当前位置:文档之家› 超高分子量聚乙烯纤维和UD复合材料在防弹应用中的加速老化研究

超高分子量聚乙烯纤维和UD复合材料在防弹应用中的加速老化研究

超高分子量聚乙烯纤维和UD复合材料在防弹应用中的加速老化研究
超高分子量聚乙烯纤维和UD复合材料在防弹应用中的加速老化研究

超高分子量聚乙烯纤维和UD复合材料在防弹应用中的加速老化研究S. Chabba. M. van Es. E. J. Van Klinken.

M. J. Jongedijk. D. Vanek. P. Gijsman.

A. C. L. M. Van der Waals

接收:2007年2月12日/采用:2007年2月15日/网上发表:2007年3月20日

? Springer Science +Business Media, LLC 2007

当今,装甲防护系统使用的各种聚合材料,重量轻并且为人员和车辆提供优良机动性和防弹性能。防弹应用中常用的聚合材料包括迪尼玛?等超高分子量聚乙烯,以及Kevlar和Twaron等芳香聚酰胺纤维。由于执法人员和士兵在各种不同环境条件下穿着防弹衣执行任务,要求装甲防护系统能承受不同环境条件并保持良好性能。近期事故的原因是防弹衣中缺少聚对苯撑苯并双恶唑(PBO)纤维,进而强调了防弹衣坚固性的重要性。美国国家司法学会(NIJ) 的一系列调查说明,PBO纤维在光亮和潮湿【1】环境中将承受巨大的拉伸载荷。抗拉性能的损失可能降低PBO材质装甲防护解决方案在使用中的防弹性能。合成纤维特性、性能和稳定性与其聚合物化学性质密切相关。迪尼玛?是帝斯曼迪尼玛?公司在荷兰和美国使用专利凝胶纺丝工艺生产的一种高性能聚乙烯纤维。这种纤维的结晶度和取向性极高,密度极低,成为极具吸引力的轻型弹道复合材料应用解决方案。就化学性质而言,迪尼玛?纤维不含任何芬芳剂、酰胺及其他与普通化学品发生反应的化学族,因此,纤维具有惰性和稳定性【2】。本研究评估了在高温和潮湿环境条件下,使用加速老化技术的超高分子量聚乙烯纤维和复合材料的性能保持能力。

本研究中使用的超高分子量聚乙烯纤维和UD复合材料由帝斯曼迪尼玛?公司生产。研究中使用的是迪尼玛? SK76纤维,1760dtex和迪尼玛? UD 等级SB21、SB31和SB61。Dtex是一种标准纺织物理度量,用以表示每1万米长度以克为重量单位纤维线性密度。UD材料迪尼玛?SB21、SB31和SB61是使用热塑性树脂为基体与超高分子量聚乙烯纤维复合而成。

为确定加速老化所需时间,在温度控制良好的条件下,将迪尼玛?纤维的耗氧量和单向性作为时间函数进行监测。氧化是促使聚烯烃老化最重要的过程【3】。温度与化学反应速率的关系可用阿列纽斯方程式表示为【4】:

(1)

方程式中,k=反应速率常数;E a=激活能;A=碰撞频率系数;R=气体常数;T=绝对温度。

反应的变换系数对所需温度下与基准参考温度下的反应速度进行比较。由方程式1得到反应变换系数,如以下方程式2所示:

In(变换系数)=(2)

方程式中,k ref=参考温度T ref下的反应速率常数,k=温度T下的反应速率常数。

通过标绘1/T的函数In(变换系数),得到一条斜率为E a/R的直线,被称作阿列纽斯曲线。迪尼玛? SK76和迪尼玛? SB21的阿列纽斯曲线如图1和图2所示。

在本研究中,纤维样品,100米,缠绕于多孔线轴之上。UD材料样品,面积为40×40厘米,面密度为3.66公斤/平方米。可将在35℃温度下使用5年作为防弹衣的基准要求。经常使用的防弹衣可能会处于相对湿度较高的环境中。因此,为了获

得防弹衣所承受的较高相对湿度,老化研究选用80%的相对湿度。根据方程式2、图1和图2,可计算出在65℃下加速老化8周将得到与在35℃基准温度下经过5年相同的效果。根据修改的ISO 2062标准,说明控制和老化纤维样本抗拉性能的特征。样本测试前在23℃和55%相对湿度的条件下放置72小时。在Zwick1120拉伸试验设备的500米计量长度上以250毫米/分钟的十字头速度测试拉伸试验样本。分别测量每种纤维20个样本的韧性、断裂压变和杨氏模量。按照STANAG2920方法,测试迪尼玛? UD等级SB21、SB31和SB61的六种弹道包以衡量V50(子弹具有50%机率穿透弹道包的速度)。弹道试验使用9毫米包钢子弹,根据STANAG2920标准的建议设置试验。在65℃和80%相对湿度下加速老化0、1、2和4周后进行拉伸和弹道试验。

