当前位置:文档之家› 聚丙烯酸_蒙脱土功能性复合材料的制备及其性能研究

聚丙烯酸_蒙脱土功能性复合材料的制备及其性能研究

聚丙烯酸_蒙脱土功能性复合材料的制备及其性能研究
聚丙烯酸_蒙脱土功能性复合材料的制备及其性能研究

兰州理工大学

硕士学位论文

聚丙烯酸/蒙脱土功能性复合材料的制备及其性能研究

姓名:穆元春

申请学位级别:硕士

专业:材料学

指导教师:杨瑞成;吴明亮

20080401

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

塑料材料-聚丙烯(PP)的基本物理化学特性及典型应用介绍

聚丙烯(PP)的介绍 聚丙烯概述 聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。 聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。然而,通过添加冲击改性剂,可以提高其抗冲击性能。 一、聚丙烯的特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙

相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。(5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。 (6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 二、聚丙烯的用途 (1)薄膜制品:聚丙烯薄膜制品透明而有光泽,对水蒸汽和空气的渗透性小,它分为吹膜薄膜、流延薄膜(CPP)、双向拉伸薄膜(BOPP)等。 (2)注塑制品:可用于汽车、电气、机械、仪表、无线电、纺织、国防等工程配件,日用品,周转箱,医疗卫生器材,建筑材料。 (3)挤塑制品:可做管材、型材、单丝、渔用绳索。打包带、捆扎绳、编织袋,纤维,复合涂层,片材,板材等。吹塑中空成型制品各种小型容器等。 (4)其它:低发泡、钙塑板,合成木材,层压板,合成纸,高发泡可作结构泡沫体。 三、聚丙烯的成型加工 聚丙烯的成型加工性好,成型的方法很多,如注塑、吹塑、真空热成型、涂覆、旋转成型、熔接、机加工、电镀和发泡等,并可在金属表面喷涂。其中注塑成型的比例大,注塑温度在180~200 之间,注塑压力在68.6~137.2MPa,模具温度为40~60℃。预干燥温度在80℃左右。应避免PP 长时间与金属壁接触。 聚丙烯的二次加工性很好,其印刷性比聚乙烯好,照相凸版,胶版、平凹板等印刷方法均可使用,要获得良好的良好的耐热、耐油、耐水等要求的印刷性能,须经电晕放电处理等再行印刷。 四、聚丙烯的改性 聚丙烯可通过填充、增强、共混、共聚、交联来改性。如添加碳酸钙、滑石粉、无机矿物质等填料,可提高刚性、硬度、耐热性和尺寸稳定性;添加玻璃纤维、石棉纤维、云母、玻璃微珠等可提高拉伸强度,并可改善抗蠕变性、低温抗冲击性;添加弹性体和橡胶等可提高冲击性能、透明性等等。 均聚PP和共聚PP的介绍 1. PP均聚物 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 1.1 化学和性质

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.doczj.com/doc/a09308173.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

