当前位置:文档之家› 氢脆

氢脆

氢脆
氢脆

氢脆

中文名称:氢脆英文名称:hydrogen embrittlement

其他名称:白点

定义1:金属由于吸氢引起韧性或延性下降的现象。所属学科:船舶工程(一级学科);船舶腐蚀与防护(二级学科)

定义2:钢材在冶炼、加工和使用中溶解于钢中的原子氢,在重新聚合成分子氢时产生的巨大应力超过钢的强度极限时,可以在钢内产生微裂纹,导致材料的韧性或塑性下降的现象。所属学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科)定义3:金属或合金因吸收氢而引起的韧性或延性降低的过程。所属学科:机械工程(一级学科);腐蚀与保护(二级学科);腐蚀类型(三级学科)

氢脆是溶于钢中的氢,聚合为氢分子,造成应力集中,超过钢的强度极限,在钢内部形成细小的裂纹,又称白点。氢脆只可防,不可治。氢脆一经产生,就消除

不了。在材料的冶炼过程和零件的制造与装配过程(如电镀、焊接)中进入钢材内部的微量氢(10—6量级)在内部残余的或外加的应力作用下导致材料脆化甚至开裂。在尚未出现开裂的情况下可以通过脱氢处理(例如加热到200℃以上数小时,可使内氢减少)恢复钢材的性能。因此内氢脆是可逆的。

热处理不适用的情况

热处理的方法是将工件加热至某一温度,保温一段时间,缓冷,使氢随溶解度逐渐变小,逐渐析出。但加热会破坏镀层,因此热处理的方法对于经过电镀的工件并不适用。

如何防治

首先,尽量缩短酸洗时间;其次加缓蚀剂,减少产氢量。

压力容器的氢脆(或称氢损伤)是指它的器壁受到氢的侵蚀,造成材料塑性和强度降低,并因此而导致的开裂或延迟性的脆性破坏。高温高压的氢对钢的损伤主要是因为氢以原子状态渗入金属内,并在金属内部再结合成分子,产生很高的压力,严重时会导致表面鼓包或皱折;氢与钢中的碳结合,使钢脱碳,或使钢中的硫化物与氧化物还原。造成压力容器氢脆破坏的氢,可以是设备中原来就存在的,例如,炼钢、焊接过程中的湿气在高温下被还原而生成氢,并溶解在液体金属中。或设备在电镀或酸洗时,钢表面被吸附的氢原子过饱和,使氢渗入钢中;也可以是使用后由介质中吸收进入的,例如在石油、化工容器中,就有许多介质中含氢或含混有硫化氢的杂质。钢发

生氢脆的特征主要表现在微观组织上。它的腐蚀面常可见到钢的脱碳铁素体,氢脆层有沿着晶界扩展的腐蚀裂纹。腐蚀特别严重的容器,宏观上可以发现氢脆所产生的鼓包。介质中含氢(或硫化氢)的容器是否会发生氢脆,主要决定于操作温度、氢的分压、作用时间和钢的化学成分。温度越高、氢分压越高,碳钢的氢脆层就越深,发生氢脆破裂的时间也越短,其中温度尤其是重要因素。钢的含碳量越高,在相同的温度和压力条件下,氢脆的倾向越严重。钢中添有铬、钛、钒等元素,可以阻止氢脆的产生。

出现氢脆的工件通过除氢处理(如加热等)也能消除氢脆,采用真空、低氢气氛或惰性气氛加热可避免氢脆。如电镀件的去氢都在200~240度的温度下,加热2~4小时可将绝大部分氢去除。

氢在常温常压下不会对钢产生明显的腐蚀,但当温度超过300℃和压力高于30MPa时,会产生氢脆这种腐蚀缺陷,尤其是在高温条件下。如合成氨生产过程中的脱硫塔、变换塔、氨合成塔;炼油过程中的一些加氢反应装置;石油化工生产过程中的甲醇合成塔等。

二:氢脆-钢材中的氢会使材料的力学性能脆化,这种现象称为氢脆。主要发生在碳钢和低合金钢中。

紧固件避免和消除氢脆的措施

(1)、减少金属中渗氢的数量,必须尽量减少高强度/高硬度钢制紧固件的酸洗,因为酸洗可加剧氢脆。在除锈和氧化皮时,尽量采用喷砂抛丸的方法,若洛氏硬度等于或大于HRC 32的紧固件进行酸洗时,必须在制定酸洗工艺时确保零件在酸中浸泡的时间最长不超过10分钟。并应尽量降低酸液的浓度,并保证零件在酸中浸泡的时间不超过10分钟;在除油时,采用清洗剂或溶剂除油等化学除油方式,渗氢量较少,若采用电化学除油,先阴极后阳极,高强度零件不允许用阴极电解除油;在热处理时,严格控制甲醇和丙烷的滴注量;在电镀时,碱性镀液或高电流效率的镀液渗氢量较少。

(2)、采用低氢扩散性和低氢溶解度的镀涂层

一般认为,在电镀Cr、Zn、Cd、Ni、Sn、Pb时,渗入钢件的氢容易残留下来,而Cu、Mo、Al、Ag、Au、W等金属镀层具有低氢扩散性和低氢溶解度,渗氢较少。在满足产品技术条件要求的情况下,可采用不会造成渗氢的涂层,如机械镀锌或无铬锌铝涂层,不会发生氢脆,耐蚀性高,附着力好,且比电镀环保。

(3)镀前去应力和镀后去氢以消除氢脆隐患若零件经淬火、焊接等工序后内部残留应力较大,镀前应进行回火处理,回火消除应力实际上可以减少零件内的陷阱数量,从而减轻发生氢脆的隐患。

⑷、控制镀层厚度,由于镀层覆盖在紧固件表面,镀层在一定程度上会起到氢扩散屏障的作用,这将阻碍氢向紧固件外部的扩散。当镀层厚度超过2.5μm时,氢从紧固件中扩散出去就非常困难了。因此硬度<32HRC的紧固件,镀层厚度可以要求在12μm;硬度≥32HRC的高强度螺栓,镀层厚度应控制在8μmmax。这就要求在产品设计时,必须考虑到高强度螺栓的氢脆风险,合理选择镀层种类和镀层厚度.

金属材料由于受到含氢气氛的作用而引起的断裂,统称为氢脆断裂或氢致开裂。

一氢脆的类型及特征

(一)内部氢脆与环境氢脆

氢脆断裂在工程上是一种比较普遍的现象,但由于材料性能、加工工艺、服役环境、受力状态不同,各种现象有较大差异。

根据引起氢脆的氢之来源不同,氢脆可分成两大类:一类为内部氢脆,它是由于金属材料在冶炼、锻造、焊接或电镀、酸洗过程中吸收了过量的氢气而造成的;第二类氢脆称为环境氢脆,它是在应力和氢气氛或其它含氢介质的联合作用下引起的一种脆性断裂,如贮氢的压力容器中出现的高压氢脆。

内部氢脆和环境氢脆的区别,在于氢的来源不同,而它们的脆化本质是否相同,目前尚未定论。

一般认为,内部氢脆和环境氢脆在微观范围(原子尺度范围内),其本质是相同的,都是由于氢引起的材料脆化,但就宏观范围而言,则有差别。因为它们所包含的某些过程(如氢的吸收)、氢和金属的相互作用、应力状态以及温度,微观结构的影响等均不相同。

(二)氢脆断口特征

内部氢脆断口往往出现“白点”,如图6-7所示。白点又有两种类型:一种是在钢件中观察到纵向发裂,在其断口上则呈现白点。这类白点多呈圆形或椭圆形,而且轮廓分明,表面光亮呈银白色,所以又叫做“雪斑”或发裂白点,如图6-7a所示。这种白点实际上就是一种内部微细裂纹,它是由于某种原因致使材料中含有过量的氢,因氢的溶解度变化(通常是随温度降低,金属中氢的溶解度下降),过饱和氢未能扩散外逸,而在某些缺陷处聚集成氢分子所造成的。一旦发现发裂,材料便无法挽救。但在形成发裂前低温长时间保温,则可消除这类白点。

