度 q 短臂的长度 p 为了更准确地区别亚中部和亚端部着丝粒染色体,1964年Levan 提出了划分标准: ① 1.0-1.7之间,为中部着丝粒染色体(M ) ② 1.7-3.0之间,为亚中部着丝粒染色体(SM ) ③ 3.0-7.0之间,为压端部着丝粒染色体(ST ) ④ 7.0以上,为端部着丝粒染色体(T ) ×100 (相对长度可以用来表示每条染色体的长度) ×100 (臂指数可以用来确定臂的长度)

3.着丝粒指数 = 短臂的长度 p ×100 (着丝粒指数可以决定着丝粒的相对位置)染色体全长 p+q 按Levan划分标准: ① 50.0-37.5之间为M ② 37.5-25.0之间为SM ③ 25.0-12.5之间为ST ④ 12.5-0.0之间为T 4.染色体臂数(NF):根据着丝粒的位置来确定。 a.端着丝粒染色体(T),NF=1; b.中部、亚中部、亚端部着丝粒染色体(M,SM,ST),NF=2。 (二)人类体细胞染色体的分类标准及其主要特征 染色体组型及分群依据:主要根据染色体的相对长度,着丝粒的位置,其次是臂的长短,以及次级缢痕或随体的有无等方面。 分组排队原则:着丝粒类型相同,相对长度相近的分一组;同一组的按染色体长短顺序配对 排列;各指数相同的染色体配为一对;可根据随体的有无进行配对;将染色体按长短排队, 短臂向上。 染色体组型图的应用

核型分析实验报告

核型分析 摘要植物核型分析是指对植物细胞染色体的数目、形态、长度、带型和着丝粒位置等内容的分析研究,是植物分类和遗传研究的重要手段。本实验利用Photoshop软件,对栽培四棱大麦的染色体进行核型分析。本方法主要是物理分析法,在本试验中,我们先对大麦的染色体进行配对,再利用Photoshop软件对染色体进行分析,并测量了大麦染色体的臂长和随体长。 1.引言 核型指染色体组在有丝分裂中期的表型,包括染色体数目、大小、形态特征的总和。一个体细胞中的全部染色体,按其大小、形态特征(着丝粒的位置)顺序排列所构成的图像就称为核型。将待测细胞的核型进行染色体数目、形态特性的分析,确定其是否与正常核型完全一致,称为核型分析。以目前的技术水平,已实现使用计算机自动完成核型分析,我们学生也可以利用Adobe Photoshop 很容易地完成染色体的测量、排序等工作,再利用Excel 表格和Photoshop结合做出核型模式图。 2.实验材料 2.1实验材料 栽培四棱大麦的分散良好的有丝分裂中期细胞的显微照片、Adobe Photoshop等软件2.2实验方法 2.2.1绘制核型图 在Photoshop中对照片进行必要的处理。首先是剪裁照片,用套索工具将每条染色体分离出来,对染色体进行配对并将每条染色体的着丝点排在一条线上,并对染色体进行适当的旋转变换。其次是利用标尺工具测量每条染色体的臂长、随体长。再根据测量结果计算出染色体的臂比,总长,随体长,相对长度等数据。 2.2.2写出核型公式 根据上面的测量结果写出四棱大麦的核型公式。 2.2.3画核型模式图 将所测并经过计算后的数据在Excel表格中绘制成堆积柱形图,并在Photoshop里切出着丝点和次缢痕。除此之外,还需将整个图像转换成黑白。 3.结果与讨论 3.1染色体核型分析图 图1 染色体核型分析图

