当前位置:文档之家› 数学分析函数极限3-2

数学分析函数极限3-2

在前面一节中引进的六种类型的函数

函数极限的性质

二、范例

一、的基本性质为代表叙述性质. 这里仅以质与证明,只要相应作一些修改即可.

并证明这些性质,至于其它类型的性

极限,它们都有类似于数列极限的一些

0lim ()x x f x A →=0

lim ()x x f x A →=

定理3.2 ( 惟一性)

证不妨设以及A x f x x =→)(lim 0.)(lim 0

B x f x x =→由极限的定义,对于任意的正数,,1δε存在正数,

||0,102时当δδ<-

2|)(|ε

<-A x f ,||020时当

δ<-

x f x x →存在, 则此极限惟一.若0

lim ()x x f x A →=的基本性质一、

(2) 式均成立,所以

.

|)(||)(|||ε<-+-≤-B x f x f A B A 由ε的任意性,推得A = B.这就证明了极限是惟,||0,},min{021时当令δδδδ<-<=x x (1) 式与

一的.

.2|)(|ε<-B x f (2)

定理3.3(局部有界性)

证时,

当存在取δδε<-<>=||0,0,10x x .

1|)(|<-A x f .

1|||)(|+

,)(lim 0A x f x x =→若上在)()(0x U x f

,)(0x U 则存在有界.

这就证明了在某个空心邻域上有界.

),(0δx U )(x f

注:

(1)试与数列极限的有界性定理(定理2.3)作一(2)有界函数不一定存在极限;

这上并不是有界的在但.)2,0(1,11lim )3(1x

x x =→说明定理中“局部”这两个字是关键性的.

比较;

定理3.4(局部保号性)若,)0(0)(lim 0

<>=→或A x f x x 则对任何正数)(A r A r -<<或使得存在,)(,0x U

.

)0)((0)(<-<>>r x f r x f 或.

|)(|ε<-A x f .

)(r A x f >->ε由此证得有对一切,)(0x U x ∈有

时,当存在δδ<-<>||0,00x x 证不妨设. 对于任何取,r A -=ε0>A (0,),r A ∈

定理3.5(保不等式性))(lim )(lim 00x g x f x x x x →→与设则

内有且在某邻域都存在,)()()(,0x g x f x U ≤ ).(lim )(lim 0

0x g x f x x x x →→≤证那么对于任意设,)(lim ,)(lim 0

0B x g A x f x x x x ==→→;

)(ε->A x f 有时而当,||020δ<-

)(ε+分别存在正数12,,δδ使当010||x x δ<-<时, 有

满足时则当令,||0,},min{021δδδδ<-<=x x ,)()(εε+<≤<-B x g x f A 所以证得

是任意正数因为从而有,

.2εε+

且设,)(lim )(lim 0

0A x g x f x x x x ==→→定理3.6(迫敛性)内有的某个空心邻域在)(00x U x

).

()()(x g x h x f ≤≤.)(lim 0

A x h x x =→那么证因为所以对于任意,)(lim )(lim 0

0A x g x f x x x x ==→→有

时当存在,||0,0,00δδε<-<>>x x (),

A f x A εε-<<+().

A g x A εε-<<+

.

)()()(εε+<≤≤<-A x g x h x f A 再由定理的条件,又得

这就证明了0)(x x h 在点的极限存在,并且就是A .

;)(lim )(lim )]()([lim )1(0

00x g x f x g x f x x x x x x →→→±=±;

)(lim )(lim )()(lim )2(0

00x g x f x g x f x x x x x x →→→?=g f g f ?±,在点x 0 的极限也存在, 且

都存在, 则,0)(lim )3(0≠→x g x x 又若在点x 0 的极限也存在, g f 则定理3.7(四则运算法则)若,)(lim 0x f x x →)(lim 0x g x x →.)(lim )

(lim )()(lim 000x g x f x g x f x x x x x x →→→=并有

这些定理的证明类似于数列极限中的相应定理, 这里将证明留给读者. 在下一节学过归结原则之后,就可以知道这些定理是显然的.

二、范例

arctan 1lim lim arctan lim x x x x x x

x →+∞→+∞→+∞=?π00.2

== 例1.arctan lim x

x x ∞+→求π1lim arctan ,lim 0,2x x x x

→+∞→∞==解因为所以

例2.1lim 0??

