当前位置:文档之家› 煤矸石混凝土性能研究

煤矸石混凝土性能研究

煤矸石混凝土性能研究
煤矸石混凝土性能研究

中国矿业大学

2013级博士研究生课程考试试卷

考试科目新型土木工程材料

考试时间2014.1

学生姓名陈晓淼

学号ZS13030029

所在院系力建学院

任课教师吕恒林教授

中国矿业大学研究生院培养管理处印制

煤矸石混凝土性能研究

陈晓淼 ZS13030029 力建学院

摘要:煤矸石是煤炭行业发生的废物之一,对环境有严重的污染。目前我国现有煤矸石储量巨大,且逐年剧增,若不进行合理的利用,将产生巨大的社会、经济和环境的损失。利用煤矸石生产集料来拌制水泥混凝土,可以大量减少土木工程中对天然集料的使用量,具有较好的经济效益和社会效益。煤矸石混凝土主要包括两种,一种是掺入水泥中作为胶凝材料;另一种是作为粗细骨料替代天然砂和天然石。煤矸石混凝土的性能主要包括耐久性和力学性能,力学性能主要以抗压强度和抗折强度作为衡量指标,耐久性主要以抗渗、抗冻、干燥收缩、透水系数、抗裂性、抗氯离子渗透、耐磨性、护筋性、碱骨料反应等作为衡量指标。本文主要从煤矸石混凝土的耐久性和力学性能两方面对现有两种煤矸石混凝土的研究进行综述,分析利用煤矸石进行制作混凝土的可行性,为实际中进一步应用煤矸石混凝土提供可用的配比和应用指导。

关键词:煤矸石;混凝土;耐久性;力学性能;

1引言

煤矸石是煤炭开采和加工过程中排出的废弃岩石,是一种在煤形成过程中与煤层伴生的含碳量较低的岩石。当煤矸石受到降雨等因素而处于浸水状态时,其中的粉尘和有害离子就会污染环境[1]。综上所述,今后相当长时间内,煤炭在能源中将仍占主要地位,其产生的煤矸石严重危害生态环境,如能对其进行开发利用,便可实现废弃物重利用且减少对环境的危害,具有显著经济社会环境效益,用煤矸石生产混凝土是一条很好的路径。目前已有许多学者进行相关研究,然而目前为止的研究,其内容过于复杂,本文仅从宏观上对煤矸石混凝土力学性能和耐久性进行研究综述。分析影响煤矸石混凝土力学性能和耐久性的影响因素,以期通过改变优化影响因素实现煤矸石混凝土性能的提升,并提出适合实际工程的优化配合比,对实际工程应用提出指导建议。

2 煤矸石在混凝土应用现状

煤矸石的化学成分主要是2SiO 、23Al O 和C 。其次是23Fe O 、CaO 、MgO 、2Na O 、2K O 、3SO 、25P O 、N 和H 等。此外,也常含有少量 Ti 、V 、Co 和Ga 等金属元素[2]。煤矸石的矿物成分以黏土矿物和石英为主,常见矿物为高岭土、蒙脱石、伊利石、石英、长石、云母和绿泥石类。现在对于煤矸石在混凝土中的应用主要包括两种,一种是将煤矸石作为粗细骨料掺入混凝土中,另一种是将煤矸石作为胶凝材料掺入混凝土中。

2.1煤矸石作为粗细骨料

煤矸石经破碎后,粒径在0.16mm~4.75mm 的经过筛分试配制成煤矸石砂,也称为矸砂,用矸砂替代天然砂的使用,可减少对于河砂等得使用,避免环境损

坏。而破碎后粒径大于4.75mm的颗粒作为粗骨料使用。现应用较多的是将煤矸石破碎后作为粗细骨料同时使用,以达到最大限度的使用煤矸石的目的。

(a)煤矸石粗骨料(b)煤矸石细骨料

图1 煤矸石骨料

2.2煤矸石作为胶凝材料

煤矸石作为胶凝材料应用主要分为两方面,其一是作为矿物掺合料,与水泥及其他掺合料共同作为混凝土中的胶凝材料,许多学者考查了掺煤矸石混凝土的耐久性,发现掺入煤矸石后,混凝土密实度提高,具有较好的抗冻性,抗渗性,抗硫酸盐侵蚀,较低的氯离子扩散速度和护筋能力[34]。

另一种是代替水泥原料生产煤矸石水泥,由于煤矸石是一种富铝的黏土质原料,易磨,易烧性好,适于水泥厂作原料全部或者部分代替黏土生产水泥。而且煤矸石本身也还有一定量的炭,这在水泥熟料煅烧的过程中还能提供热量,节省一部分煅烧燃料。

目前大部分的研究都集中于将煤矸石作为矿物掺合料和粗细骨料进行砂浆和混凝土的研究,而对于将其作为煤矸石水泥的研究比较少,后续的研究可针对此方向进行深入研究。

3 煤矸石混凝土力学性能研究

3.1力学性能相关研究

曹露春与张志军[5]采用正交试验方法分析讨论主要原材料和配比对煤矸石透水混凝土抗压强度的影响。采用水灰比分别为0.30、0.35、0.40三个水平;骨料粒径分别为2.5~5mm、5~10mm、10~15mm三个水平;骨胶比(骨料与胶凝材料之比)选用4.0、4.5、5.0三个水平,通过对试验结果分析认为使用煤矸石骨料代替天然骨料是完全可行的,煤矸石骨料粒径是决定混凝土强度的重要因素,且两者为正比关系,水灰比直接决定煤矸石骨料颗粒之间接触水泥浆体的强度以及水泥浆体与集料的粘结强度,间接决定透水混凝土的整体强度和透水系数。他们[6]又采用水洗过的煤矸石做了相同变量的试验,通过对试验结果进行分析得出

相同的结论,即煤矸石骨料粒径的决定混凝土强度的主要因素。

揣丹[7]采用煤矸石为主要原料,制备了一种新型的泡沫混凝土。设计42.5级水泥与煤矸石4组配合比,做成混凝土砌块并进行相关强度试验。按照国家标准GB/T50081—2002《普通混凝土力学性能试验方法标准》的方法进行硬化混凝土的3、7、28d抗压强度和抗弯拉(折)强度测试。研究认为随着龄期的增加,强度增加趋势都很明显,混凝土强度随着煤矸石用量增大而下降。

蔺喜强等[8]的试验采用C40和C60两种强度混凝土,每种强度的混凝土共设4组,其中三组分别掺入煤矸石,粉煤灰,矿粉与纯水泥进行比较。试验可得活化煤矸石掺合料的需水量较粉煤灰和矿粉高,煅烧煤矸石粉对混凝土有早期的增强作用,且具有后期的强度增长保持能力;其活性介于粉煤灰和矿渣之间,比较接近矿渣。蔺喜强等[9]还对活化后的煤矸石进行研究,分析其对煤矸石混凝土力学性能的影响,得出煤矸石最佳活化煅烧温度为900℃,煅烧后的煤矸石具有良好的易磨性,最佳粉磨时间为15 min,比表面积达5502

m/kg左右为宜。煤矸石经过900℃的高温煅烧其结构膨胀及成分挥发,出现较为明显的颗粒状结构并伴有一定的孔洞结构。孔洞和颗粒状结构最适于煤矸石活性作用的发挥。煤矸石掺合料的需水量较粉煤灰和矿粉高,在一般混凝土中活化煤矸石粉对混凝土工作性影响小,在高强混凝土中对混凝土工作性影响较大。

孟文清等[10]利用回归方程分析粉煤灰、石灰粉掺量对煤矸石混合料劈裂强度的影响。粉煤灰相对于石灰粉的掺量不宜过小,否则将对煤矸石混合料劈裂强度产生不利影响。粉煤灰通过与足量的石灰粉发生作用来提高煤矸石混合料的劈裂强度,因此,石灰粉的掺量不宜太小。但是,当石灰粉相对于粉煤灰的掺量过大时,将对煤矸石混合料劈裂强度产生不利影响。

孙家瑛[11]对煤矸石炉渣取代天然砂的混凝土进行了相关试验,通过分析抗压强度、抗折强度研究煤矸石炉渣对混凝土性能的影响。孙家瑛先研究煤矸石炉渣对水泥砂浆强度的影响,设定煤矸石炉渣取代天然砂用量为30%,50%和80%,分析得煤矸石炉渣掺量的增加使得需水量增加,从而使水泥砂浆强度有所下降。与基准砂浆28d抗压强度(53.8MPa)相比,掺80%煤矸石炉渣砂浆的28d抗压强度下降至32.2MPa,下降幅度达40%左右。从试验结果还可以发现,在保持需水量不变的条件下,随煤矸石炉渣掺量的增加,水泥砂浆强度先有明显提高,后逐渐降低。究其原因是煤矸石炉渣具有潜在的水硬活性,可以参与水泥水化,所以宏观上表现出水泥砂浆强度先扬后抑。再对掺入不同量煤矸石的混凝土强度进行研究,研究发现随着煤矸石炉渣掺量增加水泥混凝土强度也是先扬后抑。这主要是由于煤矸石炉渣替代天然砂,对混凝土起到两个互为相反的作用所决定的:一方面是煤矸石炉渣具有潜在的水硬活性,在混凝土成型、凝结过程和硬化过程中可参与水泥水化,改善混凝土水泥浆与集料间界面结构与性能,所以在宏观上表现出混凝土强度提高;另一方面,煤矸石炉渣吸水率高达10%以上,使混凝土在大量使用煤矸石炉渣替代天然砂时成型困难,水泥水化不充分,导致混凝土强度明显下降。

