当前位置:文档之家› 基于SPWPM的移相全桥高频链逆变器研究

基于SPWPM的移相全桥高频链逆变器研究

基于SPWPM的移相全桥高频链逆变器研究
基于SPWPM的移相全桥高频链逆变器研究

1 引言

目前,dc/ac逆变电源已经在很多领域得到了广泛的应用,尤其在新能源的开发和利用中,如光伏发电、风力发电、燃料电池发电等场合,dc/ac变换器更是不可或缺。传统的逆变技术虽然成熟可靠,应用广泛,但是存在体积大,笨重,音频噪声大等缺点[1]。高频链逆变技术[2,3]利用高频变压器替代传统逆变器中的工频变压器,克服了上述缺点,显著的提高了逆变器的性能,有利于电力电子设备的小型化和轻量化,是当今电力电子技术领域的研究热点之一。

高频链逆变技术的关键问题在于如何通过开关管的高频切换来产生正确的正弦脉冲以及实现周波变换器的安全换流。现有的实现方案较多,相对而言,spwpm[4,5]技术有突出的优点,它将高频链和spwm调制技术有机的结合在一起,因而中间变换环节少,结构简单,整体变换效率和功率密度高。本文所提出的高频链逆变器的方案为dc/ac/ac两级功率变换结构,采用移相全桥桥式结构作为主电路拓扑,使用tms320f240 dsp芯片来产生spwpm数字化控制信号。该方案思路清晰,实现过程简单灵活。

2 主电路拓扑与工作原理

单极性移相全桥桥式高频链逆变器的主电路拓扑见图1。该结构由高频逆变桥、高频变压器、周波变换器和输出滤波器等部分组成。由于采用dc/ac/ac两级功率变换结构,电路拓扑简洁紧凑,功率密度高,同时具有高频电气隔离,双向功率流动等特点,适用于高压输出、中大功率变换场合。

图1 单极性移相全桥桥式高频链逆变器主电路拓扑

该电路基本工作原理如下:直流电源ud经过移相全桥高频逆变,进行spwpm调制,输出高频的双极性三态的spwpm脉冲,经由高频变压器进行电气隔离和电能传输,通过周波变换器高频解调后得到单极性spwm波,由lc低通滤波,得到所需要的正弦交流输出电压供给负载使用。

3 spwpm技术原理分析

3.1 spwpm技术原理介绍

所谓的spwpm技术是指不仅对脉冲的宽度进行调制,使其按照正弦规律变化,而且对脉冲的位置也进行调制,使调制后的波形中不含有直流和低频成分。根据这种思路,先改变单极性spwm波的结构,通过移相控制得到高频spwpm波,并由高频变压器进行电气隔离和传输,然后通过周波变换器解调恢复为常规的单极性spwm波,其变换过程见图2。

图2 spwpm技术变换过程

spwpm技术原理如图3所示,图3中详细给出了开关管控制信号及各级输出波形的产生过程。图4给出了控制电路具体的逻辑关系,产生的各个开关管的驱动信号,与图3的各级波形的生成相对应。

图3 spwpm技术原理图

图4 控制电路逻辑关系

可以看出,互为反相的调制波u r1和u r2分别与u c锯齿载波交截,其交点确定各开关管先后导通和关断的时刻。以输出正弦波的正半周为例,移相全桥电路的四个开关管k1、k2、k3

和k4进行高频spwpm斩波,输出双极性三态的spwpm脉冲。忽略死区时间的影响,k1和k2、k3和k4的驱动信号互补,但k1和k4、k2和k3的驱动信号之间存在相位差θ(0≤θ≤180°),即移相角,如图3所示。如果忽略周波变换器开关管的重叠导通时间,s1a,s1b(s4a,s4b)

和s2a,s2b(s3a,s3b)的驱动信号是互补的高频方波,且相位关系固定,占空比恒定为50%。通过周波变换器的高频解调,使spwpm波恢复为单极性spwm波(正半周时,恒为正脉冲)。输出正弦波负半周时,高频逆变桥和周波变换器的工作状况与正半周类似。

由此可得,改变调制波的频率和幅值,就可以改变输出电压的频率和大小。如果采用闭环控制,当输出电压降低时,闭环反馈控制使得移相角θ减小,则有效共同导通时间增大,从而使输出电压增大。因此,通过调节移相角θ便可以实现输出电压的稳定。

3.2 移相spwpm软开关原理和特点

移相spwpm软开关是以移相zvs-pwm软开关技术为基础,两者在电路拓扑上没有区别。移相zvs-pwm软开关多用于全桥dc/dc变换器,开关频率和占空比都是恒定的,只需通过改变左、右桥臂开关管的相位差来调节输入的高频脉宽,得到所需的pwm脉冲,从而控制输出电压。

