当前位置:文档之家› 化工原理考题

化工原理考题

化工原理考题
化工原理考题

3.某流化床反应器上装有两个U 型管压差计,如

本题附图所示。测得R

1 = 400 mm R

2

= 50 mm,指示

液为水银。为防止水银蒸汽向空气中扩散,于右侧的

U 型管与大气连通的玻璃管内灌入一段水,其高度R

3

= 50 mm。试求A﹑B两处的表压强。分析:根据静力学基本原则,对于右边的U管压差计,a–a′为等压面,对于左边的压差计,b–b′为另一等压面,分别列出两个等压面处的静力学基本方程求解。

解:设空气的密度为ρ

g

,其他数据如图所示

a–a′处 P

A + ρ

g

gh

1

= ρ

gR

3

+ ρ

水银

ɡR

2

由于空气的密度相对于水和水银来说很小可以忽略不记

即:P

A

= 1.0 ×103×9.81×0.05 + 13.6×103×9.81×0.05 = 7.16×103 Pa

b-b′处 P

B + ρ

g

gh

3

= P

A

+ ρ

g

gh

2

+ ρ

水银

gR

1

P

B

= 13.6×103×9.81×0.4 + 7.16×103 =6.05×103Pa

4. 本题附图为远距离测量控制装置,

用以测定分相槽内煤油和水的两相界面

位置。已知两吹气管出口的距离H = 1m,

U管压差计的指示液为水银,煤油的密度

为820Kg/?。试求当压差计读数R=68mm

时,相界面与油层的吹气管出口距离h。分析:解此题应选取的合适的截面如图所示:忽略空气产生的压强,本题中1-1′和4-4′为等压面,2-2′和3-3′为等压面,且1-1′和2-2′的压强相等。根据静力学基本方程列出一个方程组求解

解:设插入油层气管的管口距油面高Δh

在1-1′与2-2′截面之间 P

1 = P

2

+ ρ

水银

gR

∵P

1 = P

4

,P

2

= P

3

且P

3

= ρ

煤油

gΔh , P

4

= ρ

g(H-h)+ ρ

煤油

g(Δh + h)

联立这几个方程得到

ρ水银

gR = ρ

g (H-h )+ ρ

煤油

g (Δh + h )-ρ煤油

g Δh 即

ρ

水银

gR =ρ水

gH + ρ煤油

gh -ρ

gh 带入数据

1.03×103×1 - 13.6×103×0.068 = h(1.0×103-0.82×103) h= 0.418m

6. 根据本题附图所示的微差压差计的读数,计算管路中气体的表压强p。压差计中以油和水为指示液,其密度分别为920㎏/m3 ,998㎏/m3,U管中油﹑水

交接面高度差R = 300 mm,两扩大室的内径D 均

为60 mm,U管内径d为6 mm。当管路内气体压强等于大气压时,两扩大室液面平齐。分析:此题的关键是找准等压面,根据扩大室一端与大气相通,另一端与管路相通,可以列出两个方程,联立求解

解:由静力学基本原则,选取1-1‘为等压面,

对于U管左边 p表 + ρ油

g(h 1+R) = P1 对于U管右边 P2 = ρ水

gR + ρ

gh 2

p表 =ρ水

gR + ρ

gh 2 -ρ

g(h 1+R)

gR - ρ油

gR +ρ油

g (h 2-h 1)

当p表= 0时,扩大室液面平齐 即 π (D/2)2(h 2-h 1)= π(d/2)2R h 2-h 1 = 3 mm p表= 2.57×102Pa

8 .高位槽内的水面高于地面8m ,水从φ108×4mm 的管道中流出,管路出口高

于地面2m 。在本题特定条件下,水流经系统的能量损失

可按∑hf = 6.5 u 2 计算,其中u 为水在管道的流速。试计算:⑴ A —A ' 截面处水的流速;⑵ 水的流量,以m 3/h 计。分析:此题涉及的是流体动力学,有关流体动力学主要是能量恒算问题,一般运用的是柏努力方程式。

运用柏努力方程式解题的关键是找准截面和基准面,对于本题来说,合适的截面是高位槽1—1,和出管口 2—2,,如图所示,选取地面为基准面。解:设水在水管中的流速为u ,在如图所示的1—1, ,2—2,处列柏努力方程

Z 1g + 0 + P1/ρ= Z 2g+ u2/2 + P2/ρ + ∑hf (Z 1 - Z 2)g = u 2/2 + 6.5u 2 代入数据

(8-2)×9.81 = 7u 2 , u = 2.9m/s 换算成体积流量

V S = uA= 2.9 ×π/4 × 0.12 × 3600 = 82 m 3/h 10.用离心泵把20℃的水从贮槽送至水洗塔顶部,槽内水位维持恒定,各部分相对位置如本题附图所示。管路的直径均为Ф76×2.5mm ,在操作条件下,泵入口

处真空表的读数为24.66×103Pa,水

流经吸入管与排处管(不包括喷头)的能量损失可分别按∑hf,1=2u 2,∑h f,2=10u 2计算,由于管径不变,故式中u 为吸入或排出管的流速m/s 。排水管与喷头连接处的压强为98.07×103Pa (表压)。试求泵的有效功率。分析:此题考察的是运用柏努力方程求算管

路系统所要求的有效功率把整个系统分成两部分来处理,从槽面到真空表段的吸入管和从真空表到排出口段的排出管,在两段分别列柏努力方程。 解:总能量损失∑hf=∑hf+,1∑hf ,2 u 1=u 2=u=2u 2+10u 2=12u 2

在截面与真空表处取截面作方程: z 0g+u 02/2+P 0/ρ=z 1g+u 2/2+P 1/ρ+∑hf ,1 ( P 0-P 1)/ρ= z 1g+u 2/2 +∑hf ,1 ∴u=2m/s

∴ w s =uA ρ=7.9kg/s

在真空表与排水管-喷头连接处取截面 z 1g+u 2/2+P 1/ρ+W e =z 2g+u 2/2+P 2/ρ+∑hf ,2

∴W e = z 2g+u 2/2+P 2/ρ+∑hf ,2—( z 1g+u 2/2+P 1/ρ)

=12.5×9.81+(98.07+24.66)/998.2×103+10×22=285.97J/kg

N e = W e w s =285.97×7.9=2.26kw

12.本题附图所示为冷冻盐水循环系统,盐水的密度为1100kg /m 3,循环量为36m 3。管路的直径相同,盐水由A 流经两个换热器而至B 的能量损失为98.1J /kg ,由B 流至A 的能量损失为49J /kg ,试求:(1)若泵的效率为70%时,泵的抽功率为若干kw ?(2)若A 处的压强表读数为245.2×103Pa 时,B 处的压强表读数为若干Pa ?