染色体组型分析

植物染色体组型分析 姓名:刘云超学号:2009361017班级:生工4班组别:4组 一、实验原理 1、染色体组型:各种生物染色体的形态、结构和数目都是相对稳定的。每一细胞内特定的染色体组成叫染色体组型。 2、染色体组型分析(核型分析):就是研究一个物种细胞核内染色体的数目及各种染色体的形态特征,如对染色体的长度、着丝点位置、臂比、随体有无等观测,从而描述和阐明该生物的染色体组成,为细胞遗传学、分类学和进化遗传学等研究提供实验依据。 3、染色体组型分析大都采用植物根尖等分生组织中的细胞有丝分裂中期,因为此期染色体具有较典型的特征,且易于计数;在进行核型分析时,染色体制片要求分裂相为染色体分散,互不重叠,能清楚显示着丝点位置。然后通过显微摄影,测量放大照片上的每个染色体的长度和其它形态特征,依次配对排列,编号,并对各对染色体的形态特征作出描述。 二、实验目的 观察分析植物细胞有丝分裂中期染色体的长短、臂比和随体等形态特征;学习染色体组型分析的方法;练习显微摄影的操作过程,拍摄和印放显微照片。 三、实验材料 蚕豆、玉米、黑麦、洋葱的根尖(或木本植物的茎尖),或幼嫩花蕾,经固定,染色,压片(方法参见实验二十八),显微摄影,得染色体照片。也可以由实验室提供染色体制片或放大照片。 四、实验器具和药品 显微镜,测微尺,毫米尺,镊子,剪刀,绘图纸。如无现成的染色体照片需备摄影显微镜以及有关摄影器材。 五、实验步骤 1、测量:依次各测量染色体长臂和短臂的长度,随体计入臂长与否须注明。 根据显微测量或放大照片测量、记录染色体形态测量数据如下: 绝对长度(μm)=放大的染色体长度÷放大倍数 染色体组总长度=该细胞单倍体全部染色体长度(包括性染色体)之和 相对长度(%)=每个染色体长度÷染色体组总长度×100 臂比=长臂长度÷短臂长度 着丝粒指数=短臂÷该染色体长度×100 例表(表格于实验结果中) 2、配对:根据测量数据,即染色体相对长度、臂率、着丝粒指数、次缢痕的有无及位置、随体的形状和大小等进行同源染色体的剪贴配对。 3、排列: ⑴染色体对从大到小依次排列;等长染色体对,短臂长的在前;具随体染色体、性染色体可单独排在最后。 ⑵异源的染色体要分别排列(如小麦的A、B、D染色体组) 4、剪贴:把上述已经排列的同源染色体按先后顺序粘贴在绘图纸上。粘贴时,短臂向上、长臂向下,各染色体的着丝粒排在一条直线上。所得组型图。 5、分类:臂比是反应着丝点在染色体上的位置。根据此可确定染色体所属的形态类型。 染色体形态类型:臂比(长臂/短臂)形态类型 1~1.7M中着丝粒染色体;

植物染色体分带技术

八)植物染色体 Giemsa 分带技术 一、实验目的 ( 1 )通过实验,掌握植物染色体 Giemsa 分带技术和方法。 ( 2 )学习染色体带型分析方法。 二、实验原理 植物染色体 Giemsa 分带技术是本世纪 70 年代以来兴起的一项细胞技术,它已广泛用于植物细咆学、细胞遗传学、植物分类学、物种起源、染色体工程、植物育种等方面研究。显带原理是借助于特殊的处理程序后,进行 Giemsa 染色。使染色体某些结构成分发生特异反应而出现深浅不同的带纹;从而使核型分析中更准确地识别染色体的每个成员以及其结构变异。通过改变 Giemsa 分带处理程序可产生不同带型,因此有 C 带、 G 带、 N 带、 Q 带、 T 带等不同技术。 C 带 ( 组成异染色质带 ) : C 带技术是应用最广泛的技术,它主要显示着丝粒、端粒,核仁组成区域或染色体臂上某些部位的组成异染色质而产生相应的着丝粒带、端粒带,核仁组成区带,中间带等,这些带可以在一条染色体上同时出现,也可以只有其中的一条或几条带。 G 带 (Giemsa 带 ) :显示染色粒, G 带分布干染色体的全部长度上,以深浅相间的横纹形式出现。也有入认为 G 带显示的是染色体本身固有的结构, G 带能清楚地反映染色体的纵向分化,能提供较多的鉴别标志,因此, G 带是分带技术中最有价值的一种,目前 G 带技术在我国处于领先地位。 R 带 ( 反带 ) :与 G 带相反的染色带。由于处理程序不同,染色体在同一部位, G 带染色深处 R 带染色浅处,反之, G 带染色浅处 R 带染色深处。 N 带:专一地显示出核仁组织区。 T 带:专一地显示出端粒区域。 以上几种带型在植物上应用最多的为 C 带和 G 带.本次实验介绍 G 带分带技术 三、实验材料 (1) 大麦 ( Hordeum spp. 2n = 14) 的种子; (2) 普通小麦 ( Triticum spp. 2n = 42) 的种子; (3) 蚕豆 (V icia faba 2n = 12) 的种干; (4) 洋葱 ( Allium cepa 2n = 16) 、大蒜 ( Allinmcepa fistulosum 2n = 16) 的鳞茎。 以上材料可任选一种。 四、实验器具和药品 1 .器具培养箱、恒温水浴锅,分析天平、小台称 ( 200g ) 、量筒 (50ml 、 100ml 、 1000ml 、 l0ml) 、烧杯 (200ml) 、容量瓶 ( 1000m 1) 、棕色试剂瓶 (200ml) 、滴瓶、染色缸、载玻片、盖玻片.显微镜、显微照相及冲洗放大设备、剪刀、镊子、刀片、滤纸、玻璃板、牙签、切片盒. 2 .药品 Giemsa 母液、磷酸缓冲液、氯化钠、柠檬酸钠、甲醇、乙醇、冰醋酸、氢氧化钡、秋水仙素 ( 或对二氯苯 ) 、α—溴萘、纤维素酶、胰蛋白酶、醋酸洋红、 45 %醋酸等。五、实验步骤 G 带显示的是染色体自身固有结构,能否显示出来.与染色体的处理技术密切相关,因此, G 带技术要求比 C 带严格。目前 G 带已在许多植物上成功显示,但其中稳定性、重复性高的是玉米 G 带技术。 G 带技术沉程较多,其中最为先进的是武汉大学生物系宋运淳等的 ASG 技术(醋酸— 2XSSC , Giemsa) ,染色体标本的制作是用去壁低渗火焰干燥法进行的。其流程如下: (1) 发根:将玉米材料在室温下 (25 —27 ℃ ) 发根,待根长到 0.5 -1.5cm 时,转入 6 -8 ℃ 左右低温下处理 20 — 40 小时。 (2) 预处理:切取根尖分生组织 0.2mm 用新配制的饱和α—溴萘28 ℃ 下预处理 3 小时。 (3) 低渗:用 0.075mol / LKCl 室温下处理 30 分钟。