图1:迪尼玛? SK76纤维的阿列纽斯曲线

图2:迪尼玛? SB21的阿列纽斯曲线

图3显示了老化时间对迪尼玛? SK76纤维的韧性、拉伸断裂应变和杨氏模量的影响。由图3可见,拉伸断裂应变从第0至8周增大,其原因为超高分子量聚乙烯处于65℃和80%相对湿度条件下8周后高取向分子链松弛。纤维韧性在加速老化的8周内变化很小。综合结果表明,迪尼玛? SK76在高温和高湿度环境中加速老化8周后能保持良好的性能。

美国国家司法学会(NIJ)近期发布了PBO纤维暴露在高温和高湿度环境中抗拉强度保持力的结果【1】。PBO纤维显示,暴露在50℃和60%相对湿度环境50天后,

抗拉强度降低约20%。

图3:65℃和80%相对湿度环境中加速老化对迪尼玛? SK76纤维的影响

由图3可见,迪尼玛? SK76纤维在较高温度和相对湿度的条件下加速老化8周后可保持超过97%的抗拉强度。

如果复合材料防弹衣能更快吸收抛射冲击能并迅速将其扩散至更大的表面区域,该系统的效率将更高。Cunniff研究了一种将弹道性能参数U*与纤维拉伸特性相联系的试验关系【5】:

(3)

方程式中,σ

f =纤维断裂拉伸强度;ε

f

=纤维断裂应变;ρ=纤维密度。

由图3可见,纤维韧性和应变失效在加速老化的8周内变化很小,进一步确认迪尼玛?纤维在加速老化8周后未损失能量吸收能力并能提供良好的弹道应用解决方案。

图4显示了迪尼玛? SB21、SB31和SB61复合材料在65℃和80%相对湿度条件下加速老化8周后V50的相对变化。由图4可见,所有UD材料在加速老化8周后均能保持其V50性能。单向ANOV A分析显示,迪尼玛? SB21、SB31和SB61在95%置信区间中的V50值在0至8周无明显变化,说明迪尼玛? UD能很好地保持其防弹特性。

结果显示,超高分子量聚乙烯迪尼玛?纤维和UD材料在35℃条件下暴露5年均可保持其拉伸特性和弹道(V50)性能,说明迪尼玛?纤维和UD材料具备良好的预期使用寿命。而复合材料防弹衣的预期使用寿命需综合评估。复合防弹衣的实际长期性能取决于实验室不易评估的因素,如防弹衣设计和防弹衣保养等。建议定期评估现场使用的防弹衣的性能保持能力,以进一步了解弹道装甲防护系统的预期使用寿命。实际测得的防弹衣性能应与实验室环境中得到的结果相联系。该分析将有助于找到适当的方法,更好预测防弹衣在使用周期中的性能保持能力。

图4:在65℃和80%相对湿度条件下加速老化对迪尼玛? SB21、SB31和SB61中V50的影响

参考书目:

1、《关于防弹衣安全性主动测试向首席检察官作出的第三次情况报告》,2005年8月,美国国家司法学会,https://www.doczj.com/doc/af8724082.html,/bvpbasi/docs/supplementII_08_12_05.pdf,2006年11月20日

