当前位置:文档之家› 基于FPGA多通道数据采集系统设计

基于FPGA多通道数据采集系统设计

基于FPGA多通道数据采集系统设计
基于FPGA多通道数据采集系统设计

邮局订阅号:82-946360元/年技术创新

PLDCPLDFPGA应用

《PLC技术应用200例》

您的论文得到两院院士关注

基于FPGA多通道数据采集系统设计

DesignofDataAcquisitionSystemBasedonFPGA

(华中科技大学)万

耀李小清周云飞潘海鸿

WANYAOLIXIAOQINGZHOUYUNFEIPANHAIHONG

摘要:以EP1K100系列FPGA为核心控制模块结合CS5101A模数转换芯片,实现了高精度数据采集系统,该系统能够完成40路最大采样频率100KHz、精度为12位有效数位的差分模拟信号采集,具有采集通道输入路径的自标定功能。介绍了该控制FPGA由顶至下模块化设计的具体实现方案,并给出其核心模块的状态跃迁图及时序仿真波形。关键词:数据采集;FPGA;CS5101A;标定;延时寄存器中图分类号:TN79文献标识码:B

Abstract:Thispaperdescribesamulti-channeldataacquisitionsystemusingEP1K100serialsFPGAandCS5101AA/Dconverter.Thesystemachievesacquiring40-routedifferentialanalogsignalswiththemaximalfrequencyof100KHzandtheprecisionof12bits,andalsoprovidesself-calibrationfunction.Atop-downmethodologyisusedinthedesignofFPGA.Thestatediagramsandsim-ulationwaveformsofmainmodulesarepresented.

Keywords:FPGA,dataacquisition,CS5101A,calibration,delayregister

文章编号:1008-0570(2007)02-2-0199-03

引言

数据采集系统是计算机测控系统中不可或缺的组成部分,是影响测控系统的精度等性能指标的关键因素之一。常用数据采集方案是以微处理器为核心控制多个通道的信号采集、预处理、存储和传输,即用软件实现数据的采集,这在一定程度上局限了数据采集的速度、效率及时序的精确控制。本文研究的数据采集系统应用于某高速高精IC设备,待采集信号来源于多个传感器,系统要求在不多于180us的时间内需实现全部40路通道数据的现场高精度采集、预处理、实时存储及远程传输。考虑到FPGA器件的高集成度、高时钟频率、时序控制精确、编程灵活等明显优于普通微处理器的特点,故本系统采用FPGA为核心控制ADC和数据传输,这样可达到预期要求,并简化外围电路,降低设计风险,缩短开发周期。

1系统结构

本文设计的数据采集系统划分为A/D转换电路、采集控制FPGA和光纤传输接口等若干部分,以A/D转换电路、

采集控制FPGA为本采集系统的核心,如图1所示。

图1采集系统结构框图

该系统实现数据的采集、预处理和存储功能。当采集控制

FPGA经光纤接口接收到来自远程伺服控制板卡的开始采集指

令,来自各个传感器的差分模拟信号即经系统内的多路开关被选通地输入模数转换器,转换结果进而被引入采集控制FPGA中,在进行适当的预处理后,数据被存储在FPGA内嵌的

DPRAM中等待读取。同时根据对FPGA内建的寄存器操作实

现采集系统的其他功能,如复位、标定等。全系统12位有效数位的转换精度由高精度A/D芯片以及对模拟差分信号输入路

径的标定来保证。

2关键芯片介绍

该数据采集系统涉及到的关键芯片主要为FPGA、ADC转换芯片。

FPGA选用Altera公司的EP1K100系列。该系列芯片采用查找表(LUT)和EAB(嵌入式阵列块)相结合的结构,内核采用2.5V电压,功耗低,能够提供高达250MHz的双向I/O功能,支持3.3V/5V混合电压信号,无需额外电平转换芯片进行电平匹

配。其特点正适合应用于具有复杂逻辑及有存储、缓冲能力的数据采集系统。

Crystal公司的CS5101A是一款16位高精度CMOS模数串行转换芯片,内含双通道输入多路开关、ADC、

转换和校准微控制器、时钟发生器、比较器和串行通讯口,其固有的采样结构使其工作时无需外部跟随和保持运放器。CS5101A的线性度误差为±0.001%FS,满刻度误差为±1LSB,转换频率为100KHz,具有自校准、抗温漂特性,长时间空载可维持精度不变。选用该高性能

ADC芯片对实现采集系统的精度校准和诊断作用有重要意义。

3方案实现

3.1电路设计

系统以8通道差分多路开关ADG407、差分运放器INA105和CS5101A构成采集控制FPGA的信号输入通道,如图2所示。该采集系统需要有40路差分模拟电压信号输入,故使用6片ADG407以实现最大48路模拟输入通道的多路复用。每片ADG407的输出连接到一个0.5倍差分运放器INA105实现差分至单端转换,经过运放网络后连接到CS5101A的一个模拟输

万耀:硕士研究生

湖北省自然科学基金项目资助(编号:2006ABA065)199-

技术创新

中文核心期刊《微计算机信息》(嵌入式与SOC)2007年第23卷第2-2期

360元/年邮局订阅号:82-946

《现场总线技术应用200例》

PLDCPLDFPGA应用

入端。该采集系统使用3片CS5101A,分别对应3个采集子单元,至多可满足48路输入通道的要求。在一个采样周期内,选择哪路差分模拟信号进行A/D转换由采集控制FPGA通过控制每片ADG407的地址选择端和每片CS5101A的通道选择端实现。电路及FPGA结构框图见图2所示。

图2采集转换电路连接及采集控制FPGA结构框图精度是该数据采集系统的关键指标,设计的目标之一就是使整个采集系统能达到12位有效数位的转换精度。由

CS5101A的参数得出该芯片的精度可达15位有效数位,故该

系统的精度主要取决于信号的输入路径,即必须考虑到板卡上的元器件工作情况和线路上信号传输对实际转换精度的影响,因此实现采集通道的标定对于整个采集系统有重要的意义。每一组模拟输入信号均要经多路开关,到一个前置放大电路,再进入ADC中。该信号路径即为待标定的通道。当多路开关通道之间的匹配较好时,一路通道一次即可标定该组多路开关的所有通道。在此选择每片ADG407的最后一路输入通道作为其标定通道,以采集系统板卡提供的零位电压(模拟地)和差分参考电压为其输入信号,从而进行ADC整体精度的校准和诊断。

在上述设计下,将CS5101A的BP/UPN引脚拉高使其工作在双端状态。并通过设置其SCKMOD引脚和OUTMOD引脚电平使CS5101A工作在PDT(管道数据传输)的串行数据输出模式下,以利FPGA的时序控制。在此模式下,采集控制FPGA为

CS5101A提供串行数据输出时钟信号SCLK,在转换时刻寄存

当前数据,进而在下一个转换周期输出上一次转换结果。

CS5101A的/HOLD信号必须在上次转换的数据出现在SDATA

引脚之前保持为低电平,以激发下一次转换。系统采用

8.192MHz的石英晶振器为CS5101A提供时钟信号。

3.2FPGA设计

采集控制FPGA的全局时钟频率为20MHz,其主要的I/O引脚包括3组CS5101A的控制信号和ADG407的通道选择信号,以及与光纤接口通讯用的32位数据总线、8位地址总线、读写控制线和采集开始/结束信号。信号具体描述如下。

