当前位置:文档之家› 11-3二项式定理(理)

11-3二项式定理(理)

11-3二项式定理(理)
11-3二项式定理(理)

一、选择题

1.(2011·天津理,5)在(x 2-2x )6

的二项展开式中,x 2的系数为( )

A .-154 B.15

4

C .-38 D.38

[答案] C

[解析] 本题主要考查二项式定理,设第r +1项为x 2

项,则T r +1=C r

6(

x 2

)6-r

(-2x

)r =C r 6(12)6-r

·x 6-r 2 (-2)r ·x -r

2 ,∴x 3-r =x 2,∴r =1, ∴系数:C 16(12

)5

(-2)=6×(-2)×

132=-3

8

,故选C. 2.(2012·信阳调研)在(x -12x )10

的展开式中,x 4的系数为( )

A .-120

B .120

C .-15

D .15 [答案] C

[解析] T r +1=C r 10

x r

·(-12x )10-r . 令x r

·(-12x

)10-r

=a ·x 4(a 为常数),

∴r =7,∴a =(-12)3.∴系数为C 7

10·(-12

)3=-15.

3.如果? ??

??3x 2-2x 3n

的展开式中含有常数项,则正整数n 的最小值为( )

A .3

B .5

C .6

D .10 [答案] B

[解析] ∵T r +1=C r n

(3x 2)n -r ?

??

??-2x 3r

=(-2)r 3n -r C r n

x 2n -5r

, 当2n -5r =0时,2n =5r ,

又∵n ∈N +,r ∈N ,∴n 是5的倍数. ∴n 的最小值为5.

4.(2011·重庆理,4)(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n =( )

A .6

B .7

C .8

D .9 [答案] B

[解析] 本题主要考查二项式定理中二项展开式通项公式的应用.

二项式(1+3x )n 展开式的通项公式为T r +1=3r C r n x r , ∴x 5与x 6的系数分别为35C 5n ,36C 6n . 由条件知:35C 5n =36C 6n ,即C 5n =3C 6n ,

∴n !5!(n -5)!=3·n !6!(n -6)! ∴n =7,选B.

5.(2012·云南一检)在(1+x )5+(1+x )6+(1+x )7的展开式中,x 4的系数是( ) A .25 B .35 C .45 D .55 [答案] D

[解析] 二项式(1+x )5中x 4的系数为C 45,二项式(1+x )6中x 4的系数为C 46,二项式(1+x )7中x 4的系数为C 47,

故(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数为C 45+C 46+C 47=55,故选D.

6.(2012·巢湖一模)已知(x 2-1x

)n 的展开式中第三项与第五项的系数之比为3

14,

则展开式中常数项是( )

A .-1

B .1

C .-45

D .45 [答案] D

[解析] 由题知第三项的系数为C 2n (-1)2=C 2n ,第五项的系数为C 4n (-1)4=C 4

n ,则有C 2n C 4n =3

14

,解之得n =10,

由T r +1=C r 10x 20-2r ·x -r

2 (-1)r , 当20-2r -r

2

=0时,即当r =8时.

常数项为C 810(-1)8=C 2

10=45,选D.

二、填空题

7.(2011·湖北理,11)(x -1

3x

)18的展开式中含x 15的项的系数为________.(结果用数值表示)

[答案] 17

[解析] 本题考查二项展开式通项公式的应用

T r +1=C r 18x 18-r (-13x )r =(-13)r C r 18x 18-3

2r .令18-3r 2=15,得r =2. ∴含x 15

的项的系数为(-13

)2C 2

18=17.

8.若(2x -1)6(x +1)2=a 0x 8+a 1x 7+a 2x 6+a 3x 5+a 4x 4+a 5x 3+a 6x 2+a 7x +a 8,则

a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=________.

[答案] 4

[解析] 令x =1得:a 0+a 1+a 2+…+a 8=4. 三、解答题

9.在二项式? ??

??3x -123x n

的展开式中,前三项系数的绝对值成等差数列.

(1)求展开式的第四项; (2)求展开式的常数项; (3)求展开式的各项系数的和.

[解析] 第一项系数的绝对值为C 0n ,第二项系数的绝对值为C 1

n

2,第三项系数的绝对值为C 2n 4,依题意有C 0n +C 2n 4=C 1

n

2

×2,解得n =8. (1)第四项T 4=C 38(3x )5? ?

?

???-123x 3=-7x 23 .

(2)通项公式为T k +1=C k 8(3

x )8-k ? ?

?

???-123x =C k 8? ??

