当前位置:文档之家› matlab单自由度的时程分析程序

matlab单自由度的时程分析程序

matlab单自由度的时程分析程序
matlab单自由度的时程分析程序

clear;clc;

% 结构模型初始参数---------------------------------------------------------- m=3e3; %质量(单位:kg)

k=1e6; %刚度((单位:N/m))

kesai=0.05; %阻尼比取0.05

c=2*kesai*sqrt(k*m); %阻尼系数

% 读取地震波数据------------------------------------------------------------ acc=textread('D:\处理后的smc文件\51WCW_90_chnua370295.smc_090501.a','%f','headerlines',56); PGA_Max=max(abs(acc)) %最大地面加速度绝对值

% Newmark-beta法的基本参数--------------------------------------------------

beta=1/6; gama=0.5; %按线性加速度法计算更接近真实结果,故取此组参数

dt=0.02; %地震加速度时程波记录时间间隔

b1=1/(beta*dt^2); b2=1/(beta*dt); b3=1-1/(2*beta); %计算参数

b4=gama/(beta*dt); b5=gama/beta-1; b6=(1-gama/(2*beta)) *dt;

ke=k+m*b1+c*b4; %等效刚度

% 设定结构初始状态为零,生成向量空间存储计算值---------------------------------

u=zeros(100/dt,1); v=zeros(100/dt,1); a=zeros(100/dt,1);

% Newmark-beta法的主计算程序------------------------------------------------

for n=2:100/dt

fe=-m*acc(n)+[b1*u(n-1)+b2*v(n-1)-b3*a(n-1)]*m+[b4*u(n-1) +b5*v(n-1)-b6*a(n-1)]*c; %等效荷载

u(n)=fe/ke;

a(n)=b1*[u(n)-u(n-1)]-b2*v(n-1)+b3*a(n-1);

v(n)=b4*[u(n)-u(n-1)]-b5*v(n-1)+b6*a(n-1);

end

% 绘制结构在地震作用下的位移、速度、加速度时程曲线-----------------------------

subplot(3,1,1)

t=(0:length(a)-1)*dt;

plot(t,a) %加速度时程曲线

Acc_Max=max(abs(a))

title('Earthquake Response Curve Of Station 51WCW-90','fontsize',15) ylabel('Acc(cm/s^2)','fontsize',12)

subplot(3,1,2)

plot(t,v) %速度时程曲线

Vel_Max=max(abs(v))

ylabel('Vel(cm/s)','fontsize',12)

subplot(3,1,3)

plot(t,u) %位移时程曲线

Dis_Max=max(abs(u))

xlabel('Time/s','fontsize',12)

ylabel('Dis/cm','fontsize',12)

% End---程序结束-------------

小弟初次发贴,恳请达人们帮分析一下,不胜感激!

其中的循环部分是根据结构动力学书上的写的,感觉问题就出在那部分了,请高人们指点一下

线性加速度法是直接数值积分法求解地震反应的方法之一,本文所采用的线性加速度法参考大崎顺彦的《地震动的谱分析入门》第二版。具体计算公式详见大崎顺彦的《地震动的谱分析入门》第二版P116-P118。

clear% ***********读入地震记录***********

fid = fopen('ei.txt');

[Accelerate,count] = fscanf(fid,'%g'); %count 读入的记录的量

time=0:0.02:(count-1)*0.02;

% ***********线性加速度法计算各反应***********

%初始化各储存向量

Displace=zeros(1,count); %相对位移

Velocity=zeros(1,count); %相对速度

AbsAcce=zeros(1,count);%绝对加速度

Damp=0.05; %结构阻尼比取为0.05

Tc=0.0:0.05:10; %结构自振周期

Dt=0.02; %地震记录的步长

%记录计算得到的反应,MDis为最大相对位移,MVel为最大相对速度%MAcc某阻尼时最大绝对加速度,用于画图

MDis=zeros(1,length(Tc));

MVel=zeros(1,length(Tc));

MAcc=zeros(1,length(Tc));

t=1; %在下一个循环中控制不同的结构自振周期

for T=0.0:0.05:10

Frcy=2*pi/T ; %结构自振频率

DamFrcy=Frcy*sqrt(1-Damp*Damp);%计算公式化简e_t=exp(-Damp*Frcy*Dt);

s=sin(DamFrcy*Dt);

c=cos(DamFrcy*Dt);

A=zeros(2,2);

A(1,1)=e_t*(s*Damp/sqrt(1-Damp*Damp)+c);

A(1,2)=e_t*s/DamFrcy;

A(2,1)=-Frcy*e_t*s/sqrt(1-Damp*Damp);

Matlab信号处理——倍频程

一、对信号进行倍频程分析 1、流程图 2、程序代码 %对信号进行倍频程分析,时间2012-6-14,编程人员韩宝安 clc; %清空 clear all; %清除所有变量 close all; %关闭所有窗口 pref=2e-5; %构造输入信号 bookName = '011b_A_12高度_1-signal时域信号.xls'; % book名sheetName = 'sheet1'; %sheet名 range = 'C85:C4180'; %Excel表中的A85:F2132之间的数据 tmp = xlsread(bookName, sheetName, range); %将读取的数据存