3.2.1高频移相spwpm软开关的鲜明特点

(1) 开关驱动信号频率恒定,但占空比变化。如开关管k1在正弦波过零点处占空比最小,此时两个相邻的spwpm脉冲宽度变化最大;在正弦波达到幅值时占空比最大,此时两个相邻的spwpm脉冲宽度基本不变;

(2) 左、右桥臂开关的相位差按正弦规律变化,形成的高频spwpm脉冲由高频变压器进行传输;左、右桥臂的超前与滞后在输出电压的正负半周是相互转换的,并且流过电流的大小也是按正弦规律变化的,因此移相全桥电路实现零电压开关的难易程度也是变化的;

(3) 逆变器输出的交流电压幅值大小由spwpm波的调制比来决定。

图5 一个开关周期内工作波形

下面详细分析一个开关周期内移相spwpm 软开关的工作过程,主要原理波形见图5,电路工作过程大致可分为12个工作模态,由于电路的对称性,只需分析其中的6个工作模态即可。

●模态1:[t0,t1],t0时刻前,变压器原边绕组电压u ef=0,电流经k1,d3流通。t0时刻,k4全电压开通,i p经k1和k4流通,直流电源发出功率。

●模态2:[t1,t2],t1时刻k1零电压关断,原边电流i p从k1中转移到c2和c4支路中,c1充电,c2放电。在此期间,谐振电感l r和滤波电感l f是串联的,l f很大,可以认为i p近似不变,类似于一个恒流源;i lf经s1a,d1b,s4a,d4b流通。

●模态3:[t2,t3],t2时刻k2零电压开通。d2导通后,将k2的电压箝位在零电位,这时开通k2,则为零电压开通。

●模态4:[t3,t4],t3时刻s2a,s2b(s3a,s3b)零电压开通。在这段时间内,i p经d2,k4流通,u ef=0;i lf有两个流通路径,分别经s1a,d1b,s4a,d4b和s2b,d2a,s3b,d3a流通。这段时间为输出周波变换器换流重叠时间t oν,以保证s1a,s1b(s4a,s4b)与s2a,s2b(s3a,s3b)之间的平滑换流和输出滤波电感电流的连续,同时也确保了输出周波变换器功率器件的zvs。

●模态5:[t4,t5],t4时刻s1a,s1b(s4a,s4b)零电压关断。经过换流重叠时间t oν,电路状态基本不变,原边电压u ef=0;i lf经s2b,s2a,s3b,s3a流通,原边电流i p反向,经k2,d4流通,

滤波器前端电压u cd=0。

●模态6:[t5,t6],t5时刻k4零电压电流关断。因为d4导通,将k4两端电压箝位在零电位,这时关断k4,则为零电压关断。同时由于电流经k2,d4形成的回路,k4中没有电流,所以k4又是零电流关断。

3.2.2几点结论

(1) 移相全桥spwpm逆变部分只能实现部分开关管的zvs。其实现的机理在于:利用变压器漏感和外加谐振电感中的储能对开关管的并接电容进行充放电,抽走电容中的电流,并导通与开关管反并联的二极管。在正弦波的正负半周,左、右桥臂的超前与滞后是交替变化的,实现zvs的难易程度也是交替变化的。

(2) 周波变换器完全实现了zvs。

4 移相spwpm控制信号的dsp实现

传统的移相zvs-pwm技术的驱动信号较为简单,用专用单片集成电路(如uc3875等)就能产生。而移相spwpm驱动信号的产生要复杂的多,其占空比不是恒定的,相位差则是按照正弦变化,目前还没有专用的单片集成电路的解决方法。

图6 全比较单元产生移相spwpm驱动信号

本文利用ti公司的tms320f240芯片的事件管理器来产生所有驱动信号。定时器gp1、移相控制信号和高频spwpm脉冲的相位关系见图6,具体产生过程如下[6]:

gp1计数值处于连续增减计数模式,即从0开始递增至设定值,然后又递减至0,依次自动

反复循环。计数周期为一个开关周期(50μs)。当计数值达到0或者设定值时,分别发生下溢中断或周期中断,在两个中断过程中修改cmpr1和cmpr2中的比较值,而后匹配触发,可以获得pwm驱动信号。

当gp1由0递增至a点,计数值与cmpr1比较寄存器值匹配,cmpr1输出电平发生跳变(k4驱动由0跳变为1,k3驱动由1跳变为0),当gp1由a点递增到b点,与cmpr2比较寄存器值匹配,则cmpr2输出电平发生跳变(k2驱动由0跳变为1,k1驱动由1跳变成0)。当gp1的计数器达到设定值,然后开始递减计数。当递减至c,d两点时,同样与比较寄存器里的值发生匹配,cmpr1和cmpr2输出电平分别发生跳变,以后过程类似。