??-12k ·(3x )8-2k ,展开式的常数项

满足8-2k =0,即k =4,所以常数项为

T 5=C 48·

?

????-124=358

. (3)令x =1,得展开式的各项系数的和为? ????1-128=128=1

256

.

一、选择题

1.在? ?????x

2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中常数

项是( )

A .-7

B .7

C .-28

D .28 [答案] B

[解析] 由题意可知n =8, T r +1=C r 8? ????x 28-r ? ???

??-13x r =? ??

??128-r (-1)r C r 8·x .

8-4

3r ∴r =6,

∴? ??

??122

×(-1)6C 68=7. 2.(1+ax +by )n 展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则a ,b ,n 的值可能为( )

A .a =2,b =-1,n =5

B .a =-2,b =-1,n =6

C .a =-1,b =2,n =6

D .a =1,b =2,n =5 [答案] D

[解析] 考查二项式定理的灵活运用. 不含x 项的系数的绝对值的和为(1+b )n , 故(1+b )n =243,

同理,不含x 项的系数的绝对值的和为(1+a )n =32.

即?

????

(1+b )n =243=35

(1+a )n =32=25, 所以a ,b ,n 的可能取值为a =1,b =2,n =5. 二、填空题

3.(2011·安师大附中期中)(

13x

+2x x )n 的二项展开式中,若各项的二项式系

数的和是128,则x 5的系数是________.(以数字作答)

[答案] 560 [解析] 因为(

13x

+2x x )n 的二项展开式中,各项的二项式系数的和为128,

所以2n

=128,n =7.该二项展开式中的第r +1项为

T r +1=C r 7·2r

(x -13

)7-r (x 32

)r =

C r 7·2r x 11r -14

6 ,令11r -146

=5得r =4,所以展开式中x 5的系数为C 47×24=560. 4.(2011·安徽理,12)设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________.

[答案] 0

[解析] 本题主要考查二项展开式.

a 10=C 1021(-1)11=-C 1021,a 11=C 1121(-1)10=C 1021,所以a 10+a 11=C 1121-C 1021=C 10

21-

C 1021=0.

三、解答题

5.求x (1-x )4+x 2(1+2x )5+x 3(1-3x )7展开式中各项系数的和.

[分析] 如果展开各括号,则会使运算量增大,如果设展开后为a 0x 10+a 1x 9+…+a 9x ,则问题转化为求a 0+a 1+…+a 9的值,再令等式中x =1,即可求解.

[解析] 在原式中,令x =1,得1×(1-1)4+12×(1+2)5+13×(1-3)7=115. ∴展开式各项系数和为115.

[点评] 在某些二项式定理的有关求“系数和”的问题中,常用对字母取特值的方法解题.

6.已知(a 2+1)n 展开式中的各项系数之和等于(165x 2+1

x )5的展开式的常数项,

而(a 2+1)n 的展开式的系数最大的项等于54,求a 的值(a ∈R).

[解析] (165x 2+1x )5

的通项公式为

T r +1=C r 5(165x 2)5-r ·(1x )r =C r 5·(165)5-r

·x 20-5r 2 令20-5r =0,则r =4, ∴常数项为

T 5=C 45×165

=16.

又(a 2+1)n 展开式的各项系数之和为2n ,依题意得2n =16,n =4,由二项式系

数的性质知(a 2+1)4展开式中系数最大的项是中间项T 3,所以C 24

(a 2)2=54,即a 4=9,所以a =±3.

7.已知在二项式(ax m +bx n )12中,a >0,b >0,mn ≠0且2m +n =0. (1)如果在它的展开式中,系数最大的项是常数项,则它是第几项? (2)在(1)的条件下,求a

b 的取值范围.

[解析] (1)设T k +1=C k 12(ax m )12-k ·(bx n )k

=C k 12a

12-k b k x m (12-k )+nk 为常数项, 则有m (12-k )+nk =0, 即m (12-k )-2mk =0.

∵m ≠0,∴k =4,∴它是第5项. (2)∵第5项是系数最大的项,

∴????? C 412a 8b 4≥C 312a 9b 3C 412a 8b 4≥C 512a 7b

5

①②

由①得a b ≤94,由②得a b ≥85,

∴85≤a b ≤9

4

.

