当前位置:文档之家› 汽车动力总成位移计算方法和包络构建研究

汽车动力总成位移计算方法和包络构建研究

汽车动力总成位移计算方法和包络构建研究
汽车动力总成位移计算方法和包络构建研究

质心算法代码

clear all,clc; for n=6:2:14 x=100*rand(1,100); %布置10m*10m的网格区域y=100*rand(1,100); w=100*rand(1,n); z=100*rand(1,n); plot(x,y,'b*',w,z,'rO') axis([0 100 0 100]) grid on; xlabel('x'),ylabel('y') title('原始点分布') C=0; X=zeros(1,100); Y=zeros(1,100); for i=1:100 m=0; a=0; b=0; for k=1:n dist=distance(x(i),y(i),w(k),z(k)); if dist<=2 a=a+w(k); b=b+z(k); m=m+1; end end if m>=1 X(i)=a/m; Y(i)=b/m; else X(i)=0; Y(i)=0; C=C+1 ; end end % plot(X,Y,'bO') axis([0 10 0 10]) grid on; xlabel('x'),ylabel('y') title('定位后点分布') ALE=0; for i=1:100

ALE=ALE+sqrt((X(i)-x(i))^2+(Y(i)-y(i))^2); end ALE=ALE/100; ALE=ALE/4; c1(n/2-2)=(100-C)/100 ale1(n/2-2)=ALE bili(n/2-2)=n/(100+n); end figure ; plot(bili,c1); grid on; xlabel('锚节点比例'),ylabel('可定位节点比例') title('锚节点比例与可定位节点比例图'); figure, plot(bili,ale1); xlabel('锚节点比例'),ylabel('定位误差') grid on; title('锚节点比例与定位误差')

(完整版)纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

所以满载时最大爬坡度为tan( m ax α)*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速m ax V 匀速行驶时,电机所需提供的功率(kw )计算式为: max 2 max ).15.21....(36001 V V A C f g m P d n +=η (2-1) 式中: η—整车动力传动系统效率η(包括主减速器和驱动电机及控制器的工作效率),取0.86; m —汽车满载质量,取18000kg ; g —重力加速度,取9.8m/s 2; f —滚动阻力系数,取0.016; d C —空气阻力系数,取0.6; A —电动汽车的迎风面积,取2.550×3.200=8.16m 2(原车宽*车身高); m ax V —最高车速,取70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 kw 1005.8970)15.217016.86.0016.08.918000(86.036001).15 .21....(360012 max 2 max <kw V V A C f g m P D n =???+???=+?=η (3-2) 4.2满足以10km/h 的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:018)14.0(tan ==-α。 车辆在14%坡度上以10km/h 的车速行驶时所需的电机峰值功率计算式为:

汽车质量在前后轴的轴荷分配

一 1、汽车的质量对汽车的动力性、燃油经济性、制动性、操纵稳定性等都有重要的影响。在相同发动机的前提下,汽车的质量越大0-100m/s 的加速时间越长;行驶相同里程所消耗的燃油越多;由一定速度减小到零,在刹车时由于2 12 E mv (m 为汽车总质量) ,质量越大,能量越大,对刹车盘的制动性要求也越高;在其他条件一样的情况下,质量越大,在转弯时产生的离心惯性力也越大,影响操纵稳定性。所以我们必须对汽车的质量予以重视。 2、汽车的质量参数包括汽车整备质量、载客量、装载质量、质量系数、汽车总质量、载荷分配。下面重点介绍一下整车整备质量、汽车总质量、轴荷分配三个概念。 ①整车整备质量:指车上带有全部装备(包括随车工具、备胎(约18公斤)等), 加满燃油(35公斤)、水”)。 ②汽车总质量:是指装备齐全、并按规定装满客、货的整车质量。 ③轴荷分配:汽车质量在前后轴的轴荷分配是指汽车在空载或满载静止的情况下, 前后轴对支撑平面的垂直负荷,也可以用占空载或满载总质量的百分比来表示。 二 轴荷分配对轮胎寿命和汽车的使用性能有影响。在汽车总布置设计时,轴荷分配应考虑这些问题:从各轮胎磨损均匀和寿命相近考虑,各个车轮的载荷应相差不大;为了保证汽车有良好的动力性和通过性,驱动桥应有足够大的载荷,而从动轴载荷可以适当减少;为了保证汽车有良好的操纵稳定性,转向轴的载荷不应过小。因此可以得出作为很重要的载荷分配参数,各使用性能对其要求是相互矛盾的,这要求设计时应根据对整车的性能要求、使用条件等,合理的选取轴荷分配。 汽车总体设计的主要任务:要对各部件进行较为仔细的布置,应较为准确地画出各部件的形状和尺寸,确定各总成质心位置,然后计算轴荷分配和质心位置高度,必要时还要进行调整。此时应较准确地确定与汽车总体布置有关的各尺寸参数,同时对整车主要性能进行计算,并据此确定各总成的技术参数,确保各总成之间的参数匹配合理,保证整车各性能指标达到预定要求。 汽车的驱动形式与发动机位置、汽车结构特点、车头形式和使用条件等对轴荷分配有显著影响。如发动机前制前驱乘用车和平头式商用车前轴负荷较大,而长头式货车前轴负荷较小。常在坏路上行驶的越野汽车,前轴负荷应该小些。乘用车和汽车设计者考虑汽车负载状态,是依据有关国家标准执行的。当总体布置进行轴荷分配计算不能满足预定要求时,可通过重新布置某些总成、部件(如油箱,备胎、蓄电池等)的位置来调整。必要时,改变轴距也是可行的方法之一。 前轮驱动与后轮驱动只与汽车整体布置有关,多数轿车采用前轮驱动方式,将发动机、变速器和驱动器联成一体,布置在汽车前方,可省略传动轴,提高汽车操纵的稳定性。后轮驱动是少数轿车布置的形式,有利于轴荷分配和操纵机构布置。前轮驱动或后轮驱动本身不会对制动的表现有大的影响,对汽车制动的主要影响是汽车前后轴荷的变化。地面对前、后车轮上的法向反作用力数值等于车轮的垂直载荷,制动时法向反作用力影响作用在车轮上的摩擦力大小。汽车静止时前后轴荷是平衡的,法向反作用力是均衡分布的。但在制动过程中,由于汽车惯性力的作用,轴间的载荷会重新分配。在制动过程中,汽车受惯性影响向前冲,前轮负荷大幅度增大;后轮载荷大幅度减少。