另一种白点呈鱼眼型,它往往是某些以材料内部的宏观缺陷如气孔、夹渣等为核心的银白色斑点,其形状多数为圆形或椭圆形。圆白点的大小往往同核心的大小有关,即核心愈大,白点也愈大,白点区齐平而略为下凹,图6-7b即为以焊接缺陷(气孔)作为核心的鱼眼型白点。

产生鱼眼白点,除氢和缺陷因素外,还必须有一定的条件,即应有一定的塑性变形量和一定的形变速度。如果经过去氢处理或消除鱼眼核心��缺陷,白点就不能形成;小于一定的塑性变形量,或用高的应变速率(如冲击),都不会产生这类白点,所以它是可以消除的,故又叫可逆氢脆。这类氢脆一般不损害材料的强度,只降低塑性。

内部氢脆断口的微观形态,往往是穿晶解理型或准解理型花样。在白点区是穿晶解理断裂,而白点外则为微孔聚集型断裂。

二氢脆和应力腐蚀相比,其特点表现在:

(1)实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀,而当施加一小阴极电流,使开裂加速者则为氢脆。

(2)在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小,这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。

(3)断裂的主裂纹没有分枝的情况,这和应力腐蚀的裂纹是截然不同的。氢脆的断裂可以是穿晶的也可以是沿晶的,或者从一种裂纹扩展型式转变成另一种型式,但就具体的金属-环境组合来说,氢脆有特定的裂纹形态。例如,在淬火回火钢中氢脆常沿着原奥氏体晶界扩展;而在钛合金中容易形成氢化物,裂纹是沿着氢化物与基体金属的界面上发展。

(4)氢脆断口上一般没有腐蚀产物或者其量极微。

(5)大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速

率。形变速度愈大,氢脆的敏感性愈小,当形变速率大于某一临界值后,则氢脆完全消失。氢脆对材料的屈服强度影响较小,但对断面收缩率则影响较大。

三氢脆机理及其防止办法

氢脆是氢原子和位错交互作用的结果。氢脆的位错理论能成功地解释以下几个重要实验结果:

(1)氢脆对温度和形变速率的依赖关系。

氢脆只发生在一定的温度范围和慢的形变速率情况下。当温度太低时,氢原子的扩散速率太慢,能与位错结合形成气团的机会甚少;反之,当温度太高时,氢原子扩散速率太快,热激活作用很强,氢原子很难固定在位错下方,位错能自由运动,因此,也不易产生氢脆。对钢来说,对氢脆最敏感的温度就在室温附近。同样,可以理解形变速率的影响。当形变速率太高时,位错运动太快,氢原子的扩散跟不上位错的运动,因而显示不出脆性。

(2)氢脆的裂纹扩展特性。

高强度钢产生的氢脆,其裂纹扩展是跳跃式前进的。先是在裂纹尖端不远的地方出现一个细小的裂纹,之后这个裂纹在某个时刻突然和原有裂纹连接起来。新裂纹形核地点一般是在裂纹前沿的塑性区与弹性区的交界上。氢要扩散到这里并达到一临界浓度时才能形成裂纹,所需的时间就是裂纹的孕育期。

(3)氢脆氢纹扩展第二阶段的特性。

在dt/da~K的关系中,氢脆裂纹扩展出现一水平台,是谓裂纹扩展第二阶段,这一阶段裂纹扩展速率恒定,与应力强度因子无关,而与温度有关,说明dt/da在这一阶段主要决定于化学因素,是一典型的热激活过程。氢原子扩散到裂纹尖端并保持某一浓度是裂纹扩展的决定性因素。金属材料在氢中裂纹扩展速率主要决定于氢原子在基体中的扩散速率。

减少氢脆的办法大致有以下几个方面:

对于主要是内部氢脆产生的,要多从严格执行工艺规定着手。对于环境氢脆,首要的一条是尽量不用高强度材料,村料强度越高,对氢脆越敏感转载请注明出自( 六西格玛品质网https://www.doczj.com/doc/a37209676.html, ),本贴地址:https://www.doczj.com/doc/a37209676.html,/thread-170746-1-1.html

氢脆是指由于氢原子在金属组织中夹杂而导致金属变脆的现象。钢铁件在电镀加工过程中出现氢脆的情况较多。这主要是在进行酸洗、阴极除油、电镀等过程中,都有还原态氢原子生成,由于氢原子的半径最小,可以自由进入金属结晶的间隙占据一定的晶位,使晶格变形,带来内应力或使基体或镀层局部硬度增加,造成脆性,这就是常说的氢脆。进入基体和镀层间的氢还会使镀层起泡。

氢脆对高强度钢和弹性制件的危害特别大,在人们没有认识氢脆的危害以前,曾经因为氢脆的实际存在而造成过许多严重的质量事故,造成严重的设备损坏和人员伤亡事故。因此在认识到氢脆的严重危害性以后,防止氢脆就成为电镀等有渗氢可能的加工工艺的一项重要指标。

为了防止氢脆,在酸洗液中要加入一些缓蚀剂,抑制氢的析出。电解除油要采用阳极电解。电镀中也要采用较大电流密度和采用电流效率高的镀种等。同时,对于氢脆敏感的制件,在电镀完成后,要在恒温箱中200℃去氢2h,以除去氢脆的影响。对要求很高

的产品可以进行真空除氢。

氢脆对钢的影响概述1

氢脆对钢的影响概述 摘要本人介绍了氢脆的相关背景和氢脆的几种形式,分别为:氢化学反应脆裂,内氢脆裂和氢环境脆裂。然后,根据国内外 的一些研究,论述了氢脆对低合金钢、不锈钢以及高强度钢种的影响。最后,根据氢脆的机制概括了一些氢脆的预防方法。 关键词氢脆,不锈钢,低合金钢,高强度钢. INFLUENCE OF HYDROGEN EMBRITTLEMNET ON STEEL ABSTRACT This article describes the background of hydrogen embrittlement and several forms of hydrogen embrittlement. The form of hydrogen embrittlement are as follows: chemical reaction of hydrogen embrittlement, the hydrogen embrittlement and hydrogen environment embrittlement crack. Then, the author of several studies at home and abroad, discusses the hydrogen embrittlement of low alloy steel, stainless steel and the impact of high-strength steel. Finally, according to the mechanism of hydrogen embrittlement outlines some methods of prevention of hydrogen embrittlement. KEY WORDS hydrogen embrittlement; stainless steel; low alloy steel; high strength steel 前言 氢脆是由于电化学作用产生的原子氢渗入金属材料而产生脆性破坏的一种现象。它是氢系统设计中的一个大问题,在宇航工业中由于材料氢脆曾多次造成事故。据“氢安全使用手册”介绍,“材料损坏和材料不相容性所造成的事故,各占事故总数的3%。使用同氢不相容的材料曾造成多次事故,而材料的氢脆又是造成多次事故的一个原因。” 关于氢对铁基材料性能的影响和造成的事故早有所知,对它进行的研究也有近百年的历史了,但是研究不够深入,了解也很肤浅。人们所熟悉的氢脆大多都是材料在酸洗或电镀过程中吸收氢所造成的。氢脆机理是非常复杂的,需要用复杂的数学模型来描述和分析。美国有些单位采用一些先进方法来研究氢脆现象,如布朗恩大学使用断裂力学/扩散/减聚力分析方法,哥伦比亚大学和美国国家宇航实验室使用统计模型。近年来,有些研究人员利用了有效理论数学分析来研究氢在金属中的运动,加强了对氢运动和效应的理论基础研究,这将进一步邦助改进材料的性态。目前的研究提高了发现金属晶格中小量氢的能力。 1 氢脆的几种形式 从广义上来讲,氢脆断裂是属于腐蚀断裂的一种,因为氢脆也是由于电化学作用引起钢材脆性破坏的现象。氢脆断裂是电化学反应在阴极产生的原子状态氢(H)渗入钢中而导致的脆性断裂。应力腐蚀断裂则是由于电化学反应阳极溶解的结果。费尔普斯已证明阳极溶解和阴极氢脆过程都可使高强度钢产生应力腐蚀裂纹。为此布朗等还测量了正在长大的应力腐蚀

