当前位置:文档之家› 数学竞赛中的数论问题

数学竞赛中的数论问题

数学竞赛中的数论问题
数学竞赛中的数论问题

数论知识与问题

数论的认识:数论是关于数的学问,主要研究整数,重点对象是正整数,对中学生可以说,数论是研究正整数的一个数学分支.

什么是正整数呢?人们借助于“集合”和“后继”关系给正整数(当时也即自然数)作过本质的描述,正整数1,2,3,…是这样一个集合N +:

(1)有一个最小的数1.

(2)每一个数a 的后面都有且只有一个后继数/

a ;除1之外,每一个数的都是且只是一个数的后继数.

这个结构很像数学归纳法,事实上,有这样的归纳公理:

(3)对N +的子集M ,若1M ∈,且当a M ∈时,有后继数/

a M ∈,则M N +=. 就是这么一个简单的数集,里面却有无穷无尽的奥秘,有的奥秘甚至使得人们怀疑:人类的智慧还没有成熟到解决它的程度.比如,哥德巴赫猜想:

1742年6月7日,普鲁士派往俄国的一位公使哥德巴赫写信给欧拉,提出“任何偶数,由4开始,都可以表示为两个素数和的形式,任何奇数,由7开始,都可以表示为三个素数的和.后者是前者的推论,也可独立证明(已解决).“表示为两个素数和的形式”就是著名的哥德巴赫猜想,简称1+1.

欧拉认为这是对的,但证不出来.

1900年希尔伯特将其归入23个问题中的第8个问题. 1966年陈景润证得:一个素数+素数?素数(1+2),至今仍无人超越. ●陈景润的数学教师沈元很重视利用名人、名言、名事去激励学生,他曾多次在开讲时,说过这样的话:“自然科学的皇后是数学,数学的皇冠是数论,哥德巴赫猜想则是皇冠上的明珠.……”陈景润就是由此而受到了启示和激励,展开了艰苦卓绝的终生奋斗和灿烂辉煌的奋斗终生,离摘取“皇冠上的明珠”仅一步之遥.

●数论题涉及的知识不是很多,但用不多的知识来解决问题往往就需要较强的能力和精明多的技巧,有人说:用以发现数学人才,在初等数学中再也没有比数论教材更好的课程了.任何学生如能把当今一本数论教材中的练习做出,就应当受到鼓励,劝他(她)将来去从事数学方面的工作(U .Dudley 《数论基础》前言).下面,是一个有趣的故事.

当代最高产的数学家厄尔多斯听说一个叫波萨(匈牙利,1948)的小男孩很聪明,就问了他一个问题加以考察(1959):如果你手头上有1n +个正整数,这些正整数小于或等于2n ,那么你一定有一对整数是互素的,你知道这是什么原因吗?

不到12岁的波萨只用了1分半钟,就给出了问题的解答.他将1~2n 分成(1,2),(3,4),…,(21,2n n -)共n 个抽屉,手头的1n +个正整数一定有两个属于同一抽屉,这两个数是相邻的正整数,必定互素.

通过这个问题,厄尔多斯认定波萨是个难得的英才,就精心加以培养,不到两年,14岁的波萨就发表了图论中“波萨定理”.

●重视数学能力的数学竞赛,已经广泛采用数论题目,是数学竞赛四大支柱之一,四大支柱是:代数,几何,初等数论,组合初步(俗称代数题、几何题、算术题和智力题).高中竞赛加试四道题正好是四大模块各一题,分别是几何题、代数题、数论题、组合题,一试

中也会有数论题.数论受到数学竞赛的青睐可能还有一个技术上的原因,就是它能方便地提供从小学到大学各个层面的、新鲜而有趣的题目.

数论题的主要类型:在初中竞赛大纲中,数论的内容列有:十进制整数及表示方法;整除性,被2、3、4、5、8、9、11等数整除的判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;简单的一次不定方程.

在高中竞赛大纲中,数论的内容列有:同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,

欧拉定理*,孙子定理*.

根据已出现的试题统计,中学数学竞赛中的数论问题的主要有8个重点类型:

(1)奇数与偶数(奇偶分析法、01法);

(2)约数与倍数、素数与合数;

(3)平方数;

(4)整除;

(5)同余;

(6)不定方程;

?欧拉函数;

(7)数论函数、[]x高斯函数、()n

(8)进位制(十进制、二进制).

下面,我们首先介绍数论题的基本内容(10个定义、18条定理),然后,对数学竞赛中的数论问题作分类讲解.

第一讲 数论题的基本内容

中学数学竞赛中的数论问题涉及的数论内容主要有10个定义、18条定理. 首先约定,本文中的字母均表示整数.

定义1 (带余除法)给定整数,,0,a b b ≠如果有整数()

,0q r r b ≤<满足 a qb r =+,

则q 和r 分别称为a 除以b 的商和余数.特别的,0r =时,则称a 被b 整除,记作b a ,或者说a 是b 的倍数,而b 是a 的约数.(,q r 的存在性由定理1证明)

定义2 (最大公约数)设整数12,,,n a a a 中至少有一个不等于零,这n 个数的最大公约数是能整除其中每一个整数的最大正整数,记作()12,,,n a a a .

()12,,,n a a a 中的i a 没有顺序,最大公约数也称最大公因数. 简单性质:()()

1212,,,,,,n n a a a a a a = .

一个功能:可以把对整数的研究转化为对非负整数的研究.

定义3 (最小公倍数)非零整数12,,,n a a a 的最小公倍数是能被其中每一个

()1i a i n ≤≤所整除的最小正整数,记作[]12,,,n a a a .

简单性质:如果k 是正整数,a b 的公倍数,则存在正整数m 使[],k m a b =

证明 若不然,有[],k m a b r =+([]0,r a b <<),由[],,k a b 都是,a b 的公倍数得r 也是,a b 的公倍数,但[]0,r a b <<,与[],a b 的最小性矛盾.故[],k m a b =.

定义4 如果整数,a b 满足(),1a b =,则称a 与b 是互素的(也称互质).

定义5 大于1且除1及其自身外没有别的正整数因子的正整数,称为素数(也称质数).其余大于1的正整数称为合数;数1既不是素数也不是合数.

定理1 若,a b 是两个整数,0b >,则存在两个实数,q r ,使()0a qb r r b =+≤<,并且,q r 是唯一性.

证明1 先证存在性.作序列

,3.2,,0,,2,3,b b b b b b ---

则a 必在上述序列的某两项之间,从而存在一个整数q ,使

()1qb a q b ≤<+,

即 0a qb b ≤-<, 取 r a qb =-, 0r b ≤<, 得 a qb r =+,

即存在两个实数,q r ,使()0a qb r r b =+≤<. 再证唯一性.假设不唯一,则同时存在11,q r 与12,q r ,使 ()1110a q b r r b =+≤<, ()2220a q b r r b =+≤<, 相减 ()1221q q b r r -=-, 1221q q b r r b -=-<, 1201q q ≤-<,

但12q q -为整数,故120q q -=,得12q q =,从而12r r =.