GB《道路车辆外廓尺寸轴荷及质量限值》

《道路车辆外廓尺寸、轴荷及质量限值》 GB1589-2004 Limits of dimensions , axle load and masses for road vehicles 前言 本标准为全文强制。 本标准是对GB 1589-1989《汽车外廓尺寸限界》的第一次修订。 本标准与GB 1589-1989《汽车外廓尺寸限界》相比主要区别如下: --增加三轮汽车、三轴客车、挂车的外廓尺寸限值要求; --增加车辆通道圆和外摆值的测量方法及要求; --增加汽车、挂车和汽车列车的轴荷及总质量的限值要求; --增加对汽车、挂车和汽车列车的“其他要求” --修改客车、货车等车辆的外廓尺寸限值要求。 本标准的附录A为规范性附录。 本标准代替GB 1589-1989《汽车外廓尺寸限界》。 本标准对新定型产品自实施之日起执行,对在生产产品自发布之日起十二个月后执行。

本标准由中华人民共和国国家发展和改革委员会、交通部、公安部共同提出。 本标准由全国汽车标准化技术委员会归口。 本标准起草单位:中国汽车技术研究中心、交通部公路科学研究所、公安部交通管理科学研究所、第一汽车集团公司、东风汽车公司。 本标准所代替标准的历次版本发布情况为:GB 1589-1989。 1 范围 本标准规定了汽车、挂车及汽车列车的外廓尺寸、轴荷及质量的限值。 本标准适用于在道路上使用的汽车(最大设计总质量超过26000kg的汽车起重机、混凝土泵车及消防车除外)、挂车及汽车列车。本标准不适用于军队装备的专用车辆。 注:汽车起重机、混凝土泵车及消防车的最大允许总质量的最大限值为55000kg。 2 规范性引用文件

汽车质心位置的计算.qicheban

汽车质心位置的计算 燕山大学 车辆与能源学院 裴永生 2011年12月7日

汽车质心位置的计算 1、 质心到前轴(坐标原点)的水平距离 (1) 常规公式: gi Xi gi a ∑?∑=)( ------------------------(1) 式中 a 质心到前轴的水平距离 gi 各总成(或载荷)质量 Xi 各总成(或载荷)到前轴的水平距离 轴荷(或簧载质量): gi L a G ∑?-=)1(1 L Xi gi gi )(?∑-∑= ------------------------(2) gi L a G ∑?= 2 L Xi gi )(?∑= ------------------------(3) 式中 1G 前轴负荷(或前簧载质量) 2G 后轴负荷(或后簧载质量) L 轴距 (2) 先求轴荷再算质心位置: ?? ?????-∑=gi L Xi G )1(1