????→x x x 求有时又当,0

????+→x x x 解由取整函数的性质,.1111x

x x ≤??????<-0>x 当,11lim )1(lim 00==-++→→x x x 由于时, 有,111≤??

????<-x x x 同理得,111x x x -≤??

????<于是求得.11lim 0=??????-→x x x .11lim 0=??????→x x x

例3求极限π

4

lim(tan 1).

x x x →-ππ44πsin sin 4lim tan lim 1,πcos cos 4

x x x x x →→===解因为所以π4

ππlim(tan 1)11 1.44x x x →-=?-=-

例4.)1(1lim 0>=→a a x

x 求证有时当,N n ≥,1111εε+<<<--n n a a

特别又有.111

1εε+<<<--N

N a a ,1N

=δ取,|0|0时当δ<-

--N x N a a a .

1lim 0得证即=→x

x a 证,11lim ,1lim ==∞→∞→n n n

n a a 因为所以,,0N ?>?ε

内容小结

1.唯一性

2.局部有界性

3.局部保号性

4.保不等式性

5.迫敛性

6.函数极限的四则运算

作业P53 1,2,5,9

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

2020年考研高数知识点:极限中的“极限”

2020年考研高数知识点:极限中的“极限” 说到极限应该是我们三大计算中的第一大计算,每年考研真题必出,无论是数一数二数三还是经济类数学,能够出选择题也能够出填 空题,更能够出解答题,题目类型不同,分值也不同,4分或者10分,极限的思想也就更是重要之重了,原因就是后来所有的概念都是以极 限的形式给出的。 第一,极限的定义。理解数列极限和函数极限的定义,记住其定义。 第二,极限的性质。性,有界性,保号性和保不等式性要理解, 重点理解保号性和保不等式性,在考研真题里面经常考查,而性质的 本身并不难理解,关键是在做题目的时候怎么能想到,所以同学们在 做题目的时候能够看看什么情况下利用了极限的保号性,例如:题目 中有一点的导数大于零或者小于零,或者给定义数值,能够根据这个 数值大于零或小于零,像这样的情况,就能够写出这个点的导数定义,利用极限的保号性,得出相对应的结论,切记要根据题目要求来判断 是否需要,但首先要有这样的思路,希望同学们在做题时多去总结。 第三,极限的计算。这个部分是重中之重,这也是三大计算中的 第一大计算,每年必考的题目,所以需要同学们能够熟练地掌握并会 计算不同类型的极限计算。首先要知道基本的极限的计算方法,比如:四则运算、等价无穷小替换、洛必达法则、重要极限、单侧极限、夹 逼定理、单调有界收敛定理,除此之外还要泰勒展开,利用定积分定 义求极限。其次还要掌握每一种极限计算的注意事项及拓展,比如: 四则运算中掌握“抓大头”思想(两个多项式商的极限,是无穷比无穷 形式的,分别抓分子和分母的次计算结果即可),等价无穷小替换中要 掌握等价无穷小替换只能在乘除法中直接应用,加减法中不能直接应用,如需应用必须加附加条件,计算中要掌握基本的等价无穷小替换 公式和其推广及凑形式,进一步说就是第一要熟练掌握基本公式,第 二要知道怎么推广,也就是将等价无穷小替换公式中的x用f(x)来替

《数学分析》10第三章-函数极限

《数学分析》10第三章-函数极限

第三章 函数极限 引言 在《数学分析》中,所讨论的极限基本上分两 部分,第一部分是“数列的极限”,第二部分是“函数的极限”。二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例。 通过数列极限的学习。应有一种基本的观念:“极 限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”。例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势。 我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即 :() n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =. 研究数列{}n a 的极限,即是研究当自变量n →+∞时, 函数()f n 变化趋势。 此处函数()f n 的自变量n 只能取正整数!因此自变 量的可能变化趋势只有一种,即n →+∞。但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢? 为此,考虑下列函数:

1,0;()0,0.x f x x ≠?=?=? 类似于数列,可考虑自变量x →+∞时,()f x 的变化趋 势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势, L 由此可见,函数的极限较之数列的极限要复杂得 多,其根源在于自变量性质的变化。但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同。而在各类极限的性质、运算、证明方法上都类似于数列的极限。 下面,我们就依次讨论这些极限。 §1 函数极限的概念 一、x →+∞时函数的极限 1. 引言 设函数定义在[,)a +∞上,类似于数列情形,我们研 究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A。这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质。 例如 1(),f x x x =无限增大时,()f x 无限地接近于 0;(),g x arctgx x =无限增大时,()f x 无限地接近于2 π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近。正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势。

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划 课次序号: 03 一、课 题:§1.3 函数的极限 二、课 型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–3 1(2),2(3),3,6 八、授课记录: 九、授课效果 分析: 第三节 函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.