注:如果取消0r b ≤<,当0r <或r b >,不保证唯一. 经典方法:紧扣定义,构造法证存在性,反证法证唯一性. 证明2 只证存在性,用高斯记号,由 01a a b b ??

-

, 有 0a a b b b

??

≤-

记a r a b b ??=-????,故存在,,0a a q r a b r b b b

????==-≤

使

()0a qb r r b =+≤<.

证明3 只证存在性,作集合

{}|,0M a bx x Z a bx =-∈-≥

这是一个有下界的非空整数集,其中必有最小的,设x q =时,有最小值r ()0r ≥ a qb r =+.

再证r b <,若不然,r b ≥,记1r b r =+,有

()()111a qb r qb b r b q r =+=++=++

()11r a b q M =-+∈

即M 有1r 比r 更小,这与r 为最小值矛盾. 故存在两个实数,q r ,使()0a qb r r b =+≤<.

定理 2 设,,a b c 是三个不全为0的整数,满足a qb c =+,其中q 也为整数,则

()(),,a b b c =.

证明 设A ={,a b 的公约数}, B ={,b c 的公约数}.

任取||||d a d c a bq

d A d B A B d b d b =-??∈???∈???

???

, 任取||||d b d b

d B d A B A d c d a bq c ??∈???∈????=+??

, 得 A B =.

有A 中元素的最大值B =中元素的最大值,即

()(),,a b b c =.

注:这是辗转相除法求最大公约数的理论基础.

经典方法:要证明A B =,只需证A B ?且B A ?. 定理3 对任意的正整数,a b ,有 ()[],,a b a b ab ?=.

证明 因为ab 是,a b 的公倍数,所以,a b 的最小公倍数也是ab 的约数,存在q 使 [],ab q a b =,

[],a b a q b

=且[],a b b

为整数,

故q 是a 的约数.同理q 是b 的约数,即q 是,a b 的公约数.下面证明,q 是,a b 的最大公约数.若不然,(),q a b <.有

[]()[],,,ab q a b a b a b =<. ①

设()(),,ab b k a a b a b =

=,可见k 是a 的倍数,同样()()

,,ab a

k b a b a b ==,k 是b 的倍数,即k 是,a b 的公倍数,则存在正整数m 使[],k m a b =,有

()

[][],,,ab

m a b a b a b =≥, 得 []()[],,,ab q a b a b a b =≥

与①矛盾,所以,(),q a b =,得证()[],,a b a b ab ?=.

注 也可以由[]()(),1,,ab

a b k q m ab a b a b q

≤===,得(),q a b ≥,与(),q a b <矛盾.

两步[](),,,ab q a b ab a b k ==可以交换吗?

定理4 ,a b 是两个不同时为0的整数,若00ax by +是形如ax by +(,x y 是任意整数)的数中的最小正数,则

(1)00ax by +|ax by +; (2)00ax by +(),a b =. 证明 (1)由带余除法有

()00ax by ax by q r +=++,000r ax by ≤<+, 得 ()()0000r a x qx x b y qy ax by =-+-<+,

知r 也是形如ax by +的非负数,但00ax by +是形如ax by +的数中的最小正数,故0r =,即

00ax by +|ax by +.

(2)由(1)有

00ax by +|10a b a += , 00ax by +|01a b b += ,

得00ax by +是,a b 的公约数.另一方面,,a b 的每一个公约数都可以整除00ax by +,所以

00ax by +是,a b 的最大公约数,00ax by +(),a b =.

推论 若(),1a b =,则存在整数,s t ,使1as bt +=.(很有用) 定理5 互素的简单性质: (1)()1,1a =. (2)(),11n n +=. (3)()21,211n n -+=.

(4)若p 是一个素数,a 是任意一个整数,且a 不能被p 整除,则(),1a p =. 证明 因为(),|a p p ,所以,素数p 的约数只有两种可能:()(),1,,a p a p p ==.但

a 不能被p 整除,(),a p p ≠,得(),1a p =.

推论 若p 是一个素数,a 是任意一个整数,则(),1a p =或(),a p p =. (5)若(),1a b =,则存在整数,s t ,使1as bt +=.(定理4推论) (6)若()(),1,,1a b a c ==,则(),1a bc =. 证明 由(),1a b =知存在整数,s t ,使1as bt +=. 有 ()a cs bct c +=, 得 ()(),,1a bc a c ==.

(7)若(),1a b =,则(),1a b a ±=,(),1a b b ±=, (),1a b ab ±=. 证明 ()()(),,,1a b a b a b a ±=±==, ()(),,1a b b a b ±==, 由(6)(),1a b ab ±=. (8)若(),1a b =,则(

),1m

n

a b

=,其中,m n 为正整数. 证明 据(6),由(),1a b =可得(

)

,1m

a b =. 同样,由(

)

,1m

a b =可得(

),1m n

a b

=.

定理6 设a 是大于1的整数,则a 的除1之外的最小的正约数q 必是素数,且当a 是

合数时,q ≤

证明 用反证法,假设q 不是素数,则存在正整数数1q ,11q q <<,使1|q q ,但|q a ,

故有1|q a ,这与q 是a 的除1之外的最小正约数矛盾,故q 是素数.

当a 是合数时,设1a a q =,则1a 也是a 的一个正约数,由q 的最小性得1q a ≤,从而

21q a q a ≤=,开方得q ≤

定理7 素数有无穷多个,2是唯一的偶素数.

证明 假设素数只有有限多个,记为12,,,n p p p ,作一个新数

1211n p p p p =+>

. 若p 为素数,则与素数只有 n 个12,,,n p p p 矛盾.

若p 为合数,则必有{}12,,,i n p p p p ∈ ,使|i p p ,从而|1i p ,又与1i p >矛盾. 综上所述,素数不能只有有限多个,所以素数有无穷多个.

2是素数,而大于2的偶数都是合数,所以2是唯一的偶素数.

注:这个证明中,包含着数学归纳法的早期因素:若假设有n 个素数,便有1n +个素数.(构造法、反证法)秒

定理8(整除的性质)整数,,a b c 通常指非零整数 (1)1a ,1|a -;当0a ≠时,|a a ,|0a .

(2)若b a ,0a ≠,则b a ≤;若b a ,b a >,则0a =;若0ab >,且,b a a b ,则a b =.

证明 由b a ,0a ≠,有a bq =,得a b q b =≥. 逆反命题成立“若b a ,b a >,则0a =”; 由b a ≤且b a ≥得a b =,又0ab >,得a b =. (3)若a b c d +=+,且|,|,|e a e b e c ,则|e d . (4)若c b ,b a ,则c a . 证明 (定义法)由c b ,b a ,有 12,b q c a q b ==, 得 ()12a q q c =,

即 c a .

(5)若c a ,则bc ab .

(6)若c a ,c b ,则对任意整数,m n ,有c ma nb +. 证明 (定义法)由c a ,c b ,有 12,a q c b q c ==, 得 ()12ma nb mq nq c +=+, 即 c ma nb +.

(7)若(),1a b =,且a bc ,则a c .