SCLK:ADC串行转换结果在此输入信号的下降沿变化,在

上升沿有效。

SDATA:在SCLK的下降沿输出数据位,可在SCLK的上升

沿对数据进行有效锁存。

/HOLD:该引脚的下降沿将CS5101A设定为保持状态并触

发一个转换。

/STBY:在ADC复位后指示校准状态。在校准期间保持低电平,校准完毕返回高电平。

/RST:低电平复位。回复高电平时触发一完整的校准序列

波。校准时忽略/HOLD信号。

CH1//2:ADC内部的2个模拟输入通道的控制线。

ADCx_SEL[2:0]:用于模拟多路复用器(多路开关)输入通道

选择的控制线。

如图2所示,此FPGA顶层可分为3部分:全局控制模块

F_ADC_ctrl、对应3个采集子单元的控制模块Sub_ADCx_ctrl(x=1~3,下同)和DPRAM模块。其中F_ADC_ctrl模块检测来自光纤接口的采集触发信号(F_ADC_start),并依此产生Sub_AD-Cx_ctrl子模块的开始工作信号(Sub_ADCx_start),在接收到这三个子模块返回的转换结束信号(Sub_ADCx_done)后,向光纤接口发出采集结束信号(F_ADC_done)以通知远程伺服控制板卡读取采集结果,完成一次伺服周期的数据采集。在DPRAM模

块内实现所有寄存器。

分别控制3个采集子单元的Sub_ADCx_ctrl子模块是该

FPGA的核心,每个模块可进一步细分为Sub_ADCx_Chan-nel_sel模块和Sub_ADCx_Sample模块,这二者之间由Sub_ADCx_start_S2P信号协调时序关系。该模块的结构框图如图3所示。

图3第x组采集单元控制模块Sub_ADCx_ctrl其中,Sub_ADCx_Channel_sel模控制CS5101A的/HOLD信号时序(Sub_ADCx_HOLD)和双通道选择信号(Sub_AD-

Cx_CH1_2)。工作状态如图4所示,其中/HOLD信号的高/低电平所维持的时钟周期数根据FPGA的全局时钟频率计算而定。Sub_ADCx_Sample模块则在Sub_ADCx_start_S2P信号的控制下输出全局时钟4分频的SCLK信号给CS5101A,并在SCLK的第66个上升沿完成采集结果的串并转换,同时输出与当前采集通道对应的地址给DPRAM模块,在SCLK的第70个上升沿产生对DPRAM模块的写使能信号Sub_ADCx_wr,从而将16位采集结果写入DPRAM模块内的指定空间。完成写操作后由Sub_ADCx_Channel_sel模块向F_ADC_ctrl模块提交转换结束信号Sub_ADCx_done。

图4Sub_ADCx_Channel_sel模块状态跃迁图

DPRAM模块内部存储地址与采集/标定通道一一对应,实

现对转换结果的预处理(如阀值比较等)和锁存。另一端通过32位双向数据总线和8位地址总线与光纤接口通讯,以实现远程

伺服控制板卡读取模块内的转换数据和读、写寄存器。其中,写采集控制寄存器改变其特定位的电平输出可实现对通道标定和数据采集操作的切换,以及系统复位等功能。鉴于该采集系

200-

邮局订阅号:82-946360元/年技

术创新

PLDCPLDFPGA应用

《PLC技术应用200例》

您的论文得到两院院士关注

统对数据实时性的要求,在DPRAM模块中还建有一个16位延时寄存器(AD_delay_reg),其作用是提供F_ADC_ctrl模块内减

1计数器的计数初值,以控制从检测到开始采集触发信号F_ADC_start到指令3个采集子模块真正开始采集之间的延时。对于有固定伺服周期T的伺服系统而言,完成一次全通道采集的时间A和数据处理的时间D相对稳定,则可由C=T-A-D得出预期延时时间,如此可保证采集结束和数据读取之间的

时间间隔最小化,达到获取实时采集数据的要求。

4FPGA模块控制时序

图5为针对Sub_ADC1_Channel_sel模块的仿真时序,结果显示了该模块能够准确产生CS5101A内双通道选择信号

CH1_2、/HOLD信号以及多路开关的控制信号。

图5Sub_ADCx_Channel_sel模块仿真时序

图6为针对Sub_ADC1_Sample模块的仿真时序,波形包括了该模块的两个完整工作周期,结果显示该模块能够在协调信号的触发下准确输出SCLK时钟和对DPRAM的写使能信号,以及待写入DPRAM的并行转换数据。

图6Sub_ADCx_Sample模块仿真时序

5结束语

本文提出了一种以FPGA为核心控制CS5101A模数转换芯片实现多通道高精度数据采集系统的方案,并详细说明了电路和FPGA的设计方法。经过长时间测试,该采集系统各通道高速数据流能够正确采集和存储,工作稳定,且通道标定功能的实现使设计达到了期望的12位有效数位的精度要求,现已应用于某高速高精IC设备上。

本文作者创新点:在多通道数据采集系统中以对采集通道的标定来保证采集精度,同时在FPGA中引入延时寄存器以实现系统获取实时采集数据。电路上和FPGA程序均采用模块化设计,易于根据要求通过复制采集路径和控制子模块加以扩展。

参考文献:

[1]黄新财,佃松宜,汪道辉.基于FPGA的高速连续数据采集系统的设计[J].微计算机信息,2005,2:58-P59.

[2]陈武福,

胡修林,陈钧,张兵山.基于FPGA技术的多路并行实时数据采集系统.华中理工大学学报,1999,(03).

[3]王天明.多通道通用数据采集系统的设计与实现.哈尔滨工程大学,2003.

作者简介:万耀(1981-),男,汉族,硕士研究生,机械电子工程

专业,主要从事嵌入式控制系统、信号采集与处理等方面的研究,Email:ranger1981@sina.com;李小清(1965-),男,汉族,讲师,机械电子工程专业,主要从事数控技术等方面的研究;周云飞(1956-),男,汉族,教授,博士生导师,机械电子工程专业,主要从事数控技术、CAD/CAM及微机电系统等方面的研究;潘海鸿(1966-),男,壮族,副教授,机械电子工程专业,主要从事数控技术等方面的研究。

Biography:WanYao,male,bornin1981,Han,Master,mechanicalelectronicsspecialty.Nowengagedinembeddedcontrolsystem,signalsamplingandprocessing.

(430074武汉华中科技大学机械科学与工程学院)万耀

李小清周云飞潘海鸿

(HuazhongUniversityofScience&Technology,Wuhan,430074,China)WanYaoLiXiaoqingZhouYunfeiPanHaihong

通讯地址:(201203上海浦东张江张东路1525号上海微电子装备有限公司)万耀

(收稿日期:2006.12.17)(修稿日期:2007.1.15)

(上接第34页)

5结论

该系统已经通过了第一次联和调试,成功的实现了对逆变

电源的监控。实验证明该监控系统设计合理,监控界面友好,易于操作,工作稳定可靠,达到了预期的目标。

本文作者创新点:利用CAN总线实现对逆变电源模块间通信并完成对其控制,同时实现了CAN总线应用层协议。

参考文献:

[1]李正军.现场总线及其应用技术.北京:机械工业出版社,2005.[2]周悦,范明哲,于海斌,等.几种现场总线的通信介质访问控制方式.邬明宽.现场总线技术应用选编.北京:北京航空航天大学出版社,2003.

[3]王博,蒋云峰,刘杰.基于CAN总线的网络监控系统[J].微计算机信息,2004,3:16-17.

[4]HongS.H,KimW.H.BandwithAllocationinCANProtocol.Con-trolTheoryandApplicationIEEProceedings,2000,147(1):37-44.[5]PinhoL.M,VasquesF.ReliableReal-timeCommunicationinCANNetworks.IEEETransactionsonComputers,2003,52(12):1596-1598.