------------------------(2a ) ???????∑=gi L Xi G 2 ------------------------(3a ) )1(12G G L G G L a -?=?= ------------------------(4) 式中 gi G G G ∑=+=21 总负荷(或簧载总质量) 2、 质心离地高度 常规公式: gi hi gi h ∑?∑=)( -------------------------(5) 式中 h 质心到地面的高度 hi 各总成(或载荷)离地高度 *注:可以先算出)(hi gi ?∑再除以gi ∑,也可以先算出)( gi hi gi ∑?再合成。 3、 各种质心的分别计算和合成 (1) 分别计算: ① 空载、满载状态的质心位置

专用汽车设计常用计算公式汇集

第一章专用汽车的总体设计 1总布置参数的确定 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1长 ①载货汽车w 12m ②半挂汽车列车w 16.5m 1.1.2宽W 2.5m (不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性 挡泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3高W4m (汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)

1.3.2基本计算公式 A 已知条件 a)底盘整备质量G i b)底盘前轴负荷g i c)底盘后轴负荷Z i d)上装部分质心位置L2 e)上装部分质量G2 f)整车装载质量G3 (含驾驶室乘员) g)装载货物质心位置L3 (水平质心位置) h)轴距 l(h I2) B上装部分轴荷分配计算(力矩方程式) 例图1 1 g2 (前轴负荷)X(I -l i )(例图1)=G2 (上装部分质量)X L2 (质心位置)

专用汽车设计常用计算公式汇集

专用汽车设计常用计算公 式汇集 Prepared on 24 November 2020

第一章专用汽车的总体设计 1 总布置参数的确定 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1 长 ①载货汽车≤12m ②半挂汽车列车≤16.5m 1.1.2 宽≤ 2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性挡 泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1 轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2 轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)

1.3.2 基本计算公式 A 已知条件 a ) 底盘整备质量G 1 b ) 底盘前轴负荷g 1 c ) 底盘后轴负荷Z 1 d ) 上装部分质心位置L 2 e ) 上装部分质量G 2 f ) 整车装载质量G 3(含驾驶室乘员) g ) 装载货物质心位置L 3(水平质心位置) h ) 轴距)(21l l l + B 上装部分轴荷分配计算(力矩方程式) g 2(前轴负荷)×(12 1l l +)(例图1)=G 2(上装部分质量)×L 2(质心位置) g 2(前轴负荷)=1222 1)()(l l L G +?上装部分质心位置上装部分质量 则后轴负荷222g G Z -= C 载质量轴荷分配计算 g 3(前轴负荷)×)2 1(1l l +=G 3×L 3(载质量水平质心位置) g 3(载质量前轴负荷)= 1332 1)()(l l L G +?装载货物水平质心位置整车装载质量 例图1

N维空间几何体质心的计算方法.

N维空间几何体质心的计算方法 摘要:本文主要是求一个图形或物体的质心坐标的问题,通过微积分方面的知识来求解,从平面推广到空间,问题也由易到难。首先提出质心或形心问题,然后给出重心的定义,再由具体的例子来求解相关问题。 关键字:质心重心坐标平面薄板二重积分三重积分 一.质心或形心问题: 这类问题的核心是静力矩的计算原理。 1.均匀线密度为M的曲线形体的静力矩与质心: 静力矩的微元关系为 , dMx yudl dMy xudl ==. 其中形如曲线L( (, y f x a x b =≤≤的形状体对x轴与y轴的静力矩分别 为( b

a y f x S = ? , ( b y a M u f x =? 设曲线AB L 的质心坐标为( ,x y,则,, y x M M x y

M M == 其 中( b a M u x d x u l == ? 为AB L 的质量,L为曲线弧长。若在式 y M x M

= 与式 x M y M = 两端同乘以2π,则可得 到22( b a y xl f x S ππ == ? ,

22( b a x yl f x S ππ == ? ,其中x S 与y S 分别表示曲线AB L 绕x轴与y轴旋转而成的旋转体的侧面积。 2.均匀密度平面薄板的静力矩与质心: 设f(x为 [],a b 上的连续非负函数,考虑形如区域 {} (,,0(

D x y a x b y f x =≤≤≤≤ 的薄板质心,设M为其密度,利用微元法,小曲边梯形MNPQ的形心坐标为1 (,(, 2 y f y x y x x ≤≤+? ,当分割无限细化时,可当小曲边梯形MNPQ的质量视为集中于点 1 (,( 2 x f x 处的一个质点,将它对x轴与y轴分别取静力矩微元可有 1 (( 2 x dM u f x f x dx