周梅等[12]采用C15~C40共6个强度等级煤矸石混凝土进行配合比设计,并测试其力学性能,研究发现利用自燃煤矸石可以代替自然砂石配制出C15~C40强度等级的混凝土,其中抗压强度全部满足要求,且煤矸石混凝土表现出明显的韧性。由试验结果可得所配制的混凝土的破坏机理与普通混凝土不同。当配制的混凝土强度较低时,由于水泥用量少,砂浆不能充分包裹骨料,强度降低,当配制的混凝土强度较高时,自燃煤矸石混凝土就变成了强砂浆包弱骨料的模型。此时尽管水泥量增加(水灰比减小),其强度也不再增加,集料成为了主要破坏断面,一般是沿着煤矸石的节理面。这时破坏面强度取决于煤矸石沿节理面方向的强度。骨料的节理是其薄弱环节,沿节理面方向的强度不但远低于总体强度,而且砂浆强度较高时,甚至还低于砂浆强度。所以随砂浆强度的提高,混凝土强度由砂浆控制转变为由骨料控制,其强度破坏模型,由“弱”包“强”转变为“强”包“弱”表明了采用煤矸石集料配制混凝土强度不宜过高,通过增加水泥等胶凝材料用量来提高煤矸石集料混凝土强度意义不大。对于C15以下强度的混凝土由于水泥浆用量较少,不能充分包裹骨料,强度较低,不宜采用。自燃煤矸石材质本身特性决定了混凝土拌合物塌落度较低,因此更适合生产预制构件。

郑旭[13]采用固定外加剂掺量和改变外加剂掺量两种技术路线进行研究检测煤矸石的掺入对不同强度等级混凝土抗压强度的影响,随着煤矸石的掺入,不同强度等级混凝土的工作性能和立方体抗压强度都有所改善。对于贫胶凝材料体系水泥混凝土,当煤矸石掺量小于30%时,水泥混凝土的工作性能和立方体抗压强度较为理想,其中20%为煤矸石掺量的最佳值;而对于富胶凝材料体系水泥混凝土,煤矸石的最大掺量为20%,其中10%为煤矸石掺量的最佳值。

陈炜林等[14]用煤矸石等量代替砂浆中的天然砂(替代率为10%、30%、50%)测定砂浆的强度,试验结果分析得出煤矸石掺量的增加并不会明显降低砂浆的力学强度,甚至是砂浆力学强度出现增加现象。并且通过AutoPoreIV9510型全自动压汞测孔仪观察孔结构,经由分析知孔分形维数可以表征材料微观孔结构特征,抗压强度、抗折强度与分形维数都有一定相关性,并且两者的变化规律相似,反映了宏观力学强度与分形维数存在相关性,随着分形维数的增加力学强度呈递增趋势。随着孔径增大、孔隙率增加,孔分形维数减小,砂浆力学强度呈递减趋势;随着孔隙小于20mm比例的增加,力学强度呈现递增趋势,随着孔隙大于100mm 比例的增加,力学强度呈现递减趋势。陈炜林只对煤矸石砂浆的力学性能与孔结构及其关系进行了探讨,对耐久性方面的性能还不是很了解,有待于进一步的探讨。

陈炜林等[15]对不同煤矸石掺量的水泥浆进行X射线衍射试验(XRD)和同步热分析试验(DSC-TG),分析掺合料的主要矿物成分和热稳定性。随着煤矸石掺合料的增加,砂浆力学性能出现一定程度的下降,结合上述试验分析,应该是煤矸石掺合料中的水泥孰料成分少,在水化过程中形成比基础砂浆疏松的空间形态,从而对砂浆的力学性能和孔结构有一定的不利影响。

俞心刚等[16]研究了粉煤灰-煤矸石泡沫混凝土干表观密度对粉煤灰-煤矸石

泡沫混凝土吸水率、抗压强度影响。结果表明,随粉煤灰-煤矸石泡沫混凝土干表观密度的增加,粉煤灰-煤矸石泡沫混凝土水吸率减少,抗压强度增大。

3.2 研究存在问题

对于煤矸石混凝土的力学性能研究大都局限于改变煤矸石在混凝土中的掺量或者是改变配合比,采用正交试验进行数据分析,但是每个学者所做试验数量有限,存在一定的误差性,并不能有一定的数理统计性。对试验的分析仅限于对数据的解释,很少从机理上进行理论的分析。对于以后的研究可以深入对机理上的研究,分析各种影响因素对力学性能的影响,并找到可以表征力学性能的一种参量,如孔结构等。

4 煤矸石混凝土耐久性研究

煤矸石混凝土耐久性研究是很有必要的一项研究,耐久性研究包括抗氯离子侵蚀、抗渗、抗冻、干燥收缩等性能。陈炜林17在其硕士毕业论文中提出煤矸石掺量、吸水率、压碎值和针片状含量等指标进行宏观衡量煤矸石的耐久性优良。

4.1 抗盐离子侵蚀

周丽民[18]研究了粉煤灰、煤矸石对混凝土抗硫酸盐侵蚀性能的影响。粉煤灰和煤矸石取代水泥用量分别为0、10%、30%和50%。经8个月用10%Na2SO4溶液浸泡试验表明,粉煤灰对水泥基材料的抗硫酸钠侵蚀性能有改善作用,且随粉煤灰掺量的增大而线性提高;煤矸石对水泥基材料的抗硫酸钠侵蚀性能有不利影响,且随煤矸石掺量的增大而线性加剧。XRD和MIP分析表明,粉煤灰改善了水泥石的化学组成和孔结构。

郭金敏[19]考查煤矸石混凝土受硫酸盐侵蚀方面的耐久性,经过试验发现煤矸石混凝土经过硫酸盐侵蚀后强度影响不是太大。该成果突破了传统的煤矸石活化方法研究煤矸石,对其在道路工程、排水工程等方面的利用具有一定的参考价值。郭金敏[20]还通过实验得出硫酸盐侵蚀后抗压强度损失值与冻融后弹性模量损失值之间的对应关系,二者为显著的线性关系,表达式如下:

=+(1)

y x

0.42910.2825

式中:——

y冻融后弹性模量损失值,MPa;

——

x硫酸盐侵蚀后抗压强度损失值,GPa;

2——

R回归系数,2=0.9936

R

如此便可通过煤矸石混凝土冻融后弹性模量损失值预测硫酸盐侵蚀后抗压

强度损失值,或者已知硫酸盐侵蚀后抗压强度损失值,估算煤矸石混凝土冻融后弹性模量损失值。这对预测、控制和改善煤矸石混凝土的性能具有实际意义。

周丽民[21]研究了粉煤灰、煤矸石对混凝土抗硫酸盐侵蚀性能的影响。粉煤灰和煤矸石取代水泥用量分别为0、10%、30%和50%。经8个月用10%Na2SO4

溶液浸泡试验表明,粉煤灰对水泥基材料的抗硫酸钠侵蚀性能有改善作用,且随粉煤灰掺量的增大而线性提高;煤矸石对水泥基材料的抗硫酸钠侵蚀性能有不利影响,且随煤矸石掺量的增大而线性加剧。

高礼雄等[22]以40mm×40mm×160mm细碎石混凝土试件和20mm×20mm ×20 mm水泥石试件进行试验。矿物掺合料取代水泥用量为0、10%、30%和50%。8个月浸泡试验表明,I级粉煤灰、矿渣、煤矸石等矿物掺合料对混凝土抗硫酸镁侵蚀性能的影响都存在着一个临界掺量,小于其临界掺量时掺合料对混凝土的抗硫酸镁侵蚀性能有改善作用,反之则有不利影响。高礼雄等也对抗硫酸盐的机理进行分析,分析表明掺合料一方面降低了Ca(OH)2从混凝土内部向其表面的扩散速度及混凝土表层Mg(OH)2薄膜的增厚速度,另一方面水泥石的孔结构随掺合料掺量的增大而改善。

周双喜[23]将30%的热活化煤矸石细粉取代水泥掺入混凝土中,活化煤矸石混凝土的力学性能要优于素混凝土。7d龄期单掺热活化煤矸石细粉和复掺热活化煤矸石细粉的混凝土相对氯离子扩散系数均高于素混凝土,到了180d龄期,无论是单掺热活化煤矸石细粉还是复掺热活化煤矸石细粉的混凝土相对氯离子扩散系数不到素混凝土的一半。180d龄期,掺热活化煤矸石细粉混凝土的抗海水侵蚀能力要低于素混凝土,热活化煤矸石细粉与粉煤灰二元复掺混凝土及热活化煤矸石细粉与矿渣粉二元复掺混凝土在经海水侵蚀后,混凝土的强度不仅未降低反而有一定增加。

宋小军等[24]比较了徐州煤矸石在500~900℃5种不同的温度下活化后的水泥胶砂强度,综合评价后,确定600℃为徐州煤矸石实验室的合理活化温度。以此温度下活化的煤矸石作水泥的混合材,在孔结构分析的基础上,对比研究了活化煤矸石对混凝土抗氯离子渗透性能的影响。研究结果表明,在相同条件下活化煤矸石水泥混凝土的抗渗性能略优于普通水泥混凝土。

管学茂[25]在其博士论文中采用电化学方法、SEM-EDS分析和压汞法系统的研究高性能水泥基材料在氯盐+应力、氯盐十冻融和氯盐+应力+冻融等多因素协同作用下的氯离子渗透性能和钢筋锈蚀及其机理;运用灰色理论、化学分析、微观测试等理论和方法系统深入的研究水泥基材料固化外渗氯离子的性能及机理,重点研究了水泥的矿物组成、矿物外加剂的种类和掺量、服役环境与固化氯离子的性能关系及其机理;论文还运用人工神经网络技术建立预测水泥基材料的氯离子渗透和固化性能模型。他通过对混凝土的氯离子渗透性能和孔结构进行深入研究表明,煤矸石、粉煤灰等矿物外加剂能够提高水泥基材料抗渗性,降低氯离子渗透扩散速度,且随着水化龄期的延长它们提高水泥基材料抗渗性的效果更加显著,其中煤矸石改善水泥基材料的孔结构,降低渗透性效果好于粉煤灰。水泥基材料在多因素协同作用下,氯离子的渗透速率提高,渗透深度加大,多因素协同作用对提高水泥基材料氯离子渗透性的作用大小依次是氯盐+冻融十应力>氯盐+冻融>氯盐十应力>氯盐。水泥基材料界面区的氯元素分布测试表明,掺入煤矸石的水泥基材料在骨料与浆体界面区氯元素的含量少,没有氯元素富集现象;