2、Van Dingenen JLJ (2004):Hearle JWS (ed)《高性能纤维》,woodhead出版有限公司,英国剑桥,第76页

3、Gugumus F(1990):Gachter R, Muller H (eds) 《塑料添加剂手册》,纽约hanser 出版社,第1页

4、Rodriguez F (1996):《聚合物系统原理》,Taylor&Francis,费城PA,第104页

5、Cunniff PM, Auerbach MA (2002),第23次军队科学会议,奥兰多FL,2002年12月

超高分子量聚乙烯(UHMWPE)-化学化工论坛

超高分子量聚乙烯(UHMWPE)是一种综合性能优异的新型热塑性工程塑料,它的分子结构与普通聚乙烯(PE)完全相同,但相对分子质量可达(1-4)×106。随着相对分子质量的大幅度升高,UHMWPE表现出普通PE所不具备的优异性能,如耐磨性、耐冲击性、低摩擦系数、耐化学性和消音性等。 由于UHMWPE分子链很长,易发生链缠结,熔融时熔体黏度高达108Pa?s,熔体流动性差且临界剪切速率很低,因此容易导致熔体破裂,使其成型加工困难。为改善UHMWPE 的加工成型性能,需要对其流动性进行改性,而物理改性是主要的手段。 1UHMWPE的物理改性 物理改性不改变分子构型,但可以赋予材料新的性能。目前常用的物理改性方法主要有1)将UHMWPE与低熔点、低黏度的树脂共混改性;(2)加入流动改性剂,以降低UHMWPE 的熔体黏度,改善其加工性能,使之能在普通挤出机和注射机上加工;(3)液晶高分子原位复合材料改性等。 1.1共混改性 共混改性是改善UHMWPE熔体流动性最有效、简便的途径。共混时所用的第二组分主要是指低熔点、低黏度的树脂,如低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚酰胺(PA)、聚酯等。目前使用较多的是HDPE和LDPE。当共混体系被加热到熔点以上时,UHMWPE就会悬浮在第二组分的液相中,形成可挤出、可注射的悬浮体物料。 将UHMWPE与LDPE(或HDPE)共混可使其成型加工性能获得显著改善。但共混体系在冷却过程中会形成较大的球晶,球晶之间有明显的界面。在这些界面上存在着由分子链排布不同引起的内应力,由此会导致产生裂纹,所以与基体聚合物相比,共混物的拉伸强度有所下降。当受外力冲击时,裂纹会很快沿球晶界面发展而断裂,引起冲击强度降低。为保持共混体系的力学性能,可以采用加入适量成核剂,如硅灰石、苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐的方法阻止其力学性能下降。 Dumoulin等对UHMWPE与中相对分子质量聚乙烯(MMWPE)的共混物进行了研究。在双辊混炼温度175℃,混炼时间10min;密炼温度185-200℃,密炼时间10min的条件下,制备了UHMWPE含量小于或等于6%(质量分数,以下同)的共混物。在上述条件下制备的共混物的流变性能得到极大改善。 Veda等对UHMWPE与MMWPE的共混物进行了研究。结果表明,UHMWPE与MMWPE 在给定条件下能共结晶。但加入MMWPE后,共混物的冲击性能、耐磨性能有所下降。为保持力学性能,在共混体系中加入成核剂。 专利介绍了一种UHMWPE共混改性方法。将70%的UHMWPE与30%的PE共混,用共混物挤出的制品拉伸强度为390MPa,断裂伸长率为290%,用带缺口试样进行Izod冲击试验时,试样不断裂。 专利报道,将79.18%的UHMWPE(相对分子质量3.5×106),19.19%的普通PE(相对分子质量6.0×105),0.13%的成核剂(热解硅石,粒径5-50μm,表面积100-400m2/g)熔融混合,所得共混物可在普通注射机上成型,产品的抗冲击性、耐磨性等物理机械性能优于不加成核剂的共混物。 Vadhar等对UHMWPE与线型低密度聚乙烯(LLDPE)共混物进行了研究。采用同步和顺序投料方式,在密炼机、混料机中制备UHMWPE与LLDPE共混物。同步投料即在密炼温度180℃时,将两种组分同时加入密炼机内混炼;顺序投料即在250℃时先将UHMWPE树脂加入混料机中混炼,然后将其冷却到180℃,再加入LLDPE继续混炼。 实验结果表明,投料方式对共混物的流变性能和力学性能影响极大。差示扫描量热及小角激光散射图像分析仪分析表明,顺序投料方式制备的共混物中,UHMWPE和LLDPE组分之间发生共结晶现象而且两种组分的混合均匀程度优于同步投料方式制备的共混物。由于

