当前位置:文档之家› 冰区海洋平台LRFD方法的系数标定及优化设计

冰区海洋平台LRFD方法的系数标定及优化设计

冰区海洋平台LRFD方法的系数标定及优化设计
冰区海洋平台LRFD方法的系数标定及优化设计

海洋工程水动力学试验研究

海洋工程水动力学试验研究 作者:杨建民,肖龙飞,盛振邦编著 出版社:上海交通大学出版社 出版时间: 2008-1-1字数: 219000版次: 1页数: 136印刷时间: 2008/01/01开本: 16开印次: 1纸张:胶版纸I S B N : 9787313050649包装:平装编辑推荐全书共分9章。第1章为总论,简要介绍海洋资源和海洋油气开发概况,我国海疆和海上油气资源、海洋环境条件、海洋平台的种类。第2章介绍模型水动力试验研究的历史沿革及其对科技进步的作用,国内外主要海洋工程水池及主要试验设施。第3章重点阐述模型试验研究的基础理论,包括:相似理论、海洋环境条件(特别是海浪)的理论描述、浮式海洋平台运动与受力的分析、线性系统响应的频域分析和时域分析方法。余下各章主要结合上海交通大学海洋工程国家重点实验室十多年的工作经验,系统地阐述海洋平台模型(包括锚泊线、立管等)的制作和有关参数的模拟调节;水池中风、浪、流等海洋环境的模拟;各类测试仪器的介绍和标定;模型在静水、规则波和不规则波中的试验;测量数据的采集;试验数据的处理与分析以及试验研究项目的实施规程等有关内容。此外,对于深海平台的试验技术也进行了专题介绍,以适应海洋石油开发不断向深海拓展的需要。 内容简介 本书介绍船舶与海洋工程结构物在海洋风、浪、流环境条件作用下水动力性能的模型试验研究方法及相关理论。主要内容包括:海洋油气开发与海洋平台简介;海洋工程水动力模型试验的历史沿革、作用,国内外水池及其主要设施,水动力学基础;模型制作及海洋环境条件模拟的方法和理论;测量仪器的分类、标定及模型测试校验;模型在风、浪、流中的各种试验内容与方法;试验数据的处理与分析;试验研究项目的实施规程;深海平台模型试验技术概述。 本书是我国海洋工程国家重点实验室多年来试验研究工作的总结,同时吸收了国际上的最新研究成果,注重实践能力的培养。可作为高等院校船舶与海洋工程专业的本科生教材和研究生的教学参考用书,也可供海上油气开发部门、船厂、设计研究单位从事海洋工程科技人员参考。 目录 第1章总论 1.1 海洋开发与海洋工程概述 1.2 海洋油气开发简介 1.3 我国的海疆和海上油气资源

海洋平台设计原理复习

海洋平台设计原理复习 一、思考题 1.海洋平台按运动方式分为哪几类?列举各类型平台的代表平台。各类型的优缺点有哪些? 1)固定式平台(导管架平台、重力式平台): 优点——整体稳定性好,刚度较大,受季节和气候的影响较小,抗风暴的能力强。缺点——机动性能差,较难移位重复使用。 2)活动式平台(坐底式平台、自升式平台、半潜式平台、钻井船、FPSO): 优点——机动性能好 缺点——整体稳定性较差,对地基及环境有要求。 3)半固定式平台(张力腿式平台、Spar平台): 优点——适应水深大,优势明显。 缺点——较多的技术问题有待解决。 2.海洋平台设计所涉及的关键技术问题有哪些?各关键技术的必要性及其可采用的研究方法? 1)总体布置与优化设计研究 2)环境载荷研究 3)平台极限承载能力研究: 必要性——评价平台的安全性、强度储备、优化 研究方法——试验方法、数值方法 4)平台稳性研究: 必要性——研究海洋平台支撑在海底的抗倾覆能力 研究方法——规范校核(CCS、ABS)、软件分析(NAPA、ANSYS) 5)关键结构或节点的疲劳性研究: 必要性——结构疲劳影响结构使用寿命,要考虑海洋环境和波浪载荷作用,能判断易疲劳部位,优化结构并预测结构寿命。 研究方法——疲劳试验、疲劳仿真 6)平台模块化技术研究: 必要性——便于安装、拆装改造、达到多功能要求,主要设计模块化结构的联接方式并分析联接结构的动、静态响应。 研究方法——疲劳性能试验、计算分析 7)焊接工艺与结头韧性评定技术研究: 必要性——焊接接头韧性不足会导致焊接结构破坏,因此需优化焊接工艺。 研究方法——CTOD试验、数值仿真 (CTOD指的是裂纹体受到张开型载荷后原始裂纹尖端处两表面所张开的相对距离,CTOD值得大小反映了裂纹尖端材料抵抗开裂的能力) 8)振动、噪声预报与控制研究 必要性——振动噪声会使结构疲劳、影响健康 研究方法——振动分析、噪声预报 9)平台碰撞分析和防撞技术研究 必要性——平台碰撞会威胁平台安全,该技术主要研究防护装置的设计