二项式定理(通项公式)

六、二项式定理 一、指数函数运算 知识点:1.整数指数幂的概念 *)(N n a a a a a a n n ∈??= 个 )0(10≠=a a ,0(1 N n a a a n n ∈≠=- 2.运算性质: ),(Z n m a a a n m n m ∈=?+ ,),()(Z n m a a mn n m ∈=,)()(Z n b a ab n n n ∈?= 3.注意 ① n m a a ÷可看作n m a a -? ∴n m a a ÷=n m a a -?=m a -② n b a )(可看作n n b a -? ∴n b a )(=n n b a -?n n b 4、n m n m a a = (a >0,m ,n ∈N *,且n >1) 例题: 例1求值:43 32 13 2)81 16(,)41(,100,8---. 例2用分数指数幂的形式表示下列各式: 1) a a a a a a ,,32 32?? (式中a >0) 2)43a a ? 3)a a a 例3计算下列各式(式中字母都是正数));3()6)(2)(1(656131212132b a b a b a -÷- .))(2(88 341n m 例4计算下列各式: );0() 1(3 2 2>a a a a 435)12525)(2(÷- 例5化简:)()(4 14 12 12 1y x y x -÷- 例6 已知x+x -1 =3,求下列各式的值:.)2(,)1(2 32 32 12 1- - ++x x x x 二、二项式知识回顾 1. 二项式定理 0111()n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++++ , 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++- ,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++ 1110n n n k n n n k a x a x a x a x a ----=+++++ ②

知识讲解 二项式定理(理)(基础)110

二项式定理 【学习目标】 1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法. 2.会用二项式定理解决与二项展开式有关的简单问题. 【要点梳理】 要点一:二项式定理 1.定义 一般地,对于任意正整数n ,都有: n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)((*N n ∈), 这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。 式中的r n r r n C a b -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r r r n T C a b -+=, 其中的系数r n C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n 的展开式的特点: (1)项数:共有n+1项,比二项式的次数大1; (2)二项式系数:第r+1项的二项式系数为r n C ,最大二项式系数项居中; (3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列, 次数从0到n ,每一项中,a ,b 次数和均为n ; 3.两个常用的二项展开式: ①011()(1)(1)n n n r r n r r n n n n n n n a b C a C a b C a b C b ---=-++-?++-?L L (*N n ∈) ②122(1)1n r r n n n n x C x C x C x x +=++++++L L 要点二、二项展开式的通项公式 公式特点: ①它表示二项展开式的第r+1项,该项的二项式系数是r n C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。 要点诠释: (1)二项式(a+b)n 的二项展开式的第r+1项r n r r n C a b -和(b+a)n 的二项展开式的第r+1项r n r r n C b a -是有 区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的. (2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n 的二项展开式的通项是 1(1)r r n r r r n T C a b -+=-(只需把-b 看成b 代入二项式定理)。 要点三:二项式系数及其性质 1.杨辉三角和二项展开式的推导。 在我国南宋,数学家杨辉于1261年所著的《详解九章算法》如下表,可直观地看出二项式系数。

二项式定理(通项公式).

二项式定理 二项式知识回顾 1. 二项式定理 0111 ()n n n k n k k n n n n n n a b C a C a b C a b C b --+=++ ++ +, 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-+ +-,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=++ +++ ① 01 11 (21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=++ ++ + 1110n n n k n n n k a x a x a x a x a ----=++++ + ② ① 式中分别令x=1和x=-1,则可以得到 01 2n n n n n C C C ++ +=, 即二项式系数和等于2n ; 偶数项二项式系数和等于奇数项二项式系数和,即0213 12n n n n n C C C C -++=++ = ② 式中令x=1则可以得到二项展开式的各项系数和. 2. 二项式系数的性质 (1)对称性:与首末两端等距离的两个二项式系数相等,即m n m n n C C -=. (2)二项式系数k n C 增减性与最大值: 当12n k +< 时,二项式系数是递增的;当1 2 n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2n n C 取得最大值.当n 是奇数时,中间两项12n n C -和12n n C +相等,且同 时取得最大值. 3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n ⑴ a 0+a 1+a 2+a 3……+a n =f(1) ⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2) 1()1(-+f f ⑷ a 1+a 3+a 5+a 7……= 2 ) 1()1(--f f