掺粉煤灰的水泥基材料在界面区氯元素含量较多;硅酸盐混凝土界面区氯离子的含量最大,有氯离子富集现象。运用灰色理论分析水泥矿物与其固化氯离子能力的关联度,研究表明水泥固化氯离子的能力与各矿物组成的关联度从大到小依次是C3A、C3S、C4AF和C2S;论文建立了矿物外加剂固化氯离子的效应评价方法与指标体系,能够定量的反映出水泥和矿物外加剂各自的贡献大小,指导材料组成优化设计;煤矸石能够提高水泥基材料固化氯离子的能力,且将其掺入高胶凝性水泥(C3S含量大于70%)中,其固化氯离子的能力比掺入目前工业化生产的硅酸盐水泥(C3S含量在60%左右)中大,但是存在有最佳掺量。X衍射和DSC-TG 分析结果表明水泥浆体经过一段时间水化后,再受到外渗氯离子的侵蚀,仍然有Frideel盐生成;而且随着煤矸石掺量的增大,Frideel盐的生成量增大,但是掺量大于30%后,Frideel盐的增长量降低;粉煤灰和矿渣均也能提高水泥基材料对氯离子的化学固化能力,在相同掺量的条件下,对于化学固化能的贡献大小依次是矿渣>煤矸石>一级粉煤灰>二级粉煤灰;高胶凝性水泥基材料固化氯离子的能力大。环境因素对水泥基材料固化氯离子能力有很大影响"温度在0℃~40℃之间,随着温度的升高,固化氯离子的能力增大,尤其对掺有矿物外加剂的材料,其效果更显著;氯盐的阳离子类型对水泥基材料固化氯离子的能力影响较大,水泥基材料在各种氯盐中的固化氯离子能力大小依次是CaCl2>KCl>NaCl;硫酸根离子的存在不利于水泥基材料固化氯离子;侵蚀液pH值增大,将降低水泥基材料固化氯离子的能力。电流阶跃法适用于测试混凝土保护层的欧姆电阻,反映混凝土的密实度,试验表明煤矸石的掺入能够增加混凝土的电阻,提高混凝土的密实度;在等掺量的条件下,矿渣对提高混凝土密实度效果最好,煤矸石次之,粉煤灰较差;多因素协同作用下,加速混凝土中钢筋锈蚀的各种因素从大到小的次序是:氯盐侵蚀+冻融循环+弯曲应力>氯盐侵蚀+冻融循环>氯盐侵蚀+弯曲应力>氯盐侵蚀。

4.2 抗冻性

李永靖等[26]为探讨煤矸石骨料混凝土的耐久性,对其两个指标——抗冻性能和干燥收缩性能进行试验研究,重点对煤矸石和普通碎石作为骨料分别制备混凝土试件进行对比分析。抗冻性能实验表明:在常用水灰比情况下,煤矸石骨料混凝土的抗冻性能指标能够满足要求;在不同水灰比的情况下,煤矸石骨料混凝土的耐久性指数比普通碎石混凝土低,质量损失率增大,这主要由煤矸石骨料中的孔隙水产生较大的冻胀应力所造成的。试验结果表明,采用煤矸石骨料制备混凝土是可行的,煤矸石骨料混凝土的抗冻性能能够满足规范要求。

孙家瑛[1]采用煤矸石代替30%天然砂制作混凝土经冻融循环100次后,其抗压强度是标准抗压强度的94.3%,强度损失为5.7%,而普通混凝土经冻融循环100次后,其抗压强度是标准抗压强度的86%,强度损失达14%。由此可见,采用30%煤矸石炉渣替代天然砂可提高混凝土的抗冻融循环性能。

张金喜[27]等掺入煤矸石集料的混凝土的抗冻性能普遍出现明显降低,并随着煤矸石掺量的增加,抗冻性能降低幅度加大。说明煤矸石集料对混凝土抗冻性

有不利影响,可能是煤矸石内部结构和物理性能与普通集料有差异,而造成抗冻性能的降低。

4.3 抗渗性

张金喜等[27]比较煤矸石掺量不同时砂浆的饱水高度,试验发现,随着煤矸石掺量的增加,砂浆的饱水高度呈现递增的趋势,高度越高说明吸水速率越快,这说明当煤矸石掺量过多会加快水在砂浆中的渗透作用,从而降低水泥砂浆的耐久性。产生这种现象的原因可能是由于其内部存在一定数量的连通孔隙通道;各种煤矸石砂浆的抗渗性能存在一定的差异。测试的各种煤矸石集料都为非碱活性集料;煤矸石掺量在一定范围内不会明显降低混凝土的抗渗性。在抗渗性试验中,煤矸石集料掺入量在10%时,煤矸石混凝土的抗渗性能与基础混凝土接近;当煤矸石集料掺入量超过30%时,煤矸石混凝土的抗渗性能开始出现一定程度的降低。在抗冻性试验中,各种掺量的煤矸石混凝土的抗冻性能出现不同程度的降低,优质煤矸石集料配制的混凝土掺入量在20%时,煤矸石混凝土的抗冻性能降低较小。煤矸石集料的掺入对混凝土的抗渗性能构成一定的不稳定因素,建议煤矸石掺入两在10%~20%为宜。

孙庆合等[28]利用煤矸石、粉煤灰、矿渣代替部分水泥,制作C50复合混凝土,分析混合材料对混凝土的力学特性和抗渗性能的影响。采用正交试验设计与微观相结合,并对复合混凝土的抗渗性能做了初步研究。试验结果表明,煤矸石掺量在10%以下时,混凝土的杭渗性能得到提高。对于复合混凝土的渗水高度,影响因素的顺序为:煤矸石>水灰比>外加剂>矿渣>误差项>粉煤灰。煤矸石、外加剂对混凝土的渗水高度的影响显著,水灰比有一定影响,其余均无影响。在混凝土中掺入煤矸石能显著提高混凝土的抗渗性。当水灰比0.35~0.45,煤矸石的最佳掺量为5%,混凝土28d抗压强度最大,渗水高度最小。

4.4 干燥收缩性能

李永靖等[26]所做试验也反映煤矸石对混凝土干燥收缩性能的影响,实验表明:不同水灰比的情况下,煤矸石骨料混凝土的干燥收缩率、质量减少率都比普通碎石混凝土大,这主要由煤矸石骨料的吸水率较大所造成的;无论水灰比多大,两种骨料混凝土的早期干燥收缩率都较大,50d时的干燥收缩率占整个龄期的85%左右,超过120d后逐渐趋于稳定。

蔺喜强等[8]采用900℃下活化后的煤矸石作为集料加入混凝土中,研究活化煤矸石对混凝土性能的影响。研究发现活化煤矸石掺合料的需水量较粉煤灰和矿粉高,煅烧煤矸石粉对混凝土有早期的增强作用,且具有后期的强度增长保持能力;其活性介于粉煤灰和矿渣之间,比较接近矿渣。随水灰比的降低,煤矸石混凝土干缩增大,在相同掺量下,活化煤矸石粉作掺合料的混凝土相较掺加粉煤灰的干缩率大,与掺加矿粉的混凝土干缩率差别不多。合理掺量下,煤矸石粉混凝土的干缩率均小于纯水泥混凝土。煤矸石与粉煤灰双掺复合使用可有效降低混凝土的干缩。

孙家瑛[1]用煤矸石代替30%天然砂制作混凝土测其抗氯离子渗透性,相对于未掺煤矸石的混凝土性能提高40%,且掺煤矸石混凝土抗硫酸盐侵蚀能力也较为优越。

5 结论

现有的研究主要集中于煤矸石作为集料掺入混凝土中,而对于煤矸石作为水泥生产原料方面的研究甚少。大多数研究都只是对试验结果进行一些描述性分析,并未从机理上进行深入分析,比较局限于表面。以后的研究可以专注于从机理上进行分析,提高理论上的创新。更加深入研究可对研究结果进行回归分析,并且提出理论计算公式,以更有利于对实际应用进行指导。

对于煤矸石混凝土的研究大部分为仅从宏观层面上进行力学性能和耐久性等性能进行分析,而很少从微观层面上进行分析,进行材料的微观观察,研究不同影响因素下煤矸石的性能如何变化,或者建立微观显示与宏观表现的对应关系,从微观可以了解宏观,研究微观变化对宏观性质的影响,进而有利于找到解决方法,找到更优化的配合比方案,从而对以后的研究可以提出一种新思路。

对于煤矸石耐久性方面的研究以抗氯离子侵蚀居多,抗硫酸盐侵蚀比较少,而对于耐久性其他方面的性能研究比较浅,从机理上进行分析的较少,微观结构观察的也较少,可以增加耐久性其他方面的研究,扩充研究领域。

参考文献

[1] 孙家瑛.用煤矸石炉渣取代天然砂的混凝土性能研究[J].建筑材料学报,2012(02).

[2] 程显强.煤矸石混凝土的应用研究[J].施工技术,2010(S1): 194-196

[3] 郭金敏,朱伶俐.煤矸石混凝土耐久性的正交试验研究[J].辽宁工程技术大学学报(自

然科学版),2011(04)

[4] 郑旭.煤矸石集料水泥混凝土配制技术研究[J].商品混凝土,2010(09): 28-32+42

[5] 曹露春,张志军.煤矸石生态混凝土透水性与抗压强度研究[J].中国建材科技,2013(03)

[6] 曹露春,张志军.煤矸石透水混凝土的试验研究[J].建材技术与应用,2013(01)

[7] 揣丹等.煤矸石泡沫混凝土的试验研究[J].混凝土,2013(06)

[8] 蔺喜强等.活化煤矸石掺合料对高性能混凝土干缩的影响[J].混凝土,2013(07)

[9] 蔺喜强等.固废煤矸石的活化及其对混凝土力学性能的影响[J].混凝土,2013(06)

[10] 孟文清等.煤矸石混合料劈裂强度试验研究[J].施工技术,2013(10)

[11] 孙家瑛.用煤矸石炉渣取代天然砂的混凝土性能研究[J].建筑材料学报,2012(02)

[12] 周梅,白金婷,薛忠泉.自燃煤矸石全集料混凝土强度研究[J].建筑结构,2011(S2)

[13] 郑旭.煤矸石集料水泥混凝土配制技术研究[J].商品混凝土,2010(09)

[14] 陈炜林等.煤矸石砂浆的孔结构与强度的关系[J].混凝土,2010(08)

[15] 陈炜林等.煤矸石掺合料基本性能的实验研究[J].公路交通科技(应用技术版),2010(08)

[16] 俞心刚等.干表观密度对粉煤灰-煤矸石泡沫混凝土性能的影响,.in 第十届全国水泥和

混凝土化学及应用技术会议2007: 中国江苏南京

[17] 陈炜林.煤矸石作为水泥混凝土骨料可行性的基础研究[D].北京工业大学,2010

[18] 周丽民.磨细矿粉对混凝土抗硫酸盐侵蚀性能影响的研究[J].粉煤灰综合利用,

2011(04).