氢脆现象

紧固件的氢脆是由于在早期处理过程中有氢原子进入材料内部。多数情况下,紧固件在承受静态拉伸载荷的条件下发生氢脆。在进行高应变速率材料试验,如普通拉伸试验时,不易发生氢脆。氢原子通常向材料中承受三向应力的区域扩散。材料中的应力水平与系统中氢的聚集程度将影响氢扩散到陷阱位置的比例。氢在陷阱位置的聚集将使得材料的断裂应力下降,以致在材料中出现裂纹形成、裂纹扩展及至失效等现象。氢在承受静载的紧固件中的扩散可以通过氢脆断裂前的延迟时间而直接观察到。由于材料的氢脆倾向、材料中氢的总量、氢的扩散比以及旋加应力水平的不同,氢脆断裂时间延迟的变化很大,从几分钟到几天或几周不等。 如果紧固件在处理过程中曾经接触过具有氢离子的环境,它就有可能发生氢脆。在钢发生化学或电化学反应的过程中产生氢的任何处理都将使氢进入材料,从而增加材料的氢脆倾向。汽车工业中使用的钢质紧固件在环境腐蚀、阴极电解除油、酸液去氧化皮、化学清洗、发黑和电镀一类的化学转化膜处理条件下,都将与活性氢原子直接接触。由于电镀处理过程将产生氢,其对钢制紧固件氢的吸收所起作用最大。电镀过程中吸收氢的总量在很大程度上取决于电镀液的效率。总的来说,高效电镀处理产生的氢比低效电镀处理产生的氢要少。电镀滚桶中电镀液装载量的过多或过少等因素将对电镀处理的效率产生很大的影响。 其它与钢作用时产生氢的过程,如酸洗、热处理后去氧化皮或镀前处理,其影响也都是不容忽视的。John-son的研究很好地描述了浸入酸液对钢的韧性的影响。紧固件处理过程中对氢的吸收是累积性的。单一的某种处理引入零件的氢或许不足以导致氢脆,但多种处理引入零件的氢的累积却有可能导致氢脆。 电镀或清洗过程中氢吸收的不利影响可在电镀后的加热处理(通常是指烘烤)过程中予以消除或减轻。氢脆危害的严重程度通常取决于紧固件的强度级别和/或冷加工状况。Troiano 曾经给出过失效时间与氢含量及烘烤时间之间的关系。通过烘烤,材料中氢的聚集减轻,失效时间和较低的临界应力水平则得以延长和提高。这里,临界应力水平是指低于其下就不会发生氢脆的应力水平,类似于疲劳极限。 烘烤时间是否足够主要取决于材料的硬度级别、电镀过程、镀层类型和镀层厚度。经电镀处理的较低硬度水平(≤35HRC)的紧固件一般应至少烘烤4小时;同样的镀层,但硬度水平较高(≥36HRC)的紧固件一般应至少烘烤8小时。曾有建议指出硬度在31~33HRC之间的紧固件应烘烤8小时;硬度在33~36HRC之间的紧固件应烘烤10小时;硬度在36~39HRC 之间的紧固件烘烤12小时。硬度在39~43HRC之间的紧固件应烘14小时。烘烤工艺的制订应同时考虑到紧固件的硬度水平与镀层类型。镀层在一定程度上可以起到氢扩散障碍的作用,这将阻碍氢向紧固件外的扩散。一般来说,氢透过疏松涂层向紧固件外扩散比透过致密涂层向外扩散要容易。镀锌层与较致密的镀镉之间即有这种差别。为了使尽可能多的氢扩散出材料,有必要采取更长的烘烤时间。A.W.GrobinJr.认为,当镀层的厚度超过2.5μm时,氢从钢中扩散出去就将比较困难。在这种情况下,镀锌层就成了氢扩散的障碍。可以认为,在这种

检测氢脆的方法

检测氢脆的方法 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一般如何测试氢脆?为了研究或防止氢脆,需要对金属的氢脆情况进行测试,以获取相关信息。测试氢脆的方法有好几种,常用的有往复弯曲试验和延迟破坏试验。 (1)往复弯曲试验往复弯曲试验对低脆性材料比较灵敏,可以用来对不同基体材料在经过相同的电镀工艺处理后的氢脆程度进行比较,也可以对相同的基体材料上的不同电镀工艺的氢脆程度进行比较。这种试验的方法是取一个待测试片,其尺寸规格为:150mm×l3mm×,表面粗糙度Ra=。对试片进行热处理使之达到规定的硬度,然后用往复弯曲机让试片在一定直径的轴上以一定的速度进行缓慢的弯曲试验,直至试片断裂。弯曲方式有90。往复弯曲和l80。单面弯曲两种,以前一种方式应用较多,弯曲的速度是0.6./s。如果是单面弯曲则所取的速度则为0.13。/s。评价的方法是将弯曲试验至断裂时的次数乘以角度,以获得弯曲角度的总和,其角度总值越大,氢脆越小。测试时要注意以下几点。? ①试片在进行热处理后如果有变形,应静压校平,不可以敲打校正,否则会使试片的内应力增加,影响试验结果。 ②为了防止应力影响,电镀前应进行去应力,在电镀后则要进行除氢处理,这时检测的是残余氢脆的影响。 ③弯曲试验时所用的轴的直径的选用很重要,因为评价这种试验结果的量化指标与轴径有关,对于小的轴径,则弯曲至断裂的次数就会少一些,具体选用什么轴

径要通过对基体材料的空白试验来确定,并且在提供数据时要指明所用的轴径,否则参数没有可比性。 (2)延迟破坏试验延迟破坏试验是一种灵敏度较高的试验方法,适合用于高强度钢制品的氢脆检测。这种氢脆测试也是在试验机上进行的,所用的试验机为持久强度试验机或蠕变试验机,检测试样在这种试验机上受到小于破坏程度的应力的作用,观测其直到断裂时的时间。如果到规定的时间尚没有发生断裂,即为合格。这种试验需要采用按一定要求制作的标准的测试验棒。并且每次要使用三支同样条件的试样平行做试验,以使结果更为可信。这种试样的形状和尺寸要求如图2-1,氢脆试样棒示意其中关键位就是处于试样中间轴径最小的地方(直径4.5mm士0.05mm)。如果有较为严重的氢脆,断裂就从此处发生。试样应先退火后再经车工加工为接近规定尺寸的初件,经热处理达到规定的抗拉强度后,再加工到精确尺寸。试样在电镀前要消除应力,其工艺与电镀件的真实电镀过程相同。镀层的厚度要求在12μm左右。试验所用的负荷是进行空白测试时的75%。如果经过200h仍不断裂,即为合格。科学实验的设计有三个原则:随机、对照、盲法。 对照的方法有一个就是空白对照。比如要研究某种药品对家兔的影响,那么往往取两组家兔,其中一组使用该药品,而另一组不用,从而比较两组家兔的结果。那组不用药的家兔的实验就是空白实验。

氢脆现象对螺纹紧固件强度的影响

氢脆现象对螺纹紧固件强度的影响 高强度螺栓的强度水平一般分为8.8、9.8、10.9和12.9四个级别,通常为调质处理的中碳钢或中碳合金钢。 高强度螺栓联接对节约原材料成本,节省装配位置及减轻整车、 整机重量等方面无疑具有不可替代的优势。但目前,由氢脆引发的钢制螺纹紧固件联接断裂仍然是一个严重的产品质量问题。电镀诱发的氢脆断裂出现的时间长短不一,有的是投入使用后断裂;有的是还在交付试验中或在寿命试验之中;有的是还在等待交付中;有的是在装配过程中;有的是断裂在电镀过程之中。人们可以采取各种技术来减少或预防螺纹紧固件中产生的氢脆问题。 一、氢脆形成的理论与机理 所谓氢脆,是指氢原子侵入基体材料中而引起的材料延迟失效断 裂。它的发生需要满足两个条件:a、金属有较高的含氢量;b、一定的外力作用。 氢脆大体上可分为以下两类:第一类主要是由外部环境侵入的氢 (外氢)引起的延迟断裂。如车辆车厢、驾驶室外壳等连接使用的螺栓、螺母,在潮湿空气、雨水等环境中长期暴露而发生;第二类酸洗、电镀处理的制造过程中侵入钢中的氢(内氢)弓I起的延迟断裂。如镀锌螺栓等在加载后,经过几小时或几天的较短时间后而发生。对于前者,一般是由于在长期暴露过程中发生腐蚀,腐蚀坑处腐蚀反应生成的氢侵入而引起的;后者是由于制造过程如酸洗、电镀处理时侵入钢中的氢在应力的