由上边分析可知,移相spwpm驱动信号为不对称的pwm波。因此,a、b、c、d点对应的比较匹配值也是不同的。这些比较值的计算和更新在gp1的下溢中断和周期中断中进行。而周波变换部分的驱动信号的产生则相对简单一些,只需在gp1计数到顶点时发生跳变,由cmpr3来产生即可。其中s1a、s1b、s4a、s4b的驱动信号相同,s2a、s2b、s3a、s3b的驱动相同,但它们之间是互补的关系(换流重叠时间除外)。

5 仿真和实验验证

在上述原理分析和实现方案讨论的基础上,进行了仿真和实验验证。仿真参数如下:输入直流电压150v,变压器变比n=22:25,输出滤波电感lf=3.64mh,滤波电容cf=6μf,开关频率为20khz,负载为阻性100ω,输出为50hz正弦电压。仿真结果如下:图7为变压器原边和副边电压波形(展开波形);图8为滤波器前端电压波形和输出正弦电压。可见仿真波形与前面分析的结果一致。

图7 变压器原边和副边电压波形(展开波形)

图8 滤波器前端电压波形和输出正弦电压

制作实验样机一台,实验参数与仿真参数一致。图9为输出电压正、负半周的前级逆变移相控制信号,显然,左、右桥臂的超前和滞后是交替变化的;图10和图11为开关管k1和k3在输出电压正、负半周的驱动信号ugs和漏源端电压uds波形。通过对比,可见部分开关管实现了zvs,而且左、右桥臂实现zvs的难易程度也是交替变换的。图12为周波变换器开关管s1a和s2a驱动信号ugs和漏源端电压uds波形,可以看到开关管完全实现了zv s。图13 为变压器原边和副边spwpm电压波形。图14为滤波器前端电压波形和输出电压电流波形。

输出电压波形很好的验证了基于spwpm的移相全桥高频链逆变器的正确性和可行性,也证明了spwpm控制信号的dsp实现的正确性。

图9 输出电压正、负半周前级逆变移相控制信号

(ugs:10v/div,uds:100v/div)

图10 开关管k1和k3驱动信号ugs和漏源端电压uds

(ugs:10v/div,uds:100v/div)

图11 开关管k1和k3驱动信号ugs和漏源端电压uds

(ugs:10v/div,uds:100v/div)

图12 周波变换器部分开关管的驱动ugs和漏源端电压uds

图13 变压器原边和副边spwpm电压波形

图14 滤波器前端电压波形和输出电压电流波形

6 结束语

(1) 采用的单极性移相全桥高频链逆变器,只需两级功率变换结构,结构简洁紧凑,是实现功率的双向流动,高变换效率和高功率密度的有效途径。

(2) 采用基于tms320f240 dsp的spwpm技术数字化实现方案,很好的解决了高频spwpm 信号的产生和解调问题。该方案简单灵活,可移植性好,只需一个事件管理器就可精确产生所有驱动信号。

(3) 单极性移相spwpm控制可以实现前级移相全桥电路部分开关管的zvs,而且在输出正弦波的正负半周,左右桥臂的超前和滞后是相互交替的,因而实现zvs的难易程度也是交替变化的;而周波变换器则是完全的zvs,减小了开关损耗。

(4) 仿真和实验结果表明,基于spwpm的单极性移相全桥高频链逆变器是完全正确和可行的,这对于开发实际的中小型、数字化的逆变装置具有很好的借鉴意义,应用前景广阔。作者简介

包健刚(1982-)男研究生在读,主要研究方向:高频链逆变技术。

参考文献

[1] yamato i,tokunaga n,matsuda y et al. high frequency link dc/ac converter for up s with a new voltage clamper. ieee pesc`90,1990:749-756

[2] 陈道炼,张友军. 单极性移相控制高频脉冲交流环节逆变器研究. 中国电机工程学报,200 3,23(4):27-30

[3] 李磊,胡文斌,陈劲操等. 两种移相控制全桥式高频环节逆变器比较研究. 中国电机工程学报,2006,26(6):100-104

[4] lai xiangdong,wu baofang,dai zhiping et al. spwpm dc-ac converter with high fre quency link. ipemc`97,1997:316-319

[5] 吴保芳,赖向东,段国顺. 一种具有高频链高频环节的spwpm变换电路的研究. 电力电子技术,1997(11):44-46

[6] 张玉明,孙晓,孔力. 全桥高频链逆变器的移相spwm技术. 电力电子技术,2003,37(2):69-71

逆变器电路DIY(图文详解)