定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞ f (x )?A . 若?ε>0,?X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞ f (x )?A . 例1 证明lim x 0. 证 0 -,故?ε>00-<εε, 即x >21 ε.因此,?ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 lim x ?0. 例2 证明lim 100x x →-∞ =. 证 ?ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞ 10x ?0. 定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞ f (x )?A . 为方便起见,有时也用下列记号来表示上述极限: f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞). 注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞ ===或或,则称y A =为曲线()y f x =的水 平渐近线. 由定义1、定义2及绝对值性质可得下面的定理. 定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞ f (x )?A . 例3 证明2lim 1 x x x →∞--?1.

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

(完整版)大一高数第一章函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

考研数学极限知识点全解

2017考研数学极限知识点全解 来源:文都图书 极限是高数中的重要知识点,也是考研数学的重要考点,我们一起来了解一下极限在考研大纲中的相关考点,及其题型等。 一、极限在考研数学中的要求 根据考研大纲,极限需要理解和掌握的是:极限的概念,函数左右极限的概念以及函数极限存在与左右极限的关系,极限的性质及四则运算法则,极限存在的两个准则,利用两个重要极限计算极限的方法,无穷小量、无穷大量的概念,无穷小的比较方法。 要求会求和了解的是:利用极限存在的两个准则求极限,用等价无穷小量求极限。 二、极限是高等数学的基础 1、极限是高数三大基本工具(极限、微分、积分)中最基本的工具,也是微分与积分的基础。另外高等数学中很多概念都是通过极限来定义的,如连续的概念,导数的概念,定积分的概念以及级数的概念都是通过极限来定义的。考研数学虽然大多数题目是计算题,但是只记住计算步骤,死记硬背,是万万不行的。要想考高分,需要对基本概念的理解到位,否则你学的知识就如同浮光掠影,很难取得好成绩。因此,我们从最基础的极限开始就要学习到位,基本概念理解好,极限计算要熟练,为以下各章节的学习打好基础。 2、考研中的很多题目也间接与极限有联系,尤其是极限的计算一定要过关,因为很多题目的计算都会用到极限的计算。如判断函数的连续性,找函数的间断点的类型,求渐近线,求函数一点数的导数,级数的敛散性的判别,求幂级数的收敛半径和收敛域,这些问题都会用到极限,如果极限不会求这些题目就无法做出来。所以考生在复习极限这章的时候一定要到位,计算尤其要过关,否则后患无穷。 三、极限在考研数学中的常见题型

极限这部分不计间接命题,直接命题的分值一般是一道小题(4分)和一道大题(10分左右),足见本章内容的重要性。 直接命题常见题型: (1)考查极限的概念,常见于选择题; (2)求极限式中的未知参数; (3)直接计算函数的极限; (4)考查极限的概念,常见于选择题; (5)利用收敛准则,求数列极限,常见于数一、数二。 (6)结合无穷小的比较考查极限的计算; 上面总结归纳了考研数学极限知识点的相关知识点,并且对题型进行了分析,考生们认真学习吧,希望对你们的备考有帮助,汤家凤编写的《2017考研数学硕士研究生入学考试高等数学辅导讲义》这本书按照考研大纲所编写,并且附有相关练习题,基础、强化、巩固一体,可以好好利用哦,加油。

数学分析习作-数列极限及函数极限的异同

XX大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 、学号: 任课教师: 时间:2009-12-26摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的

重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知识;在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数:

a 、数列的定义:数列是指按自然数编了号的一串数:x 1,x 2,x 3,…,x n ,…. 通常记作{x n },也可将其看作定义在自然数集N 上的函数x n =N n n f ∈),(, 故也称之为整标函数。 b 、函数的定义:如果对某个围X 的每一个实数x ,可以按照确定的规律f ,得到Y 唯 一一个实数y 和这个x 对应,我们就称f 是X 上的函数,它在x 的数值(称为函数值)是y ,记为)(x f ,即)(x f y =。 称x 是自变量,y 是因变量,又称X 是函数的定义域,当x 遍取X 的所有实数 时,在f 的作用下有意义,并且相应的函数值)(x f 的全体所组成的围叫作函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一)数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 > n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβ

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

2021考研数学二考试大纲原文解析及变化解读

2021考研数学二考试大纲 原文解析及变化解读

高等数学大纲原文解析 一、函数、极限、连续 考试内容 函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:, 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质

考试要求 1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.