[19] 郭金敏,朱伶俐.煤矸石混凝土耐久性的正交试验研究[J].辽宁工程技术大学学报(自

然科学版),2011(04): 566-570

[20] 郭金敏.煤矸石混凝土耐久性的试验研究[J].混凝土,2011(07)

[21] 周丽民.磨细矿粉对混凝土抗硫酸盐侵蚀性能影响的研究[J].粉煤灰综合利用,

2011(04): 22-23

[22] 高礼雄,文奔,刘金革.矿物掺合料对混凝土抗硫酸镁侵蚀的有效性研究[J].混凝土,

2007(11): 89-91+94

[23] 周双喜.海洋环境下掺活化煤矸石细粉混凝土的试验研究[J].混凝土,2007(12): 76-78

[24] 宋小军,王培铭.活化煤矸石水泥混凝土性能的研究[J].新型建筑材料,2005(02): 3-5

[25] 管学茂.水泥基材料在氯盐环境中的服役行为及机理研究[D].中国建筑材料科学研究

院,2005

[26] 李永靖等.煤矸石骨料混凝土的耐久性试验研究[J].煤炭学报,2013(07)

[27] 张金喜等.煤矸石集料混凝土耐久性研究[J].北京工业大学学报,2011(01)

[28] 孙庆合等.粉体煤矸石混凝土抗渗性能的研究.in 2008国际粉体技术与应用论坛暨全

国粉体产品与设备应用技术交流大会2008: 中国北京

喷射混凝土检测取样方法

喷射混凝土质量检测方法 (一)抗压强度试验 1.检查试块的制作方法 (1)喷大板切割法 在施工的同时,将混凝土喷射在45cmx35cmxl2cm(可制成6块)或45cmx20cmx12cm(可制成3块)的模型内,在混凝土达到一定强度后,加工成10cmx10cmx10cm的立方体试块,在标准条件下养护至28d进行试验(精确到0.1MPa) (2)凿方切割淡 在具有一定强度的支护上,用凿岩机打密徘钻孔,,取出长约35cm、宽约15cm 的混凝上块,加工成10cmxl0cmxl0cm的立方体试块,在标准条件下养护至28d,进行试验(精确到0.1MPa)。 2.检查试块的数量 隧道(两车道隧道)每10延米,至少在拱部和边墙各取、组试样“,材料或配合比变更时另取一组,每组至少取3个试块进行抗压强度试验。 3.满足以下条件者为合格,否则为不合格。 (1)同批(指同一配合比)试块的抗压强度平均值,不低于设计强度或C20。(2)任意一组试块抗压强度平均值不得低于设计强度的80%。 (3)同批试块为3~5组时,低于设计强度的试块组数不得多于1组;试块为(一16组时,不得多于两组;17组以上,不得多于总组数的15%。 (二)喷射混凝土厚度的检测 1.喷层厚度可用凿孔或激光断面仪、光带摄影等方法检查。 (2)检查断面数量。每口延米至少检查一个断面)再从拱顶中线起每隔2m凿孔检查一个点。 (3)每个断面拱、墙分别统计,全部检查孔处喷层厚度应有60%以上不小于设计厚度,平均厚度不得小于设计厚度,最小厚度不应小于设计厚度的1/2。在软弱破碎围岩地段,喷层厚度不应小于设计规定的最小厚度,钢筋网喷射混凝土的厚度不应小于6cm。 (三)喷射混凝土与园岩粘结强度试验 1.检查试块的制作方法 (1)成型试验法 在模型内放置面积为10cmX10cmx厚5cm且表面粗糙度近似于实际情况的岩块,用喷射混凝土掩埋。在混凝土达到一定强度后,加工成10cmxl0cmX10cm的立方体试块,在标准条件下养护至28d,用劈裂法进行试验。 (2)直接拉拔法 在围岩表面预先设置带有丝扣和加力板的拉杆,用喷射混凝土将加力板埋人,喷层厚度约10cm,试件面积约30cmX30cm(周围多余的部分应予清除)。经28d 养护,进行拉拔试验。 (四)喷射混凝上粉尘、回弹检查 按《公路隧道施工技术规范>>(JTJ042—94)规定。 (五)其它试验 当有特殊要求时,对喷射混凝土的抗拉强度、弹性模量等项目应进行试验。 喷射混凝土施工质量评判

人工砂混凝土性能研究

人工砂混凝土性能研究 1胶砂试验 1.1胶砂配合比为了解石灰石粉掺量对胶砂流动度和力学性能的影响,设计胶砂配合比,见表5。其中,标准砂、水的用量不变,分别为 1350g、225g。按GB/T2419-2005《水泥胶砂流动度测定方法》、 GB/T17671-1999《水泥胶砂流动度测定方法》分别测试胶砂的流动度、抗折强度、抗压强度,测试结果见表5。 1.2胶砂试验结果分析石灰石粉掺量对胶砂流动度的影响,如图1所示。由该图可看出,虽然用水量未变,但胶砂流动度依然随着石灰石 粉掺量的提高而增大,故也可认为石灰石粉具有一定的减水作用。图1石灰石粉掺量与胶砂流动度的关系石灰石粉掺量对胶砂的抗压强度、 抗折强度影响。随着石灰石粉的掺量增加,相同龄期的水泥胶砂抗折 强度、抗压强度均有不同程度的降低。 2混凝土试验 2.1混凝土配合比为了解石灰石粉掺量对混凝土拌合物性能和力学性 能的影响,以石灰石粉超掺50%、超掺部分等量取代人工砂设计混凝土配合比,其中,碎石、超塑化剂、水的用量不变,见表6。按 GB/T2419-2005《水泥胶砂流动度测定方法》、GB/T17671-1999《水泥 胶砂流动度测定方法分别测试混凝土的拌合物性能、抗压强度,测试 结果见表7。 2.2混凝土工作性能分析(1)掺入细度10%以内的石灰石粉的坍落度基 本都符合工程应用要求,随着石灰石粉量的增加,坍落度也增加,混 凝土的粘聚性好、泵送效果好、坍落度经时损失小。(2)石灰石粉混凝 土坍落度与扩展度随水胶比减小而增加,这与普通混凝土是一致的。(3)混凝土的坍落度随石灰石粉的掺量增加而增大,当掺量超过10%后,随掺量的增加而减小,而经时损失则随石灰石粉掺量增加而增大。

相关高性能混凝土方面的问题

高性能混凝土 简介 高性能混凝土(High performance concrete,简称HPC)是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的矿物细掺料和高效外加剂。 定义 1950年5月美国国家标准与技术研究院(NIST)和美国混凝土协会(ACI)首次提出高性能混凝土的概念。但是到目前为止,各国对高性能混凝土提出的要求和涵义完全不同。 美国的工程技术人员认为:高性能混凝土是一种易于浇注、捣实、不离析,能长期保持高强、韧性与体积稳定性,在严酷环境下使用寿命长的混凝土。美国混凝土协会认为:此种混凝土并不一定需要很高的混凝土抗压强度,但仍需达到55MPa以上,需要具有很高的抗化学腐蚀性或其他一些性能。 日本工程技术人员则认为,高性能混凝土是一种具有高填充能力的的混凝土,在新拌阶段不需要振捣就能完善浇注;在水化、硬化的早期阶段很少产生有水化热或干缩等因素而形成的裂缝;在硬化后具有足够的强度和耐久性。 加拿大的工程技术人员认为,高性能混凝土是一种具有高弹性模量、高密度、低渗透性和高抗腐蚀能力的混凝土。 综合各国对高性能混凝土的要求,可以认为,高性能混凝土具有高抗渗性(高耐久性的关键性能);高体积稳定性(低干缩、低徐变、低温度变形和高弹性模量);适当的高抗压强度;良好的施工性(高流动性、高粘聚性、自密实性)。 中国在《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。 高性能混凝土的技术路线 高性能混凝土是由高强混凝土发展而来的,但高性能混凝土对混凝土技术性能的要求比高强混凝土更多、更广乏,高性能混凝土的发展一般可分为三个阶段:

关于新拌混凝土的稳定性问题

关于新拌混凝土的稳定性问题 0引言 工作性是新拌混凝土的一个重要性能。随着混凝土技术的发展,我国新拌混凝土的流动性发生了相当大的变化。在外加剂推广应用前,现浇混凝土的坍落度只有几十毫米,预制建筑构件基本上采用干硬性混凝土;减水剂推广应用后,现浇混凝土的坍落度增大到80~100mm;商品混凝土普遍应用后,为了满足泵送的要求,现浇混凝土的坍落度增大到180mm左右;近年来,现浇混凝土的坍落度还在增大,220~240mm坍落度的混凝土成为我国目前建筑工程现浇混凝土的主流,坍落度大于240mm的混凝土也不少见。即便如此,建筑工地现场加水现象还是极为普遍。与此同时,混凝土离析现象日益严重,混凝土开裂现象屡见不鲜。不仅建筑工地现场如此,一些建筑构件的生产企业也采用坍落度超过200mm的混凝土。由于混凝土浇筑是一项非常辛苦的工作,目前很少有人愿意从事这项工作。大坍落度混凝土可以减轻劳动强度,因而被普遍采用。但是,大坍落度混凝土如果控制不好,极易离析。在现实条件下如何控制新拌混凝土的质量是一个亟待解决的问题。 目前,我国新拌混凝土的技术指标主要是坍落度,其它要求很少。坍落度是新拌混凝土流动性的一个表征。一般来说,坍落度越大,新拌混凝土的流动性越好。但是,坍落度并不是对新拌混凝土质量的全面表征,至少说它不能反映新拌混凝土的稳定性。以前,我国普遍采