逆变器电路DIY(图文详解) 电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。 1.逆变器电路图 2.逆变器工作原理 这里我们将详细介绍这个逆变器的工作原理。 2.1.方波信号发生器(见图2)

图2 方波信号发生器 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率 fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 #p#场效应管驱动电路#e# 2.2场效应管驱动电路 图3 场效应管驱动电路 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。 4. 逆变器的性能测试 测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

移相全桥

移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高 开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见 下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A.采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实 现ZCS.电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后 臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由 VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开 关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断 VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其 值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电 压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时 开通VT2,则VT2即是零电压开通。

高频逆变器中高频变压器的绕制方法

高频逆变器中高频变压器的绕制方法 用EE55等高频磁芯制作高频逆变器,其中高频变压器的线包绕制最好参考一下电子管音响功率放大器中音频输出变压器的绕制方法.这种变压器因为要在音频20Hz~20KHz范围内力求做到平坦响应,绕法讲究,顶级的电子管音频输出变压器的频响范围甚至做到了10Hz~100KHz,而用的磁芯不过就是高矽硅钢片而已. 以大家在坛子中讨论最多也用得最多的“SG3525A(或KA3525A、UC3525)+场管IRF3205(或MTP75N06等)+EE55磁芯变压器”组合为例,功率可做到500W以上,工作频率一般在20~50KHz.其中的EE55磁芯变压器,大家一般是低压绕组(初级)3T+3T,中心抽头,高压绕组(次级)75T. 要制作好它就要注意两点: 一是每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应.所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强).采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线.例如初级的3T+3T,你如果用直径2.50mm的

单根漆包线,导线的截面积为4.9平方毫米,而如果用直径0.41mm的漆包线(单根截面积0.132平方毫米)38根并绕,总的截面积也达到要求.然而,第二种方法导线的表面积大得多(第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,后者是前者的48.92L/7.85L=6.2倍),导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制.次级75T高压绕组用3~5根并绕即可. 二是高频逆变器中高频变压器最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容.例如上述变压器的绕法,初级分两层,次级分三层三段.具体是: ①绕次级高压绕组第一段.接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半. ②绕初级低压绕组的一半.预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理.用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断.在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整.注意三次的头、中、尾放在一起,且绕向要相同.然后又包一层绝缘纸,准备绕次级高压绕组

自制逆变器电路及工作原理及相关部件说明

自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。图2中,R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2*2.2*103*2.2x10-6=93.9Hz,最小频率为fmin=1/2.2*4.2*103*2.2*10-6=49.2Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N 沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

移相全桥零电压开关PWM设计实现

题目:移相全桥零电压开关PWM设计实现

移相全桥零电压开关PWM设计实现 摘要 移相全桥电路具有结构简单、易于恒频控制和高频化,通过变压器的漏感和功率开关器件的寄生电容构成谐振电路,使开关器件的应力减小、开关损耗减小等优点,被广泛应用于中大功率场合。近年来随着微处理器技术的发展,各种微控制器和数字信号处理器性能价格比的不断提高,采用数字控制已经成为大中功率开关电源的发展趋势。相对于用实现的模拟控制,数字控制有许多的优点。本文的设计采用TI公司的高速数字信号处理器TMS320F28027系列的DSP作为控制器。该模块通过采样移相全桥零电压DC-DC变换器的输出电压、输入电压及输出电流,通过实时计算得出移相PWM信号,然后经过驱动电路驱动移相全桥零电压DC-DC变换器的四个开关管来达到控制目的。实验表明这种控制策略是可行的,且控制模块可以很好的实现提出的控制策略。 关键词:移相全桥;零电压;DSP

Phase-shifted Full-bridge Zero-voltage Switching PWM Design and Implementation ABSTRACT Phase-shifted full-bridge circuit has the advantages of simple structure, easy to constant frequency control and high-frequency resonant circuit constituted by the leakage inductance of the transformer and the parasitic capacitance of the power switching devices, to reduce the stress of the switching devices, switching loss is reduced,which widely used in high-power occasion. In recent years, with the development of microprocessor technology, a variety of

移相全桥ZVZCSDCDC变换器综述

移相全桥ZVZCSDC/DC变换器综述 河北秦皇岛燕山大学朱艳萍电源技术应用 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。 2 电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC 拓扑结构,以供大家参考。 1)NhoE.C.电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计。