于tmp中 Fs=4096; %采样频率 xn = tmp'; %输入信号xn t=1/Fs:1/Fs:1; %定义时间t plot(t,xn); %以t1为横坐标,x1为纵坐标绘制图像 xlabel('t/ s','fontsize',15); %横坐标轴标记为t/s ylabel('xn / (Pa)','fontsize',15); %纵坐标轴标记为xn/(pa)%滤波器设计 n=input('请确定倍频程数n: '); %确定倍频程数n N=5; %滤波器阶数 k=0; %循环次数初始化 w2=22.5; %初始化w2 while(w2<=Fs/2) %k循环加1,直到w2>Fs/2 w1=w2; w2=w1*2^n; k=k+1; end w2=22.5; for m=1:1:k-1 %m从1每次加1,直到m=k-1 w1=w2; %确定带通下截止频率w1 w2=w1*2^n; %确定带通上截止频率w2 centerf(m)=(w1+w2)/2; %计算中心频率centerf

层次分析法及matlab程序

层次分析法建模 层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法 70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。 传统的常用的研究自然科学和社会科学的方法有: 机理分析方法:利用经典的数学工具分析观察的因果关系; 统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、 社会现象)现象的规律。 基本内容:(1)多目标决策问题举例AHP建模方法 (2)AHP建模方法基本步骤 (3)AHP建模方法基本算法 (3)AHP建模方法理论算法应用的若干问题。 参考书: 1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社 2、程理民等,运筹学模型与方法教程,(第10章),清华大学出版社 3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社 一、问题举例: A.大学毕业生就业选择问题 获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。就毕业生来说选择单位的标准和要求是多方面的,例如: ①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长); ②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉-Reputation); ⑤工作环境好(人际关系和谐等) ⑥发展晋升(promote, promotion)机会多(如新单位或单位发展有后劲)等。 问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?

用MATLAB进行FFT频谱分析

用MATLAB 进行FFT 频谱分析 假设一信号: ()()292.7/2cos 1.0996.2/2sin 1.06.0+++=t t R ππ 画出其频谱图。 分析: 首先,连续周期信号截断对频谱的影响。 DFT 变换频谱泄漏的根本原因是信号的截断。即时域加窗,对应为频域卷积,因此,窗函数的主瓣宽度等就会影响到频谱。 实验表明,连续周期信号截断时持续时间与信号周期呈整数倍关系时,利用DFT 变换可以得到精确的模拟信号频谱。举一个简单的例子: ()ππ2.0100cos +=t Y 其周期为0.02。截断时不同的持续时间影响如图一.1:(对应程序shiyan1ex1.m ) 图 错误!文档中没有指定样式的文字。.1 140.0160.0180.02 截断时,时间间期为周期整数倍,频谱图 0.0250.03 0100200300400500600 7008009001000 20 40 60 80 100 截断时,时间间期不为周期整数倍,频谱图

其次,采样频率的确定。 根据Shannon 采样定理,采样带限信号采样频率为截止频率的两倍以上,给定信号的采样频率应>1/7.92,取16。 再次,DFT 算法包括时域采样和频域采样两步,频域采样长度M 和时域采样长度N 的关系要符合M ≧N 时,从频谱X(k)才可完全重建原信号。 实验中信号R 经采样后的离散信号不是周期信号,但是它又是一个无限长的信号,因此处理时时域窗函数尽量取得宽一些已接近实际信号。 实验结果如图一.2:其中,0点位置的冲激项为直流分量0.6造成(对应程序为shiyan1.m ) 图 错误!文档中没有指定样式的文字。.2 ?ARMA (Auto Recursive Moving Average )模型: 将平稳随机信号x(n)看作是零均值,方差为σu 2的白噪声u(n)经过线性非移变系统H(z)后的输出,模型的传递函数为 020406080100120140160180200 0.4 0.50.60.7 0.800.050.10.150.20.250.30.350.40.450.5 50100 150

层次分析法matlab程序

disp('请输入判断矩阵A(n阶)'); A=input('A='); [n,n]=size(A); x=ones(n,100); y=ones(n,100); m=zeros(1,100); m(1)=max(x(:,1)); y(:,1)=x(:,1); x(:,2)=A*y(:,1); m(2)=max(x(:,2)); y(:,2)=x(:,2)/m(2); p=0.0001;i=2;k=abs(m(2)-m(1)); while k>p i=i+1; x(:,i)=A*y(:,i-1); m(i)=max(x(:,i)); y(:,i)=x(:,i)/m(i); k=abs(m(i)-m(i-1)); end a=sum(y(:,i)); w=y(:,i)/a; t=m(i); disp(w);disp(t); %以下是一致性检验 CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56