用塑性混凝土,流动性是影响施工的主要因素,很少出现离析问题。在商品混凝土推广应用的初期,新拌混凝土的坍落度一般不超过180mm,离析现象虽有出现,但一般都出现在C20以下的低强度等级混凝土中。由于低强度等级混凝土用量较少,而且不用于重要部位,因而离析问题也不太突出。随着新拌混凝土流动性要求的提高,新拌混凝土不稳定现象日益突出。不仅低强度等级混凝土出现离析,C30混凝土和C35混凝土也出现较严重的离析,甚至C40混凝土也有不同程度的离析,这些都是目前用量最大的混凝土。因此,我国目前混凝土工程的施工质量令人担忧。在这样的背景下,新拌混凝土的稳定性应该引起工程界的重视,成为新拌混凝土不可或缺的一个质量控制指标。 文章针对目前大体积混凝土普遍存在的不稳定问题,分析了新拌混凝土不稳定可能带来的问题,尤其是分析了对硬化混凝土性能带来的问题。这些问题对混凝土工程的施工质量有着较大的影响,也是目前混凝土开裂较严重的一个重要原因,而这一点目前还没有被人们认识和关注。为了解决好新拌混凝土的稳定性问题,文章结合混凝土工程实际情况,提出评定新拌混凝土稳定性的方法,给出保证混凝土稳定性基本思路。 1新拌混凝土工作性的含义及确定的依据 对于新拌混凝土的工作性,目前还没有一个公认的确切定义。1932年,Powers将新拌混凝土的工作性定义为:工作性是一种确定拌和物浇灌难易程度和抵抗离析能力的性能,它包括了流动性和内聚性

喷射砼原材料-要求

喷射混凝土原材料要求 6.2.1水泥:应符合第4.4.7条规定的要求。 6.2.2骨料应符合下列要求: 1粗骨料应选用坚硬耐久的卵石或碎石,粒径不宜大于15mm;当使用碱性速凝剂时,不得使用含有活性二氧化硅的石料。 2细骨料应选用坚硬耐久的中砂或粗砂,细度模数不宜大于2.5。干拌法喷射时,骨料的含水率应保持恒定并不小于6%。 3喷射混凝土骨料级配宜控制在表6.2.2数据范围内。 表6.2.2 喷射混凝土骨料通过各筛经的累计质量百分率(%) 6.2.3拌合水应符合第4.4.8条规定的要求。 6.2.4喷射混凝土速凝剂应符合下列要求: 1掺加正常用量速凝剂的水泥净浆初凝不应大于3min,终凝不应大于12min; 2加速凝剂的喷射混凝土试件,28d强度应不低于不加速凝剂强度的90%; 3宜用无碱或低碱型速凝剂。 6.2.5喷射混凝土中的矿物掺合料,应符合以下规定: 1粉煤灰的品质应符合现行国家标准《用于水泥和混凝土中的粉煤灰》GB1596的有关规定。粉煤灰的级别不应低于Ⅱ级,烧失量不应大于5%。 2硅粉的品质应符合表6.2.5的要求。 表6.2.5 硅粉质量控制指标要求

3粒化高炉矿渣粉的品质应符合现行国家标准《用于水泥和混凝土中粒化高炉矿渣粉》GB/T18046的有关规定。 6.2.6纤维:喷射混凝土用钢纤维及合成纤维应符合以下规定: 1钢纤维 钢纤维的抗拉强度应不低于1000N/mm2,直径宜为0.40~0.80mm,长度 宜为25~35mm,并不得大于混合料输送管内径的0.7倍,长径比为35~80。 2合成纤维 合成纤维的抗拉强度不应低于280N/mm2,直径宜为10~100μm,长度宜 为4~25mm。 6.2.7喷射混凝土中各类材料的总碱量(Na2O当量)不得大于3 kg / m3;氯离 子含量不应超过胶凝材料总量的0.1%。 摘自:GB50086-2011《岩土锚固与喷射混凝土支护工程技术规范》 SL377-2007《水利水电工程锚喷支护技术规范》

高性能混凝土的研究与发展现状

高性能混凝土的研究与发展现状 学生姓名: 指导教师: 专业年级: 完稿时间: XX大学

高性能混凝土的研究与发展现状 摘要 随着科学技术的进步,现代建筑不断向高层、大跨、地下、海洋方向发展。高强混凝土由于具有耐久性好、强度高、变形小等优点,能适应现代工程结构向大 跨、重载、高耸发展和承受恶劣环境条件的需要,同时还能减小构件截面、增大使用 面积、降低工程造价,因此得到了越来越广泛的应用,并取得了明显的技术经济效益。 关键词:高性能混凝土性能发展应用前景 装 订 线

目录 一高性能混凝土的发展方向 (1) 1.1轻混凝土 (1) 1.2绿色高性能混凝土 (1) 1.3超高性能混凝土 (1) 1.4智能混凝土 (1) 二高性能混凝土的性能 (1) 2.1耐久性 (1) 2.2工作性 (1) 2.3力学性能 (1) 2.4体积稳定性 (1) 2.5经济性 (2) 三高性能混凝土质量与施工控制 (2) 3.1高性能混凝土原材料及其选用 (2) 3.2配合比设计控制要点 (3) 四高强高性能混凝土的应用与施工控制 (3) 4.1高强高性能混凝土的应用 (3) 4.2高性能混凝土的施工控制 (4) 五高性能混凝土的特点 (4)

5.1高耐久性能 (4) 5.2高工作性能 (5) 5.3高稳定性能 (5) 六高性能混凝土的发展前景 (5) 参考文献 (6)

一高性能混凝土的发展方向 1.1轻混凝土是指表观密度小于1950kg/m3的混凝土。可分为轻集料混凝土、多孔混凝土和无砂大孔混凝土三类。 1.2绿色高性能混凝土水泥混凝土是当代最大宗的人造材料,对资源、能源的消耗和对环境的破坏十分巨大,与可持续发展的要求背道而驰。绿色高性能混凝土研究和应用较多的是粉煤灰混凝土,粉煤灰混凝土与基准混凝土相比,大大提高了新拌混凝土的工作性能,明显降低混凝土硬化阶段的水化热,提高混凝土强度特别是后期强度而且,节约水泥,减少环境污染,成为绿色高性能混凝土的代表性材料。 1.3超高性能混凝土如活性粉末混凝土,其特点是高强度,抗压强度高达300MPa,且具有高密实性,已在军事、核电站等特殊工程中成功应用。 1.4智能混凝土是在混凝土原有的组分基础上复合智能型组分,使混凝土材料具有自感知、自适应、自修复特性的多功能材料,对环境变化具有感知和控制的功能。随着损伤自诊断混凝土、温度自调节混凝土、仿生自愈合混凝土等一系列机敏混凝土的出现,为智能混凝土的研究、发展和智能混凝土结构的研究应用奠定了基础。 二高性能混凝土的性能 2.1耐久性。高效减水剂和矿物质超细粉的配合使用,能够有效的减少用水量,减少混凝土内部的空隙,能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 2.2工作性。坍落度是评价混凝土工作性的主要指标,HPC的坍落度控制功能好,在振捣的过程中,高性能混凝土粘性大,粗骨料的下沉速度慢,在相同振动时间内,下沉距离短,稳定性和均匀性好。同时,由于高性能混凝土的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少产生离析的现象。 2.3力学性能。由于混凝土是一种非均质材料,强度受诸多因素的影响,水灰比是影响混凝土强度的主要因素,对于普通混凝土,随着水灰比的降低,混凝土的抗压强度增大,高性能混凝土中的高效减水剂对水泥的分散能力强、减水率高,可大幅度降低混凝土单方用水量。在高性能混凝土中掺入矿物超细粉可以填充水泥颗粒之间的空隙,改善界面结构,提高混凝土的密实度,提高强度。 2.4体积稳定性。高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。

喷射混凝土设计

喷射混凝土设计 喷射混凝土的配比与强度 喷射混凝土的常用配比 在锚喷支护巷道中,喷射混凝土的主要目的是封闭围岩,防止围岩风化和裂隙的演化。为确保质量,必须使喷层密实、均匀,达到设计强度。煤矿中常用喷射混凝土的强度为25~33MPa,常用的配比为水泥:砂:石子=1:2:2,优选配比为水泥:砂:石子=1:1.8:2.2,或1:2.25:2.75,或1:2.3:2.7。 影响喷射混凝土强度质量的因素很多,除了水泥、石子、砂的配比外,还有水泥种类与标号、品质,砂与石子的粒度、品质和级配,养护条件、温度与喷射厚度,速凝剂质量与掺量等。要得到具体的水泥、砂、石子和速凝剂条件下强度指标,需要经过大量的试验才能取得,并且试验结果具有较大的离散性。 喷射混凝土配比与强度指标 影响喷射混凝土强度的因素分析 (1)水泥 喷射混凝土常用的是普通硅酸盐水泥,这种水泥来源广,又能满足普通喷射混凝土的大部分要求,而且同速凝剂有较好的相容性。水

泥标号不低于325号。当岩石、地下水或配制用水含有可溶性硫酸盐时,应使用抗硫酸盐水泥。当要求喷射混凝土具有较高早期强度时,可以使用硫铝酸盐水泥或其他早强水泥。 (2)水灰比 水灰比是影响喷射混凝土强度的主要因素。在混凝土中,水的作用主要是与水泥发生化学反应,使混凝土产生强度。但这种起作用的水仅占水泥重量约15~25%,而多余的水份只是在混凝土内起润滑作用,使所喷的混凝土在喷射过程中具有足够的和易性,不满足施工要求。 喷射混凝土喷射到岩石后,在硬化过程中,多余的水份逐渐蒸发,使混凝土产生微细的孔隙,造成喷射混凝土的密实性和强度降低。因此,在满足施工条件的情况下.应将水灰比控制在较低范围。煤矿井下喷射混凝土的水灰比应控制在0.4~0.45范围内。如水泥用量过多,将导致喷射混凝土产生收缩裂缝的可能性加大。增大水灰比则又降低了混凝土的强度。另外,喷射混凝土施工时,水灰比的控制完全是由喷射手的感觉和经验来判断的。因此,提高喷射手的喷射理论水平和施工操作技术是保证喷射强度稳定的重要环节。 (3)速凝剂掺量 速凝剂掺量直接影响喷射混凝土早期及后期强度。速凝剂能加快喷射混凝土早期强度的增长,但后期强度也相应的有所损失。一般来说,混凝土早期强度增长愈快,其后期强度损失也愈大。因此,速凝剂的掺量要严格控制在正确范围,速凝剂掺量应以水泥初凝时间为3~5min.,终凝10min.以内。一般速凝剂掺入量为水泥的2.5%~4%。 (4)砂、石质量及级配 砂、石质量的好坏,对喷射混凝土强度有着很大的影响。 ①砂:砂子级配不良或砂子太细,都要增加水泥用量或加大水灰比。喷射混凝土应用质地坚硬、洁净,级配良好的中砂,细度模量应大于2.5。其中,直径小于0.075mm的颗粒应少于20%。为取得最大