逆变器原理及电路图

逆变器原理及电路图 2009-09-10 21:52 场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 [img]https://www.doczj.com/doc/a87491198.html,/UploadFiles/200942618167800.jpg[/img] 1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。TL494芯片的内部电路如图2所示。 [img]https://www.doczj.com/doc/a87491198.html,/UploadFiles/2009426181249965.jpg[/img] 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

ZVZCS移相全桥软开关工作原理

ZVZCS移相全桥软开关工作原理 (1) 主电路拓扑 本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。电路拓扑如图3.6所示。 图3.6 全桥ZVZCS电路拓扑 当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。当关断1S时,电源对1C充电,2C通过变压器初级绕组放电。由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于L,加速了2C的放电,为2S的零电压开通提供条件。当Cc放电完全后,整流二极管全部k 导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变,所以4S为零电流关断,3S为零电流开通。 (2) 主电路工作过程分析[7] 半个周期内将全桥变换器的工作状态分为8种模式。 ①模式1 S、4S导通,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端箝1 位电容Cc充电。输出滤波电感o L与漏感k L相比较大,视为恒流源,主电路简化图及等效电路图如图3.7所示。

图3.7 模式1主电路简化图及等效电路图 由上图可以得到如下方程: p Cc o s k dI V V V L n n dt = ++ (3-3) p c o I nI nI += (3-4) Cc c c dV I C dt =- (3-5) 由(3-3)式得: 2p Cc k d I dV nL dt dt =- (3-6) 将(3-6)式代入(3-5)式得: 22 p c c k d I I nC L dt = (3-7) 将(3-7)式代入(3-4)式得: 22 2 p p c k o d I I n C L nI dt += (3-8) 解微分方程: 22 2p p o c k c k d I I I nC L dt n C L + = (3-9) 其初始条件为: (0)0Cc t V ==;(0)0c t I == (3-10) 代入方程解得: ()sin s o p o k V V n I t t nI L ωω -= + (3-11) ()sin p s o c o k I V V n I t I t n nL ωω -=- =- (3-12)

移相全桥ZVZCS主电路综述

移相全桥ZVZCS DC/DC变换器综述 [导读]移相全桥ZVZCS DC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC 变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺 关键词:变换器 移相全桥ZVZCS DC/DC变换器综述 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1 概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。 2 电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCS PWM DC/DC拓扑结构,以供大家参考。 1)Nho E.C.电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k 太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了i L1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,

移相全桥PWM DC-DC变换器的数学建模

移相全桥 移相全桥ZVS 变换器由于其充分利用了电路本身的寄生参数,使开关管工作在软开关状态,降低了开关管的开关噪声和开关损耗,提高了变换器的效率,近年来在中大功率场合得到广泛应用。随着微处理器价格的不断下降和计算能力的不断提高,采用数字控制已经成为中大功率开关电源的发展趋势,许多数字控制方法相继提出。但对于DC/ DC 变换器这种强非线性系统,传统的基于线性系统理论的控制方法并不能获得理想的动态特性。 该文在建立移相全桥变换器模型的基础上,提出一种新的模糊PID 预测控制策略,将传统控制方法与智能控制方法相结合,通过模糊控制对传统PID 控制器进行增益调节,同时采用预测控制以补偿数字控制系统中的时延。这种控制策略比较简单,易于数字控制器的实现,该文采用MA TLAB 方法进行了仿真研究。 2 移相全桥变换器小信号模型的建立 一般建立DC/ DC 变换器的小信号模型的方法是状态空间平均法,但对于移相全桥ZVS 变换器来说,用状态空间平均法建模是一项十分复杂的工作。因为这种变换器具有12种开关状态,因此列写状态空间方程式是一个非常复杂的工作。 根据移相全桥ZVS PWM 变换器源于BUCK 变换器的事实,从电路工作的描述中可以 看出变压器副边的有效占空比^ off off off d D d =-,变压器原边电压的占空比d 而且依靠输出滤波电感电流L i ,漏感lk L ,输入电压in V 和开关频率s f ,所以移相全桥变换器小信号传递 函数也将取决于漏感lk L ,开关频率s f ,滤波电感电流扰动^ L i ,输入电压扰动^in V ,和变压 器原边占空比扰动^ d 等因素。为了精确地建立移相全桥变换器的动态特性模型,找出lk L , s f ,^ L i ,^in V 和^ d 对^ off d 的影响是必要的。这些影响可以加入到PWM BUCK 变换器的小 信号电路模型中(图1),从而获得移相全桥PWM 变换器的小信号模型(图2)。 我们知道由于谐振电感lk L 和变压器副边整流二级管的影响,移相全桥变换器存在占空比丢失的现象,副边有占空比为:off D D D =-? 即()()221/21lk off L o in nL D D I D V T L V T =- --???? 移相全桥变换器输出电压增益为: ()()2 221/22o lk off L o in in V n L nD nD I D V T L V V T ==- --???? 其中,n 为变压器副边匝数与原边匝数的比值;L I 为电感电流平均值。 下面通过式(l )来分析对off D 产生影响的因素。 l )占空比扰动^ d 对off D 的影响^ d d 由式(l )可得