作者简介:戴青云(1976-):男,河北正定人,硕士,研究方向:工业控制、分布式系统;邹沐昌(1938-):男,教授,主要研究方向:多媒体技术、虚拟现实、分布式系统;邬伟扬(1940-):男,教授,

博士生导师,主要研究方向:电力电子技术。

Biography:DaiQingyun,male,bornin1976inZhengdingHebei,

master,researchorientation:Industrycontrol,distributesystem.(066004河北秦皇岛燕山大学信息科学与工程学院)戴青云

邹沐昌

(050081河北石家庄职业技术学院)戴青云张春平(066004河北秦皇岛燕山大学电气工程学院)邬伟扬

(CollegeofInformationScience,YanshanUniversity,Qin-huangdao066004,China)DaiQingyunZouMuchang

(ShijiazhuangVocationalandTechnologyInstitute,Shiji-azhuang050081,China)DaiQingyunZhangChunping

(CollegeofElectricEngineering,YanshanUniversity,Qin-huangdao066004,China)WuWeiyang

通讯地址:(050081河北石家庄市石家庄职业技术学院计算机工程繁)戴青云

(收稿日期:2006.12.17)(修稿日期:2007.1.15)

201-

基于Ucos的多通道数据采集系统(DOC)(可编辑修改word版)

课程设计(论文)任务书 信息工程学院物联网专业2014-2 班 一、课程设计(论文)题目基于Ucos 的多通道数据采集系统 二、课程设计(论文)工作自2017 年06 月26 日起至2017 年06 月30 日止。三、 课程设计(论文) 地点:嵌入式系统实验室 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)使学生掌握嵌入式开发板(实验箱)各功能模块的基本工作原理; (2)培养嵌入式系统的应用能力及嵌入式软件的开发能力; (3)使学生较熟练地应用嵌入式操作系统及其API 开发嵌入式应用软件; (4)培养学生分析、解决问题的能力; (5)提高学生的科技论文写作能力。 2.课程设计的任务及要求 1)基本要求: (1)分析所设计嵌入式软件系统中各功能模块的实现机制; (2)选用合适嵌入式操作系统及其API; (3)编码实现最终的嵌入式软件系统; (4)在实验箱上调试、测试并获得最终结果。 2)创新要求: 在基本要求达到后,可进行创新设计,如改善嵌入式软件实时性能;扩展嵌入式软件功能及改善其图形用户界面。 3)课程设计论文编写要求 (1)要按照书稿的规格打印誊写课程设计论文。 (2)论文包括目录、正文、小结、参考文献、谢辞、附录等(以上可作微调)。 (3)课程设计论文装订按学校的统一要求完成。 4)课程设计评分标准: (1)学习态度:20 分; (2)回答问题及系统演示:30 分 (3)课程设计报告书论文质量:50 分。 成绩评定实行优秀、良好、中等、及格和不及格五个等级。不及格者需重做。 5)参考文献: (1)罗蕾.《嵌入式实时操作系统及应用开发》北京航空航天大学出版社 (2)Jean https://www.doczj.com/doc/a78060874.html,brosse. 《嵌入式实时操作系统uC/OS-II》北京航空航天大学出版社 (3)王田苗.《嵌入式设计与开发实例》.北京航空航天大学出版社 (4)北京博创科技公司. 《嵌入式系统实验指导书》

多通道模块化高速通信数据采集与分析平台

多通道模块化高速通信数据采集与分析平台 1.设备技术参数: 多通道模块化高速通信数据采集与分析平台,可同时采集多路高速模拟信号并进行FPGA实时在线并行处理,可与软件无线电平台进行交联,借助PXI 高带宽低延迟的特性以及开放的FPGA架构,以及扩展的高稳定时钟模块,完成更加复杂的通信系统数据采集与分析任务。 1)高速信号采集: a.通道数:2端口 b.采样率:80MS/s c.ADC位数:14位 d.软件可选曾益:0dB,6dB,12dB e.硬件滤波器:可选择的椭圆、贝塞尔和旁通硬件滤波器 f.总谐波失真:-89.5dBc(9.7MHz,12dB Gain) g.无杂散动态范围:-91dBc(9.7MHz,12dB Gain) 2)实时信号分析模块: a.板载Kintex-7XC7K410T FAPGA芯片,2GB板载内存 b. 3.2GB/s带宽 c.前端包含132条单端I/O线,可配置为66组差分线对 d.支持点对点传输,实现FPGA模块之间,或PXIe模块之间实现直接的高速 数据传输 3)系统高精度时钟源: a.OCXO PXI时钟模块,时钟精度±80ppb b.可用于生成时钟和触发信号,并路由到PXI机箱的背板 c.可利用PXI Express的高级低电压差分信令(LVDS)触发总线:PXIe?DStarA、 PXIe?DStarB和PXIe?DStarC d.可生成两种类型的时钟:信号基于板载精密控温晶体振荡器(OCXO)参考时 钟的高稳定10MHz时钟;和直接数字合成(DDS)时钟生成电路生成的时钟 e.生成时钟频率范围:0.2794Hz~1GHz 4)系统扩展接口: a.两个MXI Express接口,可用于扩展软件无线电外设或PXI机箱,传输带 宽:1GB/s b.不少于三个扩展槽位,用于未来扩展更高密度采集通道以及运算单元 5)嵌入式处理器: a.Intel Xeon系列8核控制器 b.4*USB2.0接口,2*USB3.0接口 c.16GB运行内存 d.支持Real-Time OS系统 e.24GB/s系统带宽 f.支持图形化语言开发上位机与FPGA程序

数据采集系统简介研究意义和应用.doc

一前言 1.1 数据采集系统简介 数据采集,是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机(或微处理器)的测量软硬件产品来实现灵活的、用户自定义的测量系统。该数据采集系统是一种基于TLC549模数转换芯片和单片机的设备,可以把ADC采集的电压信号转换为数字信号,经过微处理器的简单处理而交予数码管实现电压显示功能,并且通过与PC的连接可以实现计算机更加直观化显示。 1.2 数据采集系统的研究意义和应用 在计算机广泛应用的今天,数据采集的在多个领域有着十分重要的应用。它是计算机与外部物理世界连接的桥梁。利用串行或红外通信方式,实现对移动数据采集器的应用软件升级,通过制订上位机(PC)与移动数据采集器的通信协议,实现两者之间阻塞式通信交互过程。在工业、工程、生产车间等部门,尤其是在对信息实时性能要求较高或者恶劣的数据采集环境中更突出其应用的必要性。例如:在工业生产和科学技术研究的各行业中,常常利用PC或工控机对各种数据进行采集。这其中有很多地方需要对各种数据进行采集,如液位、温度、压力、频率等。现在常用的采集方式是通过数据采集板卡,常用的有A/D 卡以及422、485等总线板卡。卫星数据采集系统是利用航天遥测、遥控、遥监等技术,对航天器远地点进行各种监测,并根据需求进行自动采集,经过卫星传输到数据中心处理后,送给用户使用的应用系统。 1.3 系统的主要研究内容和目的 本课题研究内容主要包括:TLC549的工作时序控制,常用的单片机编辑C语言,VB 串口通信COMM控件、VB画图控件的运用等。 本课题研究目的主要是设计一个把TLC549(ADC)采集的模拟电压转换成八位二进制数字数据,并把该数据传给单片机,在单片机的控制下在实验板的数码管上实时显示电压值并且与计算机上运行的软件示波器连接,实现电压数据的发送和接收功能。