2018考研数学基础复习两大重要定理:大数定律与中心极限定理

2018考研数学基础复习两大重要定理:大数定律与中心极限定理 大数定律与中心极限定理这一部分内容是考研数学考试很少考查和出现的,但是既然是考试大纲所要求的考点,考生应该也复习到位。要是题目中出现的话,也好应对。比如2014年数一考题中就出现了大数定律的考查,很多考生都懵了。为了避免类似的情况再次发生,所以2018考研的同学们一定要复习好大纲要求的每一个考点。 大数定律是概率论中随机变量序列向常数收敛的各种定律的总称,反映随机试验次数的增多,往往出现几乎必然的规律性。中心极限定理是概率论中一类讨论随机变量部分和序列分布向正态分布收敛的极限定理的总称,它们是数理统计中做统计推断的理论基础。 常考考点 常考题型 考试要求 切比雪夫不等式 用切比雪夫不等式估计随机事件的概率 了解切比雪夫不等式. 切比雪夫大数定律 伯努利大数定律 辛钦大数定律 利用三个大数定律成立的条件和结论解题 了解切比夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律). 棣莫弗-拉普拉斯中心极限定理 列维-林德伯格中心极限定理 1.列维-林德伯格中心极限定理夫人条件和结论的应用

2.列维-林德伯格中心极限定理的应用 3.棣莫弗-拉普拉斯中心极限定理的应用 了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理). 大数定律与中心极限数列部分设计的主要知识点有: 1. 利用切比雪夫不等式来进行估计随机事件的概率; 2. 切比雪夫大数定律、伯努利大数定律、辛钦大数定律成立的条件和结论; 3. 棣莫弗-拉普拉斯定理和列维-林德伯格定理成立的条件、结论和应用. 这部分内容与数字特征联系较多,要求考生具备以下能力: 1. 记住定理的条件和结论,能够利用中心极限定理解决实际问题; 2. 会计算随机变量序列函数的数学特征; 3. 利用相关中心极限定理计算某些事件问题中随机事件的概率。 这一部分不是考研数学考试的重点,所以2017考研的同学们复习这一部分时,不需要耗费太多的时间和精力,只要掌握了各定理的结论和结论即可,遇到相应问题会进行分析即可。

数学分析之函数极限

第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和 ,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:14学时 § 1 函数极限概念 (2学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的δε-定义的清晰概念。会应用函数极限的δε-定义证明函数的有关命题,并能运用δε-语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的δε-定义及其应用。 一、 复习:数列极限的概念、性质等 二、 讲授新课: (一) 时函数的极限:

以时和为例引入. 的直观意义. 介绍符号: 的意义, 定义 ( 和 . ) 几何意义介绍邻域 其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1 验证 例2 验证 例3 验证 证…… 时函数的极限: (二) 由考虑时的极限引入. 定义函数极限的“”定义. 几何意义. 用定义验证函数极限的基本思路.

例4 验证 例5验证 例6 验证 证由= 为使需有 为使需有 于是, 倘限制 , 就有 例7 验证 例8 验证 ( 类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域

然后介绍等的几何意义. 例9 验证 证考虑使的 2.单侧极限与双侧极限的关系: Th 类似有: 例10 证明: 极限不存在. 例11 设函数 在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(2学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。 教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。 一、组织教学:

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (3)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

高数数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x)?当x →x 0时的极限,记作。[2] 单侧极限:?.左极限:或 ?.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0 )(x f 0x x →

等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。时的极限。 函数极限具有唯一性、局部有限性、局部保号性[2] 3. 存在准则 有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有; (2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时, (2) ,, 那么存在,且等于。 夹逼定理:(1)当时,有??成立 (2) ?,那么,极限存在,且等于A 【准则Ⅰ,准则Ⅰ′合称夹逼定理】 )()()(lim 0 00x f x f x f x x →+-==0,,,x x x x x →-∞→+∞→∞→0x x →{}n x {}n y {}n z +∈?N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞ →lim {}n x a x n x =∞ →lim ),(0r x U x ο ∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim ) (0 A x h x x x o =∞→→)(lim ) ()(lim ) (0 x f x x x ∞→→A ),(x 0r x U ο ?()0x f

相关主题
相关文档 最新文档