分析:本题是一个循环系统,盐水由A 经两个换热器被冷却后又回到A 继续被冷却,很明显可以在A-换热器-B 和B-A 两段列柏努利方程求解。

解:(1)由A 到B 截面处作柏努利方程 0+u A 2/2+P A /ρ1=Z B g+u B 2/2+P B /ρ+9.81 管径相同得u A =u B ∴(P A -P B )/ρ=Z B g+9.81

由B 到A 段,在截面处作柏努力方程B Z B g+u B 2/2+P B /ρ+W e =0+u A 2+P A /ρ+49

∴W e =(P A -P B )/ρ- Z B g+49=98.1+49=147.1J/kg ∴W S =V S ρ=36/3600×1100=11kg/s N e = W e ×W S =147.1×11=1618.1w

泵的抽功率N= N e /76%=2311.57W=2.31kw (2)由第一个方程得(P A -P B )/ρ=Z B g+9.81得 P B =P A -ρ(Z B g+9.81)=245.2×103-1100×(7×9.81+98.1)

=6.2×104Pa

13. 用压缩空气将密度为1100kg/m 3的腐蚀性液体自低位槽送到高位槽,两槽的液位恒定。管路直径均为ф60×3.5mm ,其他尺寸见本题附图。各管段的能量损失为∑hf ,AB =∑hf ,CD =u 2,∑hf ,

BC

=1.18u 2。两压差计中的指示液均为水银。试求当

R 1=45mm ,h=200mm 时:(1)压缩空气的压强P 1为若干?(2)U 管差压计读数R 2为多少?

解:对上下两槽取截面列柏努力方程

0+0+P 1/ρ=Zg+0+P 2/ρ+∑hf ∴P 1= Zg ρ+0+P 2 +ρ∑hf

=10×9.81×1100+1100(2u 2+1.18u 2)=107.91×103+3498u 2 在压强管的B ,C 处去取截面,由流体静力学方程得 P B +ρg (x+R 1)=P c +ρg (h BC +x )+ρ

水银

R 1g

P B +1100×9.81×(0.045+x )=P c +1100×9.81×(5+x )+13.6×103×9.81

×0.045 P B -P C =5.95×104Pa 在B ,C 处取截面列柏努力方程

0+u B 2/2+P B /ρ=Zg+u c 2/2+P C /ρ+∑hf ,BC

∵管径不变,∴u b =u c

P B -P C =ρ(Zg+∑hf ,BC )=1100×(1.18u 2+5×9.81)=5.95×104Pa

u=4.27m/s 压缩槽内表压P 1=1.23×105Pa (2)在B ,D 处取截面作柏努力方程

0+u 2/2+P B /ρ= Zg+0+0+∑hf ,BC +∑hf ,CD

P B =(7×9.81+1.18u 2+u 2-0.5u 2)×1100=8.35×104Pa P B -ρgh=ρ

水银

R 2g

8.35×104-1100×9.81×0.2=13.6×103×9.81×R 2 R 2=609.7mm

15.在本题附图所示的实验装置中,于异径水平管段两截面间连一倒置U 管压差

计,以测量两截面的压强差。当水的流量为10800kg/h

时,U 管压差计读数R 为100mm ,粗细管的直径分别为Ф60×3.5mm 与Ф45×3.5mm 。计算:(1)1kg 水流经两截面间的能量损失。(2)与该能量损失相当的压强降为若干Pa ?

解:(1)先计算A ,B 两处的流速:

u A =w s /ρs A =295m/s ,u B = w s /ρs B 在A ,B 截面处作柏努力方程:

z A g+u A 2/2+P A /ρ=z B g+u B 2/2+P B /ρ+∑hf ∴1kg 水流经A ,B 的能量损失:

∑hf= (u A 2-u B 2)/2+(P A - P B )/ρ=(u A 2-u B 2)/2+ρgR/ρ=4.41J/kg (2).压强降与能量损失之间满足:

∑hf=ΔP/ρ ∴ΔP=ρ∑hf=4.41×103

20. 每小时将2×103kg 的溶液用泵从反应器输送到高位槽。反应器液面上方保持26.7×103Pa 的真空读,高位槽液面上方为大气压强。管道为的钢管,总长为50m ,管线上有两个全开的闸阀,一个孔板流量计(局部阻力系数为4),5个标准弯头。反应器内液面与管路出口的距离为15m 。若泵效率为0.7,求泵的轴功率。

解: 流体的质量流速 ωs = 2×104/3600 = 5.56 kg/s 流速 u =ωs /(A

ρ)=1.43m/s 雷偌准数Re=du ρ/μ= 165199 > 4000

查本书附图1-29得 5个标准弯头的当量长度: 5×2.1=10.5m

2个全开阀的当量长度: 2×0.45 = 0.9m

∴局部阻力当量长度∑ι

e

=10.5 + 0.9 = 11.4m

假定 1/λ1/2=2 lg(d /ε) +1.14 = 2 lg(68/0.3) + 1.14

∴λ= 0.029

检验 d/(ε×Re×λ1/2) = 0.008 > 0.005

∴符合假定即λ=0.029∴全流程阻力损失∑h=λ×(ι+ ∑ι

e

)/d ×u2/2 + ζ×u2/2 = [0.029×(50+11.4)/(68×103) + 4]×1.432/2 =

30.863 J/Kg

在反应槽和高位槽液面列伯努利方程得

P

1/ρ+ We = Zg + P

2

/ρ+ ∑h

We = Zg + (P

1- P

2

)/ρ+∑h= 15×9.81 + 26.7×103/1073 + 30.863 = 202.9

J/Kg

有效功率 Ne = We×ω

s

= 202.9×5.56 = 1.128×103

轴功率 N = Ne/η=1.128×103/0.7 = 1.61×103W

= 1.61KW

21. 从设备送出的废气中有少量可溶物质,

在放空之前令其通过一个洗涤器,以回收这

些物质进行综合利用,并避免环境污染。

气体流量为3600m3/h,其物理性质与50℃的

空气基本相同。如本题附图所示,气体进入

鼓风机前的管路上安装有指示液为水的U管

压差计,起读数为30mm。输气管与放空管的内径均为250mm,管长与管件,阀门的当量长度之和为50m,放空机与鼓风机进口的垂直距离为20m,已估计气体通过塔内填料层的压强降为1.96×103Pa。管壁的绝对粗糙度可取0.15mm,大气压强为101.33×103。求鼓风机的有效功率。解:查表得该气体的有关物性常数ρ=1.093 , μ=1.96×10-5Pa·s 气体流速 u = 3600/(3600×4/π×0.252) = 20.38 m/s

质量流量ωs = uAs = 20.38×4/π×0.252×1.093=1.093 Kg/s 流体流动的雷偌准数 Re = du ρ/μ= 2.84×105 为湍流型 所有当量长度之和 ι总

=

ι+Σι=50m

ε取0.15时 ε/d = 0.15/250= 0.0006 查表得λ=0.0189 所有能量损失包括出口,入口和管道能量损失

即: ∑h= 0.5×u 2/2 + 1×u 2/2 + (0.0189×50/0.25)· u 2/2 =1100.66 在1-1﹑2-2两截面处列伯努利方程

u 2/2 + P 1/ρ+ We = Zg + u 2/2 + P 2/ρ + ∑h We = Zg + (P 2- P 1)/ρ+∑h

而1-1﹑2-2两截面处的压强差 P 2-

P 1 = P 2-ρ

gh = 1.96×103 - 103×9.81×31

×103= 1665.7 P ∴We = 2820.83 W/Kg 泵的有效功率 Ne = We ×ωs = 3083.2W = 3.08 KW

22. 如本题附图所示,,贮水槽水位维持不变。槽底与内径为100mm 的钢质放水管相连,管路上装有一个闸阀,距管路入口端15m

处安有以水银为指示液的U 管差压计,其一臂与管道相连,另一臂通大气。压差计连接管内充满了水,测压点与管路出口端之间的长度为20m 。(1).当闸阀关闭时,测得R=600mm ,h=1500mm ;当闸阀部分开启时,测的R=400mm ,h=1400mm 。摩擦系数可取0.025,管路入口处的局部阻力系数为0.5。问每小时从管中水流出若干立方米。(2).当闸阀全开时,U 管压差计测压处的静压强为若干(Pa ,表压)。闸阀全开时l e /d ≈15,摩擦系数仍取0.025。 解: ⑴根据流体静力学基本方程, 设槽面到管道的高度为x ρ