石墨烯复合材料在电磁领域的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第43卷,第9期2015年9月 V ol.43,No.9Sept. 2015 143 doi:10.3969/j.issn.1001-3539.2015.09.029 石墨烯复合材料在电磁领域的应用研究进展 王雯1,黄成亮1,郭宇1,宋宇华1,张颖异1,刘玉凤1,杜汶泽2 (1.中国兵器工业集团第五三研究所,济南 250031; 2.总装备部装甲兵驻济南地区军代室,济南 250031) 摘要:石墨烯以其独特的二维结构和优异的力学、电学、光学、热学性能成为材料领域的研究热点,石墨烯复合材料是石墨烯应用领域中重要的研究方向。概括了国内外石墨烯复合材料在电磁波吸收及电磁屏蔽领域的应用研究进展,并展望了未来石墨烯复合材料在此领域的发展趋势。 关键词:石墨烯;石墨烯复合材料;微波吸收;电磁屏蔽;应用 中图分类号:TB332 文献标识码:A 文章编号:1001-3539(2015)09-0143-04 Application Research Progress of Graphene Composites in Electromagnetic Fields Wang Wen 1, Huang Chengliang 1, Guo Yu 1, Song Yuhua 1, Zhang Yingyi 1, Liu Yufeng 1, Du Wenze 2 (1. CNGC Institute , Jinan 250031, China ; 2. Jinan Regional Office of Armoured Force Military Representative Bureau , Jinan 250031, China) Abstract :Graphene has become a hot research spot at home and abroad in recent years due to its unique two-dimensional structure and excellent mechanical, electrical, optical and thermal properties. Graphene composites is an important research direction in the area of graphene application. The application research progress in the microwave absorption and electromagnetic interference shielding fields of graphene composites were summarized. The developmental trend of graphene composites in the fields was expected. Keywords :graphene ;graphene composite ;microwave absorption ;electromagnetic interference shielding ;application 石墨烯是单层碳原子紧密堆积而形成的一种超薄碳质新材料,厚度只有0.34 nm ,是目前世界上最薄的二维材料 [1–2] 。自2004年英国曼彻斯特大学的物理学教授A. Geim 和 K. Novoselov 等用机械剥离方法观测到单层石墨烯,其独特的物理性能和在电子领域的潜在应用成为国际研究的热点,并引起科学界新一轮“碳”热潮[3–6]。 碳材料是电磁屏蔽和吸波材料研究的重要内容,对于石墨、碳纤维、碳纳米管等材料的电磁屏蔽和吸收性能的研究已经相当广泛。然而,作为一种新型碳材料的石墨烯具有纵横比、电导率和热导率高、比表面积大、密度低等特点,其本征强度高达130 GPa ,常温下的电子迁移率可达到15 000 cm 2/(V ·s),是目前电阻率最小的材料。并且石墨烯具有室温量子霍尔效应和良好的铁磁性[7–10],与石墨、碳纤维、碳纳米管等材料相比,拥有独特性能的石墨烯可以突破碳材料原有的局限,成为一种新型有效的电磁屏蔽和微波吸收材料[11–14]。因此,以石墨烯为研究方向,结合金属纳米材料或聚合物材料,通过结构设计研制性能优异的石墨烯复合材料,有望广泛应用于电磁波吸收及电磁屏蔽等民用及军事领域。笔者根据国内外学者的研究情况,重点介绍石墨烯复合材料在电磁波吸收以及电磁屏蔽领域中的研究进展,并对未来石墨烯复合材料的发展进行了展望。 1 石墨烯复合材料在电磁波吸收领域中的应用 随着无线电探测技术和探测手段的发展以及其它非可见光探测技术和各种反伪装技术的逐渐完善和应用,传统武器装备的生存受到严峻的挑战。因此,研制高效吸收雷达波的轻型材料是提高武器装备系统生存能力的有效途径之一,是现代战争中最具有价值、最有效的战术突防手段。可见,高性能轻型微波吸收材料研制及在武器装备中的应用至关重要。 二维片状的石墨烯具有高的比表面积(2 630 m 2/g)[9] 以及特异的热、电传导功能,对微波能产生较强的电损耗。与传统吸收剂相比,石墨烯材料以其优异的电磁性能成为一种有效的新型微波吸收材料。传统的铁磁类吸收剂,如Fe ,Ni ,Co ,Fe 3O 4,Co 3O 4等铁磁性纳米物质对电磁波具有较强的磁损耗。通过结构设计,将石墨烯与此类纳米粒子复合后,得到石墨烯片层中镶嵌强吸收电磁波纳米磁性粒子结构的复合材料,并且可实现对微波较强的介电损耗和磁损耗。此类复合材料将石墨烯与磁性纳米粒子的优异性能结合在一起,有效提高了石墨烯材料的磁损耗,并可显著提高我国吸 联系人:王雯,工程师,博士,主要从事新型碳材料的制备及应用方面的研究 收稿日期:2015-06-22