作用下向应力集中处集中而引起的。 研究表明,实际使用的螺纹紧固件在自然环境下发生氢脆断裂的主要是淬火回火的马氏体系钢,一般发生在屈服强度〉620MPa、硬度》32HRC的高强度材料。钢的屈服点愈高愈容易发生氢脆破坏,即使只含少量的氢气,也可能导致破坏。材料强度对氢脆敏感性的影响是:随着钢的强度的提高,其变脆指数也升高,而持久强度降低,说明钢的强度越高,对氢脆越敏感。 车辆结构中的螺纹紧固件,起着连接、紧固和密封的作用,装配时必须拧紧,联接的部件不同,所受的载荷各不同。有的承受弯曲或剪切应力,有的承受反复交变的拉应力和压应力,也有的承受冲击载荷或同时承受上述几种载荷,由于氢脆具有延迟性和突发性,所以它的危害很大。 1、氢脆理论来源 最早的关于氢脆失效理论之一,是在1874年发表的。试验观察,当钢丝短时间浸入盐酸或硫酸中时,其韧性明显下降。经过研究得出任何一种酸,只要它能产生氢,当与钢作用时,都将导致钢的韧性下降”的结论。 2、氢脆破断机理 氢脆破断机理目前分别有氢气压力假说、位错假说、氢吸附假说和晶格脆化假说。 氢原子具有最小的原子半径(R H=0.53A ),所以易于进入金属内部?

氢脆的检测

氢脆的检测 英文名称:hydrogen embrittlement 其他名称:白点定义1:金属由于吸氢引起韧性或延性下降的现象。所属学科:船舶工程(一级学科);船舶腐蚀与防护(二级学科)定义2:钢材在冶炼、加工和使用中溶解于钢中的原子氢,在重新聚合成分子氢时产生的巨大应力超过钢的强度极限时,可以在钢内产生微裂纹,导致材料的韧性或塑性下降的现象。氢脆是溶于钢中的氢,聚合为氢分子,造成应力集中,超过钢的强度极限,在钢内部形成细小的裂纹,又称白点。氢脆只可防,不可治。氢脆一经产生,就消除不了。在材料的冶炼过程和零件的制造与装配过程(如电镀、焊接)中进入钢材内部的微量氢(10—6 量级)在内部残余的或外加的应力作用下导致材料脆化甚至开裂。在尚未出现开裂的情况下可以通过脱氢处理(例如加热到200℃以上数小时,可使内氢减少)恢复钢材的性能。因此内氢脆是可逆的。热处理不适用的情况热处理的方法是将工件加热至某一温度,保温一段时间,缓冷,使氢随溶解度逐渐变小,逐渐析出。但加热会破坏镀层,因此热处理的方法对于经过电镀的工件并不适用。如何防治首先,尽量缩短酸洗时间;其次加缓蚀剂,减少产氢量。压力容器的氢脆(或称氢损伤)是指它的器壁受到氢的侵蚀,造成材料塑性和强度降低,并因此而导致的开裂或延迟性的脆性破坏。高温高压的氢对钢的损伤主要是因为氢以原子状态渗入金属内,并在金属内部再结合成分子,产生很高的压力,严重时会导致表面鼓包或皱折;氢与钢中的碳结合,使钢脱碳,或使钢中的硫化物与氧化物还原。造成压力容器氢脆破坏的氢,可以是设备中原来就存在的,例如,炼钢、焊接过程中的湿气在高温下被还原而生成氢,并溶解在液体金属中。或设备在电镀或酸洗时,钢表面被吸附的氢原子过饱和,使氢渗入钢中;也可以是使用后由介质中吸收进入的,例如在石油、化工容器中,就有许多介质中含氢或含混有硫化氢的杂质。钢发生氢脆的特征主要表现在微观组织上。它的腐蚀面常可见到钢的脱碳铁素体,氢脆层有沿着晶界扩展的腐蚀裂纹。腐蚀特别严重的容器,

氢脆理论分析

HIC 的类型 1、 氢气压力引起的开裂 溶解在材料中的H 在某些缺陷部位析出气态氢H 2(或与氢有关的其它气体),当H 2的压力大于材料的屈服强度时产生局部塑性变形,当H 2的压力大于原子间结合力时就会产生局部开裂。某些钢材在表面酸洗后能看到象头发丝一样的裂纹,在断口上则观察到银白色椭圆形斑点,称为白点。 白点的形成是氢气压力造成的。钢的化学成分和组织结构对白点形成有很大影响,奥氏体钢对白点不敏感;合金结构钢和合金工具钢中容易形成白点。钢中存在内应力时会加剧白点倾向。 焊接件冷却后有时也能观察到氢致裂纹。焊接是局部冶炼过程,潮湿的焊条及大气中的水分会促进氢进入焊接熔池,随后冷却时可能在焊肉中析出气态氢,导致微裂纹。焊接前烘烤焊条就是为了防止氢致裂纹。 2、氢化物脆化 许多金属(如Ti 、Zr 、Hf 、V 、Nb 、Ta 、稀土等)能够形成稳定的氢化物。氢化物属于一种脆性相,金属中析出较多的氢化物会导致韧性降低,引起脆化。 3、氢致滞后断裂 材料受到载荷作用时,原子氢H 向拉应力高的部位扩散形成H 富集区。当H 的富集达到临界值时就引起氢致裂纹形核和扩展,导致断裂。由于H 的扩散需要一定的时间,加载 后要经过一定的时间才断裂,所以称为氢致滞后断裂。 氢致滞后断裂的外应力低于正常的抗拉强度,裂纹试件中外加应力场强度因子也小于断裂韧度。 氢致滞后断裂是可逆的,除去材料中的氢就不会发生滞后断裂。 即使在均匀的单向外加应力下,材料中的夹杂和第二相等结构不均匀处也会产生应 力集中,导致氢的富集。 设应力集中系数为α,则σh =ασ,应力集中处的氢浓度为: 式中,C H -合金中的平均氢浓度;V H -氢在该合金中的偏摩尔体积(恒温、恒压下加入 1 摩尔氢所引起的金属体积的变化)。 若氢的浓度达到临界值C th 时断裂,对应的外应力即为氢致滞后断裂的门槛应力σth ,即: ?若σ th 裂; ? 若σ>σth ,经过时间 t f 后,发生断裂,且应力越大,滞后断裂时间越短。

检测氢脆的方法

检测氢脆的方法 Revised as of 23 November 2020

一般如何测试氢脆为了研究或防止氢脆,需要对金属的氢脆情况进行测试,以获取相关信息。测试氢脆的方法有好几种,常用的有往复弯曲试验和延迟破坏试验。 ( 1)往复弯曲试验往复弯曲试验对低脆性材料比较灵敏,可以用来对不同基体材料在经过相同的电镀工艺处理后的氢脆程度进行比较,也可以对相同的基体材料上的不同电镀工艺的氢脆程度进行比较。这种试验的方法是取一个待测试片,其尺寸规格为:150mm×l 3mm×,表面粗糙度Ra=。对试片进行热处理使之达到规定的硬度,然后用往复弯曲机让试片在一定直径的轴上以一定的速度进行缓慢的弯曲试验,直至试片断裂。弯曲方式有90。往复弯曲和l80。单面弯曲两种,以前一种方式应用较多,弯曲的速度是0.6./s。如果是单面弯曲则所取的速度则为0.13。/s。评价的方法是将弯曲试验至断裂时的次数乘以角度,以获得弯曲角度的总和,其角度总值越大,氢脆越小。测试时要注意以下几点。 ①试片在进行热处理后如果有变形,应静压校平,不可以敲打校正,否则会使试片的内应力增加,影响试验结果。 ②为了防止应力影响,电镀前应进行去应力,在电镀后则要进行除氢处理,这时检测的是残余氢脆的影响。 ③弯曲试验时所用的轴的直径的选用很重要,因为评价这种试验结果的量化指标与轴径有关,对于小的轴径,则弯曲至断裂的次数就会少一些,具体选用什么轴径要通过对基