g(h+x)= ρ

水银

gR 103×(1.5+x) = 13.6×103×0.6

x = 6.6m 部分开启时截面处的压强 P 1 =ρ

水银

gR -ρ

gh = 39.63×103Pa

在槽面处和1-1截面处列伯努利方程

Zg + 0 + 0 = 0 + u 2/2 + P 1/ρ + ∑h

而∑h= [λ(ι+Σι

e

)/d +ζ]· u2/2 = 2.125 u2

∴6.6×9.81 = u2/2 + 39.63 + 2.125 u2

u = 3.09/s

体积流量ω

s

= uAρ= 3.09×π/4×(0.1)2×3600 = 87.41m3/h

⑵闸阀全开时取2-2,3-3截面列伯努利方程

Zg = u2/2 + 0.5u2/2 + 0.025×(15 +ι/d)u2/2

u = 3.47m/s

取1-1﹑3-3截面列伯努利方程

P

1

'/ρ = u2/2 + 0.025×(15+ι'/d)u2/2

∴P

1

' = 3.7×104Pa

1 . 在用水测定离心泵性能的实验中,当流量为26m3/h时,泵出口处压强表和入口处真空表的读数分别为152kPa和24.7kPa,轴功率为 2.45kw,转速为2900r/min,若真空表和压强表两测压口间的垂直距离为0.4m,泵的进出口管径相同,两测压口间管路流动阻力可忽略不计,试求该泵的效率,并列出该效率下泵的性能。

解:取20 ℃时水的密度ρ=998.2 Kg/m 3

在泵出口和入口处列伯努利方程

u

12/2g + P

1

/ρg + Η = u

1

2/2g + P

2

/ρg + Η

f

+ Z

∵泵进出口管径相同, u

1= u

2

不计两测压口见管路流动阻力Η

f

= 0

∴ P

1/ρg + Η = P

2

/ρg + Z

Η = (P

2- P

1

)/ρg + Z = 0.4 + (152+24.7)×103/998.2×9.8 =18.46 m

该泵的效率η= QHρg/N = 26×18.46×998.2×9.8/(2.45×103×3600)= 53.2.﹪

3.常压贮槽内盛有石油产品,其密度为760kg/m3,粘度小于20cSt,在贮槽条件下饱和蒸汽压为80kPa,现拟用65Y-60B型油泵将此油品以15m3流量送往表压强为177kPa的设备内。贮槽液面恒定,设备的油品入口比贮槽液面高5m,吸入管路和排出管路的全部压头损失为1m 和4m 。试核算该泵是否合用。若油泵位于贮槽液面以下1.2m处,问此泵能否正常操作?当地大气压按101.33kPa计.

解: 查附录二十三 65Y-60B型泵的特性参数如下

流量 Q = 19.8m3/s, 气蚀余量△h=2.6 m 扬程H = 38 m

允许吸上高度 H

g = (P

- P

V

)/ρg - △h-Η

f,0-1

= -0.74 m > -1.2

扬升高度 Z = H -Η

f,0-2

= 38 –4 = 34m 如图在1-1,2-2截面之间列方程

u

12/2g + P

1

/ρg + Η = u

2

2/2g + P

2

/ρg + Η

f,1-2

+ △Z

其中u

1

2/2g = u

2

2/2g = 0

管路所需要的压头: Η

e

=(P

2

– P

1

)/ρg + △Z + Η

f,1-2

= 33.74m < Z = 34 m

游品流量Q

m

= 15 m3/s < Q = 19.8m3/s

离心泵的流量,扬升高度均大雨管路要求,且安装高度有也低于最大允许吸上高度因此,能正常工作

送液体的管路系统:管径为ф76×4mm,长为355m(包括局部阻力的当量长度),吸入和排出空间为密闭容器,其内压强为129.5kPa(表压),再求此时泵的流量。被输送液体的性质与水相近。

解: ⑴根据管路所需要压头Η

e 与液体流量Q

e

的关系: Η

e

= K + BQ

e

2而 K =

△Z + △P/ρg 且吸入排出空间为常压设备, △P = 0 ∴K =△Z = 4.8

B = λ?(ι+ Σι

e

)/d · 1/2g(60×103A)2

= (0.03×355/0.068)/2×9.81(0.0682×π×60×103/4)2=1.683×10-4

∴管道特性方程为: Η

e = 4.8 + 1.683×10-4Q

e

2

由下列数据绘出管道特性曲线Η

e --Q

e

绘出离心泵的特性曲线H--Q于同一坐标系中,如图所示: 两曲线的交点即为该泵在运转时的流量

∴泵的流量为400L/min

⑵若排出空间为密闭容器,则K =△Z + △P/ρg

=4.8 + 129.5×103/998.2×9.81

= 1.802∵而B 的值保持不变

∴管路的特性方程为Η

e = 18.02 + 1.683×10-4Q

e

2

重新绘出管路的特性曲线和泵的特性曲线

可以得到泵的流量为310L/min

8 . 现采用一台三效单动往复泵,将敞口贮罐中密度为1250kg/m3的液体输送到表压强为 1.28×106Pa的塔内,贮罐液面比塔入口低10m,管路系统的总压头损失为2m,已知泵活塞直径为70mm,冲程为225mm,往复次数为2001/min,泵的总效率和容积效率为0.9和0.95。试求泵的实际流量,压头和轴功率。

解:三动泵理论平均流量Q

T = 3ASn

r

= 3×π/4 ×(0.07)2×0.025×200

=0.52m3/min

实际流量Q = ηQ

T

=0.95×0.52 = 0.494 m3/min

泵的压头 H = △P/ρg + △u2/2g + ΣH

f

+ Z 取△u2/2g = 0 =△P/ρg + ΣH f + Z

= 1.28×106/1250×9.81 + 2 + 10= 116.38m

轴功率 N = HQρ/102η = 13.05 Kw

3. 在底面积为40m2的除尘室内回收气体中的球形固体颗粒固体的处理量为

3600m 3/h ,

固体的密度ρs =3600kg/m 3,操作条件下气体的密度ρ=1.06kg/m 3,粘度为3.4×10-5Pa ?s 。试求理论上完全除去的最小颗粒直径。 解:根据生产能力计算出沉降速度 u t = V s /b ι= 3600/40 m/h = 0.025m/s

假设气体流处在滞流区则可以按 u t = d 2(ρs - ρ)g/18μ进行计算 ∴ d 2 = 18μ/(ρs - ρ)g ·u t

可以得到 d = 0.175×10-4 m

核算Re = du t ρ/μ 〈 1 , 符合假设的滞流区

∴能完全除去的颗粒的最小直径 d = 0.175×10-4 m = 17.5 μm

4. 一多层降尘室除去炉气中的矿尘。矿尘最小粒径为8μm ,密度为4000kg/m 3。除尘室长4.1m ,宽1.8m ,高4.2m ,气体温度为427℃,粘度为3.4Pa ?s ,密度为0.5kg/m 3。若每小时的炉气量为2160标准m 3,试确定降尘室内隔板的间距及层数。