海洋钻井平台组成及功能

关于海洋钻井平台 半潜式的系统,总的来说,平台的系统有点和普通的船舶相似,它们是: 1,压载系统,ballast system 2,消防系统,fifi system ,包含fire water system , water mist system , deluge system, foam system, co2 extinguishsystem, water spray system 按照每个平台基本设计的不同,会有其中的几个。 3,舱底水系统,bilge system 4, 海水冷却系统,sea water cooling system 5,淡水冷却系统,fresh water cooling system 6,燃油系统,fuel oil system 7,润滑油系统,lub oil system 8,主机排烟系统,exhaust system 9,废油系统,waste oil and sludge system 10,透气溢流系统,vent and overflow system 11,测深系统,souding system 包含 manual soundIng system 或者remote sounding system 12,启动空气系统,starting air system 13,平台空气系统,rig air system 14,仪表与控制空气系统, instrument air system 15,饮用水系统,potable system 16,生活水排放系统,sanitary discharege system 17,生活水供给系统 ,sanitary supply system 18,盐水系统,brine system 19,钻井水液系统,drill water system 20,钻井基油系统,base oil system 21,泥浆供给系统,mud supply system 22,高压泥浆排出系统,mud discharge system 23,泥浆处理系统,mud process system 24,泥浆真空系统,mud vacuum system 25,井口控制系统,subsea control system 26,分流器,高压管系系统,hp manifold and diverter system 27,灌井系统,trip tank system 28,除气系统,mud gas separator system 29,测井系统,well test system 30,隔水套管张紧系统,riser tensioner system 31,液压系统,hydaulicoil system 32,泥浆混合系统,mud mixing system 33,散货系统,包含bulk cement system 以及bulk mud system 34,高压冲洗系统,high pressure washing down system 35,甲板泄水系统,deck drain system 36,快关阀系统,quick closing vavle system 37,切屑处理系统,cutting handling system 38,直升机加油系统,helicopter refueling system 39,排舷外系统,overboard discharge system 40,刹车冷却系统,brake cooling system 41,呼吸空气系统,breath air system 42,推进器系统,包含 thruster hydraulic oil and lub oil system 43,泥坑冲洗系统,mud pit washing system

海洋平台的安全性与规范设计【开题报告】

开题报告 船舶与海洋工程 海洋平台的安全性与规范设计 一、综述本课题国内外研究动态,说明选题的依据和意义: 最近几年,我国海上石油开采已从近海浅水走向深海.未来5 年~10 年内,我国海洋石油的开采水深有望达到500 米-2000 米.由于导管架平台和重力式平台自重和工程造价随水深大幅度增加,已经不能适应深水海域油气开发的要求.因此,研究、发展深海采油平台的有关技术势在必行. 而深海石油平台的设计,建造及相关技术是深海油气资源开发中的关键技术之一,及早了解和和掌握国外深海平台的建造和使用情况,探讨国外深海平台设计和使用中积累的经验和存在的问题,对我国海洋油气开发具有重要意义。 对深水开采,钢质导管架平台的造价会随水深增加而急剧增长,以致增加到在经济上不可行。这就促使我们在深海开发中使用新的结构形式,如混凝土结构和浮式结构。典型的浮式结构是FPSO,半潜式平台,张力腿平台(TLP)和SPAR平台。 海洋平台结构复杂,体积庞大,造价昂贵,特别是与陆地结构相比,它所处的海洋环境十分复杂和恶劣,风、海浪、海流、海冰和潮汐时时作用于结构,同时还受到地震作用的威胁。在此环境条件下,环境腐蚀、海生物附着、地基土冲刷和基础动力软化、材料老化、构件缺陷和机械损伤以及疲劳和损伤累积等不利因素都将导致平台结构构件和整体抗力的衰减,影响结构的服役安全度和耐久性。另外,操作不当、管理不当等人为因素也直接影响海洋石油平台的安全性。随着对海洋平台复杂性的深入了解,造成了重大的经济损失和不良的社会影响。例如,1965年英国北海的“海上钻石”号钻井平台支柱拉杆脆性断裂导致平台沉没;1968年“罗兰角”号钻井平台事故;1969年我国渤海2号平台被海冰推倒,造成直接经济损失2000多万元;1997年渤海4号烽火平台倒毁;1980年北海Ekofisk油田的Alexander L Kielland 号五腿钻井平台发生倾覆,导致122人死亡;以及2001年巴西油田的P-36平台发生倾覆。 1982年7月交通部烟台海难救助打捞局,经过一年多的努力,将“渤海2号”沉船分割成10大块打捞上岸。主甲板上共有10个通风筒,其中,泵舱的四个通风筒—两个进风风筒和两个排风风筒,全部被风浪打掉。事故分析报告给出三个主要原因,原因

论海洋平台钢结构的加工设计

论海洋平台钢结构的加工设计 本篇论文主要论述海上石油钻井平台钢结构的加工设计,论文中将以实际项目为例,介绍加工设计的整个过程以及相关软件的应用方法,目的在于提高设计人员的工作效率、减少错误的发生。论文包括如下几个部分:一、工况概述;二、建造方案;三、加设图;四、单件图与排版图。 标签:型材;有限元;板材;吊点;吊装 1工况概述 海上石油钻井平台是以钢结构为主体的多专业协同工作的采油平台,在加工设计阶段,由于详细设计已经基本绘制了结构图纸,加工设计只需要制定施工方案,完成图纸杆件的标号和每个杆件的单件图和排版图的绘制。本篇论文以平台改造项目为例,论述加工设计的基本方法和工作思路。 工况概述:平台改造项目的目的是为了在平台上增加一台设备,以更好的进行原油处理,减少资源浪费。该设备重70吨外形尺寸为长2米宽12米,放置于平台东侧,目前设备就位区没有结构,需要增加结构放置设备。 详细设计已经提供结构平面图和节点图。 大梁选用H588X300X12X20的H型钢,小梁选用H300X300X10X15的H 型钢,材料为Q345B,甲板板选用8毫米厚的碳素结构钢材质为Q235B,选择直径为273毫米壁厚为10毫米的20#钢的无缝钢管。节点板选用13毫米厚的碳素结构钢材质为Q345B。 2 建造方案 加工设计的建造方案主要是甲板片的预制方案,吊装方案等。预制方案一般用正造法或者反造法。 正造法是在建造场地上放置垫敦,将甲板片放置于垫敦上建造。 反造法是在车间里翻转建造,将甲板板平铺于水泥地上划线并翻转组对梁格,最后翻身。 由于反造法不像正造法那样需要高度调整,划线也很容易,所以组对迅速,建造效率很高,所以只要建造方有车间资源我们就首选反造法。但是反造法需要设计人员制作翻身方案,所以增加了加工设计人员的工作量。 甲板片预制的技术要求如下:

海洋石油平台课程设计92029639

《海洋石油平台设计》课程设计

目录 第一章综述 (1) 1.1 平台概述 (1) 1.1.1 海洋平台的分类 (1) 1.1.2海洋平台结构的发展历史及现状 (2) 1.1.3海洋平台结构的发展趋势 (3) 1.2 海洋环境荷载 (4) 1.2.1海风荷载 (4) 1.2.2海流荷载 (4) 1.2.3波浪荷载 (5) 1.2.4海冰荷载 (6) 1.2.5地震作用 (6) 1.3 ANSYS软件介绍 (7) 1.3.1 ANSYS 的发展历史 (7) 1.3.2 基本功能 (7) 1.3.3分析过程 (8) 第二章导管架平台整体结构分析 (12) 2.1 导管架平台简介 (12) 2.2 平台整体模型建立 (12) 2.2.1工程实例基本数据: (12) 2.2.2平台几何模型的建立 (13) 2.3、波流耦合作用下导管架平台整体结构静力分析 (20) 2.3.1结构整体静力分析 (20) 2.3.2 静力结果分析 (23) 2.4 导管架平台整体结构模态分析 (26) 2.4.1结构模态计算 (26) 2.4.2观察模态分析结果 (26) 2.5 波浪作用下平台结构瞬态动力分析 (30) 2.5.1瞬态动力分析 (30) 2.5.2动力分析结果处理 (33) 第三章平台桩腿与海底土相互作用模拟 (37) 3.1 基础数据 (37) 3.2前处理过程 (38) 3.3静力求解计算 (42) 3.4 结构模态分析 (47) 第四章总结 (53)

第一章综述 1.1 平台概述 海洋平台是一种海洋工程结构物,它为开发和利用海洋资源提供了海上作业与生活的场所。随着海洋开发事业的迅速发展,海洋平台得到了广泛的应用,如海底石油和天然气的勘探与开发、海底管线铺设、海洋波浪能的利用、建造海上机场及海上工厂等。目前应用海洋平台最为广泛的领域当属海上油气资源的勘探与开发。用于海上油气资源勘探与开发的洋平台按功能划分主要分为钻井平台和生产平台两大类,在钻井平台上设有钻井设备,在生产平台上则设有采油设备。若按结构型式及其特点来划分,海洋平台大致可分为三大类固定式平台、移动式平台和顺应式平台。 1.1.1 海洋平台的分类 1.固定式平台 固定式平台靠打桩或自身重量固定于海底,目前用于海上石油生产阶段的大多数是固 定式平台,它又可分为桩式平台和重力式平台两个类别。桩式平台通过打桩的方法固定于海底,其中的钢质导管架平台是目前海上使用最广泛的一种平台;而重力式平台则是依靠自身重量直接置于海底,这种平台的底部通常是一个巨大的混凝土基础沉箱,由三个或四个空心的混凝土立柱支撑着甲板结构。 2.移动式平台 移动式平台是一种装备有钻井设备,并能从一个井位移到另一个井位的平台,它可用于海上石油的钻探或生产。移动式平台可分为坐底式平台、自升或平台、钻井船和半潜式平台四个类别。坐底式平台一般用于水深较浅的海域,工作水深通常在60米以内;自升式平台具有能垂直升降的桩腿,钻井时桩腿着底,平台则沿桩腿升离海面一定高度,移位时平台降至水面,桩腿升起,平台就像驳船可由拖轮把它拖移到新的井位。自升式平台的优点主要是所需钢材少,造价低,在各种情况下都能平稳地进行钻井作业,缺点是桩长度有限,使它的工作水深受到限制,最大的工作水深约在120米左右;钻井船是在船中央设有井孔和井架,它靠锚泊系统或动力定位装置定位于井位上。它漂浮于水面作业,能适应更大的水深,同时它的移动性能最好,便于自航。但由于它在波浪上的运动响应大,稍有风浪就会引起很大的运动,使钻井作业无法再进行下去,风浪更大时船还得离开井位,这是钻井船得不到大发展的主要原因;半潜式平台是由坐底式平台演变而来的,它上有平台甲板,在水面以上不受波浪侵袭,下有浮体,沉于水面以下以减小波浪的扰动力,连接于其间的是小水线面的立柱。由于半潜式平台具有小的水线面面积,使整个平台在波浪中的运动响应较小,因而它具有出色的深海钻井的工作性能。半潜式平台可用锚泊定位和动力定位,锚泊定位的半潜式平台一般适用于200~500米水深的海域。

海洋油井平台概述

各类海洋油井平台概述 海洋石油钻采设备是海上油气田钻井与采油所用的工具和装备,它的种类繁多包罗万象,但归纳起来大体可以分为四类:1.海洋石油钻井平台;2.海洋石油采油平台;3.水上钻井机械设备;4.水下钻井机械设备。本文主要介绍前两类,即:海洋石油钻井平台及海洋石油采油平台。主要分为移动式平台和固定式平台两大类。其中按结构又可分为: (1)移动式平台:坐底式平台、自升式平台、钻井船、半潜式平台(SEMI)、张力腿式平台(TLP)、牵索塔式平台、浮式生产处理系统(FPSO)、筒状平台(SPAR)。 (2)固定式平台:导管架式平台、混凝土重力式平台、深水顺应塔式平台。 移动式平台 坐底式钻井平台 坐底式钻井平台又叫钻驳或插桩钻驳,适用于河流和海湾等30米以下的浅水域。坐底式平台有两个船体,上船体又叫工作甲板,安置生活舱室和设备,通过尾郡开口借助悬臂结构钻井;下部是沉垫,其主要功能是压载以及海底支撑作用,用作钻井的基础。两个船体间由支撑结构相连。这种钻井装置在到达作业地点后往沉垫内注水,使其着底。因此从稳性和结构方面看,作业水深不但有限,而且也受到海底基础(平坦及坚实程度)的制约。所以这种平台发展缓慢。然而我国渤海沿岸的胜利油田、大港油田和辽河油田等向海中延伸的浅海海域,潮差大而海底坡度小,对于开发这类浅海区域的石油资源,坐底式平台仍有较大的发展前途。目前已有几座坐底式平台用于极区,它可加压载坐于海底,然后在平台中央填砂石以防止平台滑移,完成钻井后可排出压载起浮,并移至另一井位。 自升式钻井平台 自升式钻井平台被设计成为驳船的模样,具有可以升降的可延伸到海底的桩腿。虽然有些设计能使其在海深500英尺(152米)的海域工作,但通常用于海深400英尺(122米)的地方,适合于近海。其移位时平台降至水面,桩腿升起,平台就像驳船,可由拖轮把它拖移到目的地。到达钻井目的地后,工作时桩腿下放插入海底,平台及平台上所有的钻井设备及其他器械被抬起到离开海面的安全工作高度,并对桩腿进行预压,以保证平台遇到风暴时桩腿不致下陷。完井后平台降到海面,拔出桩腿并全部提起,整个平台浮于海面,由拖轮拖到新的井位。 半潜式钻井平台(SEMI) 上部为工作甲板,下部为两个下船体,用支撑立柱连接。工作时下船体潜入水中,甲板处于水上安全高度,水线面积小、波浪影响小、稳定性好、自持力强、工作水深大。半潜式平台用锚和钢丝绳定位,工作水深为180米左右;用锚和链结合定位,工作水深可提高到450米。新发展的动力定位技术用于半潜式平台后,工作水深可达900~1200米,定位精度在1~2%水深的半径范围内。半潜式与自升式钻井平台相比,优点是工作水深大,移动灵活,且由于只有立柱暴露于波浪环