实验四__人类染色体的识别与核型分析

实验四人类染色体的识别与核型分析 一、实验目的 1.学习染色体核型的分析方法; 2.了解人类染色体的特征。 二、实验原理 1.染色体组型(核型)是指生物体细胞所有可测定的染色体表型特征的总称。包括:染色体的总数,染色体组的数目,组内染色体基数,每条染色体的形态、长度、着丝粒的位置,随体或次缢痕等。染色体组型是物种特有的染色体信息之一,具有很高的稳定性和再现性。组型分析能进行染色体分组外,还能对染色体的各种特征做出定量和定性的描述,是研究染色体的基本手段之一。利用这一方法可以鉴别染色体结构变异、染色体数目变异,同时也是研究物种的起源、遗传与进化,细胞遗传学,现代分类学的重要手段。 2.人类的单倍体染色体组(n=23)上约有30000-40000个结构基因。平均每条染色体上有上千个基因。各染色体上的基因都有严格的排列顺序,各基因间的毗邻关系也是较为恒定的。人类的24种染色体形成了24个基因连锁群,所以,染色体上发生任何数目异常、甚至是微小的结构变异,都必将导致许多获某些基因的增加或减少,从而产生临床效应。染色体异常常表现为具有多种畸形的综合征,称为染色体综合征,其症状表现为多发畸形、智力低下和生长发育异常,此外还可看到一些特征性皮肤纹理改变。染色体畸变还将导致胎儿死产或流产。染色体病已成为临床上较常见的危害较为严重的病种之一,染色体病的检查、诊断已经成为临床实验室检查的重要内容。 1960年,在美国Denver市召开了第一届国际遗传学会议,讨论并确定正常人核型(karyotype)的基本特点即Denver体制,并成为识别人类各种染色体病的基础。按照Denver 体制,将待测细胞的染色体进行分析和确定是否正常,以及异常特点即为核型分析。人类染色体分组及形态特征见表1。 表1 人类染色体分组及形态特征(非显带标本) A组:1-3号,可以区分。1号,最大,M,长臂近侧有一次缢痕;2号,较大,SM;3号,较大,比1号染色体段1/3-1/4)。 B组:4-5号,体积较大,SM,短臂相对较短,两者不容易区分。 C组:6-12,X。中等大小,SM,较难区分。6、7、8、11和X染色体的着丝粒略近中央,短臂相对较长,9、10、12染色体的着丝粒偏离中央。9号染色体长臂有较大次缢痕。

染色体核型分析系列之三大技术介绍

染色体核型分析三大技术介绍 ·概念 是细胞遗传学研究的基本方法,是研究物种演化、分类以及染色体结构、形态与功能之间关系所不可缺少的重要手段。经行核型分析后,可以根据染色体结构和数目的变异来判断生物的病因。染色体核型分析技术,传统上是观察染色体形态。但随着新技术的发现与应用,染色体核型分析三大技术包括:GRQ带技术、荧光原位杂交技术、光谱核型分析技术。 ·三大技术介绍 一、GRQ带技术 人类染色体用Giemsa染料染色呈均质状,但是如果染色体经过变性和(或)酶消化等不同处理后,再染色可呈现一系列深浅交替的带纹,这些带纹图形称为染色体带型。显带技术就是通过特殊的染色方法使染色体的不同区域着色,使染色体在光镜下呈现出明暗相间的带纹。每个染色体都有特定的带纹,甚至每个染色体的长臂和短臂都有特异性。根据染色体的不同带型,可以更细致而可靠地识别染色体的个性。染色体特定的带型发生变化,则表示该染色体的结构发生了改变。一般染色体显带技术有G显带(最常用),Q显带和R显带等。 百奥赛图提供的小鼠染色体核型分析服务,就是利用Giemsa染色法,对染色体染色后进行显带分析,保证基因敲除小鼠在染色体水平阶段没有发生变异,从而确保基因敲除小鼠可以正常繁殖。