雷达天线罩电磁散射特性研究

第3l卷第10期2009年lO月 现代雷达 ModemRadar V01.31No.10 0ct.2009 ?1穷真技术?中图分类号:TN011文献标识码:A文章编号:1004—7859(2009}10—0095—04雷达天线罩电磁散射特性研究 李西敏1’2,童创明1’2,付树洪1’2,李晶晶1 (I.空军工程大学导弹学院,陕西三原713800) (2.东南大学毫米波国家重点实验室,南京210096) 摘要:采用高阶矩量法研究了常见雷达天线罩的电磁散射特性。首先采用双线性表面几何建模技术对天线罩进行面剖分,再依据等效原理在天线罩表面建立电磁积分方程,最后用基于混合域基函数的高阶矩量法对其离散求解。实例验证,该方法简单易行、结果精确,同时发现天线罩材料的电参数在很大程度上影响了其电磁散射特性。 关键词:雷达天线罩:电磁散射特性;高阶矩量法;双线性表面 AStudyonEMScatteringCharacteristicsofRadome UXi-rain,TONGChuang-ming,FUShu-hong,LIJing-jing (1.MissileInstituteofAirForceEngineeringUniversity,Sanyuan713800,China) (2.StateKeyLabofMillimeterWaves,SoutheastUniversity,Nanjing210096,China)Abstract:Electromagnetic(EM)scatteringcharacteristicsofcommonradomearestudiedwithhiighorderMethodofMoment(MoM).Firstly,radomesurfaceissegmentedusingbilinearsurfacegeometricalmodeling.Then,EMintegralequationsalee¥tab-fishedwithequivalenceprinciple.Finally,bymean8ofhishorderMoMinwhichmixed?domainbasisfunctions8xeadopted,thee—quationsa聆discretizedand solved.Theresultsofsimulationshowthatthismethodissimpleandaccurate.ItisalsoshownthatthepermittivityofradomematerialhasgreatinfluenceonitsEMscaReringcharacteristics. Keywords:radome;EMscatteringcharacteristics;highorderMoM;bilinearsurface 0引言 雷达天线罩是天线的电磁窗口和保护罩。它既保护天线免受恶劣环境侵害,又可以最大限度保持天线的电性能。不仅地面雷达需要加载天线罩,机载、弹载雷达更需要天线罩的保护,图1给出了一种常见的弹载雷达天线罩。 图1某弹载雷达天线罩 天线罩的电磁散射特性是其很重要的电性能指标,雷达散射截面(RadarCrossSection,RCS)又是量化 基金项目:毫米波国家重点实验室基金资助项目K200818/K200907) 通信作者:李西敏Email:chmtong@126.com 收稿Et期:2009-06.18修订日期:2009-09.18反映目标电磁散射特性的参数。设计者都希望尽可能减小天线罩的RCS,从而减小被对方雷达发现和被反辐射导弹跟踪的概率,提高系统在现代电子对抗中的生存能力。 分析天线罩电磁散射特性的方法可分为实验测量和仿真计算2种。前者可信度高但操作复杂且费用比较昂贵,同时受诸多实际条件的限制,很难获得完备的散射特性数据。因此仿真计算辅之以实测数据对其结果进行修正和完善的方法,成为分析和获取天线罩电磁散射特征的重要手段。本文采用结合双线性表面几何建模技术的高阶矩量法…研究了天线罩的电磁散射特性。 1几何建模 采用高阶矩量法求解天线罩电磁散射问题,首先须说明其几何形状,即几何建模。几何建模是一项很复杂的工作,很多天线罩具有复杂的几何形状,不易精确描述,因而必须进行适当近似处理。拟采用双线性表面几何建模嵋1的方法来逼近模拟天线罩的表面。 一般来讲,双线性表面是一个曲面四边形,按照一 一95— 万方数据

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.doczj.com/doc/a09308173.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

聚丙烯酰胺_蒙脱土复合材料结构研究

第21卷第4期高分子材料科学与工程Vo l.21,N o.4 2005年7月POLYM ER M ATERIALS SCIENCE AND ENGIN EERING Jul.2005聚丙烯酰胺/蒙脱土复合材料结构研究X 高德玉1,RB-海曼2,B-托马斯2,李 红3,刘宇光1, 侯 静1,郑 辉1,倪靖滨1 (1.黑龙江省科学院技术物理研究所,黑龙江哈尔滨150086; 2.德国弗莱堡矿业大学; 3.黑龙江大学,黑龙江哈尔滨150080) 摘要:用红外(F T-I R),X射线衍射(X RD),核磁共振(NM R,13C,27A l,29Si)对电子束和紫外辐照制备的纳米结构聚丙烯酰胺/蒙脱土复合材料进行了表征。结果表明,丙烯酰胺以双分子层嵌入蒙脱土层间形成复合体,使蒙脱土层距由1.25nm增大到2.09nm。在复合材料中丙烯酰胺有三种形式:嵌入蒙脱土层间,通过氢键结合在蒙脱土表面和“自由”聚合物。 关键词:蒙脱土;聚丙烯酰胺;纳米复合材料 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2005)04-0201-04 蒙脱土由于其特有的层状结构,目前被广泛用于纳米材料的制备[1~5]。关于聚丙烯酰胺和蒙脱土复合材料的制备及应用已有很多研究[6~10]。制备蒙脱土/聚合物插层复合材料通常有两种方法,一种是将聚合物直接嵌入蒙脱土;另一种是将单体先嵌入蒙脱土然后进行原位聚合。本文使用仪器分析方法对第二种方法制备的聚丙烯酰胺/蒙脱土复合材料结构进行了初步研究。 1 实验部分 1.1 试样制备 试剂:丙烯酰胺(AM),丙烯酸钠(AANa),苯乙烯磺酸钠(SSNa),乙烯磺酸钠(VSNa),以上试剂均为分析纯,Fluka Chem ie,瑞士产品;蒙脱土:分析纯,S D-CHEMIE,德国产品。 SAP/蒙脱土复合试样(SAPC)的制备:将蒙脱土(30%质量比)悬浮在蒸馏水中,与含有丙烯酰胺及添加剂的水溶液混合(30%),然后使用电子束或紫外线照射完成聚合过程[6,7]。 1.2 结构表征 红外(FT-IR)光谱分析使用Nicolet510 FT-IR分光光度计,NM R(13C,27Al和29Si)分析使用Bruker M SL300核磁共振(NM R)分光计,X光衍射(XRD)分析使用Rigaku Ru-200B 测定。 Fig.1 FT-IR spectra of A:AM/AANa(1∶1),B: AM/mont-morillonite(1∶1),C:AM/AANa/ montmorillonite(1∶3∶4),D:AM/AANa/ montmorillonite(1∶1∶2)and montmorillonite 2 结果与讨论 2.1 FT-IR分析 在Fig.1中,试样A是AM和A ANa共聚物(AM/AANa=1∶1),试样B是AM/蒙脱土 X收稿日期:2004-02-02;修订日期:2004-05-24  基金项目:德国联邦政府教育科学研究技术部(BM BF)(WT Z CHN346-97)及黑龙江省自然科学基金资助项目(E0024) 作者简介:高德玉(1954-),男,博士,研究员.