车载电源逆变器电路原理图及维修

车载电源逆变器电路原理图及维修 一市场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL4 94或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。

1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS 功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/5 0kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

10kW移相全桥ZVS设计

10kW全桥移相ZVS PWM整流模块的设计 摘要:本文介绍了10kW全桥移相ZVS PWM直流整流模块主电路和控制电路的设计,给出了主 变压器和谐振电感的参数计算,最后给出了实验波形。叙词:全桥移相, 零电压开关, 降频Abst ract: This paper introduces the structure of 10kW ZVS-FB PWM Switch Power Module, then discu sses the design of main circuit and control system and parameter calculation, finally presents the experim ent result. Keywords: full bridge phase-shift, zero-voltage switching (ZVS), frequency reduced 1 引言 在大型发电厂中,由于需要的直流负荷比较大,蓄电池的容量通常都在2000AH以上。若采用常规的10A或20A的开关整流模块,一般需要20或10以上的模块并联,但并联的模块过多,对模块之间的均流会带来一定的影响, 而且模块的可靠性并不随着模块的增加而增加, 一般并联的模块数量最好在10个以下。目前在电厂中大容量的直流充电电源采用相控电源的比较多,因此很有必要开发针对电厂用户的大容量开关整流充电电源。本文介绍的10kW 全桥移相ZVS PWM整流模块正是考虑了这种要求,它采用了加钳位二极管的ZVS-FB P WM直流变换技术,控制电路采用UC38专用全桥移相控制芯片,同时在轻载时采用了降低开关频率等技术,具有重量轻,效率高等优点。 2 整流模块主电路设计与参数计算 整流模块的主电路原理框图如图1所示,由输入EMI滤波器,整流滤波,ZVS全桥变换器,输出整流滤波和输出EMI滤波器等组成。 图1中由PQ1~PQ4开关管,钳位二极管D1,D2,谐振电感Lr,隔直电容CB,主变压器T 1以及吸收电阻和电容等组成全桥移相ZVS变换器,其中PQ1,PQ3为超前管,PQ2,PQ4为滞后管。PQ1(PQ3)超前PQ4(PQ2)一定的角度,即移相角。PQ1~PQ4采用IGBT单管并联组成,开关频率为25KHZ。

移相全桥电路

主题: 移相全桥滞后臂驱动波形疑问: 移相全桥软开关,2000w电源,驱动波形不正常。大家帮忙分析一下,黄色为ds波形。蓝色为驱动波形 疑问: 1.为什么ds有震荡? 2.这是滞后臂下管驱动波形。为什么关段时死区时间没有了。滞后臂上管的驱动波形正好和下管相反,开通时死区时间没有了? 3、谐振电容和电感应该选择多大的? Answer: 1、驱动凹下去的那块是米勒效应区,这个可以加大驱动能力减弱。 2、关断时死区没有了,在驱动变压器副边加快速关断电路试试,或者就是在驱动电阻上反并联一个二极管。 3、谐振参数计算是比较的复杂的,一般2KW电压,取15UH就可以了,当然得看看您的变压器变比,输出电流折算到原边的大小,来确定。 I为原边电流,CMOS为MOS并联电容大小,您可以自己算算了,您这样的一个参数15UH 偏小了,我看您的波形您已经软开关了啊。 4、是实现软开关了但是滞后臂的驱动波形在关断是死区时间还不是很好所以经常炸管。

这是原边电流波形 变压器原边电压波形 变压器副边电压波形 输出整流二极管电压波形

Answer: 滞后臂炸管: 第一个排除:过温问题,看看您的MOS管的稳定是否超过降额。 第二个排除:死区时间问题,您的滞后臂死区时间是否大于您的体二极管的反向恢复时间呢?这个一定要大于,必须的大于。 第三个:您的驱动是否收到干扰呢,波形是否很干净。 您发的波形基本没发现什么问题,您为什么不加个原边牵位二极管呢,把输出震荡搞定呢? 1、对于死区时间你要实测你管子哪里的驱动,用示波器读出来,因为很多的时候设置变压器驱动死区会和你设置的不一致的。 2.、IGBT比较适合做零电流,因为他的拖尾电流严重,做零电压没意义的,MOS适合零电压的。 3、IGBT必须加负压关断才比较的可靠。