体材料的空白试验来确定,并且在提供数据时要指明所用的轴径,否则参数没有可比性。(2)延迟破坏试验延迟破坏试验是一种灵敏度较高的试验方法,适合用于高强度钢制品的氢脆检测。这种氢脆测试也是在试验机上进行的,所用的试验机为持久强度试验机或蠕变试验机,检测试样在这种试验机上受到小于破坏程度的应力的作用,观测其直到断裂时的时间。如果到规定的时间尚没有发生断裂,即为合格。这种试验需要采用按一定要求制作的标准的测试验棒。并且每次要使用三支同样条件的试样平行做试验,以使结果更为可信。这种试样的形状和尺寸要求如图2-1,氢脆试样棒示意其中关键位就是处于试样中间轴径最小的地方(直径4.5mm士0.05mm)。如果有较为严重的氢脆,断裂就从此处发生。试样应先退火后再经车工加工为接近规定尺寸的初件,经热处理达到规定的抗拉强度后,再加工到精确尺寸。试样在电镀前要消除应力,其工艺与电镀件的真实电镀过程相同。镀层的厚度要求在12μm左右。试验所用的负荷是进行空白测试时的75%。如果经过200h仍不断裂,即为合格。 科学实验的设计有三个原则:随机、对照、盲法。对照的方法有一个就是空白对照。比如要研究某种药品对家兔的影响,那么往往取两组家兔,其中一组使用该药品,而另一组不用,从而比较两组家兔的结果。那组不用药的家兔的实验就是空白实验。 氢脆氢脆氢脆氢脆的检测的检测的检测的检测英文名称:hydrogen embrittlement 其他名称:白点定义 1:金属由于吸氢引起韧性或延性下降的现象。所属学科:船舶工程(一级学科);船舶腐蚀与防护(二级学科)定义 2:钢材在冶炼、加工和使用中溶解于钢中的原子氢,在重新聚合成分子氢时产生的巨大应力超过钢的强度极限时,可以在钢内产生微裂纹,导致材料的韧性或塑性下降的现象。氢氢氢氢脆脆脆脆是溶于钢中的氢,聚合为氢分子,造成应力集中,超过钢的强度极限,在钢内部形成细小的裂纹,又称白点。氢脆氢脆氢脆氢脆只可防,不可治。氢脆氢脆氢脆氢脆一经产生,就消除不了。在材料的冶炼过程和零件的制造与装配过程(如电镀、焊接焊接焊接焊接)中进

氢脆的原理与预防

去氢处理,也称除氢处理,一般对电镀前后必须进行工序,特别是对高强度高硬度的零件在电镀工艺中。 氢脆的原理与预防 在任何电镀溶液中,由于水分子的离解,总或多或少地存在一定数量的氢离子。因此,电镀过程中,在阴极析出金属(主反应)的同时,伴有氢气的析出(副反应)。析氢的影响是多方面的,其中最主要的是氢脆。氢脆是表面处理中最严重的质量隐患之一,析氢严重的零件在使用过程中就可能断裂,造成严重的事故。表面处理技术人员必须掌握避免和消除氢脆的技术,氢脆的影响降低到最低限度。 一、氢脆 1氢脆现象 氢脆通常表现为应力作用下的延迟断裂现象。曾经出现过汽车弹簧、垫圈、螺钉、片簧等镀锌件,在装配之后数小时内陆续发生断裂,断裂比例达40%~50%。某特种产品镀镉件在使用过程中曾出现过批量裂纹断裂,曾组织过全国性攻关,制订严格的去氢工艺。另外,有一些氢脆并不表现为延迟断裂现象,例如:电镀挂具(钢丝、铜丝)由于经多次电镀和酸洗退镀,渗氢较严重,在使用中经常出现一折便发生脆断的现象;猎枪精锻用的芯棒,经多次镀铬之后,堕地断裂;有的淬火零件(内应力大)在酸洗时便产生裂纹。这些零件渗氢严重,无需外加应力就产生裂纹,再也无法用去氢来恢复原有的韧性。 2 氢脆机理

延迟断裂现象的产生是由于零件内部的氢向应力集中的部位扩散聚集,应力集中部位的金属缺陷多(原子点阵错位、空穴等)。氢扩散到这些缺陷处,氢原子变成氢分子,产生巨大的压力,这个压力与材料内部的残留应力及材料受的外加应力,组成一个合力,当这合力超过材料的屈服强度,就会导致断裂发生。氢脆既然与氢原子的扩散有关,扩散是需要时间的,扩散的速度与浓差梯度、温度和材料种类有关。因此,氢脆通常表现为延迟断裂。 氢原子具有最小的原子半径,容易在钢、铜等金属中扩散,而在镉、锡、锌及其合金中氢的扩散比较困难。镀镉层是最难扩散的,镀镉时产生的氢,最初停留在镀层中和镀层下的金属表层,很难向外扩散,去氢特别困难。经过一段时间后,氢扩散到金属内部,特别是进入金属内部缺陷处的氢,就很难扩散出来。常温下氢的扩散速度相当缓慢,所以需要即时加热去氢。温度升高,增加氢在钢中的溶解度,过高的温度会降低材料的硬度,所以镀前去应力和镀后去氢的温度选择,必须考虑不致于降低材料硬度,不得处于某些钢材的脆性回火温度,不破坏镀层本身的性能。 二、避免和消除的措施 1 减少金属中渗氢的数量 在除锈和氧化皮时,尽量采用吹砂除锈,若采用酸洗,需在酸洗液中添加若丁等缓蚀剂;在除油时,采用化学除油、清洗剂或溶剂除油,渗氢量较少,若采用电化学除油,先阴极后阳极;在电镀时,碱性镀液或高电流效率的镀液渗氢量较少。

检测氢脆的方法

一般如何测试氢脆? 为了研究或防止氢脆,需要对金属的氢脆情况进行测试,以获取相关信息。测试氢脆的方法有好几种,常用的有往复弯曲试验和延迟破坏试验。 (1)往复弯曲试验往复弯曲试验对低脆性材料比较灵敏,可以用来对不同基体材料在经过相同的电镀工艺处理后的氢脆程度进行比较,也可以对相同的基体材料上的不同电镀工艺的氢脆程度进行比较。这种试验的方法是取一个待测试片,其尺寸规格为:150mm×l3mm×l.5mm,表面粗糙度Ra=1.6。对试片进行热处理使之达到规定的硬度,然后用往复弯曲机让试片在一定直径的轴上以一定的速度进行缓慢的弯曲试验,直至试片断裂。弯曲方式有90。往复弯曲和l80。单面弯曲两种,以前一种方式应用较多,弯曲的速度是0.6./s。如果是单面弯曲则所取的速度则为0.13。/s。评价的方法是将弯曲试验至断裂时的次数乘以角度,以获得弯曲角度的总和,其角度总值越大,氢脆越小。 测试时要注意以下几点。 ①试片在进行热处理后如果有变形,应静压校平,不可以敲打校正,否则会使试片的内应力增加,影响试验结果。 ②为了防止应力影响,电镀前应进行去应力,在电镀后则要进行除氢处理,这时检测的是残余氢脆的影响。 ③弯曲试验时所用的轴的直径的选用很重要,因为评价这种试验结果的量化指标与轴径有关,对于小的轴径,则弯曲至断裂的次数就会少一些,具体选用什么轴径要通过对基体材料的空白试验来确定,并且在提供数据时要指明所用的轴径,否则参数没有可比性。 (2)延迟破坏试验延迟破坏试验是一种灵敏度较高的试验方法,适合用于高强度钢制品的氢脆检测。这种氢脆测试也是在试验 机上进行的,所用的试验机为持久强度试验机或蠕变试验机,检测试样在这种试验机上受到小于破坏程度的应力的作用,观测其直到断裂时的时间。如果到规定的时间尚没有发生断裂,即为合格。这种试验需要采用按一定要求制作的标准的测试验棒。并且每次要使用三支同样条件的试样平行做试验,以使结果更为可信。 这种试样的形状和尺寸要求如图2-1,氢脆试样棒示意其中关键位就是处于试样中间轴径最小的地方(直径4.5mm士0.05mm)。如果有较为严重的氢脆,断裂就从此处发生。试样应先退火后再经车工加工为接近规定尺寸的初件,经热处理达到规定的抗拉强度后,再加工到精确尺寸。试样在电镀前要消除应力,其工艺与电镀件的真实电镀过程相同。镀层的厚度要求在12μm左右。试验所用的负荷是进行空白测试时的75%。如果经过200h仍不断裂,即为合格。 科学实验的设计有三个原则:随机、对照、盲法。 对照的方法有一个就是空白对照。比如要研究某种药品对家兔的影响,那么往往取两组家兔,其中一组使用该药品,而另一组不用,从而比较两组家兔的结果。那组不用药的家兔的实验就是空白实验。