解:假设沉降在滞流区 ,按u t = d 2(ρs - ρ)g/18μ计算其沉降速度 u t = (8

×10-6)2×(4000-0.5)×9.8/(18×3.4×10-5) = 41×10-4m/s

核算Re = du t ρ/μ 〈 1 , 符合假设的滞流区 把标准生产能力换算成47℃时的生产能力 V s = V (273 + 427)/273 = 5538.46m 3/h 由V s = blu t (n-1)得

n = V s / blu t -1 = 5538.46/(4.1×1.8×41×10-4×3600) - 1

=50.814 – 1 = 49.8

取n = 50 层 , 板间距 △h = H/(n + 1)= 4.2/51

= 0.0824m = 82.4 mm

5. 含尘气体中尘粒的密度为2300kg/m 3,气体流量为1000m 3/h ,粘度为3.6×10-5Pa ?s 密度为0.674kg/m 3,采用如图3-8所示的标准型旋风分离器进行除尘。若分离器圆筒直径为0.4m ,试估算其临界直径,分割粒径及压强降。 解:(1) 临界直径 选用标准旋风分离器 Ne = 5 ,ξ= 8.0

B = D/4 ,h = D/2

由V s = bhu i 得 Bh = D/4 ·D/2 = V s /u i ∴ u i = 8 V s /D 2 根据d c = [9μB/(πNe ρs u i )]1/2 计算颗粒的临界直径

∴ d c = [9×3.6×10×0.25×0.4/(3.14×5×2300×13.889)]1/2= 8.04×10-6 m = 8.04 μm (2)分割粒径

根据 d 50 = 0.27[μD/u t (ρs - ρ)]1/2 计算颗粒的分割粒径∴ d 50 = 0.27[3.6×10-5×0.4/(13.889×2300)]1/2

= 0.00573×10-3m = 5.73μm

(3)压强降

根据 △P = ξ·ρu i 2/2 计算压强降

∴ △P = 8.0×0.674×13.8892/2 = 520 Pa

10.用一台BMS50/810-25型板框压滤机过滤某悬浮液,悬浮液中固体质量分率为0.139,固相密度为2200kg/m 3,液相为水。每1m 3滤饼中含500kg 水,其余全为固相。已知操作条件下的过滤常数K=2.72×10-5m/s ,q=3.45×10m 3/m 2。滤框尺寸为810mm ×810mm ×25mm,共38个框。试求:(1)过滤至滤框内全部充满滤渣所需的时间及所得的滤液体积:(2)过滤完毕用0.8m 清水洗涤滤饼,求洗涤时间。洗水温度及表压与滤浆的相同。 解:(1)滤框内全部充满滤渣

滤饼表面积 A = (0.81)2×2×38 = 49.86 m 2

滤框容积 V 总 = (0.81)2×0.025×38 = 0.6233 m 3

已知 1m 3 的滤饼中 含水:500/1000 = 0.5 m 3 含固体: 1 – 0.5 = 0.5 m 3固体质量 :0.5×2200 = 1100 Kg

设产生1m 3

的滤饼可以得到m 0 ,Kg (V 0 ,m 3

)的滤液,则

0.139 = 1100/(1100 + 50 + m )∴ m 0 = 6313 Kg 滤液的密度按水的密度考虑V 0 = 0.314 m 3

∴ 形成0.6233 m 3 的滤饼即滤框全部充满时得到滤液体积

V =6.314×0.6233 = 3.935 m 3

]

则过滤终了时的单位面积滤 液量为

q = V/A = 3.935/49.86 = 0.07892 m3 /m2

∵q

e 2 = Kθ

e

∴θ

e

= q

e

2 / K = (3.45×10-3)2 / 2.72×10-5 = 0.4376

由(q + q

e )2 = K(θ+θ

e

)得所需的过滤时间为

θ = (q + q

e )2/ K - θ

e

= (0.07892 + 0.00345)2/2.72×10-5

- 0.4376=249 s

⑵洗涤时间

V

e = q

e

×A = 3.45×10-3×49.86 = 0.172

由(dv/ dθ)

Ww = KA2 /8(θ+θ

e

)得

洗涤速率 = 2.72×10-5×(49.86)2/ 8×(3.935 + 0.172)

= 205×10-5∴洗涤时间为:0.8/205×10-5 = 388s

12.在3×105Pa的压强差下对钛白粉在水中的悬浮液进行实验,测的过滤常数

K=5×10-5m/s,q=0.01m3/m2,又测得饼体积之比v=0.08。现拟用有38个框的BMY50/810-25型板框压滤机处理此料浆,过滤推动力及所用滤布也与实验用的相同。试求:(1)过滤至框内全部充满滤渣所需的时间;(2)过滤完毕以相当与滤液量1/10的清水进行洗涤,求洗涤时间;(3)若每次卸渣重装等全部辅助操作共需15min,求每台过滤机的生产能力(以每小时平均可得多少m3滤饼计)。解:(1)框内全部充满滤渣

滤饼表面积A =(0.81)2×2×38 = 49.86 m2

滤框容积 V

=(0.81)2×0.025×38 = 0.6233 m3

总共得到滤液体积 V = V

/ν= 0.6233/0.08 = 7.79 m3

则过滤终了时的单位面积滤液量为

q = V/A = 7.79/49.86 = 0.156 虚拟过滤时间

θ

e = q

e

2 / K = (0.01)2 / 5×10-5= 2 s

由(q + q

e )2 = K(θ+θ

e

)得所需的过滤时间为

θ = (q + q e)2 / K - θ e = (0.156 + 0.01)2/ 5×10-5 - 2= 551 s

⑵洗涤时间

V

e = q

e

×A = 0.01×49.86 = 0.4986

由(dv/ dθ)

Ww = KA2 /8(θ+θ

e

)得

洗涤速率 = 5×10-5×(49.86)2/ 8×(7.79 + 0.4986)

= 187.46×10-5

清水体积:7.79/10 = 0.779

洗涤时间:0.779/187.46×10-5 = 416s

生产总时间T = 551 + 416 + 15×60 = 1867 s

生产能力 Q = 3600 V

/ T = 3600×0.6233/ 1867 = 1.202 m3/h

13.某悬浮液中固相质量分率为9.3%,固相密度为3000kg/m3,液相为水。在一小型压滤机中测得此悬浮液的物料特性常数k=1.1×10-4m2(s?atm),滤饼的空隙率为40%。现采用一台GP5-1.75型转筒真空过滤机进行生产(此过滤机的转鼓直径为1.75m,长度为0.98m,过滤面积为5m2,浸没角度为120o),转速为0.5r/min,操作真空度为80.0kPa。已知滤饼不可压缩,过滤介质可以忽略。试求此过滤机的生产能力及滤饼厚度。

解:形成的1m 的滤饼中含液相: 0.4 m3固相: 0.6 m3

设产生1m3的滤饼可以得到m

0,Kg(V

,m3)的滤液,则

0.093 = 0.6×3000/(0.6×3000 + 0.4×103 + m

∴ m

0= 17154.84 Kg 滤液的密度按水的密度考虑V

= 17.155 m3

由K = 2k△P得过滤常数

K = 2×1.1×10-4×80.1/101.5 = 17.36×10-5过滤机每转一周的过滤时间

θ= 60ψ/n = 60×120/0.5×360 = 40 s

∵介质阻力忽略∴V

e = 0 ,θ

e

= 0

∴转筒每转一周所的滤液体积

V

= (KA2θ)1/2 = (17.36×52×40)1/2= 0.4167 m3生产能力 Q = nV = 0.5×60×0.4167 = 12.51 m3/ h