二、荧光原位杂交技术 荧光原位杂交(fluorescenceinsituhybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子结合,杂交后再通过免疫细胞化学过程连接上荧光染料。FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA 纤维切片上,再用与荧光素分子耦联的单克隆抗体与探针分子特异性结合,来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析,可判断单个碱基突变。此时,一个染色体核型,即为一个碱基。近年来,采用荧光原位杂交技术,将荧光素标记的探针进行染色体核型特定位点的检测和标记,可以精确地检测染色体上DNA链中,单个碱基的突变,从而大大提高了染色体核型分析的精度。 三、光谱核型分析技术 SKY(spectralkaryotying)光谱染色体自动核型分析是一项显微图像处理技术,SKY通过光谱干涉仪,由高品质CCD获取每一个像素的干涉图像,形成一个三维的数据库并得到每个像素的光程差与强度间的对应曲线,该曲线经傅立叶变换之后得到该像素的光谱,再经由软件分析之后用分类色来显示图像或将光谱数据转换成相应的红绿蓝信号后以常规方式显示。

人类核型分析

实验四 人类核型分析 1.实验目的 了解人类染色体的形态特征,掌握其核型分析的基本方法。 2.材料 人正常和异常的染色体标本,人显带染色体标本 3.试验内容与方法: 核型:指某种生物个体或某一分类群(种、亚种或变种、居群)的一个体细胞全部中期染色体的数目、大小和形态等特征的总和。用来表述物种的特点和亲缘种属之间的关系。核型分析:将待测细胞的染色体按照该生物固有的染色体形态特征和规定,进行配对、编号和分组,并进行形态分析的过程过程。 Denver体制:按照Denver会议(1960年)提出的染色体命名和分类标准,将人类体细胞的46条染色体按大小(根据长度递减顺序)、着丝粒的位置分成七组(A、B、C、D、E、F、G、)23对的排列,并将副缢痕和随体作为识别染色体的辅助指标。人类染色体核型分析标准是丹佛(Denver)体制(人类有丝分裂染色体的标准命名体制)。该体制规定:每一条染色体可通过相对长度、臂率和着丝粒指数等三个参数予以识别;

非显带染色体:染色体标本制作好后,不经处理直接染色,整条染色体均匀着色(相对于后面的显带染色体而言)。

人中期细胞染色体(数目2N=46) 结构特点 G显带染色体:G带技术是其中最常用的技术,由Pardue和Gall(1970)建立。中期染色体经胰酶处理及Giemsa染色后,能在其长轴上显示出明暗交替的横纹,每个染色体都有特定的带纹,可应用染色体分带技术,来准确地辨别每个染色体。一个细胞中期分裂相的G显带技术,每个染色体被染成深浅相间的带纹,浅的部分称为明带或浅带,深的部分称为暗带或深带。G带反映了染色体DNA上A -T的丰富区,在人类中约 有2000条G带可被鉴别,在间期核呈固缩状态,而且是DNA晚复制区之一。有相当一部分中度重复序列DNA可能在G带区,Giemsa染料在G 带区是与DNA结合,而且与结合DNA的染色质非组蛋白有关。G带区位于染色体的两臂上,和Q带区相对应,而与R带区相反。人类细胞染色体共分24种不同的带纹(22对常染色体和X、Y染色体) (一)人类正常染色体及其带型的识别 1. 非显带染色体的识别:根据染色体按大小(根据长度递减顺序)、着丝粒的位置分 ①A群:包括第1、2、3对染色体,体积大,彼此易于区别,有中央着丝粒,第二对染色体的着丝粒略偏离中央。 ②B群:包括第4、5对染色体,较大,均为亚中部着丝粒,彼此不易区分。 ③C群:包括6-12对常染色体和X性染色体,中等大小,为亚中部着丝粒染色体,彼此间难以区分,第6对的着丝粒染色体靠近中央,X染色