逆变器的工作原理

逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。 通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成. 利用TL494组成的400W大功率稳压逆变器电路。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4 只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。第13、14、

1KW移相全桥变换器设计

课程设计 课程名称电力电子技术课程设计 题目名称1kW移相全桥直流变换器设计专业班级11级电气工程及其自动化学生姓名 学号 指导教师 二○一四年四月十三日 目录

一,设计内容和要求 (3) 1.1 主电路参数 (3) 1.2 设计内容 (3) 1.3 仿真波形 (3) 二,设计方案 (3) 2.1 主电路工作原理 (3) 2.2 芯片说明 (4) 2.2.1采用的芯片说明 (4) 2.2.2 UCC3895引脚说明 (5) 2.2.3 UCC3895工作原理 (6) 图2-4 基于ucc3895芯片的控制电路图 (8) 2.3控制电路设计 (8) 三,设计论述 (8) 3.1电路参数设计: (8) 3.1.1 主电路参数: (8) 3.1.2 变压器的设计 (9) 3.1.3 输出滤波电感的设计 (10) 3.1.4 功率器件的选择 (11) 3.1.5 谐振电感的设计 (12) 3.1.6 输出滤波电容和输入电容和选择 (13) 四,仿真设计 (14) 五,结论 (15) 六,参考文献 (16)

一,设计内容和要求 Vin=300VDC,Vo=48VDC,Po=1kW,fs=100kHz,输出电压纹波为0.1V 1.2 设计内容 主电路:选择开关管、整流二极管型号,计算滤波电感感值、滤波电容容值,谐振电感感值、占空比、变压器匝比等电路参数。 控制电路:UCC3895芯片周边元器件参数 1.3 仿真波形 给出仿真电路,得到仿真波形 二,设计方案 2.1 主电路工作原理 控制主要有两种:双极性控制和移相控制,本设计主要使用移相控制。由图2-2可见,电路结构与普通双极性PWM变换器类似。Q1、D1和Q4、D4组成超前桥臂、Q2、D2和Q3、D3组成滞后桥臂;C1~C4分别是Q1~Q4的谐振电容,包括寄生电容和外接电容;Lr是谐振电感,包括变压器的漏感;T副方和DR1、DR2组成全波整流电路,Lf、Cf组成输出滤波器,R1是负载。Q1和Q3分别超前Q4和Q2一定相位(即移相角),通过调节移相角的大小来调节输出电压。由图2可见,在一个开关周期中,移相全桥ZVS PWM DC-DC变换器有12种开关模态,通过控制4个开关管Q1~Q4在A、B两点得到一个幅值为Vin的交流方波电压;经过高频变压器的隔离变压后,在变压器副方得到一个幅值为Vin/K的交流方波电压,然后通过由DR1和DR2构成的输出整流桥,得到幅值为Vin/K的直流方波电压。这个直流方波电压经过 Lf和Cf组成的输出滤波器后成为一个平直的直流电压,其电压值为Uo=DVin/K(D是占空比)。Ton是导通时间Ts是开关周期(T=t12-t0)。通过调节占空比D来调节输出电压Uo。

LLC移相全桥

移相全桥学习笔记 在早期的大功率电源(输出功率大于1KW)应用中,硬开关全桥(Full-Bridge)拓扑是应用最为广泛的一种,其特点是开关频率固定,开关管承受的电压与电流应力小,便于控制,特别是适合于低压大电流,以及输出电压与电流变化较大的场合。但受制于开关器件的损耗,无法将开关频率提升以获得更高的功率密度。例如:一个5KW的电源,采用硬开关全桥,即使效率做到92%,那么依然还有400W的损耗,那么每提升一个点的效率,就可以减少50W的损耗,特别在多台并机以及长时间运行的系统中,其经济效益相当可观。 随后,人们在硬开关全桥的基础上,开发出了一种软开关的全桥拓扑——移相全桥(Phase-Shifting Full-Bridge Converter,简称PS FB),利用功率器件的结电容与变压器的漏感作为谐振元件,使全桥电源的4个开关管依次在零电压下导通(Zero voltage Switching,简称ZVS),来实现恒频软开关,提升电源的整体效率与EMI性能,当然还可以提高电源的功率密度。 上图是移相全桥的拓扑图,各个元件的意义如下: Vin:输入的直流电源 T1-T4:4个主开关管,一般是MOSFET或IGBT T1,T2称为超前臂开关管,T3,T4称为滞后臂开关管 C1-C4:4个开关管的寄生电容或外加谐振电容 D1-D4:4个开关管的寄生二极管或外加续流二极管 VD1,VD2:电源次级高频整流二极管 TR:移相全桥电源变压器 Lp:变压器原边绕组电感量 Ls1,Ls2:变压器副边电感量 Lr:变压器原边漏感或原边漏感与外加电感的和 Lf:移相全桥电源次级输出续流电感 Cf: 移相全桥电源次级输出电容 R L: 移相全桥电源次级负载