每转一周所得的滤饼的体积V

= 0.4167/17.155 = 0.02429 m3

滤饼的厚度δ= V

/A = 0.02429/5 = 0.00486 m= 4.86 mm

2.燃烧炉的内层为460mm厚的耐火砖,外层为230mm后的绝缘砖。若炉的内表

面温度t

1为1400℃,外表温度t

3

为100℃,试求导热的热通量几两砖间界面温

度。设炉内唤接触良好,已知耐火砖的导热系数为λ

1

=0.9+0.0007t,绝缘砖的

导热系数为λ

2

=0.3+0.0003t。两式中t 分别取为各层材料的平均温度,单位

为℃,λ单位为W/(m ?℃)。

解:令两砖之间的界面温度为t 2 ,t 1 = 1400 ,t 3 = 100

耐火砖的导热系数λ1= 0.9 + 0.0007?(t 1 + t 2)/2 = 0.9 + 0.0007?(1400 + t 2)/2= 1.39 + 0.00035 t 2

绝热转的导热系数λ2= 0.3 + 0.0003(t 3 + t 2)/2)= 0.315 + 0.00015 t 2 (t 1 -t 2)/(b 1/λ1) = (t 2 -t 3)/(b 2/λ2) ∴ 0.00065t 22 + 1.5t 2- 2009 = 0 解得界面温度t 2 = 949℃

∴各层的导热系数λ1= 1.722 w/(m ?℃)λ2= 0.457 w/(m ?℃)

根据多层平壁热传导速率公式Q = (t 1-t n )/Σ(b i /S λi ) 和q = Q/S 得导热的热通量 q = 1689 W/m 2

4.蒸汽管外包扎有两层导热系数不同而厚度相同的绝热层,设外层的平均直径为内层的两倍。其导热系数也为内层的两倍,若将两层材料互换位置,假定其他条件不变,试问每米管长的热损失将改变多少?说明在本题情况下,哪一种材料包扎在内层较为合适?

解:根据题意,若令内层导热系数为λ,则外层导热系数为2λ

∵绝热层厚度相同 ,均为b ,假设蒸汽管道半径为r , 则两绝热层外半径分别为r 1 = r + b , r 2 = r + 2b 第一层保温层对数平均半径r m1 = (r 1 - r)/ln(r 1/r) 第一层保温层对数平均半径r m2 = (r 2–r 1)/ln(r 2/r 1)

∵r m2 = 2 r m1 ∴b/r = 1.618 ,r m1 = 1.0396 两绝热层的对数平均面积(按1 m 管长计) S m1 = 2πr m1L=2×3.14×1.039b ×1=6.525b S m2 = 2πr m2L=2×3.14×2×1.039b ×1=13.05b

Q = (t 1-t n )/Σ(b i /S mi λi )= (t 1-t 3)/{[b/(λ1S m1)+ b/(λ2S m2)

=5.22λ1(t 1-t 3)将两绝缘层互换后, Q , = (t 1-t n )/Σ(b i /S mi λi )

= (t 1-t 3)/{[b/(λ2S m1)+ b/(λ1S m2)

=4.35λ1(t 1-t 3) ∴Q/Q *=1.2 ∴导热系数大的应该包扎在内层。

化工原理实验习题答案

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封液封高度如何计算 答:保证塔内液面,防止气体漏出,保持塔内压力. 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量为宜。 (2)测定填料塔的流体力学性能有什么工程意义 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一 (4)为什么二氧化碳吸收过程属于液膜控制 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制 (5)当气体温度和液体温度不同时,应用什么温度计算亨利系数 答:液体温度。因为是液膜控制,液体影响比较大。

2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。而且由于冷凝压力的升高致使排气压力升高,还会减少压缩机的使用寿命。应把握好空气的进入,和空气的质量。 3.答:冷凝水不及时排走,附着在管外壁上,增加了热阻,降低传热速率。 在外管最低处设置排水口,及时排走冷凝水。 4.答:靠近蒸气温度因为蒸气冷凝传热膜系数远大于空气膜系数。 5. 答:基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 3、离心泵特性曲线测定 1、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。 2、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 3、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好用的。 4、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。 5、不合理,安装阀门会增大摩擦阻力,影响流量的准确性 6、本题是研究密度对离心泵有关性能参数的影响。由离心泵的基本方程简化式可以看出离心泵的压头,流量、效率均与液体的密度无关,但泵的轴功率随流体密度增大而增大即:密度增大N增大,又因为其它因素不变的情况下Hg↓而安装高度减小。 4、流体流动阻力的测定 1、是的,因为由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 2、在流动测定中气体在管路中,对流动的压力测量产生偏差,在实验中一定要排出气体,让流体在管路中流动,这样流体的流动测定才能准确。当流出的液体无气泡是就可以证明空气已经排干净了。

化工原理期末考试真题及答案

填空题 1.(3分)球形粒子在介质中自由沉降时,匀速沉降的条件是_粒子所受合力的代数和为零_ 。滞流沉降时,其阻力系数=_24/ Rep_. 2.在静止的、连续的同种流体内,位于同一水平面上各点的压力均相等。 3.水在内径为φ105mmX2.5mm的只管内流动,已知水的粘度为1.005mPa*s,密度为1000kg*m3,流速为1m/s,则Re=99502,流动类型为湍流。 4.流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的2 倍;如果只将管径增加一倍而流速不变,则阻力损失为原来的1/4 倍. 5.求取对流传热系数常采用因次分析法,将众多影响因素组合成若干无因次数群,再通过实验确定各特征数数之间的关系,即得到各种条件下的关联式。 6.化工生产中加热和冷却的换热方法有_直接换热_, 间壁换热和蓄热换热. 7.在列管式换热器中,用饱和蒸气加热空气,此时传热管的壁温接近饱和蒸汽侧流体的温度,总传热系数K 接近空气侧流体的对流给热系数。 8.气液两相平衡关系将取决于以下两种情况: (1) 若pe〉p 或C 〉Ce则属于解吸过程 (2) 若p 〉pe 或Ce〉C 则属于吸收过程 9.计算吸收塔的填料层高度,必须运用如下三个方面的知识关联计算:_平衡关系_,_物料衡算,_传质速率._. 10.在一定空气状态下干燥某物料能用干燥方法除去的水分为_自由水分首先除去的水分为_非结合水分不能用干燥方法除的水分为_平衡水分。 11.,当20℃的水(ρ=998.2kg/m3,μ=1.005厘泊)在内径为100mm的光滑管内

22.对于间壁式换热器:m1Cp1 (T1-T2 ) =m2Cp2 (t2-t1)=K.A.△tm 等式成立的条件是_稳定传热、_无热变化、_无相变化。 选择题 1.从流体静力学基本方程了解到U型管压力计测量其压强差是( A ) A. 与指示液密度、液面高度有关,与U形管粗细无关 B. 与指示液密度、液面高度无关,与U形管粗细有关 C. 与指示液密度、液面高度无关,与U形管粗细无关 2.为使U形压差计的灵敏度较高,选择指示液时,应使指示液和被测流体的密度 差(ρ指-ρ)的值(B )。 A. 偏大 B. 偏小 C. 越大越好 3. 若将20℃硫酸用φ48×3.5mm的无缝钢管输送,则硫酸达到湍流的最低流速 为(D )。已知20℃时,硫酸的密度为1831 kg/m3粘度为25.4cP。 A. 0.135m/s B. 1.5m/s C. 0.15m/s D. 1.35m/s 4. 层流与湍流的本质区别是:( D )。 A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 5.离心泵的性能曲线中的H--Q线是在( C )情况下测定的。 A. 效率一定; B. 功率一定; C. 转速一定; D. 管路(l+∑l)一定。