证明 由(),1a b =知存在整数,s t ,使1as bt +=,有

()()a cs bc t c +=,

因为a a ,a bc ,所以a 整除等式的左边,进而整除等式的右边,即a c .

注意 不能由a bc 且|a b /得出a c .如649?,但6|4/且6|9/. (8)若(),1a b =,且,a c b c ,则ab c .

证明 由(),1a b =知存在整数,s t ,使1as bt +=,有

acs bct c +=,

又由,a c b c 有12,c aq c bq ==代入得

()()21ab q s ab q t c +=,

所以ab c .

注意 不能由a c 且b c 得出ab c .如不能由630且10|30得出60|30. (9)若a 为素数,且a bc ,则a b 或a c .

证明 若不然,则|a b /且|a c /,由a 为素数得()(),1,,1a b a c ==,由互素的性质(6)得(),1a bc =,再由a 为素数得|a bc /,与a bc 矛盾.

注意 没有a 为素数,不能由a bc 推出a b 或a c .如649?,但6|4/且6|9/.

定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记作

(mod )a b c ≡;若()|c a b -/

,则称,a b 关于模c 不同余,记作a (mod )b c .

定理9(同余的性质)设,,,,a b c d m 为整数,0,m > (1)若(mod )a b m ≡且(mod )b c m ≡,则(mod )a c m ≡; 证明 由(mod )a b m ≡且(mod )b c m ≡,有 12,a b mq b c mq -=-=,

()12a c m q q -=+,

得(mod )a c m ≡. (2)若(m o d )

a b m ≡且(mod )c d m ≡,则(m o d )a c b d

m +≡+且(mod )ac bd m ≡.

证明 由(mod )a b m ≡且(mod )c d m ≡,有

12,a b mq c d mq -=-=, ① 对①直接相加 ,有

()()()12a c b d m q q +-+=+,

得 (mod )a c b d m +≡+.

对①分别乘以,c b 后相加,有

()()()12ac bd ac bc bc bd m cq bq -=---=+,

得 (mod )ac bd m ≡.

(3)若(m o d )

a b m ≡,则对任意的正整数n 有(mod )n

n

a b m =且(mod )an bn mn ≡.

(4)若(mod )a b m ≡,且对非零整数k 有(,,)k a b m ,则

mod a b m k k k ??

= ???

. 证明 由(mod )a b m ≡、,有 a b mq =+, 又(,,)k a b m ,有

,,a b m

k k k

均为整数,且

a b m

q k k k

=+, 得

mod a b m k k k ??≡ ???

. 定理10 设,a b 为整数,n 为正整数, (1)若a b ≠,则()(

)n

n

a b a b

--.

()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++ .

(2)若a b ≠-,则()(

)21

21n n a b a

b --++.

()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+ .

(3)若a b ≠-,则()(

)22n

n a b a

b +-.

()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+- .

定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且

10a >.若

1

2121m m m m n a k

a k a k a ---=++++ ,

则称数12m a a a 为n 的k 进制表示.

定理11 给定整数2k ≥,对任意的正整数n ,都有唯一的k 进制表示.如

12121101010m m m m n a a a a ---=++++ ,109,0i a a ≤≤>(10进制) 12121222m m m m n a a a a ---=++++ .101,0i a a ≤≤>(2进制)

定理12 (算术基本定理)每个大于1的正整数都可分解为素数的乘积,而且不计因

数的顺序时,这种表示是唯一的

1212k

k

n p p p αα

α

= ,

其中12k p p p <<< 为素数,12,,,k ααα 为正整数. (分解唯一性) 证明1 先证明,正整数n 可分解为素数的乘积

12m n p p p = . ①

如果大于1的正整数n 为素数,命题已成立.

当正整数n 为合数时,n 的正约数中必有一个最小的,记为1p ,则1p 为素数,有

11n p a =,11a n <<.

如果1a 为素数,命题已成立.当1a 为合数时,1a 的最小正约数2p 为必为素数,有

11122n p a p p a ==,211a a n <<<.

这个过程继续进行下去,由于n 为有限数,而每进行一步i a 就要变小一次,于是,经过有限次后,比如m 次,n 就变为素数的乘积

12m n p p p = .

下面证明分解式是唯一的.假设n 还有另一个分解式

12t n q q q = , ② 则有 1212m t p p p q q q = . ③

因为等式的右边能被1q 整除,所以左边也能被1q 整除,于是1q 整除12,,,m p p p 中的某一个i p ,但i p 为素数,所以i p 与1q 相等,不妨设i p 为1p ,有

11p q =.

把等式③两边约去11p q =,得 2323m t p p p q q q = .

再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有

121m m t q q q ++= . ④

但12,,,m m t q q q ++ 均为素数,素数都大于1,有121m m t q q q ++> ,这表明等式④不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得

1212k k n p p p ααα= .

其中12k p p p <<< 为素数,12,,,k ααα 为正整数. 证明2 用第二数学归纳法证明

12m n p p p = ,12m p p p ≤≤≤ .

(1)当2n =,因为2为素数,命题成立.

(2)假设命题对一切大于1而小于n 的正整数已成立. 这时,若n 为素数,命题成立;若n 不为素数,必存在,a b ,使 n ab =,1,1a n b n <<<<, 由归纳假设,小于n 的,a b 可分解为素数的乘积

/////

/1212/

/////12

1

2

, ,

, ,

s s s s t s s t

a p p p p p p

b p

p

p p

p

p ++++=≤≤≤=≤≤≤

得 /

/

//

/

/

1212s s s t n p p p q q q ++= ,

适当调整/

i p 的顺序,可得命题对于正整数n 成立.

由数学归纳法,命题对一切大于1的正整数n 成立.

下面证明分解式是唯一的.假设n 的分解式不唯一,则至少有两个分解式

12m n p p p = ,12m p p p ≤≤≤ ,

12t n q q q = ,12t q q q ≤≤≤ , 得 1212m t p p p q q q = . 有 112|t p q q q 且112|m q p p p , 这就存在,i j q p ,使

1|i p q 且1|j q p ,

但11,,,i j p q q p 均为为素数,所以

11,i j p q q p ==,

又 111i j p q q p p =≥=≥, 所以 11p q =.

把等式两边约去11p q =,得 2323m t p p p q q q = .

再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有

121m m t q q q ++= .

但12,,,m m t q q q ++ 均为素数,素数都大于1,有121m m t q q q ++> ,这表明上述等式不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得

1212k k n p p p ααα= .

其中12k p p p <<< 为素数,12,,,k ααα 为正整数. 定理13 若正整数n 的素数分解式为 1212k

k

n p p p αα

α

= 则n 的正约数的个数为

()()()()12111k d n a a a =+++ ,

n 的一切正约数之和为

()121111212111

111

k k k p p p S n p p p ααα+++---=???--- .

证明 对于正整数1212k

k n p p p αα

α

= ,它的任意一个正约数可以表示为

1212k k

m p p p ββ

β

= ,0i i βα≤≤ , ①

由于i β有0,1,2,,i α 共1i α+种取值,据乘法原理得n 的约数的个数为

()()()()12111k d n a a a =+++ .