汽车质心位置的计算教学内容

汽车质心位置的计算

汽车质心位置的计算 1、 质心到前轴(坐标原点)的水平距离 (1) 常规公式: gi Xi gi a ∑?∑=)( ------------------------(1) 式中 a 质心到前轴的水平距离 gi 各总成(或载荷)质量 Xi 各总成(或载荷)到前轴的水平距离 轴荷(或簧载质量): gi L a G ∑?-=)1(1 L Xi gi gi )(?∑-∑= ------------------------(2) gi L a G ∑?=2. L Xi gi )(?∑= ------------------------(3) 式中 1G 前轴负荷(或前簧载质量) 2G 后轴负荷(或后簧载质量) L 轴距 (2) 先求轴荷再算质心位置: ????? ??-∑=gi L Xi G )1(1 ------------------------(2a ) ?? ?????∑=gi L Xi G 2 ------------------------(3a )

)1(12G G L G G L a -?=?= ------------------------(4) 式中 gi G G G ∑=+=21 总负荷(或簧载总质量) 2、 质心离地高度 常规公式: gi hi gi h ∑?∑=)( -------------------------(5) 式中 h 质心到地面的高度 hi 各总成(或载荷)离地高度 *注:可以先算出)(hi gi ?∑再除以gi ∑,也可以先算出)(gi hi gi ∑?再合成。 3、 各种质心的分别计算和合成 (1) 分别计算: ① 空载、满载状态的质心位置 空载: gi 不包括乘员或/和载荷,仅包括相关总成。 满载: gi 包括乘员或/和载荷以及相关总成。 ② 簧载质量、非簧载质量的质心位置 簧载质量:gi 只包括属于簧载质量的总成,或者还包括乘员或载荷。 非簧载质量:gi 只包括属于非簧载质量的总成。

纯电动汽车动力性计算公式

纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 整车外廓(mm ) 11995×2550×3200(长×宽×高) 电机额定功率 100kw 满载重量 约18000kg 电机峰值功率 250kw 主减速器速比 6.295:1 电机额定电压 540V 最高车(km/h ) 60 电机最高转速 2400rpm 最大爬坡度 14% 电机最大转矩 2400Nm 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

kw 100w 5.8810)15.211016.86.08cos 016.08.9180008sin 8.918000(86.036001).15 .21..cos ...sin ..(36001 20 02 max <k V V A C f g m g m P slope slope D =???+???+???=++=ααη 从以上动力性校核分析可知,所选100kw/540V 交流感应电机的功率符合所设计的动力性参数要求。 5 动力蓄电池组的校核 5.1按功率需求来校核电池的个数 电池数量的选择需满足汽车行驶的功率要求,并且还需保证汽车在电池放电达到一定深度的情况下还能为汽车提供加速或爬坡的功率要求。 磷酸锂铁蓄电池的电压特性可表示为: bat bat bat bat I R U E .0+= (4-1) 式中: bat E —电池的电动势(V ); bat U —电池的工作电压(V ); 0bat R —电池的等效内阻(Ω); bat I —电池的工作电流(A )。 通常,bat E 、0bat R 均是电池工作电流bat I 以及电流电量状态值SOC (State Of Charge )的函数,进行电池计算时,要考虑电池工作最差的工作状态。假设SOC 为其设定的最小允许工作状态值(SOC low ),对应的电池电动势bat E 和电池等效内阻0bat R 来计算电池放电的最大功率,即可得到如下计算表达式: 铅酸电池放电功率: bat bat bat bat bat bat bd I I R E I U P )..(.0-== (4-2) 上式最大值,即铅酸蓄电池在SOC 设定为最小允许工作状态值时所能输出的最大功率为: 2 max 4bat bat bd R E P = (4-3)

汽车轴荷监测-编制说明

GB/T XXXXX-XXXX《车辆质量监测技术要求》 (征求意见稿) 编制说明 一、工作简况 1任务来源 为了增强车辆运行过程的安全性,全国汽车标准化技术委员会经过研究,决定将《汽车轴荷监测》列入国家标准制定计划,项目编号为20073628-T-303。 标准的制订工作由中国汽车技术研究中心有限公司、中航电测仪器股份有限公司和陕西汽车集团有限公司承担。 2背景和意义 近几年,随着我国汽车工业的高速发展,商用车辆保有量越来越大,超限超载现象频繁发生,引发交通事故、造成人员伤亡,对社会影响较大,亟待予以解决。行业上对有关问题也愈发重视从管理的角度,轴荷监测是未来的发展趋势,此外对于运输行业也能起到一定的约束作用;从技术储备的角度,随着整车上对电子产品使用的不断丰富,轴荷监测功能的实现已经变得可行。 大型商用车安装“汽车轴荷监测”,车辆驾驶员可以及时注意到车辆的轴荷状态,制定国家标准不仅有利于完善汽车行业标准体系和规范行业市场秩序,还有利于规范汽车轴荷监测在车辆上的安装,保证产品质量,促进汽车行业取得技术进步。 3主要工作过程 3.1 2016年起草组经过行业调研,了解到行业在轴荷监测产品的技术水平逐渐成熟,开始开展标准技术研究及起草工作。2016到2018年先后在商用车工作组会上汇报标准起草工作进展情况并逐渐完善了标准草案。 3.2 2018年1月23日在天津市举行的商用车标准研究工作组第十五次工作会议中对《汽车