聚丙烯知识大全

其实它是根据不同的聚合方法而分类的!考虑分子量的分布宽窄和大小分类,拉丝级要求最高,其次是薄膜级,中空级和注塑级! 聚丙烯是所有塑料范围中个别用量最大宗的一类别,也是应用范围最广的一类,可以基材不同做分类,在分类内仍可以不同的熔融流率定规格,甚至可依个别商品需要添加额外添加剂再区定出用途规范,例如:单聚合物中,MFR:12 左右可用于一般射出成品,也可生产复丝纤维,更可特意制造宽广分子量分布去改善纤维织布的后段加工性;同时也可添加滑剂及抗相黏剂以增加开口性方便塑料袋成品的要求。因此便延伸出众多规格,但大体物性差不多,在非特意主用途之外是彼此有替代性。这里尝试以基材之不同做分类供参考,并逐一解说。 1.一般级(HOMOPOLYMER) 单聚合物,大陆称为均聚,系纯丙烯聚合而成的原料。 2.耐冲击级(IMPACT COPOLYMER) 系单聚合物添加乙烯丙烯橡胶,冲击强度高低主要看橡胶含量高低,耐寒程度好坏主要看乙烯含量高低。各原料厂商制程不同,最高乙烯含量也不同。 3.透明级(RANDOM COPOLYMER) 随机共聚合物,系丙烯添加乙烯共聚合,乙烯不规则散布在聚合物中,主要减少聚合物的结晶度进而改善透明性。 4.高结晶级(HIGH ISOTACTICITY or HIGH CRYSTALLINITY) 减少PP聚合物中错位结构的含量,相对就提高规则性结构含量,也就提高结晶度。主要改善原料的刚性、热变性温度、表面硬度、抗刮性及光泽性。当然再添加增核剂也会有助于上述物性的增进 5.热封级(TERPOLYMER) 是随机共聚合物的延伸,一般丙烯含乙烯(非EPR)含量最高在3.5%,但也有制程可添加至5%,乙烯含量越高产品越柔软,热变型温度、软化点、热封温度越低,有时为了要增加乙烯含量要藉助丁二烯或其它第三成份成为三共聚合物以达上述物性要求。 6.合金级(ALLOY) 不同的塑料原料高比例的混合皆可谓合金级,例如PP添加LDPE 可改善柔软性及冲击强度,在加工上也可减少颈缩及增加平整性,在成型也可减低坠料现象。PP加EPR加HDPE可维系刚性,减少高EPR含量造成的白化现象,改善冲击强度。 7.复合材料(COMPOUNDING) 不同材料混合谓之复合材料,譬如添加玻璃纤维、各类无机物矿粉、有机物木粉、纸屑或谷物微片,在PP材料内以改善各种物性。矿粉又包括:滑石粉、碳酸钙、硫酸钡、云母、碳黑、碳纤维及溴化物等。 8.橡胶(RUBBER) 橡胶,TPR(热可塑性橡胶)与TPE(热可塑性弹性体),有时很难界分,而各种界定说法都有,大部份的橡胶都可与PP相混合,除EPR系列外,也很难界定混合是定位在合金或复合材料项内。一般常与PP混合的橡胶有EPR及EPDM,适合与PP直接混料的产牌有CATALLOY、PLASTOMER、ENGAGE、TAFMER、KRATON及SANTOPLENE等。 9.特殊规格(SPECIALS) 未含盖在前项类的都可归入此类,例如:高熔融强度原料(HMS、High Melt Strength)可用在发泡材内改善表面气密性提高发泡效果,也可减少板材成型的坠料现 典型应用范围: 汽车工业(主要使用含金属添加剂的PP:挡泥板、通风管、风扇等),器械(洗碗机门衬垫、干燥机通风管、洗衣机框架及机盖、冰箱门衬垫等),日用消费品(草坪和园艺设备如剪草机和喷水器等)。