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

二项式定理的十大应用

二项式定理的十方面应用 一、利用二项式定理求展开式的某一项或指定项的系数 1.(2012年高考安徽卷理科7)(x2+2)( 1 x2-1)5的展开式的常数项是() (A)-3(B)-2(C)2(D)321世纪教【答案】D 【解析】第一个因式取x2,第二个因式取 1 x2得:1?C1(-1)4=5 5 第一个因式取2,第二个因式取(-1)5得:2?(-1)5=-2展开式的常数项是5+(-2)=3. 2.(2012年高考天津卷理科5)在(2x2- 1 x )5的二项展开式中,x的系数为() (A)10(B)-10(C)40(D)-40 点评:利用二项式定理求展开式的某一项或指定项的系数,实际上就是对二项展开式的通项公式的考查,此类问题是高考考查的重点. 3.在二项式(x-1)11的展开式中,系数最小的项的系数是 解:ΘT r+1 =C r x11-r(-1)r 11 ∴要使项的系数最小,则r必为奇数,且使C r为最大,由此得r=5,从而可知最小项的 11 系数为C5(-1)5=-462 11 二、利用二项式定理求展开式的系数和 1、若(1-2x)2013=a+a x+a x2+...+a 0122013 x2013(x∈R), 则(a+a)+(a+a)+(a+a)+Λ+(a+a 010******** )=_______。(用数字作答) 解析:在(1-2x)2013=a+a x+a x2+...+a 0122013 x2013中,令x=0,则a=1, 令x=1,则a+a+a+a+Λ+a 01232004 =(-1)2013=1 故(a+a)+(a+a)+(a+a)+Λ+(a+a 0102030 精品资料 2013 )

二项式定理高考题(带答案)

年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则,所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为, % 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】 决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D.

【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为 __________. ' 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解: 的展开式为: ,当 ,时,,当 , 时,,据 此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 ¥ A .80- B .40- C .40 D .80 【答案】C

高考数学 考点23 两个计数原理、排列、组合及其应用、

考点23 两个计数原理、排列、组合及其应用、 二项式定理及应用 1.(2010·湖北高考文科·T6)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) (A)65(B)56(C)565432 2 ????? (D)6543 ????2 【命题立意】本题主要考查分类和分步计数原理,考查考生的逻辑推理能力. 【思路点拨】因每名同学可自由选择其中的一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,由分步计数原理即可得出答案. 【规范解答】选A.每名同学可自由选择5个讲座中的其中一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,因此共有65种不同选法. 【方法技巧】本题每名同学可自由选择其中的一个讲座,故每位同学的选择都有5种,共有65种不同选法.若将“每名同学可自由选择其中的一个讲座”改为“每一个讲座都至少有一位同学去听”,它就是一个典型的不同元素的分组问题.利用“先分堆,再分配”的思想将6名同学分为5堆,再分给5个不同的讲座, 有 25 65 1800 C A= 1 800种不同选法. 2.(2010·湖北高考理科·T8)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是() (A)152 (B)126 (C)90 (D)54 【命题立意】本题主要考查分类和分步计数原理,考查排列、组合知识的应用,考查考生的运算求解能力.【思路点拨】由甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作知,司机工作很特殊.按安排几个人担任司机工作可分为两类:①司机只安排1人;②司机安排2人,然后将其余的人安排到其他三个不同的位置. 【规范解答】选B.当司机只安排1人时,有 123 343 C C A =108(种);当司机安排2人时有 23 33 C A =18(种).由分类 计数原理知不同安排方案的种数是108+18=126(种). 【方法技巧】本题要求每项工作至少有一人参加,因此属于不同元素的分组问题,解题时往往采用“先分堆,再分配”的办法.若去掉“每项工作至少有一人参加”的限制,则甲、乙二人各有3种选择,丙、丁、 戊各有4种选择,因此共有33444576 ????=(种)安排方案. 3.(2010·全国高考卷Ⅱ理科·T6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) (A)12种(B)18种(C)36种(D)54种 【命题立意】本题考查了排列、组合的知识. 【思路点拨】运用先选后排解决,先从3个信封中选取一个放入标号为1,2的2张卡片,然后剩 余的2个信封分别放入2张卡片. 【规范解答】选B.标号为1,2的卡片放法有A 1 3种,其他卡片放法有 2 2 2 4 C C种,所以共有A132 2 2 4 C C=18 (种). 【方法技巧】先排列特殊元素是解决排列、组合问题的常用方法.

最新二项式定理应用常见题型大全(含答案)

二项式定理应用常见题型大全 一.选择题(共21小题) 1.(2012?重庆)的展开式中常数项为() .C D 2.(2012?桃城区)在的展开式中,有理项共有() 2012 4.(2008?江西)展开式中的常数项为() n*5 6.(2006?重庆)若的展开式中各项系数之和为64,则展开式的常数项为() 88 29211 2006 10.(2004?福建)若(1﹣2x)9展开式的第3项为288,则的值是() D. 11.若则二项式的展开式中的常数项为() 12.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()

C 10 14.的展开式中第三项的系数是() .C. 4n+1 n 17.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是 [[,[ 18.在的展开式中系数最大的项是() 6 8 2010