轴荷监测》草案进行评审。 会议讨论了车辆轴荷检测系统技术路线和细节。目前采用车桥变形量和钢板弹簧形变量的传感器,技术上可实现,成本可控;空气悬挂的轴荷检测技术压力传感器被国外公司垄断,不易推广;对基于发动机的轴荷检测存在静态无法测量的情况。有的主机厂认为,车桥变形量传感器要分级标定,费时费力,钢板弹簧形变量技术要求车辆出厂,一车一标,操作费时,而且存在销售后市场更换钢板弹簧检测失效的情况,不易推广。会议认为会后可再进行行业的调研。 3.3 2018年10月25日在江苏省常州市举行的汽标委商用车标准研究工作组2018年度工作会议中对《汽车轴荷监测》草案进行评审。 会议主要围绕是否需制订该标准进行了讨论,与会单位主要意见有: 1、汽标委孙枝鹏:公安部及交通部20年前即提出制订此标准,由于近两年称重传感器零部件厂商的产品开发能力提升,故重新提出制订该标准,因此即使汽标委不组织制订,政府部门也有较大可能自行主导制订,同时该标准的实施,也利于企业维护自身利益,对通过标准法规维护统一要求也起到重要作用。 2、其他参会单位在讨论初期多数不同意制订本标准,主要理由为标准要求没有足够的试验数据支撑,同时也认为技术路线成熟度不够,在听取汽标委意见后,多数同意制订该标准,但仍需进行更多的试验,同时评估技术方案对整车装配工艺的冲击。 3、欧洲工业协会代表表示,在欧洲也没有车载称重的标准发布,主要原因为车载称重与地磅称重之间的误差会引起用户与政府部门、主机厂的纠纷,目前的条件成熟度不够,建议继续讨论研究再制订标准。 4、江淮表示,支持标准在汽标委归口,但是基于避免纠纷,车载称重的精度要有高要求。 其他针对标准内容的主要意见有: 1、轴荷信息可不必实时显示。 2、报警轴荷的临界点应按公告参数设定。 3、行驶过程中不应报警。

汽车动力性设计计算公式

汽车动力性设计计算公式 动力性计算公式 变速器各档的速度特性: 0 377 .0i i n r u gi e k ai ??= ( km/h ) ......(1) 其中:k r 为车轮滚动半径,m; 由经验公式:?? ? ???-+=)1(20254.0λb d r k (m) d----轮辋直径,in b----轮胎断面宽度,in λ---轮胎变形系数 e n 为发动机转速,r/min ;0i 为后桥主减速速比; gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。 各档牵引力 汽车的牵引力: 错误!未指定书签。 t k gi a tq a ti r i i u T u F η???= )()( ( N ) (2) 其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N ?m ;t η为传动效率。 汽车的空气阻力: 15 .212 a d w u A C F ??= ( N ) (3) 其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。 汽车的滚动阻力: f G F a f ?= ( N ) (4)

其中:a G =mg 为满载或空载汽车总重(N),f 为滚动阻尼系数 汽车的行驶阻力之和r F : w f r F F F += ( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 各档功率计算 汽车的发动机功率: 9549 )()(e a tq a ei n u T u P ?= (kw ) (6) 其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: t a w f r u F F P η3600)(+= (kw ) (7) 各档动力因子计算 a w a ti a i G F u F u D -= )()( (8) 各档额定车速按下式计算 .377 .0i i n r u i g c e k i c a = (km/h ) (9) 其中:c e n 为发动机的最高转速; )(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。 对各档在[0,i c a u .]内寻找a u 使得)(a i u D 达到最大,即为各档的最大动力因子m ax .i D 注:可画出各档动力因子随车速变化的曲线 最高车速计算 当汽车的驱动力与行驶阻力平衡时,车速达到最高。 根据最高档驱动力与行驶阻力平衡方程