脉搏监测系统

姓名: 学院: 机电工程学院班级: 10机工A1 学号: 指导老师: 实训时间: 2013.6 实训地点: 14号楼411

脉搏监测系统 (一)内容 基于单片机或PC机,设计一套测试系统,用于将外周血管搏动(即脉搏跳动)信号进行采集分析。 集体要求: 1.测量脉搏显示波形图 2.计算脉搏测量的结果,并进行报警判断,控制报警灯显示 3.保存测量数据 4.数据回放 (二)要求 1.提出设计方案(提出测量原理,选择传感器,构建测试系统) 2.设计测量电路 3.测试软件设计 利用汇编语言、Labview或其他的开发程序(VB、VC等),设计测试软件进行数据是采集和分析。 4.调试 5.撰写报告 (三)报告要求 1.综合实践的内容 2.撰写总体的设计方案,并画出测试系统框图 3.硬件选用(包括传感器、采集卡的选用和安装等) 4.电路设计(包括测量电路的设计等电路,系统总电路) 5.测量软件的设计 利用Labview或其他的开发程序(VB、VC等),设计测试软件进行数据是采集和分析。包括软件设计流程图,各功能实现的方法和代码(包括各主程序,子程序的描述以及相应的重要参数设置等描述) 6.小结和体会(可以包含调试中遇到的问题)。

目录 一、实训目的 二、总体方案设计 三、系统硬件元器件选用 四、电路总体设计 五、测试软件设置 六、课程设计小结 七、参考文献

脉搏监测系统传感器设计 一、实训目的 本次传感器应用实训的目的是巩固《传感器与检测技术》所学的各种传感器的原理及应用,同时综合《电子技术》《可编程控制技术》等课程所学的专业知识,制作并调试一个典型传感器作品,熟悉传感器及其处理电路的设计、制作、与调试方法,熟练掌握各种常用测量仪表的使用。 二、总体方案设计 1.测试原理 累积数千年来丰富临床经验的脉诊,是中国医学独特的诊病方法,在诊“望、闻、问、切”中占有重要的位置。由脉诊所得的脉象反映人体各和病理 状况,反映了五脏六腑气血盛衰观察体内功能变化的一个重要根据脉象的变化,可探测人体脏腑的气血、阴阳、生理与病理的状况。我国中医学家千年 的实践总结而成的脉学理论在中医辨证论治中起着重要的作用,也是人类的 重大贡献。目前,通过脉搏波的分析已经可以方便的估算出被测者的心血管 血流动力学的各项参数,如心输出量、外周阻力、血管顺应性等。然而要想 准确的判断患者的心血管等方面的情况和预测心血管疾病发生的可能性, 以 便及时采取措施有效地减少危险因素,首要的条件是要能准确清晰的获取患 者的脉搏信号。随着电子计算机技术和测量技术的迅速发展,脉搏测量、记 录和分析也有了很大的改善和进步。 脉搏的测量有很多方法,本系统主要是利用压力式传感器来获取脉搏信号。由压力式传感器采集脉搏信号,经过前置放大电路、滤波电路、积分和 比较电路后得到与脉搏相关的脉冲信号。人体的脉搏波可用特制的脉搏描记 器记录下来。从可见每个脉搏波描记曲线都由升支A和降支K构成。随后心 室舒张,心室内压低于主动脉血压,于是动脉血倒流,导致主动脉瓣关闭, 在曲线上形成降支切迹N,也叫降中峡或重波谷降支的形状与外周阻力的大 小有关;如阻力大则降支坡度较缓,其切迹的位置较高;反之,切迹的位置 较低。脉搏波的形状,因循环系统的情况改变而不同。 该系统的最大特点是用LabVIEW虚拟仪器的操作面板及相应的程序, 显 示出脉搏的波形。虚拟仪器系统一般是由计算机、应用软件、数据采集卡和

基于LabVIEW的多通道数据采集系统信号处理

目:基于LabVIEW的多通道数据采集系统 2010 年 03 月 20 日 互联网会议PPT资料大全技术大会产品经理大会网络营销大会交互体验大会 毕业设计开题报告 1.结合毕业论文课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 1. 本课题的研究背景及意义 近年来,以计算机为中心、以网络为核心的网络化测控技术与网络化测控得到越来越多的应用,尤其是在航空航天等国防科技领域。网络化的测控系统大体上由两部分组成:测控终端与传输介质,随着个人计算机的高速发展,测控终端的位置原来越多的被个人计算机所占据。其中,软件系统是计算机系统的核心,设置是整个测控系统的灵魂,应用于测控领域的软件系统成为监控软件。传输介质组成的通信网络主要完成数据的通信与采集,这种数据采集系统是整个测控系统的主体,是完成测控任务的主力。因此,这种“监控软件-数据采集系统”构架的测控系统在很多领域得到了广泛的应用,并形成了一套完整的理论。 2. 本课题国内外研究现状 早期的测控系统采用大型仪表集中对各个重要设备的状态进行监控,通过操作盘进行集中式操作;而计算机系统是以计算机为主体,加上检测装置、执行机构与被控对象共同构成的整体。系统中的计算机实现生产过程的检测、监督和控制功能。由于通信协议的不开放,因此这种测控系统是一个自封闭系统,一般只能完成单一的测控功能,一般通过接口,如RS-232或GPIB接口可与本地计算机或其他仪器设备进行简单互联。随着科学技术的发展,在我国国防、通信、航空、气象、环境监测、制造等领域,要求测控和处理的信息量越来越大、速度越来越快。同时测控对象的空间位置日益分散,测控任务日益复杂,测控系统日益庞大,因此提出了测控现场化、远程化、网络化的要求。传统的单机仪器已远远不能适应大数量、高质量的信息采集要求,产生由计算机控制的测控系统,系统内单元通过各种总线互联,进行信息的传输。 网络化的测控技术兴起于国外,是在计算机网络技术、通信技术高速发展,以及对大容量分布的测控的大量需求背景下发展起来,主要分为以下几个阶段:第一阶段: 起始于20世纪70年代通用仪器总线的出现,GPIB实现了计算机与测控系统的首次 结合,使得测量仪器从独立的手工操作单台仪器开始总线计算机控制的多台仪器的测控系统。此阶段是网络化测控系统的雏形与起始阶段。第二阶段:

PLC的高速数据采集分析与记录工具介绍

PLC的高速数据采集分析与记录工具 在工业现场,设备调试时经常遇到需要对PLC各种变量捕捉分析,优化控制时序,检查动作过程是否准确等情况;在设备运行时又需要对设备的运行状态进行全方位的监控和记录,方便设备故障后,故障过程的重现与故障原因的分析,尤其一些控制逻辑复杂的设备,这种需求更加突出。 在一般情况下,SCADA监控软件的趋势记录就可以满足需求,但是SCADA在趋势与记录上存在很大的劣势,比如,采集数据量大的系统(系统本身庞大,需要采集的数据点多),采集速度要求高的系统(系统本身运行快,要求最大程度复现控制器内逻辑与数据的处理过程,如西门子TDC等),这些情况下,单纯的依靠SCADA已经无法满足我们的需要,那么就需要专用的数据采集分析与记录工具帮我们完成。 下面是对PLC的一些数据采集与记录工具的介绍。 1)、iba公司的PDA 既然要说数据采集记录工具,首先要提的当然是强大的PDA,软件本身支持很多驱动,可以选择带硬件支持的版本,一般采用控制器连接iba公司的模块,模块通过光纤连接工控机的配置方法,能够最大限度提高速度,当然也有纯软件的版本,这个软件在钢铁行业应用的比较多,如轧制过程的数据采集记录。(不过,这个软件的价格我只能呵呵了),软件截图:

2)、AUTEM公司的PLC-ANALYZER pro 关于此软件,同样提供多种驱动。支持的PLC-Driver有Siemens SIMATIC S7 / C7 / M7, SAIA xx7, VIPA, SIMATIC S5, Siemens LOGO!, SINUMERIK, SIMOTION, BOSCH, CoDeSys, PILZ, Phoenix, Jetter, Allen-Bradley, GE Fanuc, HITACHI, OMRON, Mitsubishi, Schneider, AUTEM AD_USB-Box?, Beckhoff TwinCat等,对于西门子的PLC,支持 MPI/PROFIBUS/ETHERNET等,但是在软件的实际使用时你会发现,软件功能较PDA逊色不少。软件截图:

基于STM32单片机的多路数据采集系统设计

基于STM32单片机的多路数据采集系统设计 The Design Of Multi-channel Data Acquisition System Based On STM32 中国地质大学(北京) 指导教师 2013.3.31

摘要 本文是基于ARM Cortex-M3的STM32系列嵌入式微控制器的应用实践,介绍了基于STM32单片机的数据采集的硬件设计和软件设计,数据采集系统是模拟域与数字域之间必不可少的纽带,它的存在具有着非常重要的作用。本文介绍的重点是数据采集系统,而该系统硬件部分的重心在于单片机。数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机STM32来实现,硬件部分是以单片机为核心,还包括A/D模数转换模块,显示模块,和串行接口部分。该系统从机负责数据采集并应答主机的命令。输入数据是由现场模拟信号产生器产生,8路被测电压再通过模数转换器ADC0809进行模数转换,实现对采集到的数据进行模拟量到数字量的转换,并将转换后的数据传输到上位机,由上位机负责数据的接受、处理和显示,并用LCD数码显示器来显示所采集的结果。软件部分应用Keil uVision4通过C++编写控制软件,对数据采集系统、模数转换系统、数据显示、数据通信等程序进行了设计。 关键词:数据采集 89C52单片机 ADC0809 Keil uVision4

Abstract This article is an application of STM32 series embedded ARM controller based on Cortex-M3 and it describes the hardware design and software design of the data on which based on signal-chip microcomputer .The data collection system is the link between the digital domain and analog domain. It has an very important function. The introductive point of this text is a data to collect the system. The hardware of the system focuses on signal-chip microcomputer .Data collection and communication control use modular design. The data collected to control with correspondence to adopt a machine 8051 to carry out. The part of hardware’s core is STM32, is also includes A/D conversion module, display module, and the serial interface. Slave machine is responsible for data acquisition and answering the host machine.8 roads were measured the electric voltage to pass the in general use mold-few conversion of ADC0809,the realization carries on the conversion that imitates to measure the numeral to measure towards the data that collect .Then send the data to the host machine.the host machine is responsible for data and display, LED digital display is responsible display the data. The software is partly programmed with C++ of the Keil uVision4. The software can realize the function of monitoring and controlling the whole system. It designs much program like data-acquisition treatment,data-display and data-communication ect. Keyword: data acquisition AT89C52 ADC0809 Keil uVision4 目录

脉搏测量仪 报告

五邑大学 电子系统设计开题报告 题目:脉搏测量仪 五邑大学教务处制 2011年8月

一、课题来源、国内外研究现状与水平及研究意义、目的。 1.课题来源 便携式心率测试仪 2.国内外研究现状与水平 在先进科学技术的推动下,医疗仪器的相关技术日新月异,全球医疗仪器的发展朝微小化迈进。便携式、低功耗的心率计会越来越受到人们的青睐。长期以来,各种静态的、动态的、随身携带的、远程遥控的心率计已经相继问世。 由于心率和心率变异是临床心血管疾病诊断所需要的重要生理参数,有关心率和心率计的研究一直以来成为医学、电子学、工程技术领域科研的工作者们的涉足焦点。在国外到06年底,已经开始研究可佩戴式心率计。植入人体式心率计。国内的心率计产品由于受相关科学水平及生产设备的限制,功能和集成度不及国外。 脉搏测量仪的发展主要向以下几个趋势发展: (1)自动测量脉搏并且对所得到的脉搏进行自动分析。 目前很多脉搏测量仪都具有检测血氧等其他功能,但是对于这些信号的分析和诊断还需要一些有经验的医生观察,进行分析以 后才能确认结果,浪费大量的人力,且认为引入的误差较大。因 此,未来脉搏自动监测的内容将更加详细,自动分析诊断的功能 也将更加强大。 (2)数字化技术等先进技术的应用。 随着数字科学技术的发展,脉搏测量仪的集成度将更高,更便于携带。数字信号处理的运用将使干扰更小,测量更加准确。 (3)多功能化越来越明显。 目前的脉搏测量仪,一般都有测试血氧、心电图等功能,单纯的脉搏测量仪已经很少见到。随着电子技术的发展,脉搏测量仪 必将实现更多的功能。 设计中使用到的系统利用压电陶瓷片将脉搏转化为电压信号,经过信号调理后利用AT89S51单片机进行信号采集和处理,在短时 间内,测量人体一分钟的脉搏数,并将心率进行实时显示,便于 携带。达到了方便、快速、准确测量心率的目的。这样的脉搏测 量系统性能良好,结构简单,性价比高,输出显示稳定,比较适 应大众化,适合家庭进行自我检查以及医院护士进行每日的临床 记录。 3.研究意义和目的 (1)通过该课题学习掌握心率测量的原理、方法、实现过程。 (2)学会相关的单片机知识,能够较全面的融合电路、电子技术、信号采集和处理、程序设计等等的专业知识。 (3)使中医更加科学化,不是单凭经验就得出患病的诊断。 (4)实现脉搏的可见性,方便家庭和护士临床检查使用。

-基于Labview的多通道数据采集系统设计

第一节系统整体结构 系统的整体组成结构是测量目标经过传感器模块后转换成电信号,在由信号调理模块对信号做简单的调理工作,例如,scc-sg04全桥应变调整模块,scc-td02模块,scc-rtd01热电偶热电阻制约模块等,将调理好的信号传送到数据采集模块中进行数据采集,然后在用软件进行特定的处理。在采集的过程中同时将数据保存到指定数据库里。如图4-1多通道数据采集系统硬件结构图所示。 图4-1 多通道数据采集系统硬件结构图 第二节数据采集系统的硬件设计 一、PC机 传统仪器很多情况完成某些任务必须借助复杂的硬件电路,而由于计算机数据具备极强的信号处理能力,可以替代这些复杂的硬件电路,这便是虚拟仪器最大的特点。数据采集系统能够正常运行的前提便是选择一个优良的计算机平台。由于数据采集功能器件通常工作在工业领域中,往往伴随着强烈的振动,噪声,电源线的干扰和电磁干扰等。为了保证记录仪正常的运行,设计系统时选定工业计算机。考虑到计算机平台的可靠运行工业计算机通常采取了抗干扰措施。另一方面的考虑是工业计算机通常具有很多类型的接口,这样有利于功能进一步的扩展。 二、传感器 传感器设备能接受到来自测量目标发来的信号,而且把接受到的讯息,通