1.58 1.59]; CR=CI/RI(n); if CR<0.10 disp('此矩阵的一致性可以接受!'); disp('CI=');disp(CI); disp('CR=');disp(CR); end function AHPInit1(x,y) %层次分析的初始化 %默认只有两层x为准则数,y为方案数 %CToT为准则对目标生成的比较阵 %EigOfCri为准则层的特征向量 %EigOfOpt为选项层的特征向量 EigOfCri=zeros(x,1);%准则层的特征向量 EigOfOpt=zeros(y,x); dim=x;%维度 RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];%RI标准%生成成对比较阵 for i=1:dim CToT(i,:)=input('请输入数据:'); end CToT %输出 pause, tempmatrix=zeros(x+1);

基于Matlab的相关频谱分析程序教程

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()()2 xx S X ωω=,其中()/2 /2 1lim N j n n N n N X x e N ωω→∞ =-=∑ πωπ-<≤。其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ =∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ π ωωπ --= = ? ? 序列n x 在整个Nyquist 间隔上的平均功率可以表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f π π ωωπ --= = ? ? 上式中的

信号的频域分析及MATLAB实现.doc

《M A T L A B电子信息应用》 课程设计 设计五 信号的频域分析及MATLAB实现 学院: 专业: 班级: 姓名: 学号:

信号的频域分析及MATLAB实现 一、设计目的 通过该设计,理解傅里叶变换的定义及含义,掌握对信号进行频域分析的方法。 二、课程设计环境 计算机 MATLAB软件 三、设计内容及主要使用函数 快速傅里叶变换的应用 1)滤波器频率响应 对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器。其功能就是得到一个特定频率或消除一个特定频率,滤波器是一种对信号有处理作用的器件或电路。主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的。 滤波器的类型:巴特沃斯响应(最平坦响应),贝赛尔响应,切贝雪夫响应。 滤波器冲激响应的傅里叶变换就是该滤波器的频率响应。

2)快速卷积 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。其中表示f 的傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n 的序列,按照卷积的定义进行计算,需要做2n - 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。 1. 信号的离散傅里叶变换 有限长序列的离散傅里叶变换公式为: kn N j N n e n x k X )/2(10)()(π--=∑= ∑==1_0)/2()(1)(N n kn N j e k X N n x π MATLAB 函数:fft 功能是实现快速傅里叶变换,fft 函数的格式为: ),(x fft y =返回向量x 的不连续fourier 变换。 若)6 cos()(πn n x =是一个N=12的有限序列,利用MATLAB 计算

层次分析法实现代码(MATLAB)

%% AHP weight calculation %%data input clc clear all A =[1 3 5 7 9 5;1/3 1 3 9 3 3;1/5 1/3 1 3 3 1/3;1/7 1/9 1/3 1 5 1/3;1/9 1/3 1/3 1/5 1 1/3;1/5 1/3 1 3 3 1]; %%Consistency calculation and weight vector calculation [n,n] = size(A); [v,d] = eig(A); r = d(1,1); CI = (r-n)/(n-1); RI = [0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.54 1.56 1.58 1.59]; CR = CI/RI(n); if CR<0.10 CR_Result = 'pass'; else CR_Result = 'no pass'; end % % Weight vector calculation w = v(:,1)/sum(v(:,1));

w = w'; % % output disp('The judgment matrix weight vector calculation report:'); disp('coincidence indicator:');disp(num2str(CI)); disp('Consistency ratio:');disp(num2str(CR)); disp(' Consistency test results:');disp(CR_Result); disp('eigenvalue:');disp(num2str(r)); disp('weight vector:');disp(num2str(w));

基于MATLAB的频谱分析及信号去噪仿真研究开题报告

辽宁石油化工大学 信息与控制工程学院 毕业设计(论文)开题报告 论文题目:基于MATLAB的频谱分析及信号去噪仿真研究 学生姓名:徐宏强 专业班级:信息0901 学号: 0903030123 指导教师:崔畅 2013 年 03 月 17日

填写说明: 1.题目的背景和意义 对题目的出处,背景和意义进行说明论述,不少于300字。2.题目研究现状概述 通过调研和查阅文献,对题目所涉及的技术、理论和研究成果进行说明论述,不少于1000字。 3.题目要完成的主要内容和预期目标 对题目要完成的主要内容进行说明,并说明达到的预期目标, 不少于300字 4.进度计划 从设计开始的教学周起,依据任务书的进度安排进行细化并以周为单位给出主要工作和完成的任务。 5.参考文献 对2引用的资料、论文或著作按照引用顺序列出参考文献(格式同论文《参考文献》)。不少于10篇(其中近3年的文献占1/3以上), 注:相应栏不够时自动加页。 排版要求:正文,宋体,小四,行距固定值20磅 要求学生在毕业设计(论文)开始后的第2周末完成《开题报告》,并交到指导教师评阅(交电子稿和双面打印稿)。