混凝土的技术性能

混凝土的技术性能 1)混凝土拌合物的和易性 2)混凝土的强度 3)混凝土的变形性能 4)混凝土的耐久性 影响混凝土强度的因素主要有原材料及生产工艺方面的因素。 原材料方面的因素包括: 1)水泥强度与水灰比 2)骨料的种类、质量和数量 3)外加剂 4)掺合料 生产工艺方面的因素包括: 1)搅拌与振捣 2)养护的温度和湿度 3)龄期 混凝土的耐久性 1)抗渗性 2)抗冻性 3)抗侵蚀性 4)混凝土的碳化(中性化) 5)碱骨料反应 混凝土外加剂的主要功能包括: 1)改善混凝土或砂浆拌合物施工时的和易性; 2)提高混凝土或砂浆的强度及其他物理力学性能; 3)节约水泥或代替特种水泥; 4)加速混凝土或砂浆的早期强度发展; 5)调节混凝土或砂浆的凝结硬化速度; 6)调节混凝土或砂浆的含气量; 7)降低水泥初期水化热或延缓水化放热; 8)改善拌合物的泌水性; 9)提高混凝土或砂浆耐各种侵蚀性盐类的腐蚀性; 10)减弱碱骨料反应; 11)改善混凝土或砂浆的毛细孔结构; 12)改善混凝土的泵送性; 13)提高钢筋的抗锈蚀能力; 14)提高骨料与砂浆界面的粘结力,提高钢筋与混凝土的 握裹力; 15)提高新老混凝土界面的粘结力等。 按外加剂的主要使用功能分为以下四类: 1)改善混凝土拌合物流变性能的外加剂。包括各种减 水剂、引气剂和泵送剂等。 2)调节混凝土凝结时间、硬化性能的外加剂。包括混凝 剂、早强剂和速凝剂等 3)改善混凝土耐久性的外加剂。包括引气剂、防水剂和 阻锈剂等。 4)改善混凝土其他性能的外加剂。包括膨胀剂、防冻剂、 着色剂等。 外加剂的适用范围 1)混凝土中掺入减水剂,若不减少拌合用水量,能显 著提高拌合物的流动性;当减少水而不减少水泥时,可提高混凝土强度;若减水的同时适当减少水泥用 量,则可节约水泥。同时,混凝土的耐久性也能得到显著改善。 2)早强剂可加速混凝土硬化和早期强度发展,缩短养 护周期,加快施工进度,提高模板周转率。多用于冬 期施工或紧急抢修工程。 3)缓凝剂主要用于高温季节混凝土、大体积混凝土、 泵送与滑模方法施工以及远距离运输的商品混凝土 等,不宜用于日最低气温5℃以下施工的混凝土,也 不宜用于有早强要求的混凝土和蒸汽养护的混凝 土。缓凝剂的水泥品种适应性十分明显,不同品种水 泥的缓凝效果不相同,甚至会出现相反的效果。因此,使用前必须进行试验,检测其混凝效果。 4)引气剂是在搅拌混凝土过程中能引入大量均匀分 布、稳定而封闭的微小气泡的外加剂。引气剂可改善 混凝土拌合物的和易性,减少泌水离析,并能提高混 凝土的抗渗性和抗冻性。同时,含气量的增加,混凝 土弹性模量降低,对提高混凝土的抗裂性有利。由于 大量微气泡的存在,混凝土的抗压强度会有所降低。 引气剂适用于抗冻、防渗、抗硫酸盐、泌水严重的混 凝土等。 5)膨胀剂能使混凝土在硬化过程中产生微量体积膨 胀。膨胀剂主要有硫铝酸钙类、氧化钙类、金属类等。 膨胀剂适用于补偿收缩混凝土、填充用膨胀混凝土、灌浆用膨胀砂浆、自应力混凝土等。含硫铝酸钙类、硫铝酸钙──氧化钙类膨胀剂的混凝土(砂浆)不得用于长期环境温度为80℃以上的工程;含氧化钙类 膨胀剂配制的混凝土(砂浆)不得用于海水或有侵蚀 性水的工程。 6)防冻剂在规定的温度下,能显著降低混凝土的冰点, 使混凝土液相不冻结或仅部分冻结,从而保证水泥的水化作用,并在一定时间内获得预期强度。含亚硝酸 盐、碳酸盐的防冻剂严禁用于预应力混凝土结构;含 有六价铬盐、亚硝酸盐等有害成分的防冻剂,严禁用 于饮水工程及与食品相接触的工程,严禁食用;含有硝铵、尿素等产生刺激性气味的防冻剂,严禁用于办 公、居住等建筑工程。 7)泵送剂是用于改善混凝土泵送性能的外加剂。它由 减水剂、调凝剂、引气剂、润滑剂等多种组分复合而成。泵送剂适用于工业与民用建筑及其他构筑物的泵送施工的混凝土;特别适用于大体积混凝土、高层建 筑和超高层建筑;适用于滑模施工等;也适用于水下 灌注桩混凝土。

高性能混凝土与普通混凝土的差别

高性能混凝土与普通混凝土的差别 一、理念上的差别 共性: ◇高性能混凝土本质上与普通混凝土没有很大差别 高性能混凝土为一种新型高技术混凝土,就是对普通砼某些性能上的优化,就是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,就是以耐久性作为设计的主要目标,针对不同用途的要求,对下列性能有重点的加以保证:耐久性、施工性、适用性、强度、体积稳定性与经济性。 ◇使用的原材料仍然为水泥、砂、石、外加剂,但对各性能指标要求更严。 ◇生产工艺过程在宏观上与普通混凝土一致 不同点: ◇在普通混凝土基础上掺加大量活性混合材,养护水平要求高。 高性能混凝土就是满足特定功能与匀质性综合需要的混凝土。采用普通的组分材料与通常的搅拌、浇注与养护操作,未必能日常生产这种混凝土。高性能混凝土的特性,就是针对一定的应用与环境所要求的。例如:易于浇注、早期强度、水化热、体积稳定性、可捣实不离析、长期力学性质、密度、韧性、在服务环境中运行寿命长久。因此在施工过程中要掺大量活性混合材以改善上述性能。活性混合材掺量提高了,相应的养护工艺也要提高。 ◇对施工单位的管理水平要求高 高性能混凝土的施工过程控制要严格按ISO9001标准要求运行。 ◇许多对普通混凝土不敏感的因素变得敏感了 高性能混凝土对原材料、配合比、生产搅拌运输工艺、养护方式等十分严格,按普通混凝土的生产理念远远不能适应要求。 二、原材料选用上的差别 1.水泥 水泥应采用硅酸盐水泥、普通硅酸盐水泥。普通硅酸盐水泥中掺与料只能就是粉煤灰或高炉矿渣。 a 不用早强型水泥 b 不用立窑水泥 c 不要选用C3A含量高的水泥 d 尽量选用低碱水泥 2、砂

再生混凝土的研究现状及其基本性能论文

目录 摘要 (2) 第1章研究的目的、方法、现状 (3) 1.1 研究的目的及意义 (3) 1.2 研究的方法 (3) 1.3 研究的现状 (4) 1.3.1 国外研究现状 (4) 1.3.2 国内研究现状 (4) 第2章再生混凝土在粗、细骨料及再生墙体领域研究现状 (5) 2.1 再生混凝土及再生墙体的基本性能 (5) 2.1.1 再生混凝土的基本性能 (6) 2.1.2 再生墙体的基本性能 (7) 2.2 再生混凝土粗、细骨料研究现状 (7) 2.3 再生墙体研究现状 (8) 第3章促进废旧材料再利用健康发展的对策探索 (9) 3.1 废旧材料再利用的基本方法 (9) 3.1.1 回填掩埋法 (9) 3.1.2 加工骨料法 (10) 3.1.3 还原再利用 (10) 3.1.4 堆山造景的处理方式 (10) 3.2 废旧材料再利用在旧城改造中存在的问题 (11) 3.3 废旧材料再利用建议 (11) 3.3.1 创新废旧材料再利用管理模式 (12) 3.3.2 产学研政联动、提升废旧材料再利用技术水平 (12) 3.3.3、增强宣传教育、提高废旧材料再利用产品的社会认可度 (12) 3.3.4 推进废旧材料再利用产业化 (12) 第4章结论及展望 (13) 4.1 结论 (13) 4.2 展望 (13) 参考文献 (14) 附录A (15) 致谢 (17)

摘要 二十世纪以来,建筑业的快速增长消耗大量环境资源,与此同时爷产生大量的建筑废弃物。相比发达国家,我国建筑废弃物再利用尚处于初级阶段,目前多数建筑废弃物用于基础回填,属于低等级循环利用,其经济效益和社会效益并不令人满意。在我国践行可持续发展为主题、环境友好型社会为建设目标的现在,建筑垃圾回收利用,已变成不可逃避的课题。 本文在废旧材料回收方面的研究,首先对废旧材料再生利用的目的、再生利用发展现状进行分析,重点总结了国内外废旧材料再利用的发展趋势;其次对再生混凝土在粗骨料、细骨料以及再生墙体领域的研究现状做了详细的介绍,并对再生混凝土和再生墙体的基本性能展开阐述;最后本文总结了废旧材料再生利用的一般处理方法,通过分析废旧材料再利用在发展中存在的问题,提出了我国未来废旧材料发展的建议,希望能为我国的新型城镇化建设提供理论参考。 关键词:建筑废弃物,低级循环,可持续发展,再生利用