超高分子量聚乙烯板材的英文缩写是UHMW-PE板。

超高分子量聚乙烯板材的英文缩写是UHMW-PE板。 超高分子量聚乙烯板的起源是美国。也就是说是美国人发明并制作了超高分子量聚乙烯板材。超高分子量聚乙烯板材是一种热性工程塑料,它的制作工艺是填料-加热-加压-降温-出模。虽然看起来制作很简单,其实不然超高分子量聚乙烯板制作必须有一定的经验和独特工艺,尤其是原料配比和加热和冷却时间直接影响超高分子量聚乙烯板的性能。 超高分子量聚乙烯板的特性:重量轻、抗冲击、耐磨损、耐腐蚀、抗紫外线、耐老化、摩擦系数小、无毒性、无污染、不易沾附异物、能吸收震动和噪音等优良性能。是替代金属材料的最佳材料。用超高分子量聚乙烯板加工制作的产品其他性能由于现有的金属制品。 Ultra high molecular weight polyethylene sheet English abbreviation is UHMW-PE board. The origin of ultra high molecular weight polyethylene board is USA. That is an American invention and production of ultra high molecular weight polyethylene sheet. Ultra high molecular weight polyethylene sheet is a kind of thermoplastic engineering plastic, its production process is packing - heating - pressure - temperature - die. Although it is made very simple, actually otherwise ultra high molecular weight polyethylene board production must have certain experience and unique technology, especially the ratio of raw materials and the heating and cooling time directly affect the performance of ultra high molecular weight polyethylene plate. Properties of ultrahigh molecular weight polyethylene board: light weight, impact resistance, abrasion resistance, corrosion resistance, ultraviolet resistance, aging resistance, low friction coefficient, non-toxic, non polluting, not easy adhesion, excellent performance of foreign body can absorb the vibration and noise etc.. Is the best material instead of metal material. Use the plate to manufacture products of other properties of ultra high molecular weight polyethylene due to metal products available UHMW-PE 聚乙烯是目前产量最大、应用最广的塑料品种之一,约占世界塑料总产量的30%。其中,LDPE、HDPE以及被称为第三代聚乙烯的LLDPE等均属于热塑性通用塑料,唯有分子量高达150万以上的UHMEPE,因物理力学性能优异而作为工程塑料应用。根据美国菲利普石油公司的划分方法,分子量在150万

复合材料的发展和应用

复合材料的发展和应用 复合材料的发展和应用 具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候 论文格式论文范文毕业论文 全球复合发展概况复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电气、、健身器材等领域,在近几年更是得到了飞速发展。另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。树脂基复合材料的增强材料树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道

的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料热塑性树脂基复合材料热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料、连

真假超高分子量聚乙烯管的区别

真假超高分子量聚乙烯管的辨别方法 2001年,超高分子量聚乙烯管材被科学技术部国科计字(2000)056号文件列为国家科技成果重点推广计划,属化工类新材料、新产品,是国家863计划成果转化项目。2009年国家发改委、科技部等将超高分子量聚乙烯管材列为当前优先发展的高科技产业化重点领域项目。 近年来,超分子量聚乙烯管材等相关产业在国家政策支持鼓励下发展十分迅速。但是,由于行业内部缺乏统一的规范及执行标准,随着该产业的快速发展,业内一些厂家为追逐利润或者低成本,越来越多地在超高分子量聚乙烯管生产过程中添加回料,或者以外观貌似超高分子量聚乙烯管的塑料管冒充超高分子量聚乙烯管,导致业内产品质量良莠不齐,市场竞争极为混乱,对产业发展造成诸多不良影响。这也给使用方造成了不必要的经济损失。本文介绍几种区分真假超高分子量聚乙烯管的辨别方法,以求对行业内外关注此种新产品的人士有所帮助。 泰丰源做的管子如果能叫超高,那我们超高生产厂家真都该歇业倒闭了。 泰丰源塑料管(超高管真是叫不出口)三大劣势: 1.分子量低:泰丰源做的管子虽然也叫做超高分子量聚乙烯管,但平均分子量 仅有150万(150万分子量是超高材料的最低限),而正规厂家所做的真正地超高分子量聚乙烯管分子量都在200万以上甚至300万。 2.性能不佳:由于泰丰源所做的所谓超高分子量聚乙烯管分子量较低,直接导 致其综合性能远不如其他厂家生产的超高分子量聚乙烯管。包括耐磨性能、抗冲击性能、自润滑性、不结垢性都不如真正地超高分子量聚乙烯管。 3.价格便宜:为什么说价格便宜事泰丰源所谓超高管道的劣势之一呢?俗话说 得好,便宜没好货,好货不便宜,管道也是货,所以也入理。泰丰源经常在市场上与竞争对手拼价格,他敢比正规厂家的价格低10%—15%。之所以这样,事因为他们原材料成本很低,为什么低?是因为他们用的管道原料虽然都打着超高分子量聚乙烯的旗号,但都是杂牌料,或者是混合料、再生料。这样的原材料生产出来的管子是什么样子的,不言而喻。 下边教大家几招分辨真假超高管(也可称作优等超高管与劣等超高管)的常用办法:

超高分子量聚乙烯的特性

超高分子量聚乙烯的特性 1、极高的耐磨特性超高管的分子量高达200万以上,磨耗指数最小, 使它具有极高的抗滑动摩擦能力。耐磨性高于一般的合金钢6.6倍,不锈钢的27.3倍。是酚醛树脂的17.9倍,尼龙六的6倍,聚乙烯的4倍,大幅度提高了管道的使用寿命。 2、极高的耐冲击性在现有的工程塑料中超高分子量管道的冲击韧性 值最高,许多材料在严重或反复爆炸的冲击中会裂纹、破损、破碎或表面应力疲劳。本产品按GB1843标准,进行悬臂梁冲击实验达到无破损,可承受外力强冲击、内部超载、压力波动。 3、耐腐蚀性UHMW-PE是一种饱和分子团结构,故其化学稳定性极高,本 产品可以耐烈性化学物质的侵蚀,除对某些强酸在高温下有轻微腐蚀外,在其它的碱液、酸液中不受腐蚀。可以在浓度小于80%的浓盐酸中应用,在浓度小于75%的硫酸、浓度小于20%的硝酸中性能相当稳定。 4、良好的自润滑性由于超高分子量聚乙烯管内含蜡状物质,且自身 润滑很好。摩擦系数(196N,2小时)仅为0.219MN/m(GB3960)。自身滑动性能优于用油润滑的钢或黄铜。特别是在环境恶劣、粉尘、泥沙多的地方,本品的自身干润滑性能更充分的显示出来。不但能运动自如,且保护相关工件不磨损或拉伤。 5、独特的耐低温性超高分子量聚乙烯管道耐低温性能优异,其耐冲 击性、耐磨性在零下269摄氏度时基本不变。是目前唯一可在接近绝对零度的温度下工作的一种工程塑料。同时,超高分子量聚乙烯管道的适温性宽,可长期在-269℃到80℃的温度下工作。 6、不易结垢性超高分子量聚乙烯管由于摩擦系数小和无极性,因此具 有很好的表面非附着性,管道光洁度高。现有的材料一般在PH值为9以上的介质中均结垢,超高分子量聚乙烯管则不结垢,这一特性对火电站用于排粉煤灰系统有重大意义。在原油、泥浆等输送管道方面也非常适用。 7、寿命长超高分子量聚乙烯分子链中不饱和基因少,抗疲劳强度大于50 万次,耐环境应力开裂性最优,抗环境应力开裂>4000h ,是PE100的2倍以上 ,埋地使用50年左右,仍可保持70%以上的机械性能。 8、安装简便超高分子量聚乙烯(UHMW----PE)管道单位管长比重仅为 钢管重量的八分之一,使装卸、运输、安装更为方便,且能减轻工人的劳动强度,UHMW-PE管道抗老化性极强,50年不易老化。不论地上架设,还是地下埋设均可。安装时无论是焊接或者是法兰连接均可,安全可靠、快捷方便、无需防腐、省工省力,充分体现出使用超高分子量聚乙烯管道“节能、环保、经济、高效”的优越性。

超高分子量聚乙烯(UHMWPE)的应用及加工技术

《燕山石化公司2012年度情报论文第号》 超高分子量聚乙烯(UHMWPE)的应用及加工 技术 伟超

树脂应用研究所2012.12.27

目录 1.UHMWPE的性能及应用 (1) 1.1 UHMWPE的性能 (1) 1.2 UHMWPE的应用 (2) 1.2.1 以耐磨性和耐冲击性为主的应用 (2) 1.2.2 以自润滑性和不粘性为主的应用 (3) 1.2.3 以耐腐蚀性和不吸水性为主的应用 (4) 1.2.4 以卫生无毒性为主的应用 (4) 2.UHMWPE的加工特点及加工技术 (4) 2.1 UHMWPE的加工特点 (4) 2.2 UHMWPE的加工技术 (5) 2.2.1 模压成型 (5) 2.2.2 挤出成型 (5) 2.2.3 注塑成型 (7) 2.2.4 UHMWPE纤维的纺丝工艺 (8) 2.3 几种新型挤出方法 (10)

2.3.1 UHMWPE的近熔点挤出技术 (10) 2.3.2 超高分子量聚乙烯加工中的亚稳性现象 (11) 2.3.3 气体辅助挤出成型技术 (11) 2.3.4 超支化聚(酯-酰胺)对UHMWPE的加工流动改性 (12) 2.3.5 数值模拟UHMWPE的柱塞挤出 (12) 3.结论 (13) 参考文献 (14)