1.题目的背景和意义 随着时代的发展,信息的传输方式逐渐发展为通过信号的方式传送,信号在采集和传输的过程中,由于外界的影响及机器自身的原因难免会有噪声夹杂在其中,在这种情况下,会影响对信号的分析,尤其是对一些高精度数据影响更为巨大,所以对信号的去噪,提取出原始信号是一个重要课题,最为传统的去噪方式是让信号通过一个低通或者带通滤波器,通过这种方法滤去噪声,但是在这个过程中可能会使信号变得平滑失去突变信息,现今的数字滤波器分为有限冲激响应滤波器FIR和无限冲激响应滤波器IIR,在各种信号处理与分析的中,最重要的数学工具是傅立叶变换,而常用的处理工具是MATLAB,利用MATLAB设计滤波器,可以随时对比设计要求,并调整滤波器参数,这样更为直观简便,减轻工作量,有利于对滤波器的设计优化,对信号的去噪有更好的帮助。 2.题目研究现状概述 随着计算机的发展,数字信号处理的理论与技术得到飞速发展,20世纪60年代以来,我国形成了一系列的数字信号处理的理论与算法,比如,数字滤波器,快速傅立叶变换(FFT),这些都是数字信号处理的技术基础,随着信息科技的飞速发展,信号处理取得了重大的飞跃。信号的去噪是数字信号处理中的一个很重要的研究课题,在现今的各种信号中,噪声一般分为两类:相干噪声和随机噪声,相干噪声包括面波,多次波等,随机噪声包括测量误差,环境噪声等。而对信号滤除噪声的方法大致分为三种:基于傅立叶变换的去噪法,相干平均去噪法,和基于小波变换的去噪法。信号去噪在雷达的使用和通信中有着极大的作用,经过先辈们不断的研究与实验,运用滤波器进行信号去噪的方法已经相当完美了,数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能,数字滤波器分为IIR数字滤波器和FIR数字滤波器。 信号处理基本涉及到所有的工程技术领域,而信号去噪是信号处理的一个非常重要的分支,而频谱分析又是信号处理中一个非常重要的分析手段,一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员的携带。而利用MATLAB就会免去以上的问题。信号去噪被用于从一堆波音资料中提取有用信息去除干扰,提高波音资料信噪比。为了提高信噪比,人们根据信号和噪声的各种特征差异,设计了许多去噪方法,并在应用中取得了很好的成果。信号去噪的很多方法都是利用短时傅立叶变换来滤波去噪,但是短时傅立叶变换不能同时兼顾时间分辨率和

基于Matlab的层次分析法及其运用浅析

基于Matlab的层次分析法及其运用浅析 本文通过使用Matlab软件进行编程,在满足同一层次中各指标对所有的下级指标均产生影响的假定条件下,实现了层次分析法的分析运算。本程序允许用户自由设定指标层次结构内的层次数以及各层次内的指标数,通过程序的循环,用户只需输入判断矩阵的部分数据,程序可依据层次分析法的计算流程进行计算并作出判断。本程序可以方便地处理层次分析法下较大的运算量,解决层次分析法的效率问题,提高计算机辅助决策的时效性。 标签:Matlab层次分析法判断矩阵决策 在当前信息化、全球化的大背景下,传统的手工计算已不能满足人们高效率、高准确度的决策需求。因此计算机辅助决策当仁不让地成为了管理决策的新工具、新方法。基于此,本文在充分发挥计算机强大运算功能的基础上,选用美国MathWorks公司的集成数学建模環境Matlab R2009a作为开发平台,使用M语言进行编程,对计算机辅助决策在层次分析法中的运用进行讨论。试图通过程序实现层次分析法在计算机系统上的运用,为管理决策探索出新的道路。 1 层次分析法的计算流程 根据层次分析法的相关理论,层次分析法的基本思想是将复杂的决策问题进行分解,得到若干个下层指标,再对下层指标进行分解,得到若干个再下层指标,如此建立层次结构模型,然后根据结构模型构造判断矩阵,进行单排序,最后,求出各指标对应的权重系数,进行层次总排序。 1.1 构造层次结构模型在进行层次分析法的分析时,最主要的步骤是建立指标的层次结构模型,根据结构模型构造判断矩阵,只有判断矩阵通过了一致性检验后,方可进行分析和计算。其中,结构模型可以设计成三个层次,最高层为目标层,是决策的目的和要解决的问题,中间层为决策需考虑的因素,是决策的准则,最低层则是决策时的备选方案。一般来讲,准则层中各个指标的下级指标数没有限制,但在本文中设计的程序尚且只能在各指标具有相同数量的下级指标的假定下,完成层次分析法的分析,故本文后文选取的案例也满足这一假定。 1.2 建立判断矩阵判断矩阵是表示本层所有因素针对上一层某一个因素的相对重要性的比较给判断矩阵的要素赋值时,常采用九级标度法(即用数字1到9及其倒数表示指标间的相对重要程度),具体标度方法如表1所示。 1.3 检验判断矩阵的一致性由于多阶判断的复杂性,往往使得判断矩阵中某些数值具有前后矛盾的可能性,即各判断矩阵并不能保证完全协调一致。当判断矩阵不能保证具有完全一致性时,相应判断矩阵的特征根也将发生变化,于是就可以用判断矩阵特征根的变化来检验判断的一致性程度。在层次分析法中,令判断矩阵最大的特征值为λmax,阶数为n,则判断矩阵的一致性检验的指标记为:

基于MATLAB的信号频谱分析仪的实现

基于的信号频谱分析仪的实现 一、概述 信号处理几乎涉及到所有的工程技术领域,而频谱分析又是信号处理中一个非常重要的分析手段。一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员的携带。虚拟频谱分析仪改变了原有频谱分析仪的整体设计思路,用软件代替了硬件,使工程技术人员可以用一部笔记本电脑到现场就可轻松完成信号的采集、处理及频谱分析。 在工程领域中,是一种倍受程序开发人员青睐的语言,对于一些需要做大量数据运算处理的复杂应用以及某些复杂的频谱分析算 法显得游刃有余。本文将重点介绍基于的虚拟频谱分析仪的设计。本文设计的虚拟频谱分析仪的功能包括: () 音频信号信号输入。输入的途径包括从声卡输入、从文件输入、从信号发生器输入; () 信号波形分析。包括幅值、频率、周期、相位的估计,并计算统计量的峰值、均值、均方值和方差等信息; () 信号频谱分析。频率、周期的估计,图形显示幅值谱、相位谱和功率谱等信息的曲线。

二、实验原理 时域抽样定理 时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率 大于等于倍的信号最高频 率 ,即 。时域抽样是把连续信号 变成适于数字 系统处理的离散信号 。对连续信号 以间隔抽样,则可得到 的离散序列为 。 图 连续信号抽样的离散序列 若 ,则信号 与 的频谱之间存在: 其中: 的频谱为 , 的频谱为 。 可见,信号时域抽样导致信号频谱的周期化。 ()为抽 样角频率, 为抽样频率。数字角频率Ω与模拟角频率ω的关系为:Ωω。 离散傅立叶变换() 有限长序列)(n x 的离散傅立叶变换()为 )e (j Ω X ()∑∞ -∞=-=n n X T )(j 1sam ωω)e (j ΩX []k X )e (j ωX )j (ωX T sam /2πω=[]k X ()t X []()kT t kT X X ==k ()t X []k X ()t X []()kT t kT X X ==k m sam f f 2≥sam f m f T f sam 1=

用Matlab进行信号与系统的时、频域分析

课程实验报告 题目:用Matlab进行 信号与系统的时、频域分析 学院 学生姓名 班级学号 指导教师 开课学院 日期 用Matlab进行信号与系统的时、频域分析 一、实验目的 进一步了解并掌握Matlab软件的程序编写及运行; 掌握一些信号与系统的时、频域分析实例; 了解不同的实例分析方法,如:数值计算法、符号计算法; 通过使用不同的分析方法编写相应的Matlab程序; 通过上机,加深对信号与系统中的基本概念、基本理论和基本分析方法的理解。 二、实验任务 了解数值计算法编写程序,解决实例; 在Matlab上输入三道例题的程序代码,观察波形图; 通过上机实验,完成思考题; 完成实验报告。 三、主要仪器设备

硬件:微型计算机 软件:Matlab 四、 实验内容 (1) 连续时间信号的卷积 已知两个信号)2()1()(1---=t t t x εε和)1()()(2--=t t t x εε,试分别画出)(),(21t x t x 和卷积)()()(21t x t x t y *=的波形。 程序代码: T=0.01; t1=1;t2=2; t3=0;t4=1; t=0:T:t2+t4; x1=ones(size(t)).*((t>t1)-(t>t2)); x2=ones(size(t)).*((t>t3)-(t>t4)); y=conv(x1,x2)*T; subplot(3,1,1),plot(t,x1); ylabel('x1(t)'); subplot(3,1,2),plot(t,x2); ylabel('x2(t)'); subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1)); ylabel('y(t)=x1*x2'); xlabel('----t/s'); (2)已知两个信号)()(t e t x t ε-=和)()(2/t te t h t ε-=,试用数值计算法求卷积,并分别画出)(),(t h t x 和卷积)()()(t h t x t y *=的波形。 程序代码: t2=3;t4=11; T=0.01; t=0:T:t2+t4; x=exp(-t).*((t>0)-(t>t2)); h=t.*exp(-t/2).*((t>0)-(t>t4)); y=conv(x,h)*T; yt=4*exp(-t)+2*t.*exp(-1/2*t)-4*exp(-1/2*t); subplot(3,1,1),plot(t,x); ylabel('x(t)'); subplot(3,1,2),plot(t,h); ylabel('h(t)'); subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1),t,yt,'--r'); legend('by numberical','Theoretical'); ylabel('y=x*h'); xlabel('----t/s'); (3)求周期矩形脉冲信号的频谱图,已知s T s A 5.0,1.0,1===τ