植物染色体常规分析技术

第一章植物染色体常规分析技术 染色体由DNA和组蛋白构成,不仅是生物,包括植物,的遗传信息载体,起到调节基因活动和有性后代重组频率的作用,而且还控制着真核生物的育性。因此无论是在植物遗传育种,还是在植物系统进化领域,染色体研究技术都是重要手段之一。此外该技术还是染色体分带、基因和基因组原位杂交技术的基础。也就是说染色体常规分析技术是生物学研究的基本技术之一,学习掌握该技术是学生将来从事科学研究工作的必要知识储备。 仪器设备、试剂及其他用品 明视野显微镜(每人一台);水浴锅一个;控温培养箱一台;载玻片,盖玻片若干(清水洗过,70%酒精保存备用,用前纱布擦干);纱布,滤纸若干;钟表镊子, 铅笔(未销),双面刮胡刀片各一个;500ml烧杯(或广口瓶)若干只;培养皿若干(最好直径90mm);小药瓶或1.5ml 塑料离心管若干。 对二氯代苯饱和水溶液;0.002M八羟基喹啉;改良石炭酸品红;1mol/L盐酸;0.1mol/L盐酸;45%乙酸; 材料 玉米、燕麦、小麦、蚕豆种子,洋葱、大葱鳞茎或种子,最好当年产。或者自己准备其他感兴趣的材料,如校园及周围环境中采集和市场购买,要有一定数量,至少几百颗。有意向后及时与老师联系,了解你预备的种子是否适合用于实验,因有些种子存在休眠,短时间不能萌发。实验流程 1 种子和鳞茎根尖的培养 种子培养前首先进行种子筛选,去除空瘪和霉变者以及杂质,保留饱满种子,10至30倍自来水浸泡24小时。取培养皿内垫湿滤纸,将浸泡后的种子铺于培养皿内,注意滤纸表面不要有流动水,种子量要适当,不要太多而互相堆积在一起,室温培养即可。每天流水洗一次,培养过程中如发现有霉烂种子及时清除以免影响种子萌发。 鳞茎培养采用水培。取烧杯一只盛满自来水,将鳞茎外部干皮和鳞茎盘底部残留泥土及根去掉,洗净,坐于烧杯口上,使底部浸泡水中。 虽然是染色体分析实验,一定不要忽略材料培养,要提供具体材料以理想的培养条件。只有根尖生长旺盛,才可能获得具有高比例分裂细胞的根尖,这是得到满意中期分裂相的前提。一般质量好的根尖为乳白色,可见大量根毛。 2 预处理 所谓预处理是指使用化学试剂和物理方法(如低温)抑制细胞纺锤体微管的形成和活动,保证更多的细胞处于有丝分裂中期,同时使染色体缩短变粗利于观察。待根尖伸长约1厘米,取根尖或在小种子情况下,如小麦,连带种子置小药瓶内对二氯代苯饱和溶液中处理3-6小时。注意环境温度不要过高以免产生药物毒害作用。还要注意不要盖瓶盖,保证材料呼吸所需氧气供应。如果处理时间较长,如超过5小时,应该间隔一定时间摇晃小药瓶以增加溶液中的溶解氧。 3 固定 固定就是在化学试剂的作用下使细胞内染色体结构保持不变。染色体制片常用的固定剂为卡诺固定液。方法很简单,倾去预处理液,加卡诺固定液[95%(或100%)酒精:冰乙酸=3:1]固定过夜。常温下材料在固定液可以保存一周左右,冰箱冷藏可以保存一个月左右。保存时间过长,压片时染色体粘连而不易分散。 4 解离 解离的作用是使根尖分生组织的细胞易于分散。一般是将材料从固定液中取出装入小瓶或离心管中,蒸馏水洗一次,加入1mol/L盐酸,放入事先预热到60℃的水浴锅中,保持5至10分钟取出,用吸管吸出解离液,加入蒸馏水洗一次,加45%醋酸软化。 5 染色和压片 染色和压片的目的是使细胞中的染色体着色并分散开以利于染色体形态结构的观察。截取

实验十人类染色体G显带技术及G带核型分析.docx

实验目的 1、初步掌握染色体G带标本的制备技术。 2、了解人类染色体的G显带的带型特征。 实验用品 1、材料:常规方法制备的中期人类染色体标本(标本片龄不超过30 天为宜)。 2、器材:显微镜、恒温培养箱、烤箱、恒温水浴箱、冰箱、染色缸、小镊子、玻片架、 香柏油、二甲苯、擦镜纸、吸水纸。 3、试剂:%胰蛋白酶溶液、%EDTA溶液、胰蛋白酶一EDTA混合液、%生理盐水、蒸 馏水、 Giemsa 原液、 Giemsa 稀释液、 1/ 15mol / L 磷酸缓冲液。 实验原理 人们将用各种不同的方法,以及用不同的染料处理染色体标本后,使每条染色体上出 现明暗相间,或深浅不同带纹的技术称为显带技术(banding technique)。本世纪 70 年 代以来,显带技术得到了很大发展,且在众多的显带技术中( Q带、G带、C 带、R 带、T 带), G带是目前被广泛应用的一种带型。因为它主要是被Giemsa 染料染色后而显带,故称之为 G显带技术,其所显示的带纹分布在整个染色体上。 研究发现,人染色体标本经胰蛋白酶、 Na0H、柠檬酸盐或尿素等试剂处理后,再用 Giemsa 染色,可使每条染色体上显示出深浅交替的横纹,这就是染色体的 G带。每条染色体都有其较为恒定的带纹特征,所以 G显带后,可以较为准确的识别每条染色体,并可发现染色体上较细微的结构畸变。关于G显带的机理目前有多种说法,例如,Lee 等( 1973)认为染色体上与 DNA结合疏松的组蛋白易被胰蛋白酶分解掉,染色后这些区段成为浅带,而那些组蛋白和 DNA结合牢固的区段可被染成深 带。有人认为,染色体显带现象是染色体本身存在着带的 结构。比如用相差显微镜观察未染色的染色体时,就能直接观察到带的存在。用特殊方法处理后,再用染料染色,则带更加清楚,随显带方法不同,显出来的带特点也不一样,说明带 的出现又与染料特异结合有关。一般认为,易着色的阳性带为含有AT 多的染色体节段,相反,含 GC多的染色体段则不易着色。总的来说,G显带的机理还未搞清。 内容与方法 一、人类染色体G显带标本制备 1、胰蛋白酶法 ①将常规制备的人染色体玻片标本(未染色的白片)置70℃烤箱中处理 2 小时,然后转入37℃培养箱中备用,一般在第3~7 天进行显带。 ②取%的胰蛋白酶原液加生理盐水至50ml ,配成%的工作液并用NaHCO3 调 pH 值至7 左右。 ③将配好的胰蛋白酶工作液放入37℃水浴箱中预热。 ④将玻片标本浸入胰蛋白酶中,不断摆动使胰蛋白酶的作用均匀,处理 1~ 2 分钟(精确的时 间自行摸索)。 ⑤立即取出玻片,放入生理盐水中漂洗两次。 ⑥染色。将标本浸入37℃预温的Giemsa 染液( 1:10 的 Giemsa 原液和的磷酸缓冲液) 中染色 10 分钟左右。