氢脆问题汇总

氢脆(hydrogen embrittlement)是指金属材料在冶炼,加工,热处理,酸洗和电镀等过程中,或在含氢介质中长期使用时,材料由于吸氢或氢渗而造成机械性能严重退化,发生脆断的现象. 从机械性能上看,氢脆有以下表现:氢对金属材料的屈服强度和极限强度影响不大,但使延伸率是断面收缩率严重下降,疲劳寿命明显缩短,冲击韧性值显著降低.在低于断裂强度拉伸应力的持续作用下,材料经过一段时期后会突然脆断.氢脆的机理学术界还有争议,但大多数学者认为以下几种效应是氢脆发生的主要原因: 1. 在金属凝固的过程中,溶入其中的氢没能及时释放出来,向金属中缺陷附近扩散,到室温时原子氢在缺陷处结合成分子氢并不断聚集,从而产生巨大的内压力,使金属发生裂纹. 2. 在石油工业的加氢裂解炉里,工作温度为300-500度,氢气压力高达几十个到上百个大气压力,这时氢可渗入钢中与碳发生化学反应生成甲烷.甲烷气泡可在钢中夹杂物或晶界等场所成核,长大,并产生高压导致钢材损伤. 3. 在应力作用下,固溶在金属中的氢也可能引起氢脆.金属中的原子是按一定的规则周期性地排列起来的,称为晶格.氢原子一般处于金属原子之间的空隙中,晶格中发生原子错排的局部地方称为位错,氢原子易于聚集在位错附近.金属材料所外力作用时,材料内部的应力分布是不均匀的,在材料外形迅速过渡区域或在材料内部缺陷和微裂纹处会发生应力集中.在应力梯度作用下氢原子在晶格内扩散或跟随位错运动向应力集中区域.由于氢和金属原子之间的交互作用使金属原子间的结合力变弱,这样在高氢区会萌生出裂纹并扩展,导致了脆断.另外,由于氢在应力集中区富集促进了该区域塑性变形,从而产生裂纹并扩展.还有,在晶体中存在着很多的微裂纹,氢向裂纹聚集时有吸附在裂纹表面,使表面能降低,因此裂纹容易扩展. 4. 某些金属与氢有较大的亲和力,过饱和氢与这种金属原子易结合生成氢化物,或在外力作用下应力集中区聚集的高浓度的氢与该种金属原子结合生成氢化物.氢化物是一种脆性相组织,在外力作用下往往成为断裂源,从而导致脆性断裂. 氢脆给人类利用金属带来了风险,因此研究氢脆的目的主要在于防止氢脆,由于氢脆的原因很多,而且人类的认识也不够透彻完整,所以现在还无法完全防止氢脆. 目前防止氢脆的措施有以下几种: 1. 避免过量氢带入--在金属的冶炼过程中降低相对湿度,对各种添加剂和钢锭模进行烘烤保持干燥.

什么是氢脆现象

什么是氢脆现象? 那位高人能给解释一下啊 我也来说两句查看全部回复 最新回复 大漠孤星(2009-3-01 21:57:47) 压力容器的氢脆是指它的器壁受到氢的侵蚀,造成材料塑性和强度降低,并因此而导致的开裂或延迟性的脆性破坏。高温高压的氢对钢的损伤主要是因为氢以原子状态渗入金属内,并在金属内部再结合成分子,产生很高的压力,严重时会导致表面鼓包或皱折;氢与钢中的碳结合,使钢脱碳,或使钢中的硫化物与氧化物还原。造成压力容器氢脆破坏的氢,可以是设备中原来就存在的,例如,炼钢、焊接过程中的湿气在高温下被还原而生成氢,并溶解在液体金属中。或设备在电镀或酸洗时,钢表面被吸附的氢原子过饱和,使氢渗入钢中;也可以是使用后由介质中吸收进入的,例如在石油、化工容器中,就有许多介质中含氢或含混有硫化氢的杂质。钢发生氢脆的特征主要表现在微观组织上。它的腐蚀面常可见到钢的脱碳铁素体,氢脆层有沿着晶界扩展的腐蚀裂纹。腐蚀特别严重的容器,宏观上可以发现氢脆所产生的鼓包。介质中含氢(或硫化氢)的容器是否会发生氢脆,主要决定于操作温度、氢的分压、作用时间和钢的化学成分。温度越高、氢分压越突,碳钢的氢脆层就越深,发生氢脆破裂的时间也越短,其中温度尤其是重要因素。钢的含碳量越高,在相同的温度和压力条件下,氢脆的倾向越严重。钢中添有铬、钛、钒等元素,可以阻止氢脆的产生。 zhangyong6404 (2009-3-01 23:23:51) 氢脆是金属材料在氢与应力的联合作用下产生的破坏现象.它使材料突然脆断造成严重的事故。 songgaojie_610 (2009-3-02 00:32:47) 针对于合金钢而言,由于晶构内进入氢,而产生的一种金属变翠的现象。它对合金的破坏是致命的!!是毁灭性的!! 最终幻想(2009-3-02 13:06:33) 楼主到这里看看有没有您需要的。 https://www.doczj.com/doc/a37209676.html,/search.php? ... mp;searchsubmit=yes hljrjh (2009-3-02 13:16:07) 1、氢脆是溶于钢中的氢,聚合为氢分子,造成应力集中,超过钢的强度极限,在钢内部形成细小的裂纹。又称白点。 2 内氢脆 在材料的冶炼过程和零件的制造与装配过程(如电镀、焊接)中进入钢材内部的微量氢(10—6量级)