质心算法

3.1 质心检测算法 系统采用质心法进行数据处理能提高测试精度。因为质心法能使CCD 上的图像分辨率达到光敏元尺寸的1/10,那么成像亮线中心在CCD 上所对应的光敏源序号就可以是小数,而非一定是整数,这样通过计算可知,精度提高了0.1个百分点。虽然测量系统的精度有提高,但0.11%的相对误差仍不能令人满意,从误差公式可知,系统误差的改善主要取决于CCD 的像元尺寸。随着CCD 技术的不断发,像元尺寸也会不断改善,系统误差也将会有大幅度减小。 质心法图像预处理算法步骤如下[5]:(1)对图像通过灰度化和反色后阈值选择得到光斑特征区域;(2)模糊去噪(mean blur ),消除热噪声以及像素不均匀产生的噪声;(3)再次进行阈值选择,得到更清晰的光斑区域;(4)形态学处理,选择disk 中和合适的领域模板,对图像进行腐蚀和填充处理,以得到连通域的规则形状图形;(5)边缘检测得到图像边缘,反复实验证明canny 边缘检测算法最好;(6)对边缘再进行形态学strel -imerode -imclose -imfill 相关运算得到更连通的边缘曲线,调用regionprops (L ,properties )函数,根据质心法计算质心。 下面介绍几种常用的质心算法 (1)普通质心算法 (,)ij ij ij c c ij ij x I x y I =∑∑ (3-1) 其中ij I 为二维图像上每个像素点所接收到的光强,该算法适用于没有背景噪 声,背景噪声一致或信噪比较高的情况。 (2)强加权质心算法 0000000000000000,/2,/2 ,/2,/2 ,/2,/2 ,/2,/2y w y x w x i ij j y w y i x w x c y w y x w x ij j y w y i x w x x I w x I w ++=-=-++=-=-=∑∑∑∑

汽车质心位置的计算

汽车质心位置的计算 1、 质心到前轴(坐标原点)的水平距离 (1) 常规公式: gi Xi gi a ∑?∑=)( ------------------------(1) 式中 a 质心到前轴的水平距离 gi 各总成(或载荷)质量 Xi 各总成(或载荷)到前轴的水平距离 轴荷(或簧载质量): gi L a G ∑?-=)1(1 L Xi gi gi )(?∑- ∑= ------------------------(2) gi L a G ∑?=2. L Xi gi )(?∑= ------------------------(3) 式中 1G 前轴负荷(或前簧载质量) 2G 后轴负荷(或后簧载质量) L 轴距 (2) 先求轴荷再算质心位置: ????? ??-∑=gi L Xi G )1(1 ------------------------(2a ) ?? ?????∑=gi L Xi G 2 ------------------------(3a )

)1(12G G L G G L a -?=?= ------------------------(4) 式中 gi G G G ∑=+=21 总负荷(或簧载总质量) 2、 质心离地高度 常规公式: gi hi gi h ∑?∑=)( -------------------------(5) 式中 h 质心到地面的高度 hi 各总成(或载荷)离地高度 *注:可以先算出)(hi gi ?∑再除以gi ∑,也可以先算出)( gi hi gi ∑?再合成。 3、 各种质心的分别计算和合成 (1) 分别计算: ① 空载、满载状态的质心位置 空载: gi 不包括乘员或/和载荷,仅包括相关总成。 满载: gi 包括乘员或/和载荷以及相关总成。 ② 簧载质量、非簧载质量的质心位置 簧载质量:gi 只包括属于簧载质量的总成,或者还包括乘员或载荷。 非簧载质量:gi 只包括属于非簧载质量的总成。

整车计算及质心位置确定

第六章整车计算及质心位置确定 第一节轴荷计算及质心位置确定 1、本章所用质量参数说明(Kg) T 底盘承载质量 F 底盘整备质量(不含上车装置) NL 有效载荷 V A1 底盘整备质量时的前轴荷 HA1 底盘整备质量时的后轴荷 V A2 允许前轴荷 HA2 允许后轴荷 HAG2 允许总的后轴荷(驱动轴+支撑轴) NLA2 允许后支撑轴轴荷 VLA2 允许中支撑轴轴荷 GG2 允许总质量(载货汽车底盘整备质量+上车装置质量+允许载荷) NL2 允许有效载荷 V A3 实际有效载荷(AB+NL)时的前轴荷 HA3 实际有效载荷(AB+NL)时的后轴荷) GG3 实际有效载荷(AB+NL)时的总质量 NL3 实际有效载荷(AB+NL) HA4 底盘后轴荷(包括所有附加质量例如驾驶员、附加油箱,但不含AB和NL)GG4 底盘总质量(包括所有附加质量例如驾驶员、附加油箱,但不含AB和NL)NLV 由轴荷超载引起的有效载荷损失 HAü超过允许后轴荷 V Aü超过允许前轴荷 AB 上车装置质量 EG整车整备质量(载货汽车底盘+AB) M 附加质量,例如: M1 驾驶员+副驾驶员 M2 备胎(新、老位置移动时) M3 起重机(随车吊)、起重尾板等 LV A 前轴荷占总质量的比例(%) 2、本章所用尺寸参数说明(mm) A、轴距