人类染色体组型分析 实验报告

姓名班级 13级生命基地班学号同组者: 科目细胞生物学实验实验题目染色体组型分析 【实验题目】 染色体组型分析 【实验目的】 1.掌握染色体组型分析的各种数据指标。 2.学习染色体组型分析的基本方法。 3.对照标准图型,学习识别人体各对染色体的带型特征。 4.初步掌握人体染色体组型带型分析方法。 5.了解染色体组型与带型分析的意义。 【实验材料与用品】 1.器材:直尺、剪刀、胶水、计算器、白纸 2.材料:人体细胞染色体放大图 【实验原理】 染色体组型又称核型,是指将动物、植物、真菌等的某一个体或某一分类群(亚种、种、属等)的体细胞内的整套染色体,按它们相对恒定的特征排列起来的图像。核型模式图是指将一个染色体组的全部染色体逐个按其特征绘制下来,再按长短、形态等特征排列起来的图像。 (一)描述染色体的四个参数: 1.相对长度= 每条染色体长度 单倍常染色体之和+X 2.臂指数= 长臂的长度 q 短臂的长度 p ×100 (相对长度可以用来表示每条染色体的长度) ×100 (臂指数可以用来确定臂的长度)

科目细胞生物学实验实验题目染色体组型分析 为了更准确地区别亚中部和亚端部着丝粒染色体,1964年Levan提出了划分标准: ① 1.0-1.7之间,为中部着丝粒染色体(M) ② 1.7-3.0之间,为亚中部着丝粒染色体(SM) ③ 3.0-7.0之间,为压端部着丝粒染色体(ST) ④ 7.0以上,为端部着丝粒染色体(T) 3.着丝粒指数 = 短臂的长度 p ×100 (着丝粒指数可以决定着丝粒的相对位置)染色体全长 p+q 按Levan划分标准: ① 50.0-37.5之间为M ② 37.5-25.0之间为SM ③ 25.0-12.5之间为ST ④ 12.5-0.0之间为T 4.染色体臂数(NF):根据着丝粒的位置来确定。 a.端着丝粒染色体(T),NF=1; b.中部、亚中部、亚端部着丝粒染色体(M,SM,ST),NF=2。 (二)人类体细胞染色体的分类标准及其主要特征

染色体核型分析

姓名程开源系年级2010级临床医学八年制同组者孙琳、孙晶鑫、窦云德 科目分子细胞生物学题目染色体核型分析学号201000232012 【实验目的】 1.了解小白鼠睾丸细胞染色体的形态及数目。 2.初步掌握小白鼠睾丸细胞染色体的玻片标本制作方法。 3.观察动物细胞染色体的数目和形态。 【实验原理】 染色体的制备在原则上可以从所有发生有丝分裂的组织和细胞悬浮液中得到。最常用的途径是从骨髓细胞、血淋巴细胞和组织培养的细胞中制备染色体。小型动物的染色体制片最好最有效的材料就是骨髓组织。骨髓细胞中,有丝分裂指数相当高,因此可以直接得到中期细胞而不必象淋巴细胞或其它组织那样要经过体外培养;对大型动物通常采用对骨骼、脊或胸骨穿刺术吸取红骨髓,小型动物多采用剥离术取股骨以获得骨髓细胞。 制作染色体标本的先决条件 1. 细胞具有旺盛的分裂能力 选择活跃的组织:胸腺,骨髓,睾丸,小肠 施加药物使细胞分裂:PHA 2. 设法得到大量的中期细胞:秋水仙素 (1) PHA:粗细胞分裂,使淋巴细胞返幼,变为淋巴母细胞 (2) 秋水仙素:破坏微管装配,使纺锤体不能形成,使大量细胞停止在分裂中期。 (3) 低渗作用:水进入细胞内,细胞内容空间变大,染色体间的距离拉大,易于染色体展开 (4) 空气干燥:使细胞和染色体展开 (5) 固定:用甲醇:冰醋酸=3:1作用使蛋白质变性,对染色体内的组蛋白讲,变性后硬度增加,保持了染色体的“及时形态”,对细胞膜蛋白讲,变性使细胞膜硬度增强,形成屏障作用,防止了细胞内物质外溢和丢失。 对于小鼠精巢染色体标本的制作,一般包括以下几个要点: 1. 用一定剂量的秋水仙素破坏纺锤丝的形成,使细胞分裂停滞在中期, 使中期染色体停留在赤道面处; 2. 用低渗法使将细胞膨胀, 以至于在滴片时细胞被胀破, 使细胞的染色体铺展到载玻片上; 3. 空气干燥法可使使细胞的染色体在载片上展平, 经Giemsa染色后便可观察到染色体的显微图象。 【实验材料】 1.材料:小白鼠。 2.试剂:秋水仙素、0.3%KCl溶液、甲醇、冰醋酸、磷酸缓冲液(pH=6.8)吉 姆萨原液。 3.器械:手术刀、手术剪、镊子、试管架、解剖盘、注射器、针头、吸管、离 心管、离心机、玻片(冰片)、天平、试镜纸、二甲苯、吸水纸、香柏油、烧杯、水浴锅。 【实验步骤】 4.取雄性小鼠以每克体重4ug注射秋水仙素,经14-16小时后,断头法杀死小 鼠,取出睾丸,用生理盐水(0.9%的NaCl)吸去血污。 5.放入装有1ml 0.3% KCl 液的小烧杯中剪碎(呈乳白色)。