海洋平台结构设计与模型制作计算书

海洋平台结构设计与模型制作 理论方案 浙江大学结构设计竞赛组委会 二○一二年

第一部分:方案设计摘要 根据学长“简单、粗犷”的原理,在实践中抛 弃了很多复杂、沉重的构件,最终展现在我们面前 的是一个四棱台与四棱柱结合的简单作品。 自下而上的构件分别为: 底部为深入沙中的底柱,长为10cm。通过一次 实验,为利于柱子插入细沙中而将柱子削尖。 联结底柱的是四棱台,高42cm、底边长45cm、 顶边长28cm。为抵抗风荷载的力矩而增大重力的力 臂,在保证质量较轻的条件下增大底部长度。初时 对竖向荷载过分估计以致四周承重柱以及斜撑杆过 重,但稳重的底部在加载过程汇中也有可取之处。 之所以将高度定为28cm,是因为伊始准备在四棱台 中间安置塑料片筒体。但在实际操作中我们放弃了 这个设想。 联结四棱台的是被斜杆分成三部分的四棱柱。 借鉴了别人的轻质理念,一改底座的笨重,上部桁 架的布置简明,但纤细的杆件也使整体遭受了风荷 载的极大挑战。在实验加载中发现荷载箱稍小,因 此改进顶部边长、露出四个小柱。本欲在与水面相 切处设置420*420的塑料片则可以利用水的吸附 力,可惜塑料片质量稍重、效果也不太明显。改进 后,四棱台留在空中的部分受风荷载较大,布置了 较密的桁架。 在构件联结处,我们尽力增大构件的接触面积,同时也做了些小木段与木片作为加固。 总结来看,在最初的设计思考中我们还是有一些新的想法,比如筒体,比如利用水的吸附力,但在实践制作过程中我们缺乏对可操作性的理性认识;同时我们过分估计竖向荷载以致质量过重,轻视水平风荷载而在试验中多次面临剧烈的扭转。最终我们的结构形式归于简单,但过程并不平淡。在否定与自我否定中,我们已有收获。

海洋平台结构课程设计

中国海洋大学本科生课程大纲 一、课程介绍 1.课程描述: 海洋平台结构课程设计是针对船舶与海洋工程专业本科生开设的工作技术教育层面必修课。本课程通过实践环节,完成具体典型导管架平台的总体设计思路训练,包括海洋环境计算及工程简化、桩基础承载能力计算、导管架结构整体强度及刚度分析,设计计算书撰写和工程图纸表达。通过本课程的实践,使学生能够综合运用海洋平台结构及相关专业课程学习的基础理论和方法,系统完成结构分析计算,提高设计分析和工程表达能力。 2.设计思路: 本课程以海洋平台结构设计的基本过程为主线,结合先修课程中学到的环境荷载计算、桩基承载力验算、结构整体强度分析、CAD制图等基础知识,使学生将掌握的海洋平台结构设计理论知识应用到实际设计和验算中,通过实际设计检验学生对于基础知识的把握,加深学生对理论知识的理解。课程内容包括三个模块:目标平台调研、相关数据计算与分析、计算书编写及工程表达。 - 1 -

(1)目标平台调研: 该模块需要学生熟悉海洋平台设计的一般步骤,对目标平台进行参数和各项性能指标的调研,确定课程设计的各项数据标准。 (2)相关数据计算与分析: 根据已确定的主尺度,对结构在选定工况下的其他参数进行计算,主要分为:海洋环境荷载计算、基础承载力计算、结构整体强度分析。其中,海洋环境荷载计算为在选定海域环境条件下,对风、波浪、海流、冰荷载的计算,并且针对选定工况进行分析;基础承载力计算要求学生掌握桩基轴向承载力验算方法;结构整体强度分析主要包括设计目标平台在外荷载作用下的应力校核及位移校核方法。 (3)计算书编写及工程表达: 本模块中,学生需要学习并完成计算书的编写,掌握目标平台设计资料编写,并且通过专业分析软件完成平台的响应输出分析。最终上交课程设计纸质报告。 3. 课程与其他课程的关系 先修课程:海洋平台结构、钢结构设计基本原理。本门设计课程与先修课程密切相关,只有掌握了先修课程中的理论知识和设计方法,才能够在海洋平台结构设计中加以综合应用,设计出符合规范标准的结构。 二、课程目标 本课程的目标是培养学生从事海洋工程结构设计的基本技能,使学生对海洋工程设计中的标准和规范加以熟悉,对海洋平台结构以及其他先修课程中的理论知识进行综合运用。到课程结束时,学生应能: (1)熟练应用海洋平台结构设计中的相关规范和标准; (2)完成具体目标海洋平台的总体设计以及输出响应特点分析及校核; - 1 -