电磁散射和隐身技术导论

电磁散射与隐身技术导论课程大作业报告 学院:电子工程学院 专业:电子信息工程 班级: 0210** 学号: 0210**** 姓名: ****** 电子邮件: 日期: 2018 年 07 月 成绩: 指导教师:姜文

雷达目标RCS近远场变换 在现代军事领域中,隐身技术和反隐身技术是重中之重,研究隐身和反隐身技术就要研究目标的电磁散射特性。雷达散射截面(RCS)是评价目标散射特征的最基本参数之一,其计算和测量的研究具有重要意义。计算方法有解析方法,精确预估技术和高频近似方法等。根据测量方式的不同,可以分为远场测量、近场测量和紧缩场测量。远场测量在室外进行,虽然能直接得到目标RCS,但是条件难以满足(满足远场条件时,被测目标与天线间的距离非常大),相比之下,在微波暗室中进行的近场测量由于采用缩比测量的方法更容易满足测试条件。相对于紧缩场测量,近场测量的精度更高,成本也有所降低,于是近场测量越来越成为研究的一个重点。近场测试到的雷达回波信号并不是工程中所关心的RCS,而如何由近场测量数据得到目标RCS,则是必须要解决的问题。 为了得到目标RCS,将目标等效为一维分布的散射中心,并忽略了散射中心与雷达之间的相互影响,忽略散射中心与测试环境之间的相互影响。根据雷达回波信号,研究了一种利用雷达近场数据来估计目标总的RCS的方法。推导了算法的具体过程,将研究重点放在了算法的核心——权重函数上。分别仿真了单站正视,单站侧视,对称双站,不对称双站几种情况下权重函数的特性,具体表现为不同参数对权重函数幅度和相位的影响。基于仿真结果,提出了用定标来求得权重函数的方法。并用不同尺寸的金属球作为实验目标,采用某一个金属球理论RCS 值来定标,求得权重函数之后,用此算法变换出目标的RCS,并与其理论值做比对,验证了算法的可行性。 一、雷达截面的研究背景、发展现状 隐身和反隐身技术作为现代战争中电子高科技对抗的重要领域,一直都是各国军事研究的重点,随着各种精确制导武器和探测系统研制成功,隐身技术和反隐身技术越发重要。在军事应用中,希望己方的武器隐身性能尽可能好,并且能尽可能的探测到敌方的隐身目标。这就是必须研究隐身技术和反隐身技术最主要的原因,隐身技术与反隐身技术都必须研究目标的雷达散射特性,隐身技术是让目标的散射尽可能的小,反隐身技术则是尽量能够接收到目标的回波信号,因此要研究隐身和反隐身技术就要研究目标的电磁散射特性。隐身技术和反隐身技术