植物染色体核型分析 日文版

31 植物染色体の核型分析の試み 1 研究の動機 生物の授業で体細胞分裂について学習し、生物には相同染色体が2本ずつ含まれることを学んだ。このことを身近な植物について、核型分析を行って調べてみたいと思った。 2 実験方法 染色体標本を得るためには、根の先端の分裂組織(根端分裂組織)を用いた。 (1) 発根処理 ここで紹介するキク科のエンシュウハグマについては、0.01%のハイポネクス水溶液に浸し、エアーポンプで空気を送りながら2~3週間放置した。キンポウゲ科のケキツネノボタンの場合は水につけても発根しなかったため、採集場所で新鮮な根を切り取り、その場でコルヒチン処理した。(2)コルヒチン処理→固定→解離処理上記の操作で発根したもの、あるいは直接切り取ったものを、0.002mol/?-8-オキシキノリンと0.1%コルヒチンの1:1混合液に常温で4~5時間浸した。続いてその根端をカルノア液(エタノール:酢酸=3:1混合液)に移し、冷蔵庫(4℃)で顕微鏡観察前日まで保存した。そして実験の24時間前には解離処理のため、1mol/?塩酸と45%酢酸の1:9混合液に移し、冷蔵庫(4℃)に入れておいた。 (3) 顕微鏡観察(押しつぶし法) 解離処理した根をスライドグラス上に置き、先端から1~2㎜程度のところで切り、残した先端部を柄付き針で潰した後、酢酸オルセイン液を加えてさらに潰した。続いてカバーグラスを気泡が入らないようにかぶせ、ずれないように注意しながら上から軽くたたいた。最後にろ紙をかぶせてカバーグラスの上から指で強く押した。作成したプレパラートを顕微鏡で観察し、分裂中期の染色体がうまく散らばった細胞を探した。そして、ディジタルカメラまたはフィルムカメラによる顕微鏡写真撮影装置で撮影した。 (4) 核型分析 撮影した写真をプリントアウトし、染色体の形状にそって切り取り、全体長や長腕、短腕の長さを基準に相同染色体の組み合わせをつくり、全体長の長い順に並べた。ケキツネノボタンついては、各染色体の長腕及び短腕の長さをノギスで計り、データを表計算ソフトを用いて分析した後、核型イディオグラムを作成した。 ※ 私達が用いた「押しつぶし法」は、物理的な力を加えることから、染色体を変形させてしまう恐れもある。従って、相同染色体を見つける作業においてもこのことを念頭におき、一部で完全に形状が一致しない場合でも、全体とのバランスを見て止むを得ないとすることもあった。 3 実験結果 (1)キツネノボタン (キンポウゲ科キンポウゲ属) ケキツネノボタンは、水辺や水田の近くなどの湿った土壌に生育するキンポウゲ科の植物である。本校近くを流れる二俣川周辺にも生育するが個体数が少なく、十分な根端試料がとれなかったので、磐田市内のひょうたん池(磐田市西貝塚)周辺および旧豊岡村の水田の畔に生育していたものを用いた研究結果を示す。 ア ひょうたん池周辺で採集したもの 2つの核型分析が可能な染色体標本Aおよび標