参考答案与试题解析 一.选择题(共21小题) 1.(2012?重庆)的展开式中常数项为() .C D 的展开式通项公式中,令 的展开式通项公式为 = 2.(2012?桃城区)在的展开式中,有理项共有() ??, 2012

+ 4.(2008?江西)展开式中的常数项为() 的展开式的通项为 的展开式的通项为= 的通项为= ,时,展开式中的项为常数项 n*5

6.(2006?重庆)若的展开式中各项系数之和为64,则展开式的常数项为() 则展开式的常数项为 88 29211 2006

分别取, 时,有)( 时,有)( ( 10.(2004?福建)若(1﹣2x)9展开式的第3项为288,则的值是() D. 中,化简可得答案. , x= =2 11.若则二项式的展开式中的常数项为() ∴二项式的通项为 的展开式中的常数项为=160

二项式定理

二项式定理 性质:说课稿 一、教材分析 1.教材的地位和作用 二项式定理一节,分四个课时.这里讲的是第一课时,重点是公式的推导,其次是二项式定理及二项展开式通项公式的简单应用,至于二项式定理及二项展开式的通项公式的灵活运用和二项式系数的性质留在第二、三、四课时. 二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘法的展开式,这一小节与不少内容都有着密切联系,特别是它在本章学习中起着承上启下的作用.学习本小节的意义主要在于: (1)由于二项式定理与概率理论中的三大概率分布之一-----二项分布有内在联系,本小节是学习后面的概率知识以及进一步学习概率统计的准备知识. (2)由于二项式系数都是一些特殊的组合数,利用二项式定理可得到关于组合数的一些恒等式,从而深化对组合数以及计数原理的认识. (3)基于二项式展开式与多项式乘法的联系,本小节的学习可对初中学习的多项式的变形起到复习、深化的作用. (4)二项式定理是解决某些整除性、近似计算问题的一种方法. 2.教学的重点·难点 根据以上分析和新课标的教学要求确定了以下: 重点:二项定理的推导及运用 难点:二项式定理及通项公式的运用 二、三维教学目标分析 知识目标掌握二项式定理及二项展开式的通项公式,并能熟练地进行二项式的展开及求解某些指定的项. 能力目标通过探索二项式定理,培养学生观察问题发现问题,归纳推理问题的能力. 情感目标激发学生学习兴趣、培养学生不断发现,探索新知的精神,渗透事物相互转化和理论联系实际的辩证唯物主义观点,并通过数学的对称美,培养学生的审美意识.

三、教法分析: 新的数学课程标准提出:掌握数学知识只是结果,而掌握知识的活动过程才是途径,通过这个途径,来挖掘人的发展潜能才是目的,结果应让位于过程.因此,在教学中,必须贯彻好过程性原则.也就是说,在教学过程中,充分揭示每一个阶段的思维活动过程,通过思维活动过程的暴露和数学创新活动过程的演变,使教学活动成为思维活动的教学,由此来启发、引导学生直接或间接地感受和体验知识的产生、发展和演变过程. 变传统的“接受性、训练性学习”为新颖的“探究式、发现式的学习”,变教师是传授者为组织者、合作者、指导者,在学习过程中,教师想尽办法激发学生探究式、发现式学习的兴趣,并使其作为一种教学方式应用于概念、定理、公式和解题教学中,让学生在探究、发现中获取知识,发展能力.从而增强学生的主体意识,提高学生学习的效果. 四、教学过程: (一)创设情境,激发兴趣 提出问题:“今天是星期六,我能很快知道再过810天的那一天是星期几,你能想出来吗?” 设计意图:根据教学内容特点和学生的认识规律,给学生提出一些能引起思考和争论性的题目,即一些内容丰富、背景值得进一步探究的诙谐有趣的题目、给学生创造一个“愤”和“悱”的情境,利用问题设下认知障碍,激发学生的求知欲望. (二)问题初探 (1)、从具体问题入手,启发学生将这个问题转化成一个数学问题:“求810被7除的余数是多少?”因为8=7+1,82=(7+1)2=72+2﹡ 7+1,83=(7+1)3=73+3 72+3 ﹡7+1,那810=(7+1)10又如何展开呢?更一般的(a+b)10、(a+b)n 如何展开?从而产生研究问题从特殊到一般的转化. 1、先让学生自己动手运用多项式乘多项式的法则写出(a+b) 2、(a+b) 3、(a+b)4的展开式,然后提出用这种方法写出(a+b)10的展开式容易吗?(a+b)100、(a+b)n呢?对于这个问题,我们如何解决?