复合材料加工研究进展

复合材料加工技术的最新研究进展 摘要:本主要综述了陶瓷基、树脂基这两种主要的非金属基复合材料的加工技术。通过对传统加工和新型加工技术的比较,认为今后研究非金属基复合材料加工工艺参数的优化,工艺过程中关键步骤的改进,新技术的研究,生产设备自动化、智能化程度的提高,生产线的规模化、专业化、可控制化,是其加工技术发展的关键。 关键词:陶瓷基、树脂基、复合材料加工 复合材料是由两种或两种以上不同化学性能或不同组织结构的材料,通过不同的工艺方法组成的多相材料,主要包括两相:基体相和增强相。20世纪40年代,因航空工业需要而发展了玻璃纤维增强塑料,是最早出现的复合材料,从此以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成了格局特色的复合材料。复合材料由于其具有各方面独特的性质,广泛应用与军事工业,汽车工业、医疗卫生、航空、航海以及日常生活的各个方面。对于复合材料的加工技术的研究,将是扩大其适用范围的关键之一[1]。 1 陶瓷基复合材料的加工 由于陶瓷材料同时具有高硬度、高脆性和低断裂韧性等特点,使得其加工、特别是成形加工,至今仍非常困难。在陶瓷材料加工中,使用金刚石工具的磨削加工仍然是目前最常用的加工方法,占所有加工工艺的80%。而陶瓷材料磨削加工不仅效率低,而且在加工中很容易产生变形层、表面/亚表面微裂纹、材料粉末化、模糊表面、相变区域、残余应力等缺陷,这对于航空、航天、电子等高可靠性、高质量要求的产品是决不允许的。陶瓷精密元件的加工费用一般占总成本的30%~60%,有的甚至高达90%。因此,通过新的陶瓷加工制造技术的探索,能够很好的提高产品制造精度和降低生产成本[2]。 1.1新型加工技术 1.1.1 放电加工 放电加工(EDM)是一种无接触式精细热加工技术,当单相或陶瓷/陶瓷、陶瓷/金属复合材料的电阻小于100Ω.m时,陶瓷材料可以进行放电加工。首先将形模(刻丝)和加工元件分别作为电路的阴、阳极,液态绝缘电介质将两极分开,通过悬浮于电介质中的高能等离子体的刻蚀作用,表层材料发生熔化、蒸发或热剥离而达到加工

聚丙烯基础知识

第一章 聚丙烯的结构和性质 第一节 聚丙烯的结构 一、分子结构 由丙烯聚合的高分子化合物,聚合反应中链增长的方式,即下一个单体连接到分子链上的形式决定了分子链的形状和甲基的空间排列,决定其立构规整度,进而决定其结晶结构、结晶度、密度及相关的物理机械性能。 1.等规聚丙烯(iPP )、间规聚丙烯(sPP )和无规聚丙烯(aPP ) 聚丙烯立构中心的空间构型有D 型和L 型两种: 如果此立构中心D 型或L 型单独相连,就构成iPP : 如果立构中心D 型和L 型交替连接,就构成sPP : 如果立构中心D 型和L 型无规则地连接,甲基无规则地分布在主链平面两侧,就构成了aPP : D : CH 3 C CH2 H L : H C CH2 CH 3 CH 3 C CH2 H H C CH2 CH 3 CH 3 C CH2 H CH 3 C CH2 H 或 H C CH2 CH 3 H C CH2 CH 3 H C CH2 CH 3 CH 3 C CH2 H CH 3 C CH2 H H C CH2 CH 3

等规聚丙烯是高结晶的高立体定向性的热塑性树脂,结晶度60%~70%,等规度>90%,吸水率0.01%~0.03%,有高强度、高刚度、高耐磨性、高介电性,其缺点是不耐低温冲击,不耐气候,静电高。 间规聚丙烯结晶点较低(与等规聚丙烯相比),为20%~30%,密度低(0.7~0.8g/cm 3),熔点低(125~148℃),分子量分布较窄(M w /M v =1.7~2.6),弯曲模量低,冲击强度高,最为优异的是透明性、热密封性和耐辐射性,但加工性较差(以茂金属催化剂聚合可得间规度大于80%的间规聚丙烯)。 无规聚丙烯分子量小,一般为3000至几万,结构不规整,缺乏内聚力,在室温下是非结晶、微带粒性的蜡状固体。 2.无规共聚物、抗冲共聚物和多元共聚物 丙烯-乙烯无规共聚物:使丙烯和乙烯的混合物聚合,所得聚合物的主链上无规则地分布着丙烯和乙烯链段,乙烯含量一般为1%~4%(质量分数),乙烯抑制丙烯结晶,使无规共聚物结晶度下降,熔点、玻璃化温度、脆化点降低,结晶速度变慢,材料变软,透明度提高,韧性、耐寒性、冲击强度均较均聚物提高,主要用于高抗冲击性和韧性制品。 丙烯-乙烯嵌段共聚物:在单一的丙烯聚合后除去未反应的丙烯,再与乙烯聚合所得产物,通常嵌段共聚体中乙烯含量为5%~20%(质量分数)。丙烯-乙烯嵌段共聚物实际是聚乙烯、聚丙烯和末端嵌段共聚物的混合物,这种混合物既保持了一定程度的刚性,又提高了冲击强度,但透明性和光泽性有所下降。 无规EP : 抗冲共聚物:—PP —PE —EP — 多元共聚物是由三种以上原料聚合而成的高分子化合物,如丙烯、乙烯、丁烯等共聚物。 CH 3 C CH2 H CH2 CH2 H C CH2 CH 3 CH 3 C CH2 H CH 3 C CH2 H CH 3 C CH2 H H C CH2 CH 3