高性能混凝土基本知识

一、什么是高性能混凝土?现代工程施工为什么强调必须发展高性能混凝土? 高性能混凝土是在大幅度提高普通混凝土性能的基础上,采用现代混凝土技术制作的混凝土,它以耐久性作为主要指标。针对不同用途要求,高性能混凝土对下列性能有重点地予以保证:耐久性、工作性、适用性、强度、体积稳定性、经济性。为此,高性能混凝土在配料上的特点是:低水胶比、选用优质原料,并 这里特别强调。目前有些人员,还认为高性能混凝土必须是高强混凝土(大于C50级的混凝土),这是片面的。从目前已取得的成果以及从工程安全性与安全使用年限等要求来看,高强混凝土必须是高性能混凝土。因此,高强混凝土应包括在高性能混凝土之中,而不是高性能混凝土包括在高强混凝土之中。单纯的高强混凝土不一定就是高性能,如:干硬性混凝土、碾压混凝土。中低等级的混凝土,只要需要也可以按高性能混凝土来配制,如处于恶劣环境的海工混凝土、中高等介质的耐蚀混凝土、大体积混凝土、含有活性碱集料的混凝土。对强度要求并不高(一般C30级左右),但对耐久性要求却很高,高性能混凝土恰能满足这些要求。因此,高性能混凝土不只是高强度的,而是包括各种强度等级的,范围十分广泛。 高性能混凝土能够解决在使用过程中的诸如问题,如:高强耐久,混凝土需要密实度高;泵送施工需要大坍落度,流动性好;防水,需要抗渗性好;耐蚀,可根据需要配制各类耐腐蚀混凝土。总之,针对混凝土所处环境、耐久要求、施工工艺等按需配制。 实践证明,普通混凝土的使用寿命不过50年,我国在50年代兴建的铁路、公路桥梁混凝土,已经全部通过大修或重建。当时兴建的水库大坝有许多已经成

为陷入危境的“病坝”。据水利界专家介绍:截至1997年底,驰名中外的佛子岭、梅山、响洪甸三座老坝,不维修不行,维修耗资巨大,可能比新建坝耗资还要多。 据《钢筋混凝土结构设计规范》管理组1997年的调查资料,一般环境中的建筑物混凝土有40%已经碳化到钢筋表面,较潮湿环境中则有90%的构件钢筋已经锈蚀,其中有的重要建筑物使用时间只有10年左右就得推倒重建。因此,混凝土耐久性问题越来越受到人们的重视,长期以来按保证强度单一指标的做法已经不适合现代工程施工了。 高性混凝土,在正常条件下使用寿命都能满足100年,配制好的高性能混凝土,在恶劣环境下的使用寿命也能超过100年。发达国家(如美国)工程施工对混凝土耐久性的要求是大于120年。我国三夹工程大坝设计使用年限是100年,杭州湾大桥(抗腐蚀混凝土)、京沪高速铁路主体工程混凝土,设计寿命都按使用100年不维修,其混凝土工艺要根据工程所处的环境条件,使用耐久要达到100年以上来配制。 二、混凝土的耐久性涉及哪些方面? 混凝土的耐久性包含:引起破坏的作用力、对破坏作用的抵抗力。两种力相互抵抗的结果决定了混凝土是否耐久。如果抵抗力总是大于破坏力,则混凝土的耐久性始终可得到保证。破坏的因素有:①冻融循环作用;②钢筋锈蚀作用;③碳酸盐化作用;④淡水溶蚀作用;⑤盐类侵蚀作用;⑥碱—集料反应;⑦酸碱腐蚀作用;⑧冲击、磨损等机械破坏作用等。如何有效地预防和抵抗这些破坏因素的破坏力,是解决混凝土耐久性问题的关键。

普通混凝土拌合物性能试验要点

普通混凝土拌合物性能试验 一、目的要求及适用范围 检验混凝土拌合物的各种性能及质量和流变特征,要求统一遵循混凝土拌合物性能试验方法,从而对工业与民用建筑和一般构筑物中所适用普通混凝土 拌合物的基本性能进行检验。 二、拌合物取样及试样制备 1.混凝土拌合物试验用料取样应根据不同要求,从同一盘搅拌或同一车运送的混凝土中取 出;或在试验室用机械或人工拌制。 2.混凝土工程施工中取样进行混凝土拌合物性能试验时,其取样方法和原则应按 GB50204-2002《混凝土结构工程施工质量验收规范》及其他有关规定执行。 3.在试验室拌制混凝土拌合物进行试验时,混凝土拌合物的拌合方法按下列方法步骤进行:(1)试验室温度应保持在(20±5)℃,并使混凝土拌合物避免遭受阳光直射和风吹(当需 要模拟施工所用的混凝土时,试验室和原材料的质量、规格和温度条件应与施工现场相同)。(2)所用材料应符合有关技术要求。在拌合前,材料的温度应保持与试验室温度相同。 (3)各种材料应拌合均匀。水泥如有结块而又必须使用时,应过0.90mm方孔筛,并记录筛余物。 (4)在决定用水量时,应扣除原材料的含水量,并相应增加其各种材料的用水量。 (5)拌制混凝土的材料用量以重量计。称量精确度:骨料为± 1.0%;水、水泥和外加剂为 ±0.5%。 (6)掺外加剂时,掺入方法应按照有关规定。 (7)拌制混凝土所用的各种用具(入搅拌机、拌合铁板和铁铲、抹刀等),应预先用水湿润,使用完毕后必须清晰安静,上面不得有混凝土残渣。 (8)使用搅拌机半只混凝土时,应在拌合前预拌适量的砂浆进行刷膛(所用砂浆或混凝土 配合比应与正式拌合的混凝土配合比相同),使搅拌机内壁粘附一层砂浆,以避免正式拌合 时水泥砂浆的损失。机内多余的砂浆或混凝土倒在铁板上,使拌合铁板也粘附薄层砂浆。 (9)设备:1)搅拌机:容积30~100L,转速为18~22r/min。)磅秤:称量100kg,感量50g;台磅:称量10kg,感量5g;天平:称量1kg,感量0.5g(称量外加剂用)。3)铁板:拌合用铁板,尺寸不宜小于 1.5m*2.0m,厚度3~5mm。4)铁铲、抹刀、坍落度筒、刮尺、 容器等。 (10)操作步骤 1)人工拌合法:将称好的砂料、水泥放在铁板上,用铁铲将水泥和砂料翻拌均匀,容后加 入称好的粗骨料(石子),再将全部拌合均匀。将拌合均匀的拌合物堆成圆锥形,在中心作 一个凹坑,将称量好的水(约一半)倒入凹坑中,勿使水溢出,小心拌合均匀。再将材料堆 成圆锥形作一凹坑,倒入剩余的水,继续拌合。每翻一次,用铁铲在全部拌合物面上压切一 次,翻拌一版不少于6次。拌合时间(从加水算起)随拌合物体积不同,宜接如下规定控制:拌合物体积在30L以下时,拌合4~5min;体积在30~50L时,拌合5~9min;体积超过50L 时,拌合9~12min。混凝土拌合物体积超过50L时,应特别注意拌合物的均匀性。 2)机械拌合法:按照所需数量,称取各种材料,分别按石、水泥、砂依次装入料斗,开动 机器徐徐将定量的水加入,继续搅拌2~3min(或根据不同情况,按规定进行搅拌),将混凝土拌合物倾倒在铁板上,再经人工翻拌两次,使拌合物均匀一致后用做实验。 4.混凝土拌合物取样后应立即进行试验。试验前混凝土拌合物应经人工略加翻拌,以保证质量均匀。 三、混凝土拌合物的和易性

再生骨料混凝土及性能的研究

第33卷第3期 2016年6月吉林建筑大学学报Journal of Jilin Jianzhu University Vol.33No.3Jun.2016 收稿日期:2015-08-08. 基金项目:吉林省科技发展计划重大攻关项目(20130204009SF ;20150203014SF ). 作者简介:肖力光(1962 ),男,吉林省长春市人,教授,博士. 再生骨料混凝土及性能的研究 肖力光1张雪1王思宇2 (1:吉林建筑大学材料科学与工程学院,长春130118;2:亚泰集团长春建材有限公司,长春130000) 摘要:本文综述了再生骨料混凝土的国内外发展现状,重点介绍了再生骨料混凝土的工作性、力学性能和耐久性,合理取代率的再生混凝土完全可以替代原生混凝土在建设领域的应用,再生混凝土既解决了建筑垃圾的处理问题,又保护了环境,节省了天然骨料资源,是一种应该大力推广应用的绿色建筑材料. 关键词:再生粗骨料;再生粗骨料混凝土;工作性;力学性能;耐久性 中图分类号:TU 5文献标志码:A 文章编号:2095-8919(2016)03-0027-04 Recycled Aggregate Concrete and its Performance Study XIAO Li -guang,ZHANG Xue,WANG Si -yu (1:School of Materials Science and Engineering,Jilin Jianzhu University,Changchun,China 130118; 2:Cahgnchun Building Materiars Co.,LTD,of Yatai Group,Changchun,China 130000) Abstract:The domestic and foreign development present situation of recycled aggregate concrete is reviewed in this essay,introduced the work ability,mechanical properties and durability of recycled aggregate concrete,the reasona-ble replacement ratio of recycled concrete can completely replace the original concrete application in the field of construction,the recycled concrete not only can solve the problem of construction waste processing,and protect the environment,save the natural aggregate resources,is a kind of application should vigorously promote green building materials. Keywords:recycled coarse aggregate;recycled coarse aggregate concrete;work ability;mechanical properties;dura-bility 0引言 随着我国建筑业快速发展,同时产生了大量的建筑垃圾,环境污染问题也随之加重,而建筑垃圾中重要组成部分为废弃混凝土,因此,废弃混凝土的有效再利用是建筑垃圾治理中极其重要的一部分,是发展绿色 建筑的重要途径之一[1] ,可解决普通混凝土制备过程中的产生的自然资源、能源、环境及相关社会问题,缓 解骨料供求紧张的压力,是环境保护和可持续发展战略的重要举措[2].1 再生骨料混凝土国内外发展现状1.1再生骨料混凝土国外发展现状 近30年,美国、日本、德国等国家和欧洲地区的发达国家对废弃混凝土再利用的研究主要集中在对再生混凝土基本性能和再生骨料的研究,这些基本性能包括物理性能、化学性能、结构性能、力学性能和耐久性 能.美国制定的《超级基金法》规定:“任何企业生产产生的工业废弃物,必须由企业妥善处理,不得擅自随意