考虑乘积

(

)()()

1

201

101111

2

22k k k k p p p p

p p p p p ααα+++++++++ , 展开式的每一项都是n 的某一个约数(参见①),反之,n 的每一个约数都是展开式

的某一项,于是,n 的一切约数之和为

()()()110101111k k k S n p p p p p p αα=++++++

121111212111

111

k k k p p p p p p ααα+++---=???--- .

注 构造法.

定义8 (高斯函数)对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+.

定理14 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是

23n n n p p p ??????

+++?

?

??????????

证明 由于p 为素数,故在!n 中p 的次方数是1,2,,n 各数中p 的次方数的总和(注意,若p 不为素数,这句话不成立).

在1,2,,n 中,有n p ???

???个p 的倍数;在n p ??????

个p 的倍数的因式中,有2n p ????

??个2

p 的倍数;在2n p ???

???个2p 的倍数的因式中,有3n p ????

??

个3

p 的倍数;…,如此下去,在正整数!n 的素因子分解式中,素数p 作为因子出现的次数就为

23n n n p p p ??????

+++?

???????????

. 注 省略号其实是有限项之和.

画线示意50!中2的指数.

35678912450!23571113171923293137414347ααααααααα=

定理15 (费玛小定理)如果素数p 不能整除整数a ,则(

)1

1p p a --.

证明1 考察下面的1p -个等式: 11a pq r =+,10r p ≤<,

222a pq r =+,20r p ≤<

……

()111p p p a pq r ---=+,10p r p -≤<

由于素数p 不能整除整数a ,所以,p 不能整除每个等式的左边,得121,,,p r r r - 均不为0,只能取1,2,,1p - .下面证明121,,,p r r r - 各不相等.

若不然,存在,,11t s t s p ≤<≤-,使

,

,,

s s t t s t sa pq r ta pq r r r =+=+=

相减 ()()s t s t a p q q -=-.

应有素数p 整除()s t a -,但素数p 不能整除a ,所以素数p 整除()s t -,然而由

11t s p ≤<≤-可得

02s t p p <-≤-<,

要素数p 整除()s t -是不可能的,得121,,,p r r r - 各不相等.有

()()1211211!p r r r p p -=-=- .

再把上述1p -个等式相乘,有 ()1

1211!p p p a

Mp r r r ---=+ , 即 ()()1

1!1!p p a Mp p --=+-, 其中M 是一个整数.

亦即 ()(

)1

1!1p p a

Mp ---=.

由于p 是素数,不能整除()1!p -,所以素数p 整除1

1p a --,得证

(

)1

1p p a

--

证明2 改证等价命题:如果素数p 不能整除整数a ,则()mod p

a a p ≡. 只需对1,2,,1a p =- 证明成立,用数学归纳法. (1)1a =,命题显然成立.

(2)假设命题对()11a k k p =≤<-成立,则当1a k =+时,由于

()|1,2,,1i p p C i p =- ,故有

()1

1

1

11p

p

p p p p k k C k

C k --+=++++

()11mod p

k k p ≡+≡+.(用了归纳假设)

这表明,命题对1a k =+是成立. 由数学归纳法得()mod p

a a p ≡.

又素数p 不能整除整数a ,有(),1a p =,得(

)1

1p p a

--.

定义9 (欧拉函数)用()n ?表示不大于n 且与n 互素的正整数个数. 定理16 设正整数1212k

k n p p p αα

α

= ,则

()12111111k n n p p p ???????=-

-- ? ?????????

证明 用容斥原理.设{}1,2,,S n = ,记i A 为S 中能被i p 整除的数所组成的集合(1,2,i k = ),用i A 表示i A 中元素的个数,有

i i

n

A p =

,1212,,i j k i j k n n A A A A A p p p p p == . 易知,{}1,2,,S n = 中与n 互素的正整数个数为 12k A A A , 由容斥原理得

()12111211k i i j

i k

i j k k

i j m k

i j m k

A A A S A A A A A A A A A ≤≤≤<≤≤<<≤=-

+

-

++-∑

()()1111211112121111111111111.

k

i k

i j k i j m k i i j i j m k

k

i k

i j k i j m k i i j i j m k k n n n n n p p p p p p p p p n p p p p p p p p p n p p p ≤≤≤<≤≤<<≤≤≤≤<≤≤<<≤=-+-++-??=-

+-++-????

?

???

????=--- ? ????

?????∑

∑∑∑

∑∑ 注 示意3n =的容斥原理. 推论 对素数p 有()()11,p p p

p

p α

α

α??-=-=-.

定理17 整系数不定方程ax by c +=(0ab ≠)存在整数解的充分必要条件是

(),a b c .

证明 记(),d a b =.

(1)必要性(方程有解必须满足的条件).若方程存在整数解,记为00,

,

x x y y =??

=?,则

00ax by c +=,

由|,|d a d b , 有00|d ax by +,得证(),|a b c .

(2)充分性(条件能使方程有解).若|d c ,可设c de =由于形如ax by +的数中有最小正数00ax by +满足

00ax by +(),a b =.

两边乘以e ,得

()()00a ex b ey c +=

这表明方程有解00,

.x ex y ey =??=?

定理18 若0ab ≠,(),1a b =,且00,

,

x x y y =??=?是整系数不定方程ax by c +=的一个整数

解,则方程的一切整数解可以表示为

00,

,x x bt y y at =-??=+?

()t Z ∈. ①

证明 直接代入知①是方程的整数解,下面证明任意一个整数解都有①的形式. 由()00,x y 是方程的一个解,有

00ax by c +=,

又方程的任意一个解(),x y 满足

ax by c +=, ② 相减 ()()000a x x b y y -+-=. ③ 但(),1a b =,故有 ()0|a y y -, 有

00

,x x y y t t Z b a

--==∈- 得方程的任意一个整数解可以表示为 00,

,

x x bt y y at =-??

=+?()t Z ∈.

定义10 (平面整点)在平面直角坐标系上,纵横坐标都是整数的点称为整点(也称格点).类似地可以定义空间整点.

第二讲 数论题的范例讲解

主要讲几个重要类型:奇数与偶数,约数与倍数(素数与合数),平方数,整除,同余,不定方程,数论函数等.重点是通过典型范例来分析解题思路、提炼解题方法和巩固基本内容.

一、奇数与偶数

整数按照能否被2整除可以分为两类,一类余数为0,称为偶数,一类余数为1,称为奇数.偶数可以表示为2n ,奇数可以表示为21n -或21n +.一般地,整数被正整数m 去除,按照余数可以分为m 类,称为模m 的剩余类(){}

mod i C x x i m =≡,从每类中各取出一个元素i i a C ∈,可得模m 的完全剩余系(剩余类派出的一个代表团),0,1,2,,1m - 称为模m 的非负最小完全剩余系.

通过数字奇偶性质的分析而获得解题重大进展的技巧,常称作奇偶分析,这种技巧与分类、染色、数字化都有联系,在数学竞赛中有广泛的应用. 关于奇数和偶数,有下面的简单性质:

(1)奇数≠偶数.