复合材料研究进展讲述

铝基复合材料的制备和增强技术的研究进展 摘要本文简单介绍了铝基复合材料的一些基本的制备方法。对于纳米相和碳化硅颗粒增强的铝基复合材料,它们也有不同的制备方法。 关键词铝基复合材料纳米相碳化硅颗粒 0前言 复合材料是应现代科学发展需求而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。金属基复合材料基体主要是铝、镍、镁、钛等。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。本文主要讲述铝基复合材料的制备方法以及增强技术的发展情况。 1 铝基复合材料的制备工艺 1.1 无压浸渗法 无压浸渗法是Aghaianian 等于1989 年在直接金属氧化工艺的基础上发展而来的一种制备复合材料的新工艺[1],将基体合金放在可

控气氛的加热炉中加热到基体合金液相线以上温度,在不加压力和没有助渗剂的参与下,液态铝或其合金借自身的重力作用自动浸渗到颗粒层或预制块中,最终形成所需的复合材料。 Aghajanian 等[2]撰文指出,要使自发渗透得以进行,需具备两个必要条件:①铝合金中一定含有Mg元素;②气氛为N2环境。影响该工艺的主要因素为:浸渗温度、颗粒大小和环境气氛种类。无压渗透工艺的本质是实现自润湿作用,通过适当控制工艺条件,如合金成分、温度、保温时间和助渗剂等,可取得良好的润湿,使自发浸渗得以进行。 1.2 粉末真空包套热挤压法 采用快速凝固技术与粉末冶金技术相结合制备高硅含量铝基复合材料。由于Al 活性很高,在快速凝固制粉时不可避免地会形成一层氧化膜,导致在致密化过程中合金元素的相互扩散受到阻碍,难以形成冶金粘结。因此,采用了粉末真空包套热挤压这一特殊的致密化工艺[3]。 1.3 喷射沉积法 喷射沉积技术是一种新的金属成形工艺,由Singer 教授于1968 年提出,后经发展逐步形成了Osprey工艺、液体动态压实技术和受控喷射沉积工艺等。 喷射沉积的基本原理是:熔融金属或合金经导流管流出,被雾化

金属基复合材料的研究进展及发展趋势(DOC)

金属基复合材料界面的研究进展及发展趋 势 周奎 (佳木斯大学材料科学与工程学院佳木斯 154007)摘要本文介绍了目前金属基复合材料界面的研究现状,存在的问题及优化的有效途径。重点阐述了金属基复合材料在各个领域的应用情况。最后在综述金属基复合材料界面的研究进展与应用现状的基础上,对学者未来研究呈现的趋势进行了简述并对其发展趋势进行了展望。 关键词金属基复合材料界面特性应用发展趋势 The research progress of metal matrix composites interface and development trend ZHOU Kui (jiamusi university school of materials science and engineering jiamusi 154007) Abstract:Interface of metal matrix composites are introduced in this paper the current research status, existing problems and the effective ways to optimize. Expounds the metal matrix composites and its application in various fields. Finally in this paper the research progress and application of metal matrix composites interface status quo, on the basis of research for scholars in the future the trend of the present carried on the description and its development trend is prospected. Keywords: metal matrix composites application Interface features the development trend 1前言 金属基复合材料(MMCS)是以金属、合金或金属间化合物为基体,含有增强成分的复合材料。 研究金属基复合新材料是当代新材料技术领域中的重要内容之一。金属基复合材料的品种繁多,有碳(石墨)、硼、碳化硅、氧化铝等高性能连续纤维增强铝基、镁基、钦基等复合材料,碳化硅晶须、碳化硅、氧化铝颗粒、氧化铝短纤维增强铝基、镁基复合材料,以及牡钨丝增强超合金等高温金属基复合材料等.但它们的发展和应用并不迅速。主要原因是存在界面问题,制备方法较复杂,成本高。学者们在金属基复合材料的有效制备方法、金属基体与增强体之间的界面反应规律、控制界面反应的途径、界面结构、性能对材料性能的影响、界面结构与制备工艺过程的关系等进行了大量的研究工作,取得了许多重要成果,推动了金属基复合材料的发展和应用。但随着金属基复合材料要求的使用性能和制备技术的发展,界面问题仍然是金属基复合材料研究发展中的重要研究方向。特别是界面精细结构及性质、界面优化设计、界面反应的控制以及界面对性能的影响规律等。尚需结合材料类型、使用性能要求深入研究。