超高分子量聚乙烯(UHMWPE)的应用及加工技术摘要:超高分子量聚乙烯(UHMWPE)是一种具有优异综合性能的热塑性工程塑料,广泛应用在纺织、造纸、包装、运输、化工、采矿、石油、建筑、电气、食品、医疗、体育、船舶、汽车等领域。由于其相对分子质量大,UHMWPE具有流动性差,临界剪切速率低,分子链易发生断裂等特点,加工困难。本文对超高分子量聚乙烯(UHMWPE)的应用及模压成型、挤出成型、注塑成型、纺丝等加工技术进行了介绍,并特别介绍了近熔点挤出、气体辅助挤出、超支化合物改性等几种较为新颖的UHMWPE加工技术。 关键词:UHMWPE,加工,进展,应用 超高分子量聚乙烯(UHMWPE)是一种具有优异综合性能的热塑性工程塑料。最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hercules公司、日本三井石油化学公司等也相继投入工业化生产。我国高桥化工厂于1964年最早研制成功并投入工业化生产,20世纪70年代后期又有塑料厂和助剂二厂投入生产。目前,各国树脂的生产都是采用齐格勒型高效催化剂低压法合成的。 1.UHMWPE的性能及应用 1.1 UHMWPE的性能[1] 1.磨耗性能 UHMWPE的耐磨耗性能居塑料之首,比尼龙66和聚四氟乙烯高4倍,比碳钢高5倍。 2.冲击性能 UHMWPE的冲击强度是市售工程塑料中最高的,为聚碳酸脂(PC)的2倍,ABS的5倍,且能在液氮温度(-℃)下保持高韧性。 3.润滑性能

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

超高分子量聚乙烯特性

超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万 以上的聚乙烯。 分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。热变形温度 (0.46MPa)85℃,熔点130~136℃。 UHMWPE性质特点为:极好的耐磨性,良好的耐低温冲击性、自润滑性、无毒、耐水、耐化学药品性,耐热性优于一般PE,缺点是耐热性(热变形温度)低、加工成型性差,外表面硬度,刚性,耐蠕变性不如一般工程塑料,膨胀系数偏大。UHMWPE流动性差,熔融状态下粘度极高,是呈橡胶状的高粘弹性体,早期仅能用压制和烧结方法成型,目前也可用挤出、注塑和吹塑方法加工。 特殊功能 机械性能高于一般的高密度聚乙烯。具有突出的抗冲击性、耐应力开裂性、耐高温蠕变性、低摩擦系数、自润滑性,卓越的耐化学腐蚀性、抗疲劳性、噪音阻尼性、耐核辐射性等。 使用温度100~110℃。耐寒性好,可在-269℃下使用。密度0.985g/cm3,分子量200万的产品,其断裂拉伸强度40MPa,断裂伸长率350%,弯曲弹性模量600MPa,悬臂梁缺口冲击冲不断。磨耗量(MPC法)20mm。 应用领域 UHMWPE可以代替碳钢、不锈钢、青铜等材料用于纺织、造纸、食品机械、运输、医疗、煤矿、化工等部门。如纺织工业上技梭器、打梭棒、齿轮、联结、扫花杆、缓冲块、偏心块、杆轴套、摆动后果等耐冲击磨损零件。造纸工业上做箱盖板、刮水板、压密部件、接头、传动机械的密封轴杆、偏导轮、刮刀、过滤器等;运输工业上做粉状材料的料斗、料仓、滑槽的衬里。

超高分子量聚乙烯板安装技术

超高分子量聚乙烯衬板使用安装技术 一、本衬板特点和功能 1、本衬板具有较高的分子量,产品性能优越,质量可靠,适用性强,范围广等特点。 2、具有较强的高耐磨性、自润滑、搞冲击、不粘结、卫生、耐酸碱,减少劳动强度等优点。 3、本聚乙烯衬板具有极好的滑动性能,吸水率低,不受湿物料影响,磨擦系数极低,抗物料冲击,不会出现裂纹,是理想的防粘、防堵衬里材料。 二、使用注意事项 1、衬板安装时,应先清理料仓板面,应无杂物,防止安装时装衬板不平整,造成衬板与仓面接触有空隙,出现衬板被料挤脱。 2、衬板勿用铁器猛砸,使衬板表面出现坑坑洼洼,影响自润性能。 3、安装衬板的部位,不能用电焊,氧焊作业,如确实不用不行,应在电焊或氧焊时必须有专人不间断在仓面和衬板的接触之间洒水,以免引起火灾,造成严重后果。 4、不能直接撬衬板与仓面接触的部位,防止衬板与螺丝分家,造成衬板损坏或脱落,影响正常生产。 5、衬板不能在高于100o C的温度使用,若温度高衬板变形,影响使用年限或不能使用。 6、衬板不能在经常出现明火的地方使用,若想使衬板有一定的形状,可用手锯加工成形,再利用衬板本身所具有极强的韧性,采用螺