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

二项式定理的推广与应用

二项式定理的推广及应用 曲靖市麒麟高级中学 车保勇 [摘 要] 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.深入研究二项式定理的推广及其用途,巧妙应用,能为许多数学问题提供另类解法,同时解决一些难度较大的问题.因此,进一步探讨二项式定理的推广及应用仍是一项有意义的工作.但前人得出的应用范围仅局限于求值、近似计算、整除、求余数、证明不等式等方面,而且在推广方面不够完善,笔者对二项式定理的推广作进一步完善,系统整理已有用途,并给出一种前人尚未提及的用途:即用二项式定理处理特殊极限问题.纵观全文,深入研究二项式定理的用途,不仅为一些数学问题提供了另类解法,更重要的是拓宽了二项式定理的应用范围. [关键词] 二项式定理 推广 方幂 应用 1 引言 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为:() 0,(,,0)n n r n r r n r a b C a b n r N r n -=+=∈≤≤∑.它有着十分广泛的应用,遍及初等数学和高等数学领域[1] .认真研究问题的条件和结构,把一些表面与二项式定理或推广定理无关的问题作适当变形,构造出二项式定理或推广定理,再用其求解(证明),可使解题简洁明快.巧妙应用二项式定理或推广定理,不仅为许多问题提供另类解法,还能解决一些难度较大的数学问题.因此,把二项式定理进一步推广完善,并充分研究其用途,拓宽其应用范围,仍是一件有意义的工作.

2 问题的提出 虽然学者们对二项式定理的推广及应用的研究取得了丰硕的成果,但已有成果都存在两个不足方面:一是推广不够完善;二是应用范围不够广.针对此情况,笔者试图将其推广进一步完善,系统整理已有用途,并提出新的用途,拓宽其应用范围. 3 二项式定理的推广 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为: 011r n r r n n ()n n n n n n n a b C a C a b C a b C b --+=++ ++ +0 ,(,,0)n r n r r n r C a b n r N r n -==∈≤≤∑ 其中r n r r r 1T n C a b -+=叫做二项式的通项公式,()!!! r n n C r n r =-叫做二项式系数. 若令 -n r q =, 则 ! !! r n n C r q = ,(,,r q n)n r N ∈且+=. 3.1 推广一 在实际应用中,除遇到二项式外还常常遇到多项式问题,为便于应用,现将其作推广. 先考察三项式()()n a b c n N ++∈的展开式: ()[()]n n a b c a b c ++=++ ()n r r r n C a b c -=+++ ( )r q n r q q r n n r C C a b c ---= ++++ r q n r q q r n n r C C a b c ---= ++ 若令n r q p --=,便得到三项式()()n a b c n N ++∈展开式通项公式: (,,p q r n)r q p q r n n r C C a b c p q r N -∈且++=, 其中()()!(r)!! !!q!q !!q!p! r q n n r n n n C C r n r n r r --==---叫三项式系数.[2] 类似地可得四项式(d)()n a b c n N +++∈通项公式为 ! (,,,)!!!s! p q r s n a b c d p q r s N p q r ∈且p+q+r+s=n , 其中 ! !!!s! n p q r 称四项式系数.于是猜想m项式定理为: 定理112()n m a a a +++12 121212!!! !m m i i i m i i i n m n a a a i i i +++==∑,(,,1,2,,)k i n N k m ∈=.

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素

二项式定理二项式定理的应用教案

排列、组合、二项式定理·二项式定理的应用·教案 教学目标 1.利用二项式定理及二项式系数的性质解决某些关于组合数的恒等式的证明;近似计算;求余数或证明某些整除或余数的问题等. 2.渗透类比与联想的思想方法,能运用这个思想处理问题. 3.培养学生运算能力,分析能力和综合能力. 教学重点与难点 数学是一门工具,学数学的目的就是为了应用.怎样建立起要解决的问题与数学知识之间的联系(如一个近似计算问题与二项式定理有没有联系,怎样联系),是这节课的难点,也是重点所在. 教学过程设计 师:我们已经学习了二项式定理及二项式系数,请大家用6分时间完成以下三道题: (1)在(1-x3)(1+x)10的展开式中,x5的系数是多少? (2)求(1+x-x2)6展开式中含x5的项. (全体学生参加笔试练习) 6分钟后,用投影仪公布以上三题的解答: (1)原式=(1+x)10-x3(1+x)10,可知x5的系数是(1+x) (2)原式=[1+(x-x2)]6=1+6(x-x2)+15(x-x2)2+20(x-x2)3+15(x-x2)4+6(x-x2)5+(x-x2)6. 其中含x5的项为:20·3x5+15(-4)x5+6x5=6x5.