Matlab对采样数据进行频谱分析

使用Matlab对采样数据进行频谱分析 1、采样数据导入Matlab 采样数据的导入至少有三种方法。 第一就是手动将数据整理成Matlab支持的格式,这种方法仅适用于数据量比较小的采样。 第二种方法是使用Matlab的可视化交互操作,具体操作步骤为:File --> Import Data,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。这种方法适合于数据量较大,但又不是太大的数据。据本人经验,当数据大于15万对之后,读入速度就会显著变慢,出现假死而失败。 第三种方法,使用文件读入命令。数据文件读入命令有textread、fscanf、load 等,如果采样数据保存在txt文件中,则推荐使用 textread命令。如 [a,b]=textread('data.txt','%f%*f%f'); 这条命令将data.txt中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。命令类似于C语言,详细可查看其帮助文件。文件读入命令录入采样数据可以处理任意大小的数据量,且录入速度相当快,一百多万的数据不到20秒即可录入。强烈推荐! 2、对采样数据进行频谱分析 频谱分析自然要使用快速傅里叶变换FFT了,对应的命令即 fft ,简单使用方法为:Y=fft(b,N),其中b即是采样数据,N为fft数据采样个数。一般不指定N,即简化为Y=fft(b)。Y即为FFT变换后得到的结果,与b的元素数相等,为复数。以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。典型频谱分析M程序举例如下: clc fs=100; t=[0:1/fs:100]; N=length(t)-1;%减1使N为偶数 %频率分辨率F=1/t=fs/N p=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t)... +0.5*sin(1.8*2*pi*t)+0.9*sin(2.2*2*pi*t); %上面模拟对信号进行采样,得到采样数据p,下面对p进行频谱分析 figure(1) plot(t,p); grid on title('信号 p(t)'); xlabel('t') ylabel('p')

声学信号基础知识-倍频程

一、什么是倍频程倍频程来源于音乐理论,如下图所示 同一个音符的低音与中音以及中音与高音之间相差八个音符,也就是说一个倍频程对应一个八音符跨度,每个倍频程带都有一个中心频率f c 、上限频率f 1和下限频率f u 。 对于一倍频程来说: c f f 2/111)2(-=c u f f 2/11)2(=112f f u =对于1/3倍频程来说: c f f 2/13/11)2(-=c u f f 2/13/1)2(=13/12f f u =所谓倍频程就是将关注的频率带依照倍频关系进行分割成若干个频段,每个频段都有对应的中心频率、上下限频率。 二、如何计算倍频程中心频率 在声学中,频率1000Hz 是非常重要的,例如它被确定为响度级-phon 的基准频率,因而用频率1000Hz 为声学测量所用频率系列的基准频率,ISO 和ANSI 也已经对此进行了标准化。共有两种方法定义各频段的中心频率; 1、采用以2为基数的方法 相邻两个中心频率之比:N c i c f f /11,2/=+N=1,2,3,6,12,24等 倍频程的各个中心频率计算公式为:? ??±±=?=,2,1,0)2 (1000/1,i f i N i c 2、采用以10为基数的方法

相邻两个中心频率之比:N c i c f f 103 1,10/=+N=1,2,3,6,12,24等 倍频程的各个中心频率计算公式为:? ??±±=?=,2,1,0)10(100010/3,i f i N i c 按以上两种方法计算得到的1/3倍频程中心频率很接近,但不相等,其上下限频率必然有差异。由于标准中使用的是以10为基数的方法得到的,因此在LMS 软件中默认的方法也是以10为基数,如果需要修改可以通过Tools-Option-General 的Octave Filtering 进行 修改。 三、优先数在倍频程标准中心频率的运用 在工业设计行业,产品开发必须选择一些长度、距离、直径、体积和其他一些特征量,而所有这些选择的特征量都受功能、实用性、兼容性、安全或成本等因素的约束。这时选择的这些尺寸通常采用的数就是所谓的优先数。不同的设计人员在不同时期设计产品时,选择优先数能增大产品之间的兼容性,有助于减少制造不同尺寸的产品。 优先数由公比分别为10的5、10、20、40、80次方根,且项值中含有10的整数幂的理论等比数列导出的一组近似等比的数列。对应R5系数、R10系数、R20系数、R40系数和R80系数。 GB/T 321-2005罗列的不同数列对应的优先数值,对于1/3倍频对应的R10数列,其优先频率值有1.0、1.25、1.6、2.0、2.5、3.15、4.5、6.3、8.0、10等。 四、倍频程的计算 如何将噪声频谱信号转变为倍频程? 在进行倍频程计算是,根据相应的方法(基数10或基数2)来确定各个倍频程带的上、下限频率(倍频程带),因此相应倍频程带内的谱线数也就确定了。单个倍频带内的声压均方值是该频带内频谱谱线幅值的均方值之和: ∑==n i i p p 122单个倍频带内的声压级为: ??? ? ??=22lg 10ref band p p SPL 总倍频程内的总声压均方值为各个倍频带内的均方值之和 ∑==n i i p p 122

基于matlab的频谱分析仪设计

Frequency Analyzer YangXiao M2013705103 HuaZhong University of Science and Technology School of Mechanical Science and Engineering Abstract: Matlab Is a numerical analysis, matrix calculation, scientific data visualization and nonlinear dynamic state system modeling and simulation, and other functions of practical software engineering.It’s easy to use the windows environment and cast off a tradition on the interactive programming language (such as C, Fortran) Edit mode In large range.In this report,The task is to design a frequency analyzer by using matlab. Keyword:frequency analyzer;Matlab;time-domain analysis;frequency-domain analysis;