小型零件的去氢检验方法与再去氢热处理

氢脆 金属材料由于受到含氢气氛的作用而引起的断裂,统称为氢脆断裂或氢致开裂。 一氢脆的类型及特征 (一)内部氢脆与环境氢脆 氢脆断裂在工程上是一种比较普遍的现象,但由于材料性能、加工工艺、服役环境、受力状态不同,各种现象有较大差异。 根据引起氢脆的氢之来源不同,氢脆可分成两大类:一类为内部氢脆,它是由于金属材料在冶炼、锻造、焊接或电镀、酸洗过程中吸收了过量的氢气而造成的;第二类氢脆称为环境氢脆,它是在应力和氢气氛或其它含氢介质的联合作用下引起的一种脆性断裂,如贮氢的压力容器中出现的高压氢脆。 内部氢脆和环境氢脆的区别,在于氢的来源不同,而它们的脆化本质是否相同,目前尚未定论。 一般认为,内部氢脆和环境氢脆在微观范围(原子尺度范围内),其本质是相同的,都是由于氢引起的材料脆化,但就宏观范围而言,则有差别。因为它们所包含的某些过程(如氢的吸收)、氢和金属的相互作用、应力状态以及温度,微观结构的影响等均不相同。 (二)氢脆断口特征 内部氢脆断口往往出现“白点”,如图6-7所示。白点又有两种类型:一种是在钢件中观察到纵向发裂,在其断口上则呈现白点。这类白点多呈圆形或椭圆形,而且轮廓分明,表面光亮呈银白色,所以又叫做“雪斑”或发裂白点,如图6-7a所示。这种白点实际上就是一种内部微细裂纹,它是由于某种原因致使材料中含有过量的氢,因氢的溶解度变化(通常是随温度降低,金属中氢的溶解度下降),过饱和氢未能扩散外逸,而在某些缺陷处聚集成氢分子所造成的。一旦发现发裂,材料便无法挽救。但在形成发裂前低温长时间保温,则可消除这类白点。 另一种白点呈鱼眼型,它往往是某些以材料内部的宏观缺陷如气孔、夹渣等为核心的银白色斑点,其形状多数为圆形或椭圆形。圆白点的大小往往同核心的大小有关,即核心愈大,白点也愈大,白点区齐平而略为下凹,图6-7b即为以焊接缺陷(气孔)作为核心的鱼眼型白点。 产生鱼眼白点,除氢和缺陷因素外,还必须有一定的条件,即应有一定的塑性变形量和一定的形变速度。如果经过去氢处理或消除鱼眼核心��缺陷,白点就不能形成;小于一定的塑性变形量,或用高的应变速率(如冲击),都不会产生这类白点,所以它是可以消除的,故又叫可逆氢脆。这类氢脆一般不损害材料的强度,只降低塑性。 内部氢脆断口的微观形态,往往是穿晶解理型或准解理型花样。在白点区是穿晶解理断裂,而白点外则为微孔聚集型断裂。 二氢脆和应力腐蚀相比,其特点表现在: (1)实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀,而当施加一小阴极电流,使开裂加速者则为氢脆。 (2)在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小,这时其断裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。

氢脆的避免消除措施

避免和消除的措施 .1 减少金属中渗氢的数量 在除锈和氧化皮时,尽量采用吹砂除锈,若采用酸洗,需在酸洗液中添加若丁等缓蚀剂;在除油时,采用化学除油、清洗剂或溶剂除油,渗氢量较少,若采用电化学除油,先阴极后阳极;在电镀时,碱性镀液或高电流效率的镀液渗氢量较少。 2 采用低氢扩散性和低氢溶解度的镀涂层 一般认为,在电镀Cr、Zn、Cd、Ni、Sn、Pb时,渗入钢件的氢容易残留下来,而Cu、Mo、Al、Ag、Au、W等金属镀层具有低氢扩散性和低氢溶解度,渗氢较少。在满足产品技术条件要求的情况下,可采用不会造成渗氢的涂层,如机械镀锌可以,不会发生氢脆,耐蚀性高,附着力好,厚5~100μm,成本低。 3 镀前去应力和镀后去氢以消除氢脆隐患 若零件经淬火、焊接等工序后内部残留应力较大,镀前应进行回火处理,减少发生严重渗氢的隐患。 对电镀过程中渗氢较多的零件原则上应尽快去氢,因为镀层中的氢和表层基体金属中的氢在向钢基体内部扩散,其数量随时间的延长而增加。新的国际标准草案规定“最好在镀后1h内,但不迟于3h,进行去氢处理”。国内也有相应的标准,对电镀锌前、后的去氢处理作了规定。电镀后去氢处理工艺广泛采用加热烘烤,常用的烘烤温度为150~300°C,保温2~24h。具体的处理温度和时间应根据零件大小、强度、镀层性质和电镀时间的长短而定。去氢处理常在烘箱内进行。镀锌零件的去氢处理温度为110~220°C,温度控制的高低应根椐基体材料而定。对于弹性材料、0.5mm以下的薄壁件及机械强度要求较高的钢铁零件,镀锌后必须进行去氢处理。为了防止“镉脆”,镀镉零件的去氢处理温度不能太高,通常为180~200°C。 弹性紧固件电镀锌氢脆分析及预防 为有效地提高弹性紧固件(弹簧垫圈、锥形垫圈、鞍形垫圈、波形垫圈等)抗蚀防护性能和装饰性,多半要进行表面处理,如发黑、磷化、电镀锌等处理。其中电解镀锌及钝化处理应用更为广泛。 加上弹性紧固件的硬度一般在42-50HRc之间,由于材料及表面处理的原因,它对氢比较敏感,在电镀后,除氢处理未达到驱氢目的,其残存的氢会造成弹性紧固件的延迟断裂。 目前,由延迟断裂氢脆引发的弹性紧固件断裂自然是一个严重的产品质量问题,人们可以采取各种技术来减少和预防弹性紧固件的氢脆问题。 1.材料缺陷的影响

氢脆防护技术解读

1.控制氢脆断裂的思路 氢脆是溶于钢中的氢,聚合为氢分子,造成应力集中,超过钢的强度极限,在钢内部形成细小的裂纹,又称白点。氢脆只可防,不可治。氢脆一经产生,就消除不了,重在预防。 (氢在承受静载的紧固件中的扩散可以通过氢脆断裂前的延迟时间而直接观察到。由于材料的氢脆倾向、材料中氢的总量、氢的扩散比以及旋加应力水平的不同,氢脆断裂时间延迟的变化很大,从几分钟到几天或几周不等,紧固件处理过程中对氢的吸收是累积性的,单一的某种处理引入零件的氢或许不足以导致氢脆,但多种处理引入零件的氢的累积却有可能导致氢脆) 2.氢脆现象 氢脆:是指氢原子侵入基体材料中而引起的材料延迟失效断裂。它的发生需要满足两个条件:a、金属有较高的含氢量;b、一定的外力作用。 3.氢脆机理 延迟断裂现象的产生是由于零件内部的氢向应力集中的部位扩散聚集,应力集中部位的金属缺陷多(原子点阵错位、空穴等)。氢扩散到这些缺陷处,氢原子变成氢分子,产生巨大的压力,这个压力与材料内部的残留应力及材料受的外加应力,组成一个合力,当这合力超过材料的屈服强度,就会导致断裂发生。氢脆既然与氢原子的扩散有关,扩散是需要时间的,扩散的速度与浓差梯度、温度和材料种类有关。因此,氢脆通常表现为延迟断裂。 4.氢脆形成的环节 第一类主要是由外部环境侵入的氢(外氢)引起的延迟断裂。如裸露在空气表面外壳等连接使用的螺栓、螺母,在潮湿空气、雨水等环境中长期暴露而发生; 第二类酸洗、电镀处理的制造过程中侵入钢中的氢(内氢)引起的延迟断裂。如镀锌螺栓等在加载后,经过几小时或几天的较短时间后而发生。对于前者,一般是由于在长期暴露过程中发生腐蚀,腐蚀坑处腐蚀反应生成的氢侵入而引起的;后者是由于制造过程如酸洗、电镀处理时侵入钢中的氢在应力的作用下向应力集中处集中而引起的。 热处理 对于高强度螺纹紧固件,尤其是10.9级和12.9级螺钉,不但使用中碳合金结构钢,而且还要进行调质热处理。对于自攻螺钉、自攻锁紧螺钉等,都要求进行浅层渗碳(碳氮共渗)。为了避免加热中螺纹氧化、脱碳,且得到光亮和光洁的表面,采用保护气氛或渗碳气氛,气氛常采用高纯度甲醇经高温催化裂解:CH3OH→CO+2H2,炉内气氛成分H2氢气(64%)、CO二氧化碳(32%)、CO2二氧化碳(﹤1%)、CH4叔碳原子(0.2%)、CH3OH(余量)。在淬火加热和渗碳(碳氮共渗)时,较高的加热温度下,氢很容易渗入工件应力集中的区域(如螺钉头杆结合处)。渗入钢中的氢一般以原子状态存在,但为降低能量,总是与杂质原子、位错、空位、晶粒边界及滑移带等相互作用,并力图结合成氢分子。氢的这一行为对钢的氢脆破坏有重要影响。 电镀酸洗 电镀工艺都有一个共同的前提,必须除去紧固件表面黑色氧化层,使金属具有光亮。为此,就必须对紧固件进行酸洗。酸洗是把紧固件放在稀盐酸中搅动1--10min。酸洗是紧固件电镀过程中产生渗氢作用的主要环节,紧固件在酸洗时存在反应:Fe+2HCl=FeCl2+H2↑。在酸洗中钢所吸收的氢是随时间的越长而成线性增长达到饱和值,在PH值较低的溶液中其饱和值较高,而PH值较高则饱和值较低。 除油 在电镀除油过程中渗氢的环节主要存在于电镀除油中,由于阴极除油的速度较快,多数企业采取阴极和阴阳交替联合除油。但阴极除油过程会产生大量的氢原子,附着在紧固件表面,从而产生渗氢。 电镀过程 如镀锌过程中,阴极上除了锌的沉积外还有氢的析出。因此,镀锌时同时会产生渗氢现象。但由于锌有阻