师:解(1),(2)两题运用了变换和化归思想,第(2)题把三项式化为二项式,创造了使用二项式定理的条件. 第(3)题的解法是根据恒等式的概念,a,b取任何数时,等式都成立.根据习题结构特征选择a,b的取值.这种用概念解题的思想经常使用. 下面我们看二项式定理的一些应用. 师:请同学们想一想,例1怎样解? 生甲:从结构上观察,则与练习的第(3)题有相似之处,只是组合数的系数成等 比数列,是否根据二项式定理令a=1,b=3,即可得到证明. 师:请同学们根据生甲所讲,写出证明. (找一位同学板演) 证明:在(a+b)n的展开式中令a=1,b=3得: 师:显然,适当选取a,b之值是解这一类题的关键,再看练习题. 练习 生乙:这题与例1类比有共同点,仍是组合数的运算,不同点是缺

二项式定理中的特殊项问题

《二项式定理中的特殊项问题》导学案 学习目标: 1. 进一步熟悉二项式定理及二项展开式的通项公式; 2. 学会利用“赋值”的方法解决有关问题。 学习重点:二项式系数性质的应用; 学习难点:二项式系数性质的应用。 学习过程: 学习提纲: n n n r r n r n n n n n n b b a b a a b a C C C C )(110+++++=+--ΛΛ,是二项式展开式定理, 主要研究了以下几个方面的问题: (1)展开式;(2)通项公式;(3)二项式系数及其有关性质。 1.求5 2 3 )12()1(+-x x 的展开式中2 x 项的系数。 变式1:9()a x x -的展开式中3x 的系数是84-,求a 的值。 2. 求二项式3 5 2 1()x x - 的展开式中的常数项。 3. 求11 的展开式中的有理项。 4. 已知22)()n n N x ∈*的展开式中第五项的系数与第三项的系数的比是10:1。 (1) 求展开式中各项系数的和; (2) 求展开式中含32 x 的项; (3) 求展开式中系数最大的项和二项式系数最大的项。 5. 若82 80128()x a a a x a x a x -=++++g g g ,且556a =,求0128a a a a ++++g g g 的值。 当堂检测:

1.(2011 陕西高考)6 (42)()x x x R --∈的展开式中的常数项是( ) .20A - .15B - .15C .20D 2.若4234 01234(1)x a a x a x a x a x -=++++,则024a a a ++的值为 。 3.若(0)x ∈+∞,,则15 (12)x +的二项展开式中系数最大的项为 。 4.已知(1)n x -的展开式中所有项的系数的绝对值之和为32,则(1)n x -的展开式中系数最小的项是 。 5.若1(3)n x x +的展开式中各项系数和为1024,试确定展开式中含x 的整数次幂的项。 作业:课本 40P A 组1~9题;B 组1~5题 附加题:若4 1()2n x x +展开式中前三项系数成等差数,求展开式中系数最大项. 补充作业: 1.若016 6777a +x a +....+x a +x a =)1-x 3(,求 (1)1237a a a a ++++g g g ; (2)7531a +a +a +a ; (3)01237||||||||||a a a a a +++++L 2.在25(32)x x ++的展开式中x 的系数为( ) A .160 B .240 C .360 D .800 3.已知2()n i x x - 的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式 中系数为实数且最大的项为( ) A .第3项 B .第4项 C .第5项 D .第5项或第6项 4.设()(1)(1)m n f x x x =+++(m 、n ∈N*),若其开展式中关于x 一次项的系数和为11,问m 、n 为何值时,含x 项的系数取最小值并求这个最小值.

二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中, 前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4 324 121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1 C +-+==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)103)1()1(x x +-展开式中的5 x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5 x 项,可以得到5 510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

二项式定理教案(绝对经典)

第3讲二项式定理 基础梳理 1.二项式定理 (a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*)这个公式所表示的定理叫二项式定理,右边的多项式叫(a+b)n的二项展开式. 其中的C r n(r=0,1,…,n)叫二项式系数.数) (注意区别于该项的系 式中的C r n a n-r b r叫二项展开式的通项,用T r+1表示,即通项T r+1=C r n a n-r b r. 2.二项展开式形式上的特点 (1)项数为n+1. (2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n. (3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n. (4)二项式的系数从C0n,C1n,一直到C n-1 n ,C n n. 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等.即C r n=C n-r n . (2)增减性与最大值: 二项式系数C k n,当k<n+1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的; 当n是偶数时,中间一项C n 2n取得最大值; 当n是奇数时,中间两项C n-1 2n,C n+1 2n取得最大值. (3)各二项式系数和:C0n+C1n+C2n+…+C r n+…+C n n=2n; C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1. 双基自测 1.(1+2x)5的展开式中,x2的系数等于(). A.80 B.40 C.20 D.10 2.若(1+2)5=a+b2(a,b为有理数),则a+b=().A.45 B.55 C.70 D.80 3.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4的值为().