A1、轴距(第一后轴中心线至第二后轴中心线) A理论理论轴距(只用于3轴或4轴) a1 与轴荷比例(驱动轴与支撑轴之比)有关的从理论轴线到驱动轴的距离W 前轴中心线至驾驶室后围的距离 W2 前轴中心线至上车装置前缘的距离 X 货厢或上车装置的长度 y 均布载荷时最佳质心位置至前轴中心线的距离(AB+NL) y'假设的质心位置至前周中心线的位置 y1 驾驶员+副驾驶员位置距前轴中心线位置 y2 备胎(新、老位置移动的距离) y3 起重机(随车吊)、起重尾板等 MHS 附加质量的质心高度 GHSL 整车空载质心高度 GHSV 整车满载质心高度 FHS 底盘的质心高度 ABHS 上车装置的质心高度 NLHS 允许有效载荷的质心高度 2、轴荷计算 a)双后轴: a1=A1/2 A理论=A+a1 b)后支撑轴: a1=NLA2×A1/HAG2

质心测量方案报告

《振动筛偏心块质心位置测量》 ——测量方案报告 系别:机电工程系 专业:测控技术与仪器 班级:082911 小组:第五组 指导老师:王平周先辉

引言 在机械工程领域, 质心测量是一个应用十分广泛的测量项目, 如通用汽车的动力总成、汽车总装质心高度的测量,装甲车辆和车体上武器系统的质心分布, 火箭、飞机等各类飞行器的质心测量, 振动筛偏心块质心位置测量等,都属于质心测量的范畴。 根据测量原理的不同,质量质心测量方法通常分为三类:悬挂法、复摆测量法和质量反应法。悬挂法是利用自由悬挂时质心必然通过悬 挂点垂直面的原理来确定质心位置的方法,该方法只适用于小型设备且精度不高;复摆测量法是利用复摆摆动原理进行测量的方法,通过两次不同摆幅的摆动测量计算出高度方向质心坐标,该方法只能进行装备高度方向的质心坐标测量,且试验过程复杂,试验操作步骤多, 误差影响环节较多,安全性较差;质量反应法是利用力矩平衡的原理 进行质心测量的方法,该方法试验过程相对简单,普及率较高。 三点支撑法是质量反应法的一种,是目前应用比较广泛的一种质心测量方法,它通过3个称重传感器支承测试台,通过力矩平衡原理可同时对弹丸的质量、质心和偏心进行测量。该方法结构简单,测量 方便,测量效率、测量精度高,本次实训同样采用三点支撑法来测量 振动筛偏心块质心位置。

1 三点支承法测量原理 3个称重传感器支承点以及偏心块在测试平台上的投影如图 1 所示,建立坐标系(坐标原点为测试平台中心) 。3个传感器支承点的坐标位置如图,分别为,,。偏心块质心在 o x y中的投影坐标为。 图1:俯视图 图2:主视图 ( 1 ) 测质量 根据传感器测得的值可得弹体的重量为: ? 式中:——传感器值除去测试台重量的净值; g——重力加速度。 ( 2) x向质心位置 测量装置在oxy平面中,根据力矩平衡原理得: ? ( 3 ) y向质心位置

J002 轴荷质量分配计算规范

Q/XRF xxx公司 Q/XRF-J002-2015 xxx 轴荷质量分配计算规范 编制:日期: 校对:日期: 审核:日期: 批准:日期: 2015-03-15发布 2015-03-15实施 xxx公司发布

一概述 物流车的载重量计算、质心位置计算及轴荷分配的计算,对于物流车设计是一个相当重要的组成部分。通过计算分析,可以预控物流车的侧倾稳定性、前后桥的承受载荷情况、整车制动和方向稳定等技术性能,对于提高新产品开发成功率、提高产品质量有重要意义。本规范将指导波导物流车产品设计中的总质量计算和轴荷分配计算,以提高新产品开发设计质量。 二物流车总质量计算 2.1 整备质量 物流车整备质量定义是指汽车的干质量加上冷却液和备用车轮和随车附件的总质量。干质量就是指仅装备有车身、全部电气设备和车辆正常行驶所需要的完整车辆的质量。 物流车按照其结构特征整备质量通常主要包含以下部分:底盘(三类)、车身骨架、车身外板、内外饰、电气系统等,其中底盘包含动力总成、传动系统、悬挂系统、制动系统、车轮以及辅助附件等。这些系统的质量通常在设计任务书中有明确的定义。 。 物流车整备质量定义为M 2.2 装载质量 装载质量包括司机、乘客以及货物的总质量。 2.2.1 术语 乘员:物流车上的乘客、工作人员(例:驾驶员、乘务员)的总称。 2.2.2 符号 N——乘员人数; A——乘员座位数 ——最大设计总质量,单位为千克(kg); M T ——整车整备质量,单位为千克(kg); M k ——装载总质量(kg); M 1 ——每位乘员的平均质量,单位为千克每人(kg/人); m r