实验七染色体核型分析

实验七染色体核型分析

【实验项目】染色体核型分析 实验室名称显微分析实验室实验室地 点 学时2 实验 类型 验证每组 人数 2-4 选做 或必 做 必做 实验目的通过几种生物染色体标本的观察,掌握染色体核型分析的方法 内容提要生物染色体标本的观察;染色体核型的分析 重点难点染色体核型的分析方法 主要 仪器 及耗 材 显微镜、尺子、剪刀 实验七:染色体核型分析 〖实验目的和要求〗 观察分析细胞有丝分裂中期染色体的长短、臂比和随体等形态特征;学习染色体组型分析的基本方法和技能。 〖实验原理〗 染色体组型分析是细胞遗传学研究的基本方法,是研究物种演化、分类以及染色体结构、型态与功能之间的关系所不可缺少的重要手段。染色体组是指二倍体生物配子中所含的染色体总称,常以“X”表示。同一物种的同一染色体组内各染色体的形态、结构和连锁群是彼此不同的,但它们却相互协调,共同决定生物性状的发育。 研究染色体组型的方法,一是靠有丝分裂时染色体的形态特征,另一是靠减数分裂时染色体的形态和

特征。本实验着重介绍有丝分裂的染色体组型分析。 细胞有丝分裂中期是识别染色体个性特征的最佳时期,而染色体组型分析就是进行染色体特征的鉴别和描述,其形态的鉴别主要依据染色体的长度、着丝粒位置、付缢痕的有无和位置、随体的有无、形状和大小等资料进行分析。现分别介绍如下: 1.染色体长度,同一染色体组内各染色体的长度是不 一致的,其绝对长度可在显微镜上测量,或用放大照片测量后换算。由于染色体制片过程中使用的药剂及方法不同,另外供观察的细胞分裂不可能保证同一时期,故染色体的收缩有差异而导致绝对长度在同一物种或个体不同细胞间发生差异,针对这种情况,在分析中常用染色体的相对长度来表示。 在染色体长度测量中,对染色体的两条臂要分别测量,一般随体不计入染色体长度内。 2.着丝粒的位置:每条染色体都有一着丝粒,其位 置可因不同染色体而异。由于着丝粒把染色体分为两个染色体臂:长臂和短臂,它们的比率(即臂比)便可确定着丝粒的位置。 3.付缢痕的有无和位置:有些染色体上除着丝粒, 还另有一不着色或缢缩变细的区域称符缢痕。 4.随体的有无、形状和大小:有些染色体在短臂的 末端有一棒状小体称为随体,随体和染色体臂之间常以付缢痕相隔,具随体的染色体称SAT染色体。 〖材料和方法〗 细胞有丝分裂永久制片或其中期染色体图象的放大照

染色体带纹及命名

染色体带纹及命名 人类染色体是以几届国际会议的结果予以命名的(1960的Denver会议,1963年的伦敦会议,1966年的芝加哥会议,1975年巴黎会议,1977年stockholm会议,1994年Memphis会议)。1995年细胞遗传学标准委员会修改了自1985到1991年所发表的文件,把他们编撰成一个册子,名为《人类细胞遗传学国际命名体制》,常简称ISCN1995。 显带是一类分带技术,是一种方法学。是把染色体标本经过特殊处理后染色,使染色体有深、浅或明、暗的区别带。这里我们介绍几种常出现在文献中的带型。 1、G带:也叫G显带,这是临床上最常用的显带方法。用胰酶,缓冲液处理中期染色体标本均可显带。G带的特性是显带方法简单恒定,带型稳定,保存时间长。染色体标本用热、碱、蛋白酶等预处理后,再用Giemsa染色,可以显示出与Q带相似的带纹。在光学显微镜下,可见Q带亮带相应的部位,被Giemsa染成深带,而Q带暗带相应的部位被Giemsa 染成浅带。这种显带技术称为G显带,所显示的带纹称为G带。G显带克服了Q显带的缺点,G带标本可长期保存,而且可在光学显微镜下观察,因而得到了广泛的应用,是目前进行染色体分析的常规带型。 2、Q带:用喹吖因染料染中期染色体标本可出现一种特征性黄光亮暗带型,一般富含AT-DNA区段表现为亮带,富含GC-DNA区段黄光较暗,常用于人类Y染色体长臂的观察。临床上较少用,不能长久保存。 3、C带:这种方法将结构异染色质和高度重复的DNA区域染色。在人类染色体上这些区域位于着丝粒和Y染色体上。常用于某一科题的研究。专门显示着丝粒的显带技术。C显带也可使第1、9、16号和Y染色体长臂的异染色质区染色。因而,C带可用来分析染色体这些部位的改变。 4、R带:带型与G带相近,常用于染色体末端的研究。所显示的带纹与G带的深、浅带带纹正好相反,故称为R带(reversed band)。G带浅带如果发生异常,不易发现和识别,而R显带技术可以将G带浅带显示出易于识别的深带,所以R显带对分析染色体G带浅带部位的结构改变有重要作用。 5、T显带(T banding):专门显示染色体端粒的显带技术,用来分析染色体端粒。 6、 N显带(N banding):专门显示核仁组织区的显带技术。 7、高分辨显带(high-resolution banding):分裂中期一套单倍染色体一般显示320条带。70年代后期,采用细胞同步化方法和改进的显带技术,获得细胞分裂前中期、晚前期或早

相关主题
文本预览
相关文档 最新文档