高结晶聚丙烯_HCPP_的研发和产业化进展_王雄

收稿:2011-11-04;修回:2011-12-01; 基金项目:中国石油天然气股份有限公司科技管理部开发项目(合同号:2011B -2703-0103); 作者简介:王雄(1980-),男,在读博士研究生,工程师,主要从事烯烃聚合催化剂及聚合工艺方面的研究,通讯作者。E -mail :w ang xiong1@petro china .co m .cn 高结晶聚丙烯(HCPP )的研发和产业化进展 王 雄1,张宇婷2,马艳萍1,徐人威1,朱博超1,姚培洪 1(1.中国石油天然气股份有限公司石油化工研究院兰州化工研究中心,兰州 730060; 2.兰州交通大学化学与生物工程学院,兰州 730070) 摘要:高结晶聚丙烯一般采用高等规度聚丙烯加入成核剂制备。本文较全面地综述了制备高结晶度聚丙 烯的催化剂体系及其制备技术。高等规度聚丙烯可以通过传统Z ieg ler -Na tta 聚丙烯催化剂与合适的外给电子 体搭配制备,也可以通过选取具有合适结构的茂金属化合物制备。目前,聚丙烯工艺主要使用传统Zieg le r - N atta 催化剂。本文介绍了生产高结晶度聚丙烯的主要生产厂家、牌号和生产工艺,如Sphe ripol 环管/气相工 艺、U nipo l 气相工艺、N ovo len 气相工艺、Innov ene 气相工艺、H ypol 釜式本体工艺等,展望了高结晶度聚丙烯的 应用前景,认为高结晶聚丙烯是PP 新产品开发及高性能化的重要途径之一,具有非常广阔的市场前景,对于我 国高结晶度聚丙烯牌号的开发具有较大的意义。 关键词:高结晶聚丙烯;Z -N 催化剂;茂金属催化剂;聚合工艺引言 聚丙烯是典型的部分结晶性热塑性树脂,其良好的性能价格比决定了它具有很宽的应用范围。近年来,随着汽车工业、高速列车、建筑业、电子电讯业的迅速发展以及聚丙烯产品的高性能化,聚丙烯的产量及需求量大幅提高,成为近十年来增长最快的通用塑料,年需求增长高达8%。聚丙烯的高结晶化是PP 新产品开发及高性能化的重要途径之一,其价格约比普通聚丙烯高10%~15%。 高结晶聚丙烯(H CPP )具有较高的结晶度、结晶速度、结晶温度、热变形温度、表面耐磨性及光泽度,大大拓展了产品应用范围,使PP 朝着工程塑料化方向发展。H CPP 均聚物和普通均聚物比较,相同流动性的H CPP 的耐热性、刚性、韧性和光泽均明显高于普通PP 。H CPP 主要应用于汽车、耐用消费品、薄膜、动力工具和电子电气设施[1~3],也可用于家用电器中的空调、炊具、吸尘器等制品[4]。亚洲作为世界汽车、家电等产品的制造中心,预计对H CPP 的需求量还会有较高幅度的增长,今后会越来越多地使用H CPP 。 高结晶聚丙烯可以通过改进聚丙烯催化剂和聚合技术,提高聚丙烯的等规度和分子量分布的方法来制备,也可以通过加入成核剂的方法来制备。通过聚合方法得到的高结晶聚丙烯的结晶度可以达到70%,理论上可提高到75%,而通过加入成核剂的方法制备的高结晶聚丙烯可以更高,且结晶细化,材料的透明度也同时提高。本文对制备高结晶度聚丙烯的催化剂体系及其制备方法的研究进展进行综述。1 制备高结晶度聚丙烯的催化剂体系和聚合技术 目前制备高结晶度聚丙烯的催化剂体系主要是传统Z -N 催化剂和茂金属催化剂两种体系。 1.1 传统Zeigler -Natta 催化剂体系 传统的Z -N 聚合催化剂体系由一过渡金属卤化物衍生物所构成的复合物组成,如钛、钒、铬等过渡金属形成的卤代物以及卤代烯烃化合物。通常将卤化钛化合物支载在与铝复合的镁化物上来制备催化剂· 83· 第4期 高 分 子 通 报DOI :10.14028/j .cn ki .1003-3726.2012.04.012

相关主题
文本预览
相关文档 最新文档