《混凝土-微观结构性能和材料》笔记

笔记之前: 1.这本书是译著。原著名:《CONCRETE Microstructure,Properties,and Materials》由库玛·梅塔( Mehta)和保罗 .蒙特罗(Paulo )合著。 2.本笔记所选摘的都是普通教材中可能忽略的地方,不体现混凝土科学的主要框架,只以本书的体色为主:细致,深入,全面。 3.作为思考混凝土某一方面研究的借鉴,目的是拓宽思路。 笔记: 第一篇硬化混凝土的微结构和性能 第一章绪论 第二章混凝土的微结构(提出了混凝土中过渡区的重要性) 第三章强度(见附图1影响混凝土强度各个因素的相互作用) 第四章尺寸稳定性 “需要注意,混凝土构件通常处于被约束的状态,约束有时来自路基的摩擦和端部的其他构件,但更多还是来自钢筋和混凝土内、外部的应变差。” “混凝土在约束状态下,干缩应变诱发的弹性拉应力和粘弹性行为带来的应力松弛之间的交互作用,是大多数结构变形和开裂的核心。” “不是所有变量都以同一种方式控制混凝土的强度和弹性模量(通常,粗骨料的弹性模量越高、用量越大,混凝土的弹性模量就越大。低强或中强 混凝土的强度不受骨料孔隙率正常变化的影响。)” (附图2 影响混凝土弹性模量的不同参数) 第五章耐久性 (附图3 混凝土劣化的物理原因) “在一种冻融环境中耐冻的混凝土在另一种组合条件下却可能被摧毁。” “经显微镜观测证实:当冰在气孔(而不是毛细孔道)中形成时,水泥浆体会收缩” “对一种骨料,临界尺寸(在一定的孔径分布、渗透性、饱和度与结冰速率条件下,大颗粒骨料可能会受冻害,但小颗粒的同种骨料则不会)并非 单一值,因为他还取决于结冰速率、饱和度和骨料的渗透性。” (附图4 化学反应引起混凝土劣化的模型) (附图5 常见环境条件下混凝土损伤的整体模型) “氯化物对硫酸盐膨胀的影响清楚地表明:我们在模拟材料行为时经常犯错误,即为了简单起见只考虑单一因素的影响,而没有充分考虑其他可能 会显著改变这种影响的因素的存在。” 第二篇混凝土原材料、配合比和早龄期性能 第六章水硬性水泥 区分水泥熟料的化学组成(氧化钙、二氧化硅、三氧化二铝、三氧化二铁、水等)与矿物组成(硅酸三钙、硅酸二钙、氯酸三钙、铁铝酸四钙等); “任何化学反应的主要特征包括物质变化、能量变化和反应速率三个方面” “水化水泥浆体的电子显微研究表明,水泥早期,水化主要以完全溶解机理为主;水化后期,由于溶液中离子的迁移受阻,剩余水泥颗粒的水化则 主要按固相反应机理进行”

混凝土拌合物性能指标

混凝土的稠度值越大流动性越小,砂浆的稠度值越大流动性越大 水泥混凝土拌和物稠度试验方法(坍落度仪法) (T0522-2005) 一、目的和适用范围本方法规定了采用坍落度仪测定水泥混凝土拌和物稠度的方法和步骤。本方法适用于坍落度大于10㎜,集料公称最大粒径不大于31.5㎜的水泥混凝土的坍落度测定。 二、仪器设备 1、坍落筒:如图所示, 坍落筒为铁板制成的截头圆锥筒,厚度不小于1.5mm,内侧平滑,没有铆钉头之类的突出物,在筒上方约2/3高度处有两个把手,近下端两侧焊有两个踏脚板 2、捣棒:为直径16㎜,长约600㎜并具有半球形端头的钢质圆棒。 3、其它:小铲、木尺、小钢尺、镘刀和钢平板等。 三、试验步骤 1、试验前将坍落筒内外洗净;放在经水润湿过的平板上(平板吸水时应垫以塑料布),踏紧踏脚板。 2、将代表样分三层装入筒内,每层装入高度稍大于筒高的1/3,用捣棒在每一层的横截面上均匀插捣25次,插捣在全部面积上进行,沿螺旋线边缘至中心,插捣底层时插至底部,插捣其它两层时,应插透本层并插入下层约20-30㎜,插捣须垂直压下(边缘部分除外),不得冲击。在插捣顶层时,装入的混凝土应高出坍落筒口,随插捣过程随时添加拌和物。当顶层插捣完毕后,将捣棒用锯和滚的动作,清除掉多余的混凝土,用镘刀抹平筒口,刮净筒底周围的拌和物。而后

立即垂直地提起坍落筒,提筒在5~10s内完成,并使混凝土不受横向及扭力作用。从开始装筒至提起坍落筒的全过程,不应超过150s。 3、将坍落筒放在锥体混凝土试样一旁,筒顶平放木尺,用小钢尺量出木尺底面至试样顶面中心的垂直距离,即为该混凝土拌和物的坍落度,精确至1mm。 4、当混凝土的一侧发生崩塌或一边剪切破坏,则应重新取样另测。如果第二次仍发生上述情况,则表示该混凝土和易性不好,应记录。 5、当混凝土拌和物的坍落度大于220㎜时,用钢尺测量混凝土扩展后最终的最大直径和最小直径,在这两个直径之差小于50㎜的条件下,用其算术平均值作为坍落扩展度值;否则,此次试验无效。 6、坍落度试验的同时,可用目测方法评定混凝土拌和物的下列性质,并予记录。 (1)棍度:按插捣混凝土拌和物时难易程度评定,分“上”、“中”、“下” 三级:“上’:表示插捣容易;“中”:表示插捣时稍有石子阻滞的感觉; “下’:表示很难插捣。 (2)含砂情况:按拌和物外观含砂多少而评定,分“多”、“中”、“少”三级:“多”:表示用镘刀抹拌和物表面时,一两次可使拌和物表面平整无蜂窝;“中”:表示抹五六次才使表面平整无蜂窝;“少”:表示抹面困难,不易抹平,有空隙及石子外露等现象。(3)粘聚性:观测拌和物各组分相互粘聚情况。评定方法用捣棒在已坍落的混凝土锥体侧面轻打,如锥体在轻打后逐渐下沉,表示粘聚性

钢筋混凝土的特点及应用

钢筋混凝土的特点及应用 一、钢筋混凝土的基本原理 钢筋混凝土之所以可以共同工作是由它自身的材料性质决定的。首先钢筋与混凝土有着近似相同的线膨胀系数,不会由环境不同产生过大的应力。其次钢筋与混凝土之间有良好的粘结力,有时钢筋的表面也被加工成有间隔的肋条(称为变形钢筋)来提高混凝土与钢筋之间的机械咬合,当此仍不足以传递钢筋与混凝土之间的拉力时,通常将钢筋的端部弯起180 度弯钩。此外混凝土中的氢氧化钙提供的碱性环境,在钢筋表面形成了一层钝化保护膜,使钢筋相对于中性与酸性环境下更不易腐蚀。为保证钢筋与混凝土之间的可靠粘结和防止钢筋被锈蚀,钢筋周围须具有15~30毫米厚的混凝土保护层。若结构处于有侵蚀性介质的环境,保护层厚度还要加大。 由于混凝土的抗拉强度远低于抗压强度,因而素混凝土结构不能用于受有拉应力的梁和板。如果在混凝土梁、板的受拉区内配置钢筋,则混凝土开裂后的拉力即可由钢筋承担,这样就可充分发挥混凝土抗压强度较高和钢筋抗拉强度较高的优势,共同抵抗外力的作用,提高混凝土梁、板的承载能力。 二、钢筋混凝土的特性 混凝土的收缩和徐变(蠕变)对钢筋混凝土结构具有重要意义。由于钢筋会阻碍混凝土硬化时的自由收缩,在混凝土中会引起拉应力,在钢筋中会产生压应力。混凝土的徐变会在受压构件中引起钢筋与混凝土之间的应力重分配,在受弯构件中引起挠度增大,在超静定

结构中引起内力重分布等。混凝土的这些特性在设计钢筋混凝土结构时须加以考虑。 由于混凝土的极限拉应变值较低(约为0.15毫米/米)和混凝土的收缩,导致在使用荷载条件下构件的受拉区容易出现裂缝。为避免混凝土开裂和减小裂缝宽度,可采用预加应力的方法;对混凝土预先施加压力。实践证明,在正常条件下,宽度在0.3毫米以内的裂缝不会降低钢筋混凝土的承载能力和耐久性。 在从-40~60°C的温度范围内,混凝土和钢筋的物理力学性能都不会有明显的改变。因此,钢筋混凝土结构可以在各种气候条件下应用。当温度高于60°C时,混凝土材料的内部结构会遭到损坏,其强度会有明显降低。当温度达到200°C时,混凝土强度降低30~40%。因此,钢筋混凝土结构不宜在温度高于200°C的条件下应用:当温度超过200°C时,必须采用耐热混凝土。 三、钢筋混凝土的分类及强度划分 1、按密度分类:混凝土按密度大小不同可分为三类: 重混凝土:它是指干密度大于2600kg/m的混凝土,通常是采用高密度集料(如重晶石、铁矿石、钢屑等)或同时采用重水泥(如钡水泥、锶水泥等)制成的混凝土。因为它主要用作核能工程的辐射屏蔽结构材料,又称为防辐射混凝土。 普通混凝土:它是指干密度为2000~2600kg/㎡的混凝土,通常是以常用水泥为胶凝材料,且以天然砂、石为集料配制而成的混凝土。它是目前土木工程中最常用的水泥混凝土。

相关主题
文本预览
相关文档 最新文档