栓等方法固定,使衬板达到使用满意。 7、衬板可在负几十度的温度下使用,不会降低使用年限或损坏。 三、衬板安装说明 VHMW—PE衬板与钢板连接时的安装方法: 1、焊接式: 本安装方法实用于金属煤仓:料斗等专用料仓,金属仓部的内衬安装。安装时首先按所安装部位需要衬板的大小形状用合金锯切开,在超高板上用电钻打与焊垫下部大小一样直径的洞眼,再用本安装公司所专制的与焊垫上部直径大小的钻头在所打的洞眼上重打上一个能把焊垫沉到板材内的沉头孔一个。然后把超高板用射钉器固定在铁仓内壁上,然后把焊垫放进沉头孔中下部与铁仓紧贴,用焊机把焊垫与仓接触部位焊牢,再用锤子钉一下焊垫上部,使焊垫压紧超高板即可。请参考(焊接安装示意图)。 2、螺栓式: 安装时首先在超高板上用电钻打与沉头螺栓的沉头部位一样大小的沉头孔眼,后用射钉器把超高板固定在金属仓内壁上,再用电钻对准超高板上的沉头孔在金属仓上打眼后穿入沉头螺栓,把超高板和金

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

超高分子量聚乙烯板材应用领域

简介 超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万以上的聚乙烯。 分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。热变形温度(0.46MPa)85℃,熔点130~136℃。 UHMWPE性质特点为:极好的耐磨性,良好的耐低温冲击性、自润滑性、无毒、耐水、耐化学药品性,耐热性优于一般PE,缺点是耐热性(热变形温度)低、加工成型性差,外表面硬度,刚性,耐蠕变性不如一般工程塑料,膨胀系数偏大。UHMWPE流动性差,熔融状态下粘度极高,是呈橡胶状的高粘弹性体,早期仅能用压制和烧结方法成型,目前也可用挤出、注塑和吹塑方法加工。 特殊功能 机械性能高于一般的高密度聚乙烯。具有突出的抗冲击性、耐应力开裂性、耐高温蠕变性、低摩擦系数、自润滑性,卓越的耐化学腐蚀性、抗疲劳性、噪音阻尼性、耐核辐射性等。 使用温度100~110℃。耐寒性好,可在-269℃下使用。密度0.985g/cm3,分子量200万的产品,其断裂拉伸强度40MPa,断裂伸长率350%,弯曲弹性模量600MPa,悬臂梁缺口冲击冲不断。磨耗量(MPC法)20mm。 应用领域 UHMWPE可以代替碳钢、不锈钢、青铜等材料用于纺织、造纸、食品机械、运输、医疗、煤矿、化工等部门。如纺织工业上技梭器、打梭棒、齿轮、联结、扫花杆、缓冲块、偏心块、杆轴套、摆动后果等耐冲击磨损零件。造纸工业上做箱盖板、刮水板、压密部件、接头、传动机械的密封轴杆、偏导轮、刮刀、过滤器等;运输工业上做粉状材料的料斗、料仓、滑槽的衬里。 UHMWPE可做各种机械的零部件,包括食品机械的齿轮、蜗轮、蜗杆、轴承。化工中做泵、阀门、档板、滤板。医疗上,还可用于心脏瓣膜、短形外科零件,人工关节及节育植入体。体育上做滑冰地板、滚地球道、滑雪板、机动雪橇零件。UHMWPE可以做高模量纤维,制造防弹衣、飞机座椅、海运、渔业用绳索等。 应用范围与聚酰胺、聚四氟乙烯相近,耐磨性超过碳钢,做齿轮、轴承、轴瓦、星轮、阀门、泵、导轨、密封填料、设备衬里、滑变板、人工关节等,纤维作防弹衣、绳索等。 超高分子量聚乙烯具有许多优异的性能,然而如此优异的工程塑料却很少有人知道它的存在,这主要是由于以前对超高分子量聚乙烯的熔体特性研究不足,加工方法基本上还停留在落后的压制一烧结工艺上。近年来,随着超高分子量聚乙烯加工技术的不断发展,其制品已在许多领域中获得了成功的应用。 纺织工业