移相控制全桥ZVS—PWM变换器的分析与设计

移相控制全桥ZVS—PWM变换器的分析与设计 摘要:阐述了零电压开关技术(ZVS)在移相全桥变换器电路中的应用。分析了电路原理和各工作模态,给出了实验结果。着重分析了主开关管和辅助开关管的零电压开通和关断的过程厦实现条件。并且提出了相关的应用领域和今后的发展方向。关键词:零电压开关技术;移相控制;谐振变换器 0 引言 上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。 1 电路原理和各工作模态分析 1.1 电路原理 图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。Vin为输入直流电压。Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。Di和Gi(i=l,2,3,4)为相应的体二极管和输出结电容,功率开关管的输出结电容和输出变压器的漏电感Lr作为谐振元件,使4个开关管依次在零电压下导通,实现恒频软开关。S1和S3构成超前臂,S2和S4构成滞后臂。为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。Lf和Cf构成倒L型低通滤波电路。 图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:

PWM高频逆变原理

现有两种无触点补偿式交流稳压电源在取代三相柱式交流电力稳压器。一种是变压器补偿式稳压器,其原理是用多个补偿变压器组合,通过“多全桥”变换电路,切换补偿变压器的初级头、尾连接方式进行补偿,去掉了机械传动和触点,提高了寿命和动态性能。补偿是有级的,而且所需的补偿变压器和切换开关较多,电路相对复杂,补偿精度低。另一种是PWM 开关式交流稳压器,其原理是从输入侧取得工频交流电压,经过整流、正激高频PWM变换、相位跟踪和转换产生交流补偿电压进行补偿,补偿是无级的,补偿精度高,响应速度快。但电路复杂,还需要一个固定的逆补偿变压器,不易实现大功率应用。我曾介绍过的PWM斩波器式交流稳压电源很好地克服了上述缺点,是一种很有发展前途的交流稳压技术,但其存在着只能稳压,不能消除市电电压中谐波成分的缺点。为了扩大交流稳压电源的功能,我们又开发研制了利用PWM高频逆变器进行补偿的多功能交流稳压电源,这种稳压电源具有用户电力综合调节器(Custompower)的功能,使稳压电源的性能又上了一个台阶。 2 用PWM高频逆变器的补偿式交流稳压电源 采用PWM高频逆变器的补偿式交流稳压电源的原理电路如图1所示。其中补偿电压uco由单相全桥逆变器产生(也可以采用半桥式或推挽式逆变器),逆变器采用高频SPWM调制。单相全桥逆变器的输出电压uab通过输出变压器Tr,把电压uab变成补偿电压uco在Tr的次级输出。Tr的次级串联在主电路中以对市电电压的变化进行补偿,保持输出电压uo稳定不变。图中LFCF为低通滤波器,以滤掉逆变器输出电压uab中的高次谐波。变压器Tr次级绕组的电阻和漏感以及市电电源内阻共同组成线路阻抗Z,则当负载变化时在Z上产生的压降会使输出电压随之变化。ur为用正弦电压发生器和锁相环产生的标准参考电压,锁相环是使ur在相位上与市电电压us同步。用瞬时值us Zis ur作为SPWM全桥逆变器控制电路中的调制电压,控制电路的原理框图如图2所示。按此图的高频SPWM调制原理,当用(us Zis ur)作为正弦调制波时,就可以使逆变器的输出电压与市电电压的变化和负载电压的变化成比例。 2.1 逆变器输出电压的谐波分析 假定逆变器的直流电源电压为Ud,载波三角波的电压幅值为Uc,则调制比M的值为: 式中:Us、Is、Ur为市电电压us,市电电流i s和基准参考电压ur的有效值。 因为变压器Tr的变比为ξ,故补偿电压uco的表示式为: uco的频谱如图4所示,可知:载波比N越大,谐波频率越高,滤波越容易,所需的LFCF 的值越小,当fc=12.8kHz时,LF=10mH,CF=2μF,即可将uco中的高次谐波滤掉。 2.2 考虑线路阻抗Z的补偿分析 由于逆变器开关管的正向压降,开关死区、变压器Tr初级绕组的电阻及漏感和交流滤波电感LF的绕组电阻及电感的影响,会使补偿电压uco的值减小。但这种影响不大,而且是基

相关主题
文本预览
相关文档 最新文档