海洋钻井平台的分类

海洋钻井平台的分类 海洋钻井平台(drilling platform)是主要用于钻探井的海上结构物。平台上装钻井、动力、通讯、导航等设备,以及安全救生和人员生活设施,是海上油气勘探开发不可缺少的手段。主要分为移动式平台和固定式平台两大类。其中按结构又可分为: (1)移动式平台:坐底式平台、自升式平台、钻井船、半潜式平台、张力腿式平台、牵索塔式平台(2)固定式平台:导管架式平台、混凝土重力式平台、深水顺应塔式平台 坐底式钻井平台 坐底式钻井平台又叫钻驳或插桩钻驳,适用于河流和海湾等30m以下的浅水域。坐底式平台有两个船体,上船体又叫工作甲板,安置生活舱室和设备,通过尾郡开口借助悬臂结构钻井;下部是沉垫,其主要功能是压载以及海底支撑作用,用作钻井的基础。两个船体间由支撑结构相连。这种钻井装置在到达作业地点后往沉垫内注水,使其着底。因此从稳性和结构方面看,作业水深不但有限,而且也受到海底基础(平

坦及坚实程度)的制约。所以这种平台发展缓慢。然而我国渤海沿岸的胜利油田、大港油田和辽河油田等向海中延伸的浅海海域,潮差大而海底坡度小,对于开发这类浅海区域的石油资源,坐底式平台仍有较大的发展前途。80年代初,人们开始注意北极海域的石油开发,设计、建造极区坐底式平台也引起海洋工程界的兴趣。目前已有几座坐底式平台用于极区,它可加压载坐于海底,然后在平台中央填砂石以防止平台滑移,完成钻井后可排出压载起浮,并移至另一井位。图为胜利二号坐底式钻井平台。 自升式钻井平台由平台 自升式钻井平台由平台、桩腿和升降机构组成,平台能沿桩腿升降,一般无自航能力。工作时桩腿下放插入海底,平台被抬起到离开海面的安全工作高度,并对桩腿进行预压,以保证平台遇到风暴时桩腿不致下陷。完井后平台降到海面,拔出桩腿并全部提起,整个平台浮于海面,由拖轮拖到新的井位。1953年美国建成第一座自升式平台,这种平台对水深适应性强,工作稳定性良好,发展较快,约占移动式钻井装置总数的1/2。 钻井船

钢结构设计原理复习

钢结构设计原理复习 第一章绪论 1、钢结构的特点(前5为优点,后三为缺点) 1)强度高、重量轻 2)材质均匀,塑性、韧性好 3)良好的加工性能和焊接性能(易于工厂化生产,施工周期短,效率高、质量好) 4)密封性能好 5 )可重复性使用性 6 ) 耐热性较好,耐火性差 7)耐腐蚀性差 8)低温冷脆倾向 2、钢结构的应用 1)大跨结构【钢材强度高、结构重量轻】(体育馆、会展、机场、厂房) 2)工业厂房【具有耐热性】 3)受动力荷载影响的结构【钢材具有良好的韧性】 4)多层与高层建筑【钢结构的综合效益指标优良】(宾馆、办公楼、住宅等) 3、结构的可靠度:结构在规定的时间(50年),规定的条件(正常设计、正常施工、正常使用、正常维护)下,完成预定功能的概率。 4、结构的极限状态:承载能力极限状态(计算时使用荷载设计值)、正常使用极限状态(荷载取标准值) 5、涉与标准值转化为设计值的分项系数:恒荷载取1.2 活荷载取1.4第二章钢结构的材料

1、钢材的加工 ①热加工:指将钢坯加热至塑性状态,依靠外力改变其形状,生产出各 种厚度的钢板和型钢。(热加工的开轧和锻压温度控制在1150-1300℃ ) ②冷加工:指在常温下对钢材进行加工。(冷作硬化现象:钢材经冷加 工后,会产生局部或整体硬化,即在局部或整体上提高了钢材的强度和硬度,降低了塑性和韧性的现象) ③热处理:指通过加热、保温、冷却的操作方法,使钢材的组织结构发 生变化,以获得所需性能的加工工艺。(退火、正火、淬火和回火)2、钢材的两种破坏形式: 3、钢材的六大机械性能指标 屈服点:它是衡量钢材的承载能力和确定钢材强度设计值的重要指标。

浅谈海洋石油钻井平台安全生产管理(最新版)

浅谈海洋石油钻井平台安全生产管理(最新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0234

浅谈海洋石油钻井平台安全生产管理(最 新版) 和平年代,人们最关注的问题是什么?应该是安全问题。安全需要是人类生存和发展中仅次于生理需要的基本需要,在中国现阶段,生理需要基本得到满足的条件下,人们更加关注安全问题应该是顺理成章的。而安全问题在生产领域尤为突出,在此,笔者结合自身多年的工作经验,蜻蜓点水般谈谈海洋石油平台的安全生产管理。 海洋石油钻井平台用于海洋石油的勘探与开发,是一条特殊用途的船舶,因此除了要配备作为船舶的几乎所有系统(如动力系统、锚泊系统、起浮压载系统、通信系统、消防系统等)与设施(如救生设施、生活污水处理设施、油污水处理装置设施、垃圾处理设备设施等)外,还要配置满足其特殊功能专业系统装备,如钻井要用到

钻井绞车、顶驱、泥浆泵;处理泥浆需要配浆设备(配浆漏斗、配浆泵、搅拌器)、三除设备(振动筛、除砂器、除泥器、除气器);物体吊运需要用到各种起重设备如吊机、行车、铲车、气动和手拉葫芦;井控需要防喷器、导流器;监控检测需要硫化氢检测设施、摄像检测设备、泥浆池液面检测设备;对于半潜式或浮式平台还需要升沉补偿器、张紧器等设备系统。整个钻井作业过程还要涉及到录井、测井、下套管、固井等花样繁多的作业,这其中使用或设计到的设备设施更是五花八门。以上所列举的设备中有起重设备、锅炉、压力容器、压力管道等国家法律规定的特种设备;对于有的设备的使用和操作还需要起重工、电工、电焊工等特殊工种;在设备上或作业过程中还要用到危险化学品,如电气焊用到的氧气乙炔、防喷器控制系统和泥浆泵中要用到氮气以及试油时点火用到的液化石油气等压缩气体和液化气体属于危险化学品中的第二类,处理井底事故时爆炸松扣或爆炸切割工艺要用到的爆炸品属于危险化学品中的第一类,配置泥浆中用到的烧碱和蓄电池中用到的酸或碱液属于危险化学品中的第八类腐蚀品。其它几类危险化学品在平台上也