1.Preface MATLAB is called Matrix Laboratory,which is designed by the United States MathWorks company.It’s a commercial mathematical software. Matlab can be use for Matrix operations, mapping functions and data, algorithm, creating the user interface, connect to other programming languages procedures, mainly used in engineering calculations, control design, signal processing and communications, image processing, signal detection, design and financial modeling analysis and other fields. GUI (Graphical User Interface, referred to as GUI, known Graphical User Interface) is displayed using the graphical user interface of computer operations.. Matlab has a powerful GUl tool. In this report, by using matlab GUI tool we could design a frequency analyzer. Frequency analyzer is the instrument which could be used to study the structure of the electrical signal spectrum, and used to measure the signal parameters of signal distortion, modulation, frequency stability and spectral purity.Frequency analyzer could be used to measure some parameters of amplifier and filter circuit system , and it is a kind of multipurpose electronic measuring instrument. FFT (Fast Fourier Transformation) is the fast algorithm of DFT(discrete Fourier transformtion), which is based on discrete Fourier transform.By using FFT we could get the answer faster than DFT.

噪声测试及频谱分析

噪声测试及频谱分析 一. 实验步骤及内容 1)启动服务器,运行DRVI主程序,然后点击DRVI快捷工具条上的“联机注册”图 标,选择其中的“DRVI采集仪主卡检测(USB)”进行服务器和数据采集仪之间 的注册。联机注册成功后,从DRVI工具栏和快捷工具条中启动“内置的Web服 务器”,开始监听8500端口。 2)打开客户端计算机,启动计算机上的DRVI客户端程序,然后点击DRVI快捷工具 条上的“联机注册”图标,选择其中的“DRVI局域网服务器检测”,在弹出的对 话框中输入服务器IP地址(例如:192.168.0.1),点击“发送”按钮,进行客户端 和服务器之间的认证。 3)因为该实验的目的是了解噪声信号的测量方法,并且要实现服务器端的数据共享 功能,需要分别设计服务器端和客户端的实验脚本。对于服务器端,首先需要将 数据采集进来,DRVI中提供了一个8通道的USB数据采集芯片,用于完成对外 部信号的数据采集,实际使用中,可以插入一片“USB 数据采集卡”芯片来完 成;数据采集仪的启动采用一片“0/1按钮”芯片来控制;要完成噪声值的计 算,首先必须计算出信号的功率谱,所以需选择一片“频谱计算”芯片,然后 再插入一片“倍频程”芯片,采用FFT算法来计算并显示声音信号的倍频程 谱,并将计算出的声音信号的分贝值存储于输出数组的第1位,再使用一片 “VBScript 脚本”芯片,在其中添加脚本文件将“倍频程”芯片输出数组中的 第1位数据(即噪声值)取出,并通过“数码LED ”芯片显示出来;另外选 择一片“波形/频谱显示”芯片,用于显示声音信号的时域波形;再加上一些 文字显示芯片和装饰芯片,就可以搭建出一个“噪声测量”服务器端的实 验,所需的软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图1.2 所示,根据实验原理设计图在DRVI软面包板上插入上述软件芯片,然后修改其属 图1.2 噪声测量实验参考设计原理图

层次分析法matlab程序举例

层次分析法程序举例: A=[1 1/7 1/5 2 4 1/3;7 1 3 5 5 3;5 1/3 1 5 5 3;1/2 1/3 1/5 1 2 1/3;1/4 1/5 1/5 1/2 1 1/5;3 1/3 1/3 3 5 1]; [v,d]=eig(A); eigenvalue=diag(d); lamda=max(eigenvalue); cil=(lamda-6)/5; crl=cil/1.26; w1=v(:,1)/sum(v(:,1)) 挑选合适的工作。经双方恳谈,已有三个单位表示愿意录用某毕业生。该生根据已有信息建立了一个层次结构模型,如下图所示。 程序: A=[1 1/7 1/5 2 4 1/3;7 1 3 5 5 3;5 1/3 1 5 5 3;1/2 1/3 1/5 1 2 1/3;1/4 1/5 1/5 1/2 1 1/5;3 1/3 1/3 3 5 1]; [v,d]=eig(A); eigenvalue=diag(d); lamda=max(eigenvalue); ci=(lamda-6)/5

cr=ci/1.26 w1=v(:,1)/sum(v(:,1)) B1=[1 1/4 1/2;4 1 3;2 1/3 1]; [v,d]=eig(B1); eigenvalue=diag(d); lamda=max(eigenvalue); cil1=(lamda-3)/2 cr1=cil1/0.52 b1w=v(:,1)/sum(v(:,1)) B2=[1 1/4 1/5;4 1 1/2;5 2 1]; [v,d]=eig(B2); eigenvalue=diag(d); lamda=max(eigenvalue); cil2=(lamda-3)/2 cr2=cil2/0.52 b2w=v(:,1)/sum(v(:,1)) B3=[1 1/2 2; 2 1 3;1/2 1/3 1]; [v,d]=eig(B3); eigenvalue=diag(d);