M ——装载货物的质量,(kg); w 2.2.3 每位乘员的质量 每位乘员的平均质量为65 kg; 2.3 装载总质量 装载总质量为装载货物的质量与乘员质量之和 M1=M w+M r N 三物流车轴荷分配计算 3.1 适用标准 GB 1589-2004道路车辆外廓尺寸、轴荷及质量限值 3.2 车辆的最大允许轴荷限值 物流车单轴的最大允许轴荷不得超过以下规定的最大限值(单位为千克):货车每侧单轮胎 6000 货车每侧双轮胎 10000 注: 1)安装名义断面宽度超过400(公制系列)或13.00(英制系列)轮胎的车轴,其 最大允许轴荷不得超过规定的各轮胎负荷之和,且最大限值为10000kg; 2)装备空气悬架时最大允许轴荷的最大限值为11500 kg。 3.3 车辆总质量限值 物流车最大允许总质量(不大于,千克): 注: 1)当采用方向盘转向、由传动轴传递动力、具有驾驶室且驾驶员座椅后设计 有物品放置空间时,最大允许总质量最大限值为3000kg; 2)当驱动轴为每轴每侧双轮胎且装备空气悬架时,最大允许总质量的最大限 值为26000kg;

汽车的动力性设计计算公式

汽车动力性设计计算公式 3.1 动力性计算公式 3.1.1 变速器各档的速度特性: 377.0i i n r u gi e k ai ??= ( km/h ) (1) 其中:k r 为车轮滚动半径,m; 由经验公式:?? ? ???-+=)1(20254.0λb d r k (m) d----轮辋直径,in b----轮胎断面宽度,in λ---轮胎变形系数 e n 为发动机转速,r/min ;0i 为后桥主减速速比; gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。 3.1.2 各档牵引力 汽车的牵引力: 错误!未指定书签。 t k gi a tq a ti r i i u T u F η???= )()( ( N ) (2) 其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N ?m ;t η为传动效率。 汽车的空气阻力: 15 .212 a d w u A C F ??= ( N ) (3) 其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。 汽车的滚动阻力:

f G F a f ?= ( N ) ......(4) 其中:a G =m g 为满载或空载汽车总重(N),f 为滚动阻尼系数 汽车的行驶阻力之和r F : w f r F F F += ( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 3.1.3 各档功率计算 汽车的发动机功率: 9549 )()(e a tq a ei n u T u P ?= (kw ) (6) 其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: t a w f r u F F P η3600)(+= (kw ) (7) 3.1.4 各档动力因子计算 a w a ti a i G F u F u D -= )()( (8) 各档额定车速按下式计算 .377 .0i i n r u i g c e k i c a = (km/h ) (9) 其中:c e n 为发动机的最高转速; )(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。 对各档在[0,i c a u .]内寻找a u 使得)(a i u D 达到最大,即为各档的最大动力因子m ax .i D 注:可画出各档动力因子随车速变化的曲线

8非关联式悬架的多轴汽车轴荷计算

非关联式悬架的多轴汽车轴荷计算 东风汽车工程研究院 陈耀明 2005年6月

目录 前言---------------------2 1.静轴荷---------------------3 2.簧载质体的位置---------------------5 3.在坡道变速运动时的轴荷分配---------------------6 4.四轴汽车的轴荷分配---------------------6 5.等轴距三轴汽车的轴荷分配---------------------8

前言 多轴汽车采用非关联式悬架,可以使结构简单,通用化程度高。只要选择合适的悬架参数,就可以获得很好的平顺性和通过性。许多多轴越野汽车或坦克,都采用非关联式悬架,特别是非关联的独立悬架。近代的重型载货车或半挂车,因为主要行驶在高等级公路上,采用非关联式悬架,就已能满足所要求的平顺性。 非关联式悬架多轴汽车的轴荷计算,属超静定问题。一般采用“变形一致原理”列出附加关系式,连同平衡方程式一起,联立后解出未知数。当然,这类悬架都是非控制式悬架。如果多轴车的悬架当中,有关联的(如平衡悬架)又有非关联的,那么,自然可以按关联的条件列出附加方程式,按非关联的关系列出变形一致方程式,再加上平衡条件,联立求解,就可以求到所要的未知数。本文因篇幅所限,不含这部分内容。 本文的主要内容引自1972年3月“国外汽车”杂志,文章名称为“多轴非关联悬架汽车的轴荷计算”。该译文来自前苏联1971年第9期“汽车工业”俄文版杂志。笔者因工作需要在这之前,1966年就推导出四轴汽车和三轴汽车的相关计算公式,现以应用特例也做为本文的一部分。因为公式简化了,读者引用起来方便一些。

相关主题
文本预览
相关文档 最新文档