海洋平台的设计及建造施工

第四章海洋平台的设计及建造施工 第一节平台结构设计的一般步骤 海洋平台的结构设计首先是根据平台作业海域的环境条件、海底土壤特性、平台的使用要求、安全性、营运性能、建造工艺和维护费用以及业主的期望等选择平台的结构型式方案。由于平台长期固定或系泊于特定的海域中作业,它不像一般船舶那样,遇到大风浪可以避航,因此,在结构设计中正确的确定海洋环境条件显得非常重要。海洋环境条件一般包括海域的水深、风暴、波浪、海流、潮汐、海底冲刷和滑移、冰情和地震等。这些海洋环境因素对平台的安全和作业效率有极大的影响。 为了设计出满足各项设计条件,同时经济性能优良的平台结构,往往需要选择多种方案进行分析比较,最后选定最佳的方案。因此平台结构设计实际上是一个逐步逼近或试探的过程,例如挪威阿柯(AKER)集团设计的“阿柯—H3”号半潜式平台就选择了A至H的8中方案进行分析、筛选,最后选定了H方案中的第3种修改方案,平台也因而取名为“阿柯—H3”。 一般初步选定一种结构型式,确定平台主要尺寸,具体进行总体布置后,如果是移动式平台则需要进行运动性能和稳性的分析,倘若不满足设计任务要求和有关范围的规定,那么这种结构型式就要被淘汰。 为了进行结构安全性校核,需要进行外载荷计算、强力构件尺寸的初步确定和构件材料的选取等工作,最后进行结构的总体强度分析。外载荷计算包括确定平台的浮力、结构重量、平台的甲板载荷,由风、浪、流、冰、地震引起的环境载荷等,这些载荷直接影响着构件的布置、连接和尺寸的大小,是决定结构设计优劣的重要因素。对于固定式平台,还需进行桩基计算以及桩—土—结构相互作用的分析。平台的所有强力构件都必须符合规范的强度标准,否则应修改构件的尺寸和材料品种,直到满足要求为止。 在结构强度尺寸确定后应对在总体布置时估算的结构重量进行校核,看其与实际的是否一致,若相差较大还需要进行调整。 结构设计的最后一个阶段是局部节点结构设计,平台节点是重要的结构部位,它的强度和施工工艺往往直接影响平台总体结构的寿命。图4—1为平台结构设计的一般流程。

自升式海洋钻井平台浅谈

自升式海洋钻井平台浅谈 自升式平台顾名思义是具备自升能力的功能性平台,通过一定长度可以自行升降的桩腿来实现操作高度的变化以适应不同作业水深的要求,有槽口式和悬臂梁式的,现今新建平台基本都是悬臂梁式,一些平台配置有DP(dynamic position)系统从而实现自航和自定位功能,本文仅对不带有DP系统的自升式具备钻井操作能力的平台布置的简析。 自升式平台目前主要有两种形式,独立桩腿式和沉垫式,作业水深范围从12/14 英尺直至550 英尺。大多数自升式钻井平台的作业水深在250至300 英尺范围内,较浅水深则由一些固定式平台覆盖,比如模块钻机等。目前主流自升式平台多采用独立桩腿式,主要船型有新加坡吉宝船厂的Keppel Fels B Class , 美国F&G 公司的Super M2 以及JU2000/JU2000E ,荷兰MSC公司的Gusto CJ系列(CJ46/CJ50/CJ70,设计作业水深不同),美国Letourneau公司的Letourneau 116 系列等。各类型平台各具特色,根据不同的可变载荷(后面会提到其影响)和设备功能配置会有不同的租金差别,但其主要差别目前仍是从作业水深来大致区分,从各自平台造价来说,设备配置占据整个平台的较大部分,再加之一些设计费用和专利费,各类型平台取决于客户的想法和习惯以及使用区域的实际情况等因素。 自升式平台目前主要入级的船级社有ABS(美国船级社),DNV(挪威船级社,目前改为DNV-GL,同德国劳氏合并后简称),CCS(中国船级社)以及较少的BV(法国船级社),目前最主要的是ABS和DNV,原因是其关于钻井平台的要求较为详细完整,并且出台的相应的专门入级的规范,如MODU等,其网站提供相关规范的免费下载,同时每年会有相应的更新,在进行平台设计时应注意该平台入级的是哪一年的规范,同时按照对应规范进行相关设计,有些更改会对相关系统和设备由额外的要求,将会直接的提高建造成本。其中DNV的规范相对来说更加详细和严格一些,对北海区域的针对性比较强,所以我们会发现大部分入级平台如果作业区不是北海区域,多数选择入级ABS,也有部分平台入级双船级社,这里简单的讲就是为了将来船东的运营方便,比如我国的海洋石油981(半潜式钻井平台)同时入级CCS和ABS船级社,这里还要针对双船级和双重船级说明一下,前者船级社分主次。

海洋钻井平台扫盲

巨型海洋钻井平台 ——世界第六代3000米深水半潜式钻井平台 工程总投资:60亿元 工程期限:2008年——2011年 大型海洋石油钻井平台堪称海上巨无霸,其使用的平台作业吊钩比人还高。 目前,世界上已探明的海上油气资源大部分蕴藏在大陆架及3000米以下的海底。有数据显示,深海能源储量将是陆地能源储量的100倍,但由于开采技术上的限制,其还是能源领域最具潜力的处女地。 2009年4月20日上午,我国海洋工程装备制造标志性项目——世界第六代3000米深水半潜式钻井平台,在上海外高桥造船有限公司顺利下坞,进入关键的搭载总装阶段。这是我国首次自主设计、建造的当今世界上最先进的深水半潜式钻井平台,不仅填补了我国在深水钻井特大型装备项目上的空白,而且对于加速我国进军世界级海洋工程装备开发、设计和制造领域,提升我国深水作业能力,具有重要的战略意义。 这座深水半潜式钻井平台的拥有者是中国第三大石油集团——中国海洋石油总公司,由中国船舶工业集团公司708研究所和上海外高桥造船有限公司联合承担详细设计与生产设计,由上海外高桥造船有限公司承建,是我国实施深水海