基于MATLAB的频谱分析仪设计

基于MATLAB的信号频谱分析仪的实现 一、概述 信号处理几乎涉及到所有的工程技术领域,而频谱分析又是信号处理中一个非常重要的分析手段。一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员的携带。虚拟频谱分析仪改变了原有频谱分析仪的整体设计思路,用软件代替了硬件,使工程技术人员可以用一部笔记本电脑到现场就可轻松完成信号的采集、处理及频谱分析。 在工程领域中,MA TLAB是一种倍受程序开发人员青睐的语言,对于一些需要做大量数据运算处理的复杂应用以及某些复杂的频谱分析算法MA TLAB显得游刃有余。本文将重点介绍虚拟频谱分析仪、MA TLAB软件及对正弦信号的频谱分析。 1.1虚拟频谱分析仪的功能包括: (1) 音频信号信号输入。输入的途径包括从声卡输入、从WAV文件输入、从信号发生器输入; (2) 信号波形分析。包括幅值、频率、周期、相位的估计,并计算统计量的峰值、均值、均方值和方差等信息; (3) 信号频谱分析。频率、周期的估计,图形显示幅值谱、相位谱和功率谱等信息的曲线。 2.1MA TLAB软件

二、实验原理 2.1快速傅立叶变换(FFT) 在各种信号序列中,有限长序列占重要地位。对有限长序列可以利用离散傅立叶变换(DFT)进行分析。DFT不但可以很好的反映序列的频谱特性,而且易于用快速算法(FFT)在计算机上进行分析。 有限长序列的DFT是其z变换在单位圆上的等距离采样,或者说是序列傅立叶的等距离采样,因此可以用于序列的谱分析。FFT是DFT 的一种快速算法,它是对变换式进行一次次分解,使其成为若干小数据点的组合,从而减少运算量。 MATLAB为计算数据的离散快速傅立叶变换,提供了一系列丰富的数学函数,主要有Fft、Ifft、Fft2 、Ifft2, Fftn、ifftn和Fftshift、Ifftshift等。当所处理的数据的长度为2的幂次时,采用基-2算法进行计算,计算速度会显著增加。所以,要尽可能使所要处理的数据长度为2的幂次或者用添零的方式来添补数据使之成为2的幂次。 Fft函数调用方式:○1Y=fft(X); ○2Y=fft(X,N); ○3Y=fft(X,[],dim)或Y=fft(X,N,dim)。 函数Ifft的参数应用与函数Fft完全相同。 2.2周期图法功率谱分析原理 周期图法是把随机数列x(n)的N个观测数据视为能量有限的序列,直接计算x(n)的傅立叶变换,得X(k),然后再取幅值的平

基于MATLAB的信号波形与频谱分析 精品

辽宁科技大学毕业设计(论文)第I页 基于MATLAB的信号波形与频谱分析 摘要 本文利用MATLAB软件进行信号频谱分析的设计,并通过GUI界面(图形用户界面)实现信号频谱分析的动态设计。用户可与计算机交互式地进行对象参数的设置、控制算法的选取、以及对离散信号与连续信号的动态频谱分析。并利用MATLAB内嵌的Simulink模块,实现系统的信号频谱分析,满足不同用户的不同要求。 MATLAB的GUIDE是专门用于图形用户界面(GUI)程序设计的快速开发环境,本文从介绍GUIDE入手结合具体的软件图形界面实例,给出了利用GUIDE制作图形用户界面的基本方法。通过本文的研究得出利用GUIDE设计的仿真界面不仅可以对离散信号与连续信号的动态频谱进行相关分析,而且还可以对此问题作进一步的预测和分析。基于GUIDE技术制作的图形用户界面,具有友好性,开放性,方便科研人员不断地研究和扩充。 关键词频谱分析;GUI;SIMULINK;MATLAB

辽宁科技大学毕业设计(论文)第II页 Abstract Using MATLAB software for signal spectrum analysis of the design, and through the GUI interface (graphical user interface) signal spectrum analysis of the dynamic design. Users can interactively with the computer targeting parameters for the establishment, control algorithm selection, and the discrete signals and continuous signal analysis of the dynamic spectrum. MATLAB and Simulink embedded module, the signal system to achieve spectral analysis, meet the needs of different users with different needs. MATLAB GUIDE is devoted to the graphical user interface (GUI) design procedures for the rapid development environment, This paper introduced GUIDE start from the context of the specific examples of graphical interface software, GUIDE is produced using a graphical user interface methods. Through this paper, the study of the use of simulation GUIDE interface design can not only right for discrete signal and the signal dynamic spectrum analysis, but also the issue for further analysis and forecasts. GUIDE technology based on the production of graphical user interface is friendly and open, facilitate researchers continue to study and expanded. Keywords Spectrum Analysis ;GUI;SIMULINK;MATLAB

相关主题
文本预览
相关文档 最新文档