过设定的变换比例将其改变成为电信号亦或其它形式,从而能够完成数据信号的处理、存储、显示、记录和控制等任务。传感器是系统进行检测与控制的第一步。 三、信号调理 经过传感器的信号大多是要经过信号调理才可以被数据采集设备所接收,调理设备能够对信号进行放大、隔离、滤波、激励、线性化等处理。由于不同类型的传感器各有不同的功能,除了考虑一些通用功能之外,还要依据不同传感器的性质和要求来实现特殊的信号调理功能。信号调理电路的通用功能由如下几个方面: (1)放大功能为了提高系统的分辨率以及降低噪声干扰,微弱信号必须要进行放大,从而使放大之后信号电压与模数转换的电压范围一致。信号在经过传感器之后便直接进入信号调理模进行调理,这样就不易受到外部环境的影响,从而使得信噪比进一步的改善。 (2)隔离功能隔离是指为了避免直接的电连接,通过光线、交互电源或变压等方法,使得数据信息在系统之间进行传递。使用隔离的原因:一是为了安全考虑;二是能够保证采集到的数据不会受到其它原因的影响。 (3)滤波滤波是为了保证测量的信号的纯洁性,滤去不需要的信号。大部分的信号调理模块具有一个低通滤波器是用来过滤噪声。通常还需要抗混叠滤波器,滤除信号中感兴趣的最高频率以上的所有频率的信号。 (4)激励功能信号调理模块能够为某些传感器提供激励信号,而且很多信号调理模块都提供有电流源和电压源以便给传感器提供激励。 (5)线性化大部分的传感器是测量信号的线性和非线性响应的结合,为了使传感器误差补偿,对输出信号的线性化是必要的。目前,该数据采集系统可以通过软件解决这个问题。 四、输入信号的类型 要知道信号采集到的数据集,这是因为信号的要求和系统性能的不同的测量是不同的,只有了解被测信号的性质,才可以准确地选择合适的采集系统。 一个任意的信号在时间上是一个物理量的变化。在一般情况下,信号携带的信息是非常广泛的,如:状态,率,水平,形式,频率等。根据信号运载信息的不同,可以将信号分为数字信号或模拟信号。其中数字信号包括脉冲信号和开关信号两种类型。模拟信号包括直流信号、时域信号、频域信号等。 (1)数字信号 第一类数字信号为开关量信号,如图4-2所示。一个开关信号携带信息信

脉搏参数采集

1 绪论 脉搏人体血管的跳动,脉搏跳动的状况可以在一定程度上反映出人体的健康状况。号脉是中医特有的传统诊疗方式,医生们通过号脉来诊断出病人的病情,但是传统的号脉方式主要是医生们通过经验来号脉,有一定的误差,如果诊断失误还可能会造成误判,从而导致病人的病情恶化。随着科技的发展,通过仪器完全可以代替传统的方式,而且其更有判断依据,更加的可靠。现在越来越多的医院,不论是大型的医院还是乡村医院都需要脉搏参数器。 该系统先采用传感器对人体的脉搏信号进行采集,然后将采集到的信号经过前置放大、模拟滤波、后后级放大电路进行处理,再经过A/D转换电路,最后单片机通过串口通信电路把信号送到PC机接口,最后显示信号。这种实时显示对于医学中心血管监护方面具有重要的参考价值,它可以非常方便医生对病人的诊断,同时也可以使诊断更准确。 一般人体的脉搏信号的幅度一般都在0~10mV左右,而A/D转换器的输入范围为-5~+5V,所以模拟信号处理电路应该放大到-5~+5V。通过仿真结果表明,脉搏信号频率范围为0.5~20Hz,并且最后通过主控电路,可以在PC机上实时显示采集波形信号。 1

2 整体电路设计 本系统主要脉搏信号采集电路、脉搏前置放大、滤波、后级放大电路、AT89S51单片机、A/D 转换模块、串口电路发送模块组成。对微弱的脉搏信号进行采集必须选择合适的传感器,通过传感器采集的信号经过各处理电路的放大、滤波后,再经过A/D 转换传给单片机通过串口通信输出到PC 机,直接显示出来。系统总原理框图如图2.1所示。 图2.1 系统总原理框图 信号采集传感器 前置放大电路 滤波电路 后级放大电路 A/D 转换电路 单片机控制 电 路 串口通信电 路 PC 显示端

LMS-SCADAS多功能数据采集系统简介

数据采集系统 LMS SCADAS多功能数据采集系统 当今,产品的研发周期越来越短,用于产品性能测试的时间越来越少。在全 球的各个行业中,试验部门正承受着巨大的压力——要用尽量少的时间和资 源配合产品的设计与更新,完成尽可能多的试验任务。LMS SCADAS数据采 集系统能够保证完成各种类型的试验任务,并且其高性能、高效率的特点, 可以让试验工程师更充分地利用资源,同时完成多项试验任务,大大地缩短试验周期。 LMS SCADAS硬件以其卓越的性能和高度的可靠性著称,无论是进行试验室 测试还是现场测试都能保证最优的测试质量和精度。LMS SCADAS硬件与LMS https://www.doczj.com/doc/a78060874.html,b和LMS Test.Xpress软件无缝集成,可以快速完成所有的测试设 置,在保证最佳数据质量和精度的同时,高效地完成测试任务。正由于LMS SCADAS硬件具有如此多的优点,全球范围内每天都有数以万计的用户正在 使用LMS产品进行着测试工作,采集各种试验数据。 为您量身定制的LMS SCADAS解决方案——保证随时随地的完美表现 LMS SCADAS硬件的最大优点是灵活性与可扩展性,有多种型号可供客户选 择-从紧凑的便携式系统,全自动的智能记录仪,直至大通道数的试验室系统。LMS SCADAS硬件支持多种传感器,具有多种信号调理功能,是进行噪 声、振动、声学和耐久性等试验任务的理想前端。最重要的是,LMS SCADAS 注重多功能性,即可以作为一个移动的前端使用,也可以作为独立的记录仪 在外场使用。同时,LMS SCADAS硬件还为在恶劣条件下进行声学测试或耐 久性数据采集提供了统一的测试系统。 “LMS SCADAS系统注重于应用的多样性,使用户 的投入获得最大的回报。” ?通用的硬件平台,同时适用于试验室测试、外场测试,并支持记录仪模式,独立地完成数据采集 ?专业用于噪声、振动、声学和疲劳耐久性能测试

多通道动态信号采集系统技术参数

多通道动态信号采集系统技术参数 一、设备名称:多通道动态信号采集系统 二、技术参数 *2. 1、通道数:≥32通道;要求系统具备无线采集功能,能远程控制系统的采集开始、结束以及设置参数等; 2. 2、采样频率(所有传感器同步采集):≥100KS/S; *2.3、采集模块:单个采集模块16通道,±75V模拟量输入,16位A/D,通过前端信号调理模块可同时支持应变,ICP类型传感器; 2.4、最高测量精度:0.1%F.S; *2. 5、信号带宽:≥25KHz; 2.6、主机技术要求:供电:10…55VDC,标准内存:256MB,1G内部存储卡,通信接口:TCP/IP,串口,带10个数字I/O和8个脉冲计数输入 *2.7、系统工作温度范围:-20°c~ +65°c * 2.8、系统振动冲击指标:振动20g,冲击60g 2.9、桥盒模块尺寸:不大于32*77*20mm(W*D*H); 2.10、桥盒工作温度范围:-20°c~ +65°c 2.11、通讯接口:以太网; *2. 12、加速度传感器:可充电锂电池,嵌入式数据记录器最大记录不小于800万条数据事件,IP67防护等级,量程8g,三轴向。 (打*项为必须满足项) 三、采集及分析软件。 3.1 带有可扩展的传感器数据库,内置的TEDS 编辑器,可以读写TEDS 数据。软件拥有图形界面,在线计算无需编程,测试数据可以以多种格式保存,例如BIN, RPCIII, MAT, ASCII 或XLS ,并可以再任何时间分析. 3.2 可以让用户采用.NET API (C++, C#, https://www.doczj.com/doc/a78060874.html,) 使LabVIEWTM等软件。 3.3 web 服务器集成到每个模块中,测试数据可视化,通过浏览器进行浏览,无需安装其他软件. 四、售后服务及其他。 4.1 最好在武汉本地有技术支持中心;