复合材料的发展前景,发展与应用

复合材料的发展及应用 随着科学技术迅速发展,特别是尖端科学技术的突飞猛进,对材料性能提出越来越高,越来越严和越来越多的要求。在许多方面,传统的单一材料已不能满足实际需要。这时候复合材料就出现在了这百家争鸣的舞台上。 基本概论 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。此定义来自ISO。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。从上述定义中可以看出,复合材料是两个或多个连续相与一个或多个分散相在连续相中的复合,复合后的产物为固体时才称为复合材料。所以我们可根据增强材料与基体材料的名称来给复合材料命名,增强基体复合材料。如:玻璃钎维环氧树脂复合材料,可写作玻璃/环氧复合材 料。 分类与性能 按增强材料形态分类可分为(1)连续纤维复合材料;(2)短纤维复合材料;(3)粒状填料复合材料;(4)编织复合材料。按增强纤维种类分类可分为(1)玻璃纤维复合材料;(2)碳纤维复合材料;(3)有机,金属,陶瓷纤维复合材料。在此篇文章中主要讨论以基体材料分类的几种复合材料。1.聚合物基复合材料——比强度,比模量大;耐疲劳性好;减震性好;过载时安全性好;具有多种功能性;

有很好的加工工艺性。2金属基复合材料——高比强度,高比模量;导热,导电性能;热膨胀系数小,尺寸稳定性好;良好的高温性能;耐磨性好;良好的疲劳性能和断裂韧性;不吸潮,不老化,气密性好。此外还有陶瓷,水泥基复合材料,都有与上类似的特点。 基体材料 一:金属材料 选择基体的原则:使用要求,组成特点,基体金属与增强物的相 容性。 结构复合材料的基体:450℃以下的轻金属基体(“铝基和镁基”用于航天飞机,人造卫星,空间站,汽车发动机零件,刹车盘等);450-700℃的复合材料的金属基体(“钛合金”用于航天发动机);1000℃以上的高温复合材料的金属基体(“镍基,铁基耐热合金和金属间化合物”用于燃气轮机)。 二:陶瓷材料 陶瓷是金属和非金属元素的固体化合物,其键合为共价键或离子键,与金属不同,它们不含有大量的电子。一般而言,陶瓷具有比金属更高的熔点和硬度,化学性质非常稳定,耐热性,抗老化性皆佳。常用的陶瓷基体主要包括玻璃(无机材料高温烧结),玻璃陶瓷,氧化物陶瓷(MgO,Al2O3,SiO2,莫来石等),非氧化物陶瓷(氮化物,碳化物,硼化物和硅化物等)。 三:聚合物材料

复合材料的发展和应用的论文

复合材料的发展和应用的论文 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商ppg公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国gdp增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到2003年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。 另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。 树脂基复合材料的增强材料 树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维 目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

超高分子量聚乙烯市场分析报告

超高分子量聚乙烯(UHMWPE)市场分析报告 1 国外生产状况 国际市场上,超高分子量聚乙烯(UHMWPE)生产企业主要有德国的Ticona公司、巴西的Polialden公司、荷兰的DSM公司和日本三井化学公司等。其中,Ticona 公司生产能力为11万吨/年(含在中国独资企业产能),Polialden为4.5万吨/年,DSM为1万吨/年,全球总生产能力超过20万吨/年。Ticona公司是全球最大的UHMWPE生产厂,约占全球50%市场份额,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,种类齐全,并覆盖全球市场。DSM公司的特长是能生产特殊牌号的UHMWPE树脂,如:超细料及纤维料等,并且以自用为主,产品基本不外销。巴西Polialden公司主要是接管了原美国MONTELL的经营业务,发展速度很快,能为用户稳定提供分子量在300万—600万的原料,主要用于生产板材和异型材,占据北美市场。 国外超高分子量聚乙烯的主要生产商见表1。 表1 国外超高分子量聚乙烯的主要生产商及产品牌号 生产厂商(国家树脂牌号(商标 Hostalen GUR Ticon(德国 UTEC)Polialden 巴Stamylan UHDS(荷兰 HI-ZEX MILLION三井化学公司(日本SUNFINE_U旭化成工业公司(日本)SHOREKSPA-5SSIH 昭和油化(日本)

Novatec 三菱工程塑料公司(日本)A-C1200-1232 Allied(美国) LS501 Usi(美国) Marlex 6002 5003 (美国)Phillips公司Ticona德国1.1 Ticona公司是德国化学品集团塞拉尼斯(CELANESE)的工程聚合物业务子公司,生产能力为11万吨/年,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,注册商标为Hostalen。其主要产品牌号见表2。表2 Ticona公司主要产品牌号 Polialden公司是巴西Braskem公司的下属子公司,于2002年购买了Basell公司的UHMWPE技术,在切换式HDPE装置上生产这种聚合物。2004年,巴西Braskem 公司扩大位于巴西Bahia州Camacari的UHMWPE装置能力,产能从3万吨/年扩增至4.5万吨/年,新增产能于2005年初投用。Braskem公司的主要产品牌号见表3。 表3 Braskem公司的主要产品牌号

相关主题
文本预览
相关文档 最新文档