(2)偶数的个位上是0、2、4、6、8;奇数的个位上是1、3、5、7、9. (3)奇数与偶数是相间排列的;两个连续整数中必是一个奇数一个偶数;. (4)奇数个奇数的和是奇数;偶数个奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数.

(5)除2外所有的正偶数均为合数;

(6)相邻偶数的最大公约数为2,最小公倍数为它们乘积的一半. (7)偶数乘以任何整数的积为偶数.

(8)两数和与两数差有相同的奇偶性,()mod 2a b a b +≡-. (9)乘积为奇数的充分必要条件是各个因数为奇数. (10)n 个偶数的积是2n

的倍数.

(11)()11k

-=的充分必要条件是k 为偶数,()11k

-=-的充分必要条件是k 为奇数.

(12)()()()()()()2

2

2

20mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221m

n k =-.

……

例1 (1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积

()()()1212n a a a n --- 是偶数.

解法1 (反证法)假设()()()1212n a a a n --- 为奇数,则i a i -均为奇数,奇

数个奇数的和还是奇数

奇数=()()()1212n a a a n -+-++-

()()12120n a a a n =+++-+++= ,

这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n --- 是偶数.

评析 这个解法说明()()()1212n a a a n --- 不为偶数是不行的,但没有指出为偶数的真正原因.体现了整体处理的优点,但掩盖了“乘积”为偶数的实质.

解法2 (反证法)假设()()()1212n a a a n --- 为奇数,则i a i -均为奇数,i a 与

i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数.但已知条件n 为奇数,矛

盾. 所以()()()1212n a a a n --- 是偶数.

评析 这个解法揭示了()()()1212n a a a n --- 为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?

解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n --- 为偶数.

评析 这个解法揭示了()()()1212n a a a n --- 为偶数的原因是“当n 为奇数时,1,2,,n 中奇数与偶数个数不等,奇数多,某个括号必是两个奇数的差,为偶数”

. 类似题:

例1-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明

()()()112277a b a b a b --- 是偶数.

(127,,,a a a 中奇数与偶数个数不等)

例1-2 π的前24位数字为 3.14159265358979323846264π=,记122

4,,,a a a 为

该24个数字的任一排列,求证()()()12342324a a a a a a --- 必为偶数.

(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等) 例2 能否从1,2,,15 中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的

数相减(大数减小数),所得的14个差恰好为1,2,,14 ?

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

全国初中数学联赛初二卷及详解

全国初中数学联赛初二卷及详解

————————————————————————————————作者:————————————————————————————————日期:

2017年全国初中数学联合竞赛试题 初二卷 第一试 一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b c a b ++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1, 1110135 a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2 的值为( ). A.125 B.120 C.100 D.81 3.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.1 4.已知正整数a,b,c 满足a 2 -6b-3c+9=0,-6a+b 2 +c=0,则a 2 +b 2 +c 2 的值为( ). A.424 B.430 C.441 D.460 5.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A. 1023 B.103 3 C.32 D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ). A.56 B.58 C.60 D.62 二、填空题:(本题满分 28 分,每小题 7 分) 7.使得等式3 11a a ++=成立的实数a 的值为________. 8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 9.设a,b 是两个互质的正整数,且3 8ab p a b =+为质数.则p 的值为________.

小学数学基本功比赛试题

德州市第四届小学数学教师基本功比赛专业知识测试试题 (满分:100分时间:120分钟) 一、选择题(单选或多选,2×10=20分) 题号 1 2 3 4 5 6 7 8 9 10 答案 1.数学教学活动是师生积极参与,()的过程. A.交往互动B.共同发展C.交往互动、共同发展 2.标准中使用了“经历、体验、探索”等行为动词表述() A.过程目标B.结果目标C.课程目标 3.义务教育阶段的数学课程是培养公民素质的基础课程,具有() A.基础性B.发展性C.普及型 4.老年人活动中心麻将馆门口的拐角处放着一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的,如图所示,其中可看见7个面,而11个面是看不到的,则看不见的面其点数总和是() A.21 B.22 C.41 D.44 5.已知正方形ABCD的边长是6分米,CE是DE的2倍,则阴影部分的面积为()A.12 B.8 C.6 D.4 6.在一个40名学生的班级中选举班长,选举结果是: 下面扇形图显示了这些结果的是()7.有一条围粮的席子,长5米,宽2.5米,把它围成一个筒状的粮食囤.围法有两种: 第一种围法:围成周长2.5米,高5米的粮囤;第二种围法:围成周长5米,高2.5米的粮囤.下列说法正确的是(). A.第一种围法的容积大,盛粮多 B.第二种围法的容积大,盛粮多 C.因是同一条席子围成的粮囤,所以两种围法围成的粮囤盛的粮一样多 D.无法判断哪种围法围成的粮囤盛的粮多 8.如图所示,是一间民房,房上是一根烟囱,房子的旁边是一个仓库,房子的后面是一条河.明明同学站在河中行驶的游轮上从旁边经过(图中箭头表示游轮行驶方向),看到如图2所示的5幅图,依据游轮行驶的路线,映入明明眼帘的先后顺序是(). A.③①②④⑤B.⑤①②④③C.①②④⑤③D.⑤④②①③ 9.小王8∶30从家出门去参观房展,家里的闹钟也指向8∶30,房展结束,他12∶00准时回到家,发现家里的闹钟才11∶46,那么,再过几分钟此闹钟才能指到12点整() A.13分钟B.14分钟 C.15分钟D.16分钟 10.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.图中给出了“河图”的部分点图,请你推算出P处所对应的点图是(). 题号一二21 22 23 24 25 26 总分答案 张强刘莉李浩赵红20票10票4票6票8图 图2 第4题图A B C D F E 第5题图

高中数学竞赛数论部分

高中数学竞赛数论部分文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1.请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首 届匈牙利 数学竞赛第一题) (2) ①设n Z ∈,证明2131n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++能整除123n ???(1956年上海首 届数学竞赛第一题) (3) 证明:3231 122 n n n ++-对于任何正整数n 都是整数,且用3除时余2。(1956年 北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数 214 143 n n ++不可约简。(1956年首届国际数学奥林匹 克竞赛第一题) (5) 令(,, ,)a b g 和[,, ,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数, 试证:[][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占% 。

小学奥数数论专题

名校真题测试卷10 (数论篇一) 1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2、(05年101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是_____。 3 (05年首师附中考题) 1 21+ 202 2121 + 50513131313 21212121212121 =________。 4 (04年人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 (02年人大附中考题) 下列数不是八进制数的是( ) A、125 B、126 C、127 D、128 【附答案】 1 【解】:6 2 【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。 3 【解】:周期性数字,每个数约分后为1 21 + 2 21 + 5 21 + 13 21 =1 4 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。 5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。 第十讲小升初专项训练数论篇(一) 一、小升初考试热点及命题方向 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 二、考点预测 的小升初考试将继续以填空和大题形式考查数论,命题的方向可能偏向小题考察单方面的知识点,大题

高中数学竞赛资料-数论部分 (1)