化工原理实验模拟试题4教学内容

化工原理实验模拟试 题4

流体流动阻力实验 一、在本实验中必须保证高位水槽中始终有溢流,其原因是: A、只有这样才能保证有充足的供水量。 B、只有这样才能保证位压头的恒定。 C、只要如此,就可以保证流体流动的连续性。 二、本实验中首先排除管路系统中的空气,是因为: A、空气的存在,使管路中的水成为不连续的水。 B、测压管中存有空气,使空气数据不准确。 C、管路中存有空气,则其中水的流动不在是单相的流动。 三、在不同条件下测定的直管摩擦阻力系数…雷诺数的数据能否关联在同一条曲线上? A、一定能。 B、一定不能。 C、只要温度相同就能。 D、只有管壁的相对粗糙度相等就能。 E、必须温度与管壁的相对粗糙度都相等才能。 四、以水作工作流体所测得的直管阻力系数与雷诺数的关系能否适用于其它流体? A、无论什么流体都能直接应用。 B、除水外什么流体都不能适用。 C、适用于牛顿型流体。 五、当管子放置角度或水流方向改变而流速不变时,其能量的损失是否相同。 A、相同。 B、只有放置角度相同,才相同。

C、放置角度虽然相同,流动方向不同,能量损失也不同。 D、放置角度不同,能量损失就不同。 六、本实验中测直管摩擦阻力系数时,倒U型压差计所测出的是: A、两测压点之间静压头的差。 B、两测压点之间位压头的差。 C、两测压点之间静压头与位压头之和的差。 D、两测压点之间总压头的差。 E、两测压点之间速度头的差。 七、什么是光滑管? A、光滑管是绝对粗糙度为零的管子。 B、光滑管是摩擦阻力系数为零的管子。 C、光滑管是水力学光滑的管子(即如果进一步减小粗糙度,则摩擦阻力 不再减小的管子)。 八、本实验中当水流过测突然扩大管时,其各项能量的变化情况是: A、水流过突然扩大处后静压头增大了。 B、水流过突然扩大处后静压头与位压头的和增大了。 C、水流过突然扩大处后总压头增大了。 D、水流过突然扩大处后速度头增大了。 E、水流过突然扩大处后位压头增大了 BCECAAAA

化工原理期末考试试题(2013年版) 2

1 化工原理期末考试试题 一.填空题 1.精馏操作的目的是 使混合物得到近乎完全的分离 ,某液体混合物可用精馏方法分离的必要条件是 混合液中各组分间挥发度的差异 。 2.进料热状态参数q 的物理意义是 代表精馏操作线和提馏段操作线交点的轨迹方程 ,对于饱和液体其值等于 0 ,饱和蒸汽q 等于 1 。 3.简单蒸馏与平衡蒸馏的主要区别是 简单蒸馏是非定态过程 。 4.吸收操作的目的是 分离气体混合物 ,依据是 组分在溶剂中溶解度之差异 。 5.连续精馏正常操作时,增大再沸器热负荷,回流液流量和进料量和进料状态不变,则塔顶馏出液中易挥发组成的摩尔组成X D 将 增大 ,塔底采出液中易挥发组成的摩尔组成X W 将 减小 。(减小,增大,不变,变化不确定) 6.平衡蒸馏(闪蒸)的操作温度是在操作压力下混合物的泡点和露点温度之间。 (泡点温度,露点温度,泡点和露点温度之间) 7.液-液萃取操作中,操作温度 ,有利于分离。(降低,升高,保持恒定)。 8.多级逆流萃取操作,减少溶剂用量,完成规定的分离任务所需的理论级数 。(增 大、减小、不变) 9.实际生产中进行间歇精馏操作,一般将 和 两种操作方式结合起来。(恒定回流比,恒定产品组成) 10.请写出两种常用的解吸操作方法: 和 。升温,气提,降压(三写二) 11.在吸收塔的设计中,气体流量,气体进出口组成和液相进口组成不变,若减少吸收剂用量,则传质推动力 减小 ,设备费用 增多 。(减小,增多) 12.当温度升高时,溶质在气相中的分子扩散系数 升高 ,在液相中的分子扩散系数 升高 。(升高,升高) 13.吸收操作的基本依据是 组分在溶剂中溶解度之差异 ,精馏操作的基本依据是 各组分间挥发度的差异 。 14.蒸馏是分离 均相液体混合物 的一种方法,蒸馏分离的依据是 挥发度差异 。 15.恒沸精馏与萃取精馏都需加入第三组分,目的分别是 使组分间相对挥发度增大 、 改变原组分间的相对挥发度 。 16.如果板式塔设计不合理或操作不当,可能产生 严重漏液 、 严重泡沫夹带及 液泛 等不正常现象,使塔无法工作。 17.板式塔的类型有 泡罩塔 、 浮阀塔 、 筛板塔 (说出三种);板式塔从总体上看汽液两相呈 逆流 接触,在板上汽液两相呈 错流 接触。 18.易溶气体溶液上方的分压 小 ,难溶气体溶液上方的分压 大 ,只要组份在气相