紧固件的氢脆化测试方法

紧固件的氢脆化测试方法 当氢原子进入钢和其它金属中,它会存在于材料的结晶上,当对金属施予应力时,会因此而降低金属的延展性或负荷承受性能。氢脆是延迟性的破坏,由于钢中氢存在于应力集中部位,直到发生延迟破坏需要若干时间,而在一般的机械特性测试上往往忽略及遗漏了延展性的重要性,也无法在短时间的试验测出延迟破坏的倾向,使得紧固件虽在满意的机械特性状态或标准的设计强度下(如硬度、降伏强度应力、冲击等等)仍产生破裂,经常是由很微小的裂痕造成突然间的崩坏。这种现象在合金上时常归于氢效应延迟破坏、氢应力裂痕或氢脆。 氢脆化在紧固件来说可能是最坏的问题发生原因之一,因为它是延迟破坏。通常在组装24 小时后发生,但没有一定的准确时间。商用的紧固件种类在电镀后且具有洛氏 C 34 或以上的硬度容易引起氢脆的失败。这些种类包括自攻螺丝、弹簧华司、Sems(组合华司的自攻螺丝)、螺帽组合华司(Keps or Conical Assembly Nuts)、Grade 8 螺栓和所有的承窝螺丝产品。 产生氢脆化的主要因素:种种迹象显示氢脆的潜在倾向与产品作表面处理及钢内碳含量以及产品的硬度有关且成正比。参考各规范及相关论文的研究结果显示当产品脆性增加以及酸液浸洗是造成氢脆化的主要因素。产品在经过冷锻或冷加工后再硬化热处理,使产品的脆性增加,对氢脆损害特别敏感。酸洗、磷酸盐、电镀、自动反应的过程和在大自然环境中使用,如阴极保护反应或腐蚀也会导致同样的结果。 在紧固件上来说,通常在Grade 2 的螺栓或螺丝同意使用电镀,事实上也无氢脆化的倾向,因为这些产品都是低碳钢以及无硬化。 Grade 5 电镀后的螺栓或螺丝就很有可能有氢脆化的问题产生,这些产品都是使用中碳钢制造以及硬化处理到最高C 34 的硬度,但仍未听说有氢脆化的事情产生。Grade 8 电镀后的螺栓或螺丝就有氢脆化的倾向,这些是使用中碳合金钢制造及硬化处理到最高 C 39 的硬度。承窝螺丝也是使用中碳合金钢制造,硬化处理到最高C 45 的硬度,在所有标准种类的螺栓或螺丝中,电镀后的承窝螺丝有最高的氢脆化失败的可能性。 对于产品的破坏是否为氢脆所造成,有一个较简单的判断方法,那就是如果螺丝或螺栓在装置后1 到48 小时内破坏,且其破坏在头部与杆部以及螺纹与杆部的交接位置那大概就是氢脆化破坏。如果螺丝在装置一段时间后破坏,这大概就是氢脆以外的问题。若是从组织上来观察,氢脆化破断面为一种粒界破裂。 3. 紧固件的氢脆化测试方法:测试观念是设计在紧固件的最大应力下实施一个模拟的实际状况。应力通常达到紧固件的一特定的旋紧度或预先计算的扭矩值。使零件保持在如此的应力装置下24 或48 小时再旋紧。如果任何紧固件在测试过程中或当再旋紧时氢脆破坏则这零件应再烘烤和再测试直到合格为止。本文仅针对螺栓、螺丝、牙条、自攻螺丝(及组合华司)、华司、螺帽(及组合华司)等规范及相关论文之要求作一说明。 1 3.1 参考规范:下列为紧固件氢脆化测试方法的相关规范。 ASTM F606/F606M-2000/1998:决定内外螺纹紧固件、垫圈及铆钉之机械性质的标准测试方法。 ANSI/ASME B18.6.4/ B18.6.5M-1998:螺纹成型,螺纹切削和金属攻入自攻螺丝。 SAE J81/J1237-1997/1996:螺纹滚牙自攻螺丝。

氢脆知识

氢脆现象 1、氢脆是溶于钢中的氢,聚合为氢分子,造成应力集中,超过钢的强度极限,在钢内部形成细小的裂纹。又称白 氢脆现象 点。 2 内氢脆 在材料的冶炼过程和零件的制造与装配过程(如电镀、焊接)中进入钢材内部的微量氢(10—6量级)在内部残余的或外加的应力作用下导致材料脆化甚至开裂。在尚未出现开裂的情况下可以通过脱氢处理(例如加热到200℃以上数小时,可使内氢减少)恢复钢材的性能。因此内氢脆是可逆的。 3.热处理适合氢脆。 热处理的方法是将工件加热至某一温度,保温一段时间,缓冷,使氢随溶解度逐渐变小,逐渐析出。 加热会破坏镀层。 4.如何防治。 主要是将酸洗控制好。 首先,尽量缩短酸洗时间;其次加缓蚀剂,减少产氢量。 压力容器的氢脆(或称氢损伤)是指它的器壁受到氢的侵蚀,造成材料塑性和强度降低,并因此而导致的开裂或延迟性的脆性破坏。高温高压的氢对钢的损伤主要是因为氢以原子状态渗入金属内,并在金属内部再结合成分子,产生

氢脆现象元素 很高的压力,严重时会导致表面鼓包或皱折;氢与钢中的碳结合,使钢脱碳,或使钢中的硫化物与氧化物还原。造成压力容器氢脆破坏的氢,可以是设备中原来就存在的,例如,炼钢、焊接过程中的湿气在高温下被还原而生成氢,并溶解在液体金属中。或设备在电镀或酸洗时,钢表面被吸附的氢原子过饱和,使氢渗入钢中;也可以是使用后由介质中吸收进入的,例如在石油、化工容器中,就有许多介质中含氢或含混有硫化氢的杂质。钢发生氢脆的特征主要表现在微观组织上。它的腐蚀面常可见到钢的脱碳铁素体,氢脆层有沿着晶界扩展的腐蚀裂纹。腐蚀特别严重的容器,宏观上可以发现氢脆所产生的鼓包。介质中含氢(或硫化氢)的容器是否会发生氢脆,主要决定于操作温度、氢的分压、作用时间和钢的化学成分。温度越高、氢分压越突,碳钢的氢脆层就越深,发生氢脆破裂的时间也越短,其中温度尤其是重要因素。钢的含碳量越高,在相同的温度和压力条件下,氢脆的倾向越严重。钢中添有铬、钛、钒等元素,可以阻止氢脆的产生。 出现氢脆的工件通过除氢处理(如加热等)也能消除氢脆,采用真空、低氢气氛或惰性气氛加热可避免氢脆。如电镀件的去氢都在200~240度的温度下,加热2~4小时可将绝大部分氢去除。 氢在常温常压下不会对钢产生明显的腐蚀,但当温度超过300℃和压力高于30MPa时,会产生氢脆这种腐蚀缺陷,尤其是在高温条件下。如合成氨生产过程中的脱硫塔、变换塔、氨合成塔;炼油过程中的一些加氢反应装置;石油化工生产过程中的甲醇合成塔等。 氢脆的控制 高强度的杀手——氢脆 氢脆的控制

相关主题
文本预览
相关文档 最新文档