初等数论简介 绪言:在各种数学竞赛中大量出现数论题,题目的内容几乎涉及到初等数论的所有专题。 1. 请看下面的例子: (1) 证明:对于同样的整数x 和y ,表达式2x+3y 和9x+5y 能同时被整除。(1894年首届匈牙利 数学竞 赛第一题) (2) ①设n Z ∈,证明213 1n -是168的倍数。 ②具有什么性质的自然数n ,能使123n ++++ 能整除123n ??? ?(1956年上海首届数学竞赛第一题) (3) 证明:3 231 122 n n n + +-对于任何正整数n 都是整数,且用3除时余2。(1956年北京、天津市首届数学竞赛第一题) (4) 证明:对任何自然数n ,分数 214 143 n n ++不可约简。(1956年首届国际数学奥林匹克竞赛第一题) (5) 令(,,,)a b g 和[,,,]a b g 分别表示正整数,,,a b g 的最大公因数和最小公倍数,试证: [][][][]()()()() 2 2 ,,,,,,,,,,a b c a b c a b b c c a a b b c c a =??(1972年美国首届奥林匹克数学竞赛第一题) 这些例子说明历来数论题在命题者心目中首当其冲。 2.再看以下统计数字: (1)世界上历史最悠久的匈牙利数学竞赛,从1894~1974年的222个试题中,数论题有41题,占18.5%。 (2)世界上规模最大、规格最高的IMO (国际数学奥林匹克竞赛)的前20届120道试题中有数论13题,占10.8% 。 这说明:数论题在命题者心目中总是占有一定的分量。如果将有一定“数论味”的计数型题目统计在内,那么比例还会高很多。 3.请看近年来国内外重大竞赛中出现的数论题: (1)方程323652x x x y y ++=-+的整数解(,)x y 的个数是( ) A 、 0 B 、1 C 、3 D 、无穷多 (2007全国初中联赛5) (2)已知,a b 都是正整数,试问关于x 的方程()2 1 02 x abx a b -++=是否有两个整数解? 如果有,请把它们求出来;如果没有,请给出证明。 (2007全国初中联赛12)

初中数学竞赛讲座之数论初步(一)

初中数学竞赛讲座之数论初步(一) 整数的整除性 定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b|a. 显然,1能整除任意整数,任意整数都能整除0. 性质:设a ,b ,c 均为非零整数,则 ①.若c|b ,b|a ,则c|a. ②.若b|a ,则bc|ac ③.若c|a ,c|b ,则对任意整数m 、n ,有c|ma +nb ④.若b|ac ,且(a ,b)=1,则b|c 证明:因为(a ,b)=1 则存在两个整数s ,t ,使得 as +bt =1 ∴ asc +btc =c ∵ b|ac ? b|asc ∴ b|(asc +btc) ? b|c ⑤.若(a ,b)=1,且a|c ,b|c ,则ab|c 证明:a|c ,则c =as(s ∈Z) 又b|c ,则c =bt(t ∈Z) 又(a ,b)=1 ∴ s =bt'(t'∈Z) 于是c =abt' 即ab|c ⑥.若b|ac ,而b 为质数,则b|a ,或b|c ⑦.(a -b)|(a n -b n )(n ∈N),(a +b)|(a n +b n )(n 为奇数) 整除的判别法:设整数N =121n 1a a a a - ①.2|a 1?2|N , 5|a 1? 5|N

②.3|a 1+a 2+…+a n ?3|N 9|a 1+a 2+…+a n ?9|N ③.4|a a ? 4|N 25|a a ? 25|N ④.8|a a a ?8|N 125|a a a ?125|N ⑤.7||41n n a a a --a a a |?7|N ⑥.11||41n n a a a --a a a |?11|N ⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)] ?11|N ⑧.13||41n n a a a --a a a |?13|N 推论:三个连续的整数的积能被6整除. 例题: 1.设一个五位数d a c b a ,其中d -b =3,试问a ,c 为何值时,这个五位数被11整除. 解:11|d a c b a ∴ 11|a +c +d -b -a 即11|c +3 ∴ c =8 1≤a ≤9,且a ∈Z 2.设72|b 673a ,试求a ,b 的值. 解:72=8×9,且(8,9)=1 ∴ 8|b 673 a ,且9| b 673a ∴ 8|b 73 ? b =6 且 9|a +6+7+3+6 即9|22+a ∴ a =5 3.设n 为自然数,A =3237n -632n -855n +235n ,

数论-小学数学竞赛--因数与倍数之综合应用强化篇

因数与倍数之综合应用 【例 1】(北京市第十届“迎春杯”刊赛试题)筐里共有96个苹果,如果不一次全拿出,也不一个一个地拿;要求每次拿出的个数同样多,拿完时又正好不多不少,有种不同的拿法。 【巩固】筐里有300个桃子,如果不是一次全部拿出,也不一个一个地拿,要求每次的个数同样多,拿到最后正好不多不少,问共有多少种不同的拿法? 【例 2】现有三个正整数,它们的和是1111,这样的三个正整数的公约数中,最大的可以是多少? 【巩固】9个非零自然数的和是848,它们的最大公约数的最大值是多少? 【例 3】恰有8个约数的两位数有个。 【巩固】在1到100中,恰好有6个约数的数有多少个? 【例 4】一个数的平方有39个约数,求该数的约数个数是多少? 五年级

【巩固】一个数的立方有28个约数,求这个数的约数个数可能是几? 【例 5】把1,2,3,4,5,6,7,8,9这九个数依不同的次序排列,可以得到362880个不同的九位数,则所有这些九位数的最大公约数为。 【巩固】把1,2,3,4,5,6这六个数依不同的次序排列,可以得到720个不同的六位数,则所有这些六位数的最大公约数为。 【例 6】有3599只甲虫,依次编号为1,2,3,…,3599,开始时头都朝东。第1秒钟,编号为1的倍数的甲虫向右转90度;第2秒钟,编号为2的倍数的甲虫向右转90度;第3秒钟,编号为3的倍数的甲虫向右转90度,…,如此进行。那么,1小时后,第3599号甲虫头朝哪个方向? 【巩固】200名同学编为1至200号面向南站成一排。第1次全体同学向右转(转后所有的同学面朝西); 第2次编号为2的倍数的同学向右转;第3次编号为3的倍数的同学向右转;…;第200次编号为200的倍数的同学向右转;这时,面向东的同学有名。 〖答案〗 【例 1】10 【巩固】16 【例 2】101 【巩固】53 五年级

七年级数学竞赛讲座数论的方法与技巧(含答案详解)

数学竞赛讲座 数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得abq+r(0≤r

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)(a1+1)(a2+1)…(ak+1)。 5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x

(完整版)小学奥数中的数论问题

小学奥数中的数论问题 在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。 一、小学数论究包括的主要内容 我们小学所学习到的数论内容主要包含以下几类: 整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容) 余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小) (2)同余的性质和运用 奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理 一、两个自然数分别除以它们的最大公约数,所得的商互质。 二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。 (2)约数个数决定法则(小升初常考内容) 整数及分数的分解与分拆:这一部分在难度较高竞赛中常