洋石油开发战略的重点配套项目之一,也是“十一五”期间国家重点“863”项目之一,并作为拥有自主知识产权的重大装备项目纳入国家重大科技专项。 上海外高桥造船厂承建的世界第六代3000米深水半潜式钻井平台,造价60亿元人民币。 海上巨无霸 2008年4月29日,这座第六代3000米深水半潜式钻井平台在上海外高桥造船有限公司开工兴建。这是中国继1983年成功自主开发“勘探3号”大型半潜式钻井平台后,时隔20多年再次斥巨资设计建造新一代深水半潜式钻井平台。 该钻井平台自重30670吨,甲板长度为114米,宽度为79米,甲板面积相当于一个足球场大小,从船底到钻井架顶高度为130米,相当于43层的高楼,电缆总长度650公里,相当于上海至天津的直线距离。在主甲板前部布臵可容纳约160人的居住区,甲板室顶部配备有包含完整消防系统的直升机起降平台,可起降Sikorsky S-92型直升机。 这座平台具有多项自主创新设计:如平台稳性和强度按照南海恶劣海况设计,能抵御200年一遇的台风;选用大马力推进器及DP3动力定位系统,可以在45海里/小时的风速下正常作业,在109海里/小时的风速下生存。在1500米水深内可使用锚泊定位,甲板最大可变载荷达9000吨等;可在中国南海、东南亚、西非等深水海域作业,其最大作业水深3050米,钻井深度10000米,设计寿命30年,入美国船级社(ABS)和中国船级社(CCS),计划于2010年底交付。该项目总造价近60亿元人民币,堪称海洋工程领域的“航空母舰”。 深海石油作业是国际上公认的海洋石油工业的前沿战略阵地,其核心技术一直由欧美少数国家所掌握。我国的海洋石油开发长期以来受技术水平所限只能在近海进行,如今这一情况将得到根本性的转变。作为目前国内设施最先进、综合实力领先的造船企业,上海外高桥造船有限公司一直致力于先进海洋工程装备

模型试验技术在海上浮式风电开发中的应用-2011-6页

图2BlueH-5MW 概念 Fig.2BlueH-5MW concept 图1BlueH -80kW 小样机Fig.1 BlueH -80kW prototype 收稿日期:2011-03-04;修回日期:2011-06-13 基金项目:国家自然科学基金资助项目((50979020);“111”计划资助项目(B07019) 作者简介:赵静(1983—),女,吉林长春人,博士,从事海上风力机基础设计与载荷预报及海上风能开发与利用技术研究。 E -mail :zhaojing20062007@https://www.doczj.com/doc/ab7044792.html, 在水深大于50m 的深水区域安装海上风电机组,固定式桩基础或导管架式基础的成本很高。而使用浮式结构作为海上风力机的基础平台,平台再用锚泊系统锚定于海床,其成本较低,且容易运输,因此开展海上浮式风电场建设的基础理论和试验技术的研究,为我国在更广阔的海域建设更大型风电场,实现节能减排的目标,具有重要的理论价值和长远的战略意义。 1海上浮式风电机组 目前,国际上对于海上浮式风电机组(FOWT ) 的研究基本处于基础理论和实验研究阶段,真正投入建设并运行的只有2个样机,即英国的Blue H 风电机组[1]和挪威的Hywind 风电机组[2]。 1.1BlueH 风电机组 英国Blue H 公司于2008年夏研制出世界上首

第44卷 中国电力新能源 图4Hywind-5MW 模型试验 Fig.4Hywind-5MW experiment 1.2Hywind 风电机组 2009年春,挪威国家石油公司建成全尺度样机 Hywind (见图3)安装于水深200m 、离岸10km 处的 挪威西南部海域。该风力机为2.3MW 叶片风力机,带有压载物的Spar 浮体和3根固定于海底的强力锚链线,吃水100m ,适用水深为200~700m 。2006年,Hywind 概念就已经发展到5MW ,并据此进行了详细的数值模拟和模型试验研究(见图4)。 2海上浮式风电机组的概念形式 早在20世纪90年初期,各国学者就开展了海 上浮式风电机组的研究,提出了各种概念形式[3]。除上面提到的2个样机外,比较著名的海上浮式风力机概念还有:荷兰提出的框架式结构Tri-floater [4] (见图5a ));挪威提出的半潜式结构WindSea [1](见 图5b ));TLP 与Spar 组合结构Sway [5] (见图5c )); 美国提出的半潜式和垂荡板组合结构Minifloat [6] (见图5d ));Windfloat [1,7] (见图5e ))以及TLP 与 Spar 组合的mini TLP 式[8](见图5f ))。 这些概念大多来源于海洋平台的结构形式或者经过改造后的再创造。单独考虑下部浮体的性能时,可参考海洋工程的实际经验(见表1)。但是海上浮 [9],主要表现为:结构相 图3Hywind-2.3MW 概念 Fig.3Hywind-2.3MW concept 图5 海上浮式风力机概念 Fig.5FOWT concept 表1 海上浮式风电机组的基础结构性能对比 Tab.1Performances of FOWT foundation structures