脉搏波提取电路的设计

无锡工艺职业技术学院毕业设计(论文) 题目:脉搏波提取电路的设计 系部:电子信息系 专业:应用电子技术 姓名:于鹏 学号:2009261231 指导教师:李冬 职称:高级实验师 二0一二年五月十日

目录 第一章绪论 (3) 第二章设计方案论证 (4) 2.1设计任务 (4) 2.2系统统计原则 (4) 2.3总体结构框架 (5) 2.3.1脉搏信号的提取 (5) 2.4信号调理电路设计 (5) 2.4.1设计要求 (5) 2.4.2滤波电路设计 (6) 2.4.3电压提升电路设计 (8) 2.4.4信号调理电路的仿真分析 (8) 第三章硬件电路设计 (9) 3.1单片机的选择 (9) 3.1.1数据采集 (10) 3.1.2MAX1240模数转换器简介 (10) 3.1.3串行通讯 (12) 3.2整体单片机电路模块 (15) 3.2.1电源模块设计 (15) 3.2.2+5v电源设计 (16) 3.2.3负电源设计 (16) 第四章软件设计 (17) 4.1初始化程序设计 (17) 4.2中断处理子程序设计 (17) 4.3输入口处理子程序设计 (18) 第五章总结 (19) 参考文献 (20) 附录 (21)

第一章绪论 人体的脉搏波可用特制的脉搏描记器记录下来。从可见每个脉搏波描记 曲线都由升支A和降支K构成。随后心室舒张,心室内压低于主动脉血压, 于是动脉血倒流,导致主动脉瓣关闭,在曲线上形成降支切迹N,也叫降中 峡或重波谷降支的形状与外周阻力的大小有关;如阻力大则降支坡度较缓, 其切迹的位置较高;反之,切迹的位置较低。脉搏波的形状,因循环系统的 情况改变而不同。本设计的的系统的主要功能是希望对所检测到的脉搏信号 进行动脉硬化程度的识别,需要对系统不断进行改进以提高识别的准确率, 从而提高检测的精确度和准确度,为广大病友提供医疗保障,保证他们的生 命健康。 脉搏波检测系统的数字化设计方法:从脉搏波中提取人体的生理病理信息作为临床诊断和治疗的依据,历来都受到中外医学界的重视。几乎世界上所有的民族都用过“摸脉”作为诊断疾病的手段。脉搏波所呈现出的形态(波形)、强度(波幅)、速率(波速)和节律(周期)等方面的综合信息,在很大程度上反映出人体心血管系统中许多生理病理的血流特征,因此对脉搏波采集和处理具有很高的医学价值和应用前景。但人体的生物信号多属于强噪声背景下的低频的弱信号,脉搏波信号更是低频微弱的非电生理信号,必需经过放大和后级滤波以满足采集的要求。 目前的指端脉搏检测系统都是采用模拟技术来完成滤波,放大整型等处理,再经过模数转换和进一步处理。这种方法不仅增加了硬件的复杂程度,增大了功耗和体积,更主要的是增加了系统不可靠和不稳定因素。随着电子测量技术的迅速发展,现代电子测量仪器以极快的速度向数字化、自动化的方向发展。本文针对目前的脉搏波检测系统的问题,提出了脉搏波检测系统的数字化设计思想,采用了MAX1240芯片,它的体积小,功耗低。本课题利用过采样技术,通过对光电转换后的电信号高速采样实现高分辨率模数转换,然后再进行数字滤波处理,从而代替原有模拟电路完成放大滤波等工作,以简化设计,提高系统稳定性。

多通道数据采集系统

多通道数据采集系统 一、仪器结构 VXY2007虚拟化多道X-Y数据采集系统面板如下图所示。仪器板面上有开关,电源指示灯,Ⅰ、Ⅰ、Ⅱ、Ⅲ、Ⅳ道共四道数据采集通道。 当开关打向OFF时,电源指示灯熄灭;当开关打向ON时,电源指示灯变绿色,表明仪器正处于通电状态。四道数据采集通道各分正负两接线柱,分别与热电偶正负极相连。 X-Y数据采集仪面板图 二、工作原理 热电偶可将温度转换成电压信号(温差电势),通过X-Y多通道数据采集系统连续采集记录体系的温度,X-Y多通道数据采集系统与电脑相连,系统采集的数据显示在电脑上,从而得到所需的冷却曲线。通过数条冷却曲线,即可绘出二元相图。 在一定温度范围内,铜-康铜热电偶输出的温差电势与其热端和冷端的温度差成近似线性关系,为此只要绘制出热电偶的工作曲线(电势差-温差曲线),即可通过它的线性关系较方便地查到各mV值所对应的温度。热电偶工作曲线的绘制办法是,固定热电偶冷端的温度0℃(可将其插入冰水混合物中),取三个温度点(沸水、纯锡凝固点、纯秘凝固点)的温度为横坐标,其对应的温差电势为纵坐标,三点连线,作"电势差-温差"曲线图。当然,在仪器的系统误差很小的前提下,也可不做热点偶工作曲线,而是按照仪器读取的电势差值直接去查“铜-康铜热电偶值分度表”,得出对应的温度来。

三、实验步骤 用热分析法中应用VXY2007虚拟化多道X-Y数据采集系统和热电偶测熔融体步冷曲线的实验步骤如下: 1、配制实验样品 用台秤分别配制含Bi30%、57%、70%或80%的Bi-Sn混合物各60克,以及纯Bi、纯Sn各50克,将以上5个样品分别装入样品管中,再各加入少许石墨粉(减缓金属氧化)。 配制冰水混合物,将带玻璃套管的热电偶冷端插入冰水混合物底部,再将热电偶热端插入样品管中,注意使套管底部距样品管底部8~12mm距离。 2、将5种试样装入样品管中,分别放在电炉加热系统中某一个位置,调节电炉加热系统的选择旋钮到对应的档位。 3、打开VXY2007虚拟化多道X-Y数据采集系统软件,设置好X-Y数据采集系统对应的通道,这时采集系统开始工作-记录样品的温度(实际为mV 值)。给电炉通电,对样品进行加热,使金属或合金完全熔化后断电,然后让样品自动缓慢冷却,数据采集系统自动跟踪记录样品的温度随时间的变化。 4、从电脑所记录的图上准确读取各拐点的mV值(精确到±0.05mV)。 5、绘制相图 从热电偶工作曲线上分别查出各样品拐点处温差电势(mV)所对应的温度,以温度纵坐标,合金组成(以Bi含量计)为横坐标,绘制出Sn-Bi二元合金的简化相图。 四、有关注意事项: 金属熔化后,切勿将样品横置,以防金属熔液流出烫伤人体。另外,取热样品管时一定要戴手套,且不能从别人的头上或肩上的空中移过,以防样品管突然破裂而烫伤人体。 在测定当前样品冷却曲线的同时,可将下一个样品放入坩埚电炉里加热熔化,以节省时间,但应注意样品加热时间不可太长,温度不能过高,否则样品容易被氧化。 测定70%或80%Bi样品时,当温度降至约250℃以后,需要转动玻璃套管以轻轻搅动熔液,直至第一拐点出现为止。

单片机多通道数据采集系统

单片机多通道数据采集系统

目录 1.功能描述 (3) 2 方案设计 (3) 2.1 系统分析 (3) 2.2 器件选择 (4) 2.2.1 微处理器 (4) 2.2.2 显示器 (4) 2.2.3 按键 (4) 2.2.4 闹铃 (4) 3、硬件电路设计 (5) 3.1 最小系统设计 (5) 3.2 显示电路设计 (6) 3.3 按键电路设计 (7) 3.4 声音报警电路设计 (6) 3.5多通道数据采集电路设计 (8) 4、软件设计 (9) 4.1 操作功能设计 (9) 4.2程序编制思想 (9) 4.3 主程序 (10) 5 程序调试 (17) 6 技术小结 (18) 7多通道数据采集系统的使用说明 (19) 8心得体会 (20) 9参考文献 (21) 附录1:电路原理图 (22) 附录2:程序参考清单 (23)