出现,属于较难的题型。二、数论部分在考试题型中的地位 在整个数学领域,数论被当之无愧的誉为“数学皇后”。翻开任何一本数学辅导书,数论的题型都占据了显著的位置。在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。 出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。三、孩子在学习数论部分常常会遇到的问题 数学课本上的数论简单,竞赛和小升初考试的数论不简单。 有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数? 这道题就经常在孩子们平时的作业里和单元测试里出现。可是小升初考题里则是:例2:求3600有多少个约数? 很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划

高中数学竞赛数论

高中数学竞赛 数论 剩余类与剩余系 1.剩余类的定义与性质 (1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。K 0,K 1,…,K m-1为模m 的全部剩余类. (2)性质(ⅰ)i m i K Z 1 0-≤≤=Y 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里. (ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ?a ≡b(modm). 2.剩余系的定义与性质 (1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,2 1 ,,1,0,1,,121,21--+----m m m ΛΛ;当m 为偶数时,12 ,,1,0,1,,12,2--+-- m m m ΛΛ或2,,1,0,1,,12m m ΛΛ-+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系?两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系. 证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!

最新:七年级数学竞赛讲义附练习及答案(12套)

七年级数学竞赛讲义附练习及答案(12套) 初一数学竞赛讲座 第1讲数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力. 数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”. 因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了. 任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作. ”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重. 数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆. 主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的. 特别地,如果r=0,那么a=bq. 这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数. 2.若a|c,b|c,且a,b互质,则ab|c. 3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即

其中p 1<p 2<…<p k 为质数,a 1,a 2,…,a k 为自然数,并且这种表示是唯一的. (1)式称为n 的质因数分解或标准分解. 4.约数个数定理:设n 的标准分解式为(1),则它的正约数个数为: d (n )=(a 1+1)(a 2+1)…(a k +1). 5.整数集的离散性:n 与n+1之间不再有其他整数. 因此,不等式x <y 与x ≤y-1是等价的. 下面,我们将按解数论题的方法技巧来分类讲解. 一、利用整数的各种表示法 对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决. 这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ; 4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数. 例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差. 结果小明发现,无论白色卡片上是什么数字,计算结果都是1998. 问:红、黄、蓝3张卡片上各是什么数字? 解:设红、黄、白、蓝色卡片上的数字分别是a 3,a 2,a 1,a 0,则这个四位 数可以写成:1000a 3+100a 2+10a 1+a 0,它的各位数字之和的10倍是10(a 3+a 2+a 1+a 0)=10a 3+10a 2+10a 1+10a 0,这个四位数与它的各位数字之和的10倍的差是: 990a 3+90a 2-9a 0=1998,110a 3+10a 2-a 0=222. 比较上式等号两边个位、十位和百位,可得a 0=8,a 2=1,a 3=2. 所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8. 例2 在一种室内游戏中,魔术师请一个人随意想一个三位数abc (a,b,c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数cab bca bac acb ,,,与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc . 现在设N=3194,请你当魔术师,求出数abc 来. 解:依题意,得

小学奥数数论知识点总结

小学奥数数论知识点总结 1.奇偶性问题 奇+奇=偶奇×奇=奇 奇+偶=奇奇×偶=偶 偶+偶=偶偶×偶=偶 2.位值原则 形如:abc=100a+10b+c 3.数的整除特征: 整除数特征 2末尾是0、2、4、6、8 3各数位上数字的和是3的倍数 5末尾是0或5 9各数位上数字的和是9的倍数 11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25末两位数是4(或25)的倍数 8和125末三位数是8(或125)的倍数 7、11、13末三位数与前几位数的差是7(或11或13)的倍数 4.整除性质 ①如果c|a、c|b,那么c|(ab)。 ②如果bc|a,那么b|a,c|a。 ③如果b|a,c|a,且(b,c)=1,那么bc|a。④如果c|b,b|a,那么c|a.

⑤a个连续自然数中必恰有一个数能被a整除。 5.带余除法 一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r 当r=0时,我们称a能被b整除。 当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r 6.唯一分解定理 任何一个大于1的自然数n都可以写成质数的连乘积,即n=p1×p2×...×pk 7.约数个数与约数和定理 设自然数n的质因子分解式如n=p1×p2×...×pk那么:n的约数个数: d(n)=(a1+1)(a2+1)....(ak+1) n的所有约数和:(1+P1+P1+…p1)(1+P2+P2+…p2)… (1+Pk+Pk+…pk) 8.同余定理 ①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b 对于模m同余,用式子表示为a≡b(modm) ②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。③两数的和除以m的余数等于这两个数分别除以m的余数和。 ④两数的差除以m的余数等于这两个数分别除以m的余数差。 ⑤两数的积除以m的余数等于这两个数分别除以m的余数积。 9.完全平方数性质 ①平方差:A-B=(A+B)(A-B),其中我们还得注意A+B,A-B同奇偶性。

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

初中数学竞赛讲座——数论部分1(进位制)

第一讲正整数的表示及进位制 一、基础知识: 1.我们通常接触的整数都是―十进制‖整数,十进制计数法就是用0,1,2…9十个数码,采用―逢十进一‖的法则进行计数的方法。例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为: 1999=1×1000+9×100+9×10+9 底数为10的各整数次幂,恰好是十进制数的各个位数: 100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1 位上的数) 故1999=1×103+9×102+9×101+9×100 二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。例如二进制中的111记为(111)2 111=1×22+1×2+1=7

60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1 所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。 具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。 例如:0.25 0.25*2 = 0.5 ------------整数部分:0 0.5*2 = 1.0 ------------整数部分:1 所以十进制数0.25转为二进制数即为 0.01 所以十进制数 60.25 转为二进制数即为 (11100.01)2 二、典型问题: 例1 证明:形如abcabc 的六位数总能被7、11、13整除。 证明:将已知的六位数写成十进制表达形式,得 c b a c b a abcabc +?+?+?+?+?=10101010102345 )110()1010()1010(3 4 2 5 +?++?++?=c b a 100110010100100?+?+?=c b a )10100(1001c b a ++?= )10100(13117c b a ++??= a b c a b c ∴总能被7,11,13整除。 【变式】试证明:任何一个四位正整数,如果四个数字和是9的倍数,那么这个四位数必能被9整除。并 把它推广到n 位正整数,也有同样的结论。 证明:设一个四位数为103a +102b +10c +d ,根据题意得