化工原理实验课课后习题答案

化工原理实验课课后习 题答案 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

流体流动阻力的测定 1.如何检验系统内的空气已经被排除干净?答:可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;若开机后真空表和压力表的读数为零,则表明,系统内的空气没排干净。 行压差计的零位应如何校正?答:先打开平衡阀,关闭二个截止阀,即可U行压差计进行零点校验 3.进行测试系统的排气工作时,是否应关闭系统的出口阀门为什么答:在进行测试系统的排气时,不应关闭系统的出口阀门,因为出口阀门是排气的通道,若关闭,将无法排气,启动离心泵后会发生气缚现象,无法输送液体。 4.待测截止阀接近出水管口,即使在最大流量下,其引压管内的气体也不能完全排出。试分析原因,应该采取何种措施?答:待截止阀接近进水口,截止阀对水有一个阻力,若流量越大,突然缩小直至流回截止阀,阻力就会最大,致使引压管内气体很难排出。改进措施是让截止阀与引压阀管之间的距离稍微大些。5.测压孔的大小和位置,测压导管的粗细和长短对实验有无影响为什么答:由公式2p可知,在一定u下,突然扩大ξ,Δp增大,则压差计读数变大;2u?反之,突然缩小ξ,例如:使ξ=,Δp减小,则压差计读数变小。 6.试解释突然扩大、突然缩小的压差计读数在实验过程中有什么不同现象?答:hf与很多值有关,Re是其中之一,而λ是为了研究hf而引入的一个常数,所以它也和很多量有关,不能单单取决于Re,而在Re在一定范围内的时候,其他的变量对于λ处于一个相对较差的位置,可以认为λ与Re关系统一。 7.不同管径、不同水温下测定的~Re曲线数据能否关联到同一曲线答:hf与很多值有关,Re是其中之一,而λ是为了研究hf而引入的一个常数,所以它也和很多量有关,不能单单取决于Re,而在Re在一定范围内的时候,其他的变量对于λ处于一个相对较差的位置,可以认为λ与Re关系统一。正如Re在3×103~105范围内,λ与Re的关系遵循Blasius关系式,即λ= 8.在~Re曲线中,本实验装置所测Re在一定范围内变化,如何增大或减小Re的变化范围答:Redu,d为直管内径,m;u为流体平均速度,m/s;为流体的平均密度,kg/m3;s。为流体的平均黏度,Pa · 8.本实验以水作为介质,作出~Re曲线,对其他流体是否适用为什么答:可以使用,因为在湍流区内λ=f(Re, )。说明在影响λ的因素中并不包含流体d本身的特性,即说明用什么流体与-Re无关,所以只要是牛顿型流体,在相同管路中以同样的速度流动,就满足同一个-Re关系。 9.影响?值测量准确度的因素有哪些答:2dp,d为直管内径,m;为流体的平均密度,kg/m3;u为流体平均速2u度,m/s;p为两测压点之间的压强差,Pa。△p=p1-p2,p1为上游测压截面的压强,Pa;p2为下游测压截面的压强,Pa 离心泵特性曲线的测定 1.为什么启动离心泵前要先灌泵如果灌水排气后泵仍启动不起来,你认为可能是什么原因 答:离心泵若在启动前未充满液体,则泵壳内存在空气。由于空气密度很小,所产生的离心力也很小。此时,在吸入口处所形成的真空不足以将液体吸入泵内。虽启动离心泵,但不能输送液体。泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 2.为什么启动离心泵时要关出口调节阀和功率表开关启动离心泵后若出口阀不开,出口处压力表的读数是否会一直上升,为什么答:关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。 3.什么情况下会出现气蚀现象?答:金属表面受到压力大、频率高的冲击而剥蚀以及气泡内夹带的少量氧气等活泼气体对金属表面的电化学腐蚀等,使叶轮表面呈现海绵状、鱼鳞状破坏。4.为什么泵的流量改变可通过出口阀的调节来达到是否还有其他方法来调节流量答:用出口阀门调节流量而不用泵前阀门调节流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好用的。 5.正常工作的离心泵,在其进口管线上设阀门是否合理为什么答:合理,主要就是检修,否则可以不用阀门。 6.为什么在离心泵吸入管路上安装底阀? 答:为便于使泵内充满液体,在吸入管底部安装带吸滤网的底阀,底阀为止逆阀,滤网是为了防止固体物质进入泵内而损坏叶轮的叶片或妨碍泵的正常操作。 7.测定离心泵的特性曲线为什么要保持转速的恒定?答:离心泵的特性曲线是在一定转速n下测定的,当n改变时,泵的流量Q、扬程H及功率P也相应改变。对同一型号泵、同一种液体,在效率η不变的条件下,Q、H、P随n的变化关系如下式所示 见课本81页当泵的转速变化小于20%时,效率基本不变。8.为什么流量越大,入口真空表读数越大而出口压力表读数越小?答:据离心泵的特征曲线,出口阀门开大后,泵的流速增加,扬程降低,故出口压力降低;进口管道的流速增加,进口管的阻力降增加,故真空度增加,真空计读数增加。 过滤实验 1.为什么过滤开始时,滤液常有些混浊,经过一段时间后滤液才转清?答:因为刚开始的时候滤布没有固体附着,所以空隙较大,浑浊液会通过滤布,从而滤液是浑浊的。当一段时间后,待过滤液体中的固体会填满滤布上的空隙从而使固体颗粒不能通过滤布,此时的液体就会变得清澈。

贵州大学化工原理考试题

贵州大学化工原理考试 题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

化工原理考试题 姓名学号 一.填空题 1.(2分) 雷诺准数的表达式为________________。当密度ρ= 1000kg/m3,粘度μ=1厘泊的水,在内径为d=100mm,以流速为1m/s在管中流动时,其雷诺准数等于__________,其流动类型为______。 2.(2分) 当地大气压为750mmHg时,测得某体系的表压为100mmHg,则该体系的绝对压强为_________mmHg,真空度为_______mmHg。 3.(3分) 测量流体流量的流量计主要有如下四种:___________, ________________, ______________, _______________, 测量管内流体点的速度,则用____________。 4.(4分) 列柏努利方程所选取的截面所必须具备的条件 是,,___________,___________。 5.(2分) 在列管式换热器中,用饱和蒸气加热空气,此时传热管的壁温接近________流体的温度,总传热系数K接近______流体的对流给热系数。 6.(3分) 热量传递的方式主要有三种:____ _、_____ __、 __________。 7.(2分) 在常压下,20℃时氨在空气中的分压为50mmHg,此时氨在混合气中的摩尔分率y=________,比摩尔分率Y=_______。

8.(3分) 用亨利系数E表达的亨利定律表达式为_______.在常压下,20℃时, 氨在空气中的分压为50mmHg, 与之平衡的氨水浓度为 7.5(kgNH 3/100kgH 2 O).此时亨利系数E=________,相平衡常数m=______。 9.(2分) 用清水吸收空气与A的混合气中的溶质A,物系的相平衡常数 m=2,入塔气体浓度y b =0.06,要求出塔气体浓度y a =0.006,则最小液气比为 _________。 11.(2分) 在汽-液相平衡的t-x-y图中,沸点与液相组成的关系曲线,称为________,沸点与汽相组成的曲线,称为____________。 12.(2分) 在汽-液相平衡的t-x-y图中, 液相线与汽相线将图平面平分为三个区:汽相线以上的区域称为________,液相线以下的区域称为 _________,汽.液相线之间的区域为___________。 13.(2分) 某连续精馏塔,已知其精馏段操作线方程为y=0.714x+0.271,则该塔的回流比R=________.馏出液组成x=________。 二.选择题 1.(2分)如图1,若水槽液位不变①、②、③点的流体总机械能的关系为 ( )。 A. 阀门打开时①>②>③ B. 阀门打开时①=②>③ C. 阀门打开时①=②=③ D. 阀门打开时①>②=③ 2.(2分)流体在管路中作稳态流动时,具有()特点。

化工原理实验模拟思考题

离心泵特性曲线的测定 1.泵壳的作用是:汇集液体 2.轴封的作用是:减少高压液体漏出泵外 3.密封环的作用是:减免高压液体漏回吸入口 4.叶轮的作用是:传递机械能 5.离心泵是由:_叶轮、泵壳、密封环、轴封装置_、和_平衡盘装置五个主要部件所组 成的。 6.离心泵的流量又称为:送液能力 7.泵能给予(1牛顿)_液体的能量称为泵的扬程。 8.每秒钟泵对(输送液体)所作的功,称为有效功率。 9.泵若需自配电机,为防止电机超负荷,常按实际工作的最大流量计算轴功率N,取 (1.1-1.2)N作为选电机的依据。 10.离心泵性能的标定条件是:20℃,101.3kPa的清水 11.为了防止电机烧坏现象发生,启动离心泵时必须先关闭泵的出口阀。 12.由离心泵的特性曲线可知:流量增大则扬程_减少 13.对应于离心泵特性曲线_____的各种工况下数据值,一般都标注在铭牌上。效率最大。 14.根据生产任务选用离心泵时,一般以泵效率不低于最高____的90%为合理,以降低能 量消耗。效率 15.根据生产任务选用离心泵时,应尽可能使泵在____点附近工作。效率最大 孔板流量计校验实验 1.孔板流量计前后压力: 前>后 2.孔板流量计的孔流系数与流动形态的关系:随Re的减小而减小 3.下列关于孔板流量计的说法正确的是: 构造简单、制造安装方便 流体阻力实验 1.流体流过管件的局部阻力系数主要与下列哪些条件有关:管件的几何形状、流体的Re 数 2.同一直管分别按下列位置摆放 (1)垂直 (2)水平 (3)倾斜同样的流体流动状 态下摩擦阻力关系是:倾斜=水平=垂直 3.在本实验中必须保证高位水槽始终有溢流,其原因是:只有这样才能保证位压头的恒 定 4.本实验中首先需排除管路系统中的空气,是因为:空气的存在,使管路中的水成为不 连续的流体、测压管中存有空气,使测量数据不准确、管路中有空气则其中水的流动不再是单相的流动