设计报告 1.功能描述 利用单片机控制A/D转换器实现多通道数据采集系统。具有如下功能: 1.基本功能 (1)采集的数据为0-5V电压信号; (2)通过按键选择任意通道的数据显示或轮流显示; (3)可以设定报警上下限。 2.扩展功能 自行扩展功能,如音乐铃声,通讯功能等。 2 方案设计 2.1 系统分析 根据系统功能要求,可将系统组成结构分成五大部分:单片机控制中心、按键接口、多通道数据采集、数码管显示和报警播放音乐,如下图为系统的组成结构图。其中,单片机控制中心是核心。MCU根据按键输入,可切换不同的模式或设置不同的参数,从而实现多通道数据的采集。报警播放音乐可设置最高或最低温度报警值。 图2.1 系统总体结构图

2.2 器件选择 2.2.1 微处理器 市场上微处理器种类很多。这里,选取微处理器从多方面考:成本低、性能高、能够满足功能要求等等。 这里,选取STC89C52芯片。因为其功能与普通51芯片相同,其价格非常低廉、程序空间大、资源较丰富、在线下载非常方便。同时,使用该芯片,编程上亦可采用所熟悉的KEIL软件,使课程设计非常简单。 2.2.2 显示器 常见的显示器件LED数码管和LCD液晶器件。 LED数码管能够显示数字和部分字符,价格便宜,硬件电路、软件编程均非常简单,而且使用动态扫描技术可节省大量硬件成本。 LCD液晶显示器件,显示字迹清晰、能够显示数字、字符,本实验主要是用于显示所采集的电压与温度的显示。 系统显示主要还是数字,根据这两种显示器件的特性,选取LED数码管器件。由于系统要求显示所采集的通道数据,采用四位数码管显示即可。 2.2.3 按键 按键是用来变换显示模式以及设置传送上位机信息等功能的。这里采用普通按键即可,选用原则:以最少的按键,实现尽可能多的功能。所以这里,设置两个按键:模式键、传送键。 2.2.4 闹铃 选用最常见,亦最常用的声音提示方式——蜂鸣器,用于报警音乐定时播放。

人体脉搏信号检测系统设计

第1章绪论 1.1 研究背景和意义 随着社会和科学技术的不断进步,人们对生命现象的认识也越来越深入,生物医学信号的检查是对人体健康状况评估的手段。在医院里,通过检查必要的生物医学数据,医生可以对病人健康程度做一个评估,并且根据数据诊断出病患所得的疾病以及康复状况。同时,医药保健类产品早已经不是医院的专利,以家庭为单位,几乎每个家庭都配备了必要的医疗保健类用品[1-3]。在适宜的医疗设备条件下,病人可以不依靠医生的辅助,自己采集医学生理数据,通过医学根据对此参数分析,评估健康水平或者诊断自身是否有疾病。现代的医疗仪器给人民生活带来了便捷,在智能化、便携式、可靠性、安全性等方面都有了很大的提高。仪器在实现功能的同时都有不同的特点,有的仪器便于携带,有的仪器操作简单。当然,结合众多优点的仪器无疑受到消费者的青睐。以医院为单位,因为测量出来的数据可以直接提供给医生作为诊断或评估病人身体状况的参考,所以这类医疗仪器性能高、功能强大、测量数据准确。而对于以家庭或个人来说,在保证功能的同时,方便测量生理数据、便于携带、价格低廉、智能化这些特点是此类医疗仪器发展的趋势。 作为诸多生理信号的一种,脉象信号蕴含着丰富的信息,从脉搏波中提取人体的生理病理信息作为临床诊断和治疗的依据,历来都受到中外医学界的重视。脉搏波所呈现出的形态(波形)、强度(波幅)、速率(波速)和节律(周期)等方面的综合信息,在很大程度上反映出人体心血管系统中许多 生理病理的血流特征[4]。许多中医文献分析脉象的形成和西医分析虽然表、述各有不同,但是有相同的科学原理。 人体循环系统由心脏、血管、血液所组成,负责人体氧气、二氧化碳、养分及废物的运送。血液经由心脏的左心室收缩而挤压流入主动脉,随即传递到全身动脉。当大量血液进入动脉将使动脉压力变大而使管径扩张,在体表较浅处动脉即可感受到此扩张,即所谓的脉搏[1]。 正常人的脉搏和心跳是一致的。脉搏的频率受年龄和性别的影响,婴儿每分钟

多通道数据采集文献综述

多通道数据采集系统的设计与实现 引言 进来,我在网上浏览了200余篇有关数据采集系统的文献。下载了其中100多篇,详细研读了其中50余篇。我了解到在当今社会各个领域,包括科研和实验研究,数据采集系统有着不可代替的作用,数据采集和处理进行得越及时,工作效率就越高,取得的经济效益就越大.数据采集系统性能的好坏主要取决于它的精度和速度,在保证精度的条件下,还要尽可能地提高采样速度,以满足实时采集、实时处理和实时控制的要求。 数据采集系统涉及多学科,所研究的对象是物理或生物等各种非电或电信号,如温度、压力、流量、位移等模拟量,根据各种非电或电信号的特征,利用相应的归一化技术,将其转换为可真实反映事物特征的电信号后,经A/D转换器转换为计算机可识别的有限长二进制数字编码,即数字量,并进行存储、处理、显示或打印。以此二进制数字编码作为研究自然科学和实现工业实时控制的重要依据,实现对宏观和微观自然科学的量化认识。 Microsoft V isual C++是Microsoft公司推出的开发Win32环境程序,面向对象的可视化集成编程系统。它不但具有程序框架自动生成、灵活方便的类管理、代码编写和界面设计集成交互操作、可开发多种程序等优点,而且通过简单的设置就可使其生成的程序框架支持数据库接口、OLE2,WinSock网络、3D控制界面。 本课题研究的是利用PC机上的声卡作为数据采集卡构建数据采集系统。利用VC编程实现多通道数据采集并对数据采集进行控制和处理。 正文 1.研究背景及发展近况 国外数据采集技术较上世纪有了很大的发展,从最近国外公司展示的新产品可以看出,主要的发展方向可以概括为使用方便、功能多样和体积减小三个方面。国内数据采集技术起步比较晚,国内的数据采集系统与国外数据采集系统相比,在技术上仍然存在一定的差距,主要表现在: (1) 由于整个国内的微电子技术还与世界水平有一定差距,模数转换芯片的速度还不能达到世界先进水平,同时高速PCB设计方面的人才比较稀少,所以国内较少研制出速度非常高同时性能又非常好的数据采集系统。 (2) 数据采集系统的内存不大,数据采集系统本身的信号处理功能不强,在现场只能做一些简单的数据分析,大多数的处理要离线到计算机上去做。 (3) 系统的软件水平以及人机界面方面的水平还不是很高,设备操作起来有很多不人性化的地方。 虽然国内与国外在数据采集技术上存在差距,但是总体来看这个差距在不断缩小,在不久的将来中国的数据采集系统肯定会晋升国际一流的水准。随着数字化步伐的不断加深,数据采集技术作为走进数字世界的一把钥匙,必须要紧跟数字化的脚步,只有掌握了尖端的数据采集技术才能在这个飞速变化的世界具有竞争力。

相关主题
文本预览
相关文档 最新文档