论初等数论与小学数学的关系

论初等数论与小学数学的关系 ——“同余”在小学数学教学中的应用 姓名:胡燕尔班级:070214 学号:15 刚翻开人教版大学本科小学教育专业教材《初等数论》的目录,许多在校本科小学教育专业的学生,包括我都存在这样的感觉,那就是觉得这些是再简单不过的内容:整除、质数与合数、最大公约数与最小公倍数、同余等等,这些内容在我们读小学的时候都已经学习过,似乎觉得没有必要再去研究,直到接触学习了这门课程,才扭转了我们的看法。 初等数论是小学教育专业,尤其是理科方向学生的必修专业课程,也是从事小学数学教学的老师的进修课程。其中包括整数的整除性、同余、同余方程、不定方程、不定方程、简单连分数几方面的知识。这些方面的内容在符合了小学数学教师应具有的教学思维外,也有利于学习者积累从事小学数学教育工作必备的能力与知识。 有人说:“数学是思维的体操,科学的王冠,数论是王冠上的明珠。”这颗明珠在小学数学中早已是熠熠闪光——我们小学所学习到的数论内容主要包含以下几类: 整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容) 余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小) (2)同余的性质和运用 奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算 质数合数:重点是质因数的分解 约数倍数:(1)最大公约最小公倍两大定理(2)约数个数决定法 则 可见,初等数论的应用与小学数学教育事业是息息相关的。对于初等数论,我学到的也只是九牛一毛,谈不上有什么有建设性的问题,只能粗略地谈谈初等

数论中的核心内容——同余,并通过其在初等数论在小学数学中的应用来说明两者的关系。 同余是由德国数学家高斯首先提出并系统地进行研究的,它是初等数论的核心部分。其中蕴含大量的数论所特有的思想、概念和方法,它的出现使数论成为一个独立的数学分支的标志。在这一内容中包括其性质,剩余类与剩余系,欧拉定理和循环小数等几个知识点。在没接触初等数论学习之前,我们对同余这个概念很陌生,其实同余在我们小学数学学习,奥数中已经有了很深入的运用。在小学中主要体现在余数的运用上,余数是小学数学中的重要概念,也是数学竞赛的热门话题,其中有关概念多,方法性强。 在小学,关于余数问题我们知道:如果整数a除以正整数m,商为q,余数为r,则a=qm+r,其中q与r都是自然数,并且0≤r<m.而现在我们学的同余 知识是:如果两个正整数a,b被非零自然数m除时所得的余数相同, a=qm+r,b=pm+r,那么就说a与b关于模m同余,记为a≡b(mod m).此时a与b 的差能被m整除,记为a-b ≡0(mod m).因此同余问题常常转化为整除问题求解。 下面,我以一个例题来反应同余在小学数学教学中的应用: 例题、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余几 这道题目出现在小学奥数中,小学生一般的解答方法是: 方法一:凑数法。取a为6,取b为9,这样满足了条件a除以5余1,b 除以5余4,3a-b=9,9/5余数为4。 方法二、设a=5x+1 b=5y+4 3a-b=15x-5y-1=15x-5y-5+4=5(3x-y-1)+1 3a-b除以的余数是4 a=5x+1 (x为正的整数) b=5y+4( y为正的整数) (3a-b)/5 =(15x+3-5y-4)/5 =3x-y-1/5 =(3x-y-1)+4/5 根据x,y均为正的整数,并且3a>b,所以余数为4。 而在初等数论中的解法: 解:∵a≡1(mod5), ∴3a≡3(mod 5), 或者3a≡8(mod 5).(1)

小学奥数-数论专题知识总结

数论基础知识 小学数论问题,起因于除法算式:被除数÷除数=商……余数 1.能整除:整除,因数与倍数,奇数与偶数,质数与合数,公因数与公倍数,分解质因数等; 2.不能整除:余数,余数的性质与计算(余数),同余问题(除数),物不知数问题(被除数)。 一、因数与倍数 1、因数与倍数 (1)定义: 定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。 定义2:如果非零自然数a、b、c之间存在a×b=c,或者c÷a=b,那么称a、b是c的因数,c是a、b 的倍数。 注意:倍数与因数是相互依存关系,缺一不可。(a、b是因数,c是倍数) 一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。 一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。 (2)一个数的因数的特点: ①最小的因数是1,第二小的因数一定是质数; ②最大的因数是它本身,第二大的因数是:原数÷第二小的因数 (3)完全平方数的因数特征: ①完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。 ②完全平方数的质因数出现次数都是偶数次; ③1000以内的完全平方数的个数是31个,2000以内的完全平方数的个数是44个,3000以内的完 全平方数的个数是54个。(312=961,442=1936,542=2916) 2、数的整除(数的倍数) (1)定义: 定义1:一般地,三个整数a、b、c,且b≠0,如有a÷b=c,则我们就说,a能被b整除,或b能整除a,或a能整除以b。 定义2:如果一个整数a,除以一个整数b(b≠0),得到一个整数商c,而且没有余数,那么叫做a能被b 整除或b能整除a,记作b|a。(a≥b) (2)整除的性质: 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。 如果a能被b整除,c是整数,那么a×c也能被b整除。 如果a能被b整除,b又能被c整除,那么a也能被c整除。 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。 (3)一些常见数的整除特征(倍数特征): ①末位判别法 2、5的倍数特征:末位上的数字是2、5的倍数。 4、25的倍数特征:末两位上的数字是4、25的倍数。 8、125的倍数特征:末三位上的数字是8、125的倍数。 ②截断求和法(从右开始截) 9(及其因数3)的倍数特征:一位截断求和 99(及其因数3、9、11、33)的倍数特征:两位截断求和 999(及其因数3、9、27、37、111、333)的倍数特征:三位截断求和 ③截断求差法(从右开始截) 11的倍数特征:一位截断求差 101的倍数特征:两位截断求差

初中数学竞赛讲座——数论部分7(同余)

第7讲同余的概念及基本性质 数论有它自己的代数,称为同余理论.最先引进同余的概念与记号的是数学王子高斯. 先看一个游戏:有n+1个空格排成一行,第一格中放入一枚棋子,甲乙两人交替移动棋子,每步可前移1,2或3格,以先到最后一格者为胜.问是先走者胜还是后走者胜?应该怎样走才能取胜? 取胜之道是:你只要设法使余下的空格数是4的倍数,以后你的对手若走i格(i=1,2,3),你走4-i格,即每一次交替,共走了4格.最后只剩4个空格时,你的对手就必输无疑了.因此,若n除以4的余数是1,2或3时,那么先走者甲胜;若n除以4的余数是0的话,那么后走者乙胜. 在这个游戏里,我们可以看出,有时我们不必去关心一个数是多少,而要关心这个数用m除后的余数是什么.又例如,1999年元旦是星期五,1999年有365天,365=7×52+1,所以2000年的元旦是星期六.这里我们关心的也是余数.这一讲中,我们将介绍同余的概念、性质及一些简单的应用. 同余,顾名思义,就是余数相同. 一、基础知识 定义1 给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m同余,记作 a≡b(mod m), 并读作a同余b,模m. 否则,就称a与b对于模m不同余,记作a≡b(mod m), 根据定义,a与b是否同余,不仅与a、b有关,还与模m有关,同一对数a和b,对于模m同余,而对于模n也许就不同余,例如,5≡8(mod 3),而5≡8(mod 4),若a与b对模m同余,由定义1,有 a=mq1+r,b=mq2+r. 所以a-b=m(q1-q2), 即m|a-b. 反之,若m|a-b,设 a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1, 则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2. 于是,我们得到同余的另一个等价定义:

相关主题
文本预览
相关文档 最新文档