高中数学知识点总结---二项式定理

高中数学知识点总结---二项式定理 1. ⑴二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点: ① 项数:共有1+n 项; ② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C ③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开. ⑵二项展开式的通项. n b a ) +(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+. ⑶二项式系数的性质. ①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第 12 +n 项,它的二项式系数2 n n C 最大; II. 当n 是奇数时,中间项为两项,即第2 1+n 项和第 12 1++n 项,它们的二项式系数212 1+-=n n n n C C 最大. ③系数和: 1 314 201 2 2-=+ +=+++=+++n n n n n n n n n n n C C C C C C C C 附:一般来说b a by ax n ,()(+为常数)在求系数最大的项或最小的项........... 时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组1 111 1(,+-+-+???≤≤???≥≥k k k k k k k k k k T A A A A A A A A A 为或的系数或系数 的绝对值)的办法来求解. ⑷如何来求n c b a )(++展开式中含r q p c b a 的系数呢?其中 , ,,N r q p ∈且 n r q p =++把 n n c b a c b a ] )[()(++=++视为二项式,先找出含有r C 的项r r n r n C b a C -+)(,另一方面在r n b a -+) (中含有q b 的项为 q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为 r q p q r n r n c b a C C -.其系数为r r q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --== ---?-= ! !!!)! (!)! ()!(!! . 2. 近似计算的处理方法.

高中数学《二项式定理》公开课优秀教学设计一

课题:§1.3.1二项式定理(人教A版高中课标教材数学选修2-3)

《二项式定理》教学设计 一、教学内容解析 《二项式定理》是人教A 版选修2-3第一章第三节的知识内容,它是初中学习的多项式乘法的继续.在计数原理之后学习二项式定理,一方面是因为它的证明要用到计数原理,可以把它作为计数原理的一个应用,另一方面也是解决整除、近似计算、不等式证明的有力工具,同时也是后面的数学期望等内容的基础知识,二项式定理起着承上启下的作用.另外,由于二项式系数是一些特殊的组合数,利用二项式定理可进一步深化对组合数的认识.总之,二项式定理是综合性较强的、具有联系不同内容作用的知识. 二、教学目标设置 新课标指出教学目标应体现学生学会知识与技能的过程也同时成为学生学会学习,形成正确价值观的过程.新课标要求:用计数原理分析2()a b +,3()+a b ,4()+a b 的展开式,归纳类比得到二项式定理,并能用计数原理证明.掌握二项展开式的通项公式,解决简单问题;学会讨论二项式系数性质的方法.根据新课标的理念及本节课的教学要求,制定了如下教学目标: 1.学生在二项式定理的发现推导过程中,掌握二项式定理及推导方法、二项展开式、通项公式的特点,并能运用二项式定理计算或证明一些简单的问题. 2.学生经历二项式定理的探究过程,体验“从特殊到一般发现规律,从一般到特殊指导实践”的思想方法,获得观察、归纳、类比、猜想及证明的理性思维探究能力. 3.通过二项展开式的探究,培养学生积极主动、勇于探索、不断创新的精神,感受合作探究的乐趣,感受数学内在的和谐、对称美及数学符号应用的简洁美.结合数学史,激发学生爱国热情和民族自豪感. 三、学情分析 1.有利因素 授课对象是高二的学生,具有一般的归纳推理能力,思维较活跃,初步具备了用联系的观点分析问题的能力.学生刚刚学习了计数原理和排列组合的知识,对本节()+n a b 展开式中各项系数的研究会有很大帮助. 2.不利因素 本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度.在数学学习过程中,大部分学生习惯于重视定理、公式的结论,而不重视其形成过程. 四、教法策略分析 遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则,采用“启发式教学法”,学生主要采用“探究式学习法”, 并利用多媒体辅助教学. 本课以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,完成二项式定理的探究,让学习过程成为学生心灵愉悦的主动认知过程. 五、教学过程 (一)创设情境 引入课题 引入:通过“牛顿发现二项式定理”的历史引入课题.提出问题:2()+=a b ? 3()+=a b ?

相关主题
文本预览
相关文档 最新文档