海洋平台设计原理

1)海洋平台按运动方式分为哪几类?列举各类型平台的代表平台? 固定式平台:重力式平台、导管架平台(桩基式); 活动式平台:着底式平台(坐底式平台、自升式平台)、漂浮式平台(半潜式平台、钻井船、FPSO); 半固定式平台:牵索塔式平台(Spar):张力腿式平台(TLP) 2)海洋平台有哪几种类型?各有哪些优缺点? 固定式平台。优点:整体稳定性好,刚度较大,受季节和气候的影响较小,抗风 暴的能力强。缺点:机动性能差,较难移位重复使用 活动式平台。优点:机动性能好。缺点:整体稳定性较差,对地基及环境条件有要求 半固定式平台。优点:适应水深大,优势明显。缺点:较多技术问题有待解决 3)导管架的设计参数有哪些?(P47) 1、平台使用参数; 2、施工参数; 3、环境参数:a、工作环境参数:是指平台在施工和使用期间经常出现的环境参数,以保证平台能正常施工和生产作业为标准;b、极端环境参数:指平台在使用年限内,极少出现的恶劣环境参数,以保证平台能正常施工和生产作业为标准 4、海底地质参数 4)导管架平台的主要轮廓尺寸有哪些?(P54) 1、上部结构轮廓尺度确定:a、甲板面积;b、甲板高程 2、支承结构轮廓尺度确定:a、导管架的顶高程;b、导管架的底高程;c、导管架的层间高程;d、导管架腿柱的倾斜度(海上导管架四角腿柱采用的典型斜度1:8);e、水面附近的构件尺度;f、桩尖支承高程 5)桩基是如何分类的? 主桩式:所有的桩均由主腿内打出; 群桩式:在导管架底部四周均布桩柱或在其四角主腿下方设桩柱 6)受压桩的轴向承载力计算方法有哪些?(P93) 1、现场试桩法:数据可靠,费用高,深水实施困难; 2、静力公式法:半经验方法,试验资料+经验公式,考虑桩和土塞 重及浮力,简单实用; 3、动力公式法:能量守恒原理和牛顿撞击定理,不能单独使用; 4、地区性的半经验公式法:地基状况差别,经验总结。 7)简述海洋平台管节点的设计要求?(P207) 1、管节点的设计应降低对延展性的约束,避免焊缝立体交叉和焊缝过度集中,焊缝的布置应尽可能对称于构件中心轴线; 2、设计中应尽量减少由于焊缝和邻近母材冷却收缩而产生的应力。在高约束的节点中,由于厚度方向的收缩变形可能引起的层状撕裂 3、一般尽量不采用加筋板来加强管节点,若用内部加强环,则应避免应力集中 4、一般受拉和受压构件的端部连接应达到设计荷载所要求的强度。

海洋平台建造模拟施工的应用及工艺优化

海洋平台建造模拟施工的应用及工艺优化 发表时间:2016-10-12T15:47:46.613Z 来源:《基层建设》2016年12期作者:王刚 [导读] 摘要:对于海洋中大型平台的建造,通常需要多方面的参与才能完成。由于设计图和材料的准备等前期的工作将工程时间压缩的过短,再加上开发周期的缩短,使整个过程的建造时间出现紧张的情况,短时间内要完成工程的建造,这就对总体方案的统筹提出较高的要求。 中海福陆重工有限公司 519055 摘要:对于海洋中大型平台的建造,通常需要多方面的参与才能完成。由于设计图和材料的准备等前期的工作将工程时间压缩的过短,再加上开发周期的缩短,使整个过程的建造时间出现紧张的情况,短时间内要完成工程的建造,这就对总体方案的统筹提出较高的要求。要想保证质量和工期的高要求,就要对建造工艺不断优化,对整体的工艺进行研究,模拟施工并进行研究,对管理方式进行讨论,选择最优的平台建造方法。 关键词:海洋平台建造;模拟施工;工艺优化 我国自改革开放以来就开始对海洋工程进行开发,现阶段大型综合组块的建造工艺已经比较成熟,但是随着工期、质量要求的提升,现今的建造方式相对落后,已经达不到工程的要求,在较短时间内的建造过程中就会产生很多矛盾,不仅不能保证工期还会影响工程的质量。本文主要通过分析怎样调整工期、质量、安全生产、以及过程流程之间的问题和施工中怎样优化管理流程、提升技术水平来促进工程的进步,主要选择模拟施工和工艺优化的手段来进行。具体如下: 一、建造工艺上的短板 (一)工程期限 根据相关数据统计显示[1],在2008年建造一个5000t的海洋平台要一年多的时间,2010年建造一个7000t的海洋平台要11个月时间,2015年建造一个8000t的海洋平台期限为8个月,数据显示,建造工期呈现缩短的趋势,在缩短的工期中建造过程迎来了新的挑战。传统的建造工艺已经达不到工程的要求,给整个工程带来了巨大的影响。第一,由于工期的缩短,将很多项目集中到了一起,不能再按照结构的顺序进行逐项开展工作,这就会造成人力资源的短缺,还会产生各专业交叉工作,产生制约。第二,设计和材料的采购不能及时的满足工程的需求,供不应求又会加大工程的压力。第三,对于建造来说还是在最后的阶段进行,在之前的设计、采购等缓解若延误了工期就会给最后的建造提出了更高的要求,带来巨大的压力。 (二)工程质量 由于工期的缩短,导致很多专业不能按照顺序进行开展,造成很多专业出现交叉工作的现象,这样就会引发质量问题,主要表现在:第一,专业没有进行合理安排,会造成返工;第二,交叉工作会导致原始设计的改动;第三,因设计和设计变更引发的质量问题;第四,由于采购的不及时,设备没有及时的供应等。归结起来还是因为工期缩短导致的一系列问题。例如图1所示,主要是因为电仪支架与舾装工序安排不合理引起的舾装重复作业;因为设计的变动,使灯具支架和安全设备产生碰撞;采购不及时、不精准,设备晚于需求时间、开孔顺序不一致。 图1工程质量问题 (三)工程费用 基于工期的缩短,在一段时间内,很多人力、物力、财力会集中使用,短时期内的费用的使用会呈现出高增长的现象,主要包括,交叉工作、设计的更改、重复建造等造成的补修以及索赔。 二、模拟施工的应用 模拟施工是现代过程建造中较为先进的管理理念,是指在工程实施前做的预后,主要包括,预测各专业间的矛盾,并制定解决方案[2]。 (一)模拟施工的条件。只要公司的设计方法、材料采购、生产管理等均达到标准要求是,才可进行模拟施工。在实施的过程中还需要完善的设计图纸,充足的材料,完善的材料采购体系,明确的工作界面。

相关主题
文本预览
相关文档 最新文档