化工原理期末考试试题及答案

1.(20分)有立式列管式换热器,其规格如下:管数30根、管长 3 m、管径由25×2.5 mm,为单管程。今拟采用此换热器冷凝冷却CS2 饱和蒸汽,从饱和温度46℃冷却到10℃,CS2 走管外,其流量为250 kg/h,其冷凝潜热为356 kJ/kg,液体CS2的比热为 1.05 kJ /(kg·℃ );水走管内与CS2成总体逆流流动,冷却水进出口温度分别为5℃和30℃。已知CS2 冷凝和冷却时传热系数(以外表面积为基准)分别为K1= 232.6和K2= l16.8 W/(m2·℃),问此换热器是否适用? 1.解:CS2冷凝的热负荷:Q冷凝=250×356=89000kJ/h=24.72 KW CS2冷却的热负荷:Q 冷凝=250×1.05×(46-10)=9450kJ/h =2.6 KW 总热负荷Q 为:Q=24.7+2.63=27.3 KW 冷却水用量q m2 为:q m2=27.3 =0.261kg/s=940kg/h 4.187×(30-5) 设冷却水进入冷却段的温度为t k,则有:0.261×4.187×(t k- 5)=2.6KW 解之得:t k=7.38℃,则:(5 分) 冷凝段对数平均温差:Δ t m=(46-30)-(46-7.38) =25.67℃ ln46 -30 46-7.38 所需传热面积: A 冷凝=24.7/232.6×10-3×25.67= 4.14m2,(5 分) 冷却段对数平均温差:Δ tm=(46-7.38)-(10-5)= 16.45℃ ln 46-7.38 (5 分)10-5 所需传热面积: A 冷却= 2.6/116.8×10-3×16.45= 1.35m2, 冷凝、冷却共需传热面积:Σ A i=4.14+ 1.35=5.49m2, 换热器实际传热面积为:A0=30×3.14×0.025×3=7.065>ΣA i ,所以适宜使用。(5分) 2.(20 分)某列管换热器由多根Φ 25×2.5mm的钢管组成,将流量为15×103kg/h 由20℃加热到55℃, 苯在管中的流速为0.5m/s ,加热剂为130℃的饱和水蒸汽在管外冷凝,其汽化潜热为2178kJ/kg ,苯的比热容cp为1.76 kJ/kg ·K,密度ρ 为858kg/m3,粘度μ为0.52 ×10-3Pa·s,导热系数λ为0.148 W/m·K,热损失、管壁热阻及污垢热阻均忽略不计,蒸汽冷凝时的对流传热系数α 为10×104 W/m2·K。试求: (1)水蒸汽用量(kg/h );(4分) (2)总传热系数K(以管外表面积为准);(7 分) (3)换热器所需管子根数n及单根管子长度L。(9 分)

化工原理下必考题

化工原理下 1.常压下,用煤油从苯蒸汽和空气混合物中吸收苯,吸收率为99%,混合气量为53kmol/h。入塔气中含苯2%(体积%),入塔煤油中含苯0.02%(摩尔分率)。溶剂用量为最小用量的1.5倍,在操作温度50℃下,相平衡关系为y* = 0.36x,总传质系数K y a=0.015kmol/(m3?s),塔径为1.1米。试求所需填料层高度。 2 .在逆流操作的填料吸收塔中,对某一低浓气体中的溶质组分进行吸收,现因故 (1)吸收剂入塔浓度变大, (2)吸收剂用量变小, 而其它操作条件均不变,试分析出塔气体、液体浓度如何变化? 3. 气膜控制的逆流吸收过程,其它操作条件不变,将气液流量同比例减小,试分析出塔气体、液体浓度如何变化? 4某吸收塔在101.3kPa、293K下用清水逆流吸收丙酮-空气混合气体(可视为低浓气体)中的丙酮。当操作液气比为2.1时,丙酮回收率可达95%。已知物系平衡关系为y=1.18x,吸收过程大致为气膜控制,气相总传质系数K y a ∝G0.8。今气体流量增加20%,而液量及气液进口浓度不变,试求: (1)回收率变为多少? (2)单位时间内被吸收的丙酮量增加多少倍? 5吸收-解吸联合操作系统如图所示。两塔填料层高度均为 7m,G=1000kmol/h,L=150kmol/h,解吸气量G'=300kmol/h, 组分浓度为:y b=0.015,y'a=0.045,y'b=0,x b=0.095(均为摩 尔分率),且知:吸收系统相平衡关系为y = 0.15x,解吸系 统相平衡关系为y = 0.6x。 试求: (1) 吸收塔气体出口浓度y a,传质 单元数N OG; (2) 解吸塔传质单元数N'OG; 6.对解吸因数S=0.6的系统进行逆流吸收,y*=mx,当塔高为无穷大时,而L、V与进口组成均不变,则此时气体入口组成y b将(> = <) y b*

《化工原理》(上)模拟试卷

《化工原理》(上册)模拟试卷 一、判断题(对的打√,错的打×,每题1分,共15分) 1. 因次分析的目的在于用无因次数群代替变量,使实验与关联工作简化。 2. 边长为0.5m的正方形通风管道,其当量直径为0.5m。 3. 根据流体力学原理设计的流量计中,孔板流量计是恒压差流量计。 4. 当计算流体由粗管进入细管的局部阻力损失时,公式中的流速应该取粗管中 的流速。 5. 离心泵的轴功率随流量的增大而增大。 6. 当离心泵的安装高度超过允许安装高度时,将可能发生气缚现象。 7. 对于低阻输送管路,并联优于串联组合。 8. 为了获得较高的能量利用率,离心泵总是采用后弯叶片。 9. 间歇过滤机一个操作周期的时间就是指过滤时间。 10. 过滤介质应具备的一个特性是多孔性。 11. 过滤常数K与过滤压力无关。 12. 滴状冷凝的给热系数比膜状冷凝的给热系数大,所以工业冷凝器的设计都按 滴状冷凝考虑。 13. 多层平壁定态导热中,若某层的热阻最小,则该层两侧的温差也最小。 14. 对于温度不宜超过某一值的热敏性流体,在与其他流体换热过程中宜采用逆 流操作。 15. 实际物体的辐射能力总是小于黑体的辐射能力。 二、选择题(每题1个正确答案,每题2分,共20分)

1. 当不可压缩流体在水平放置的变径管路中作稳定的连续流动时,在管子直径 缩小的地方,其静压力()。 A. 不变 B. 增大 C. 减小 D. 不确定 2. 水在内径一定的圆管中稳定流动,若水的质量流量保持恒定,当水温度升高 时,Re值将()。 A.变小 B.变大 C.不变 D.不确定 3. 如左图安装的压差计,当拷克缓慢打开时,压差计中 的汞面将()。 A. 左低右高 B. 等高 C. 左高右低 D. 无法确定 4. 离心泵铭牌上标出的流量和压头数值是()。 A. 最高效率点对应值 B. 操作点对应值 C. 最大流量下对应值 D. 计算值 5. 操作中的离心泵,将水由水池送往敞口高位槽。若管路条件不变,水面下降(泵能正常工作)时,泵的压头、泵出口处压力表读数和泵入口处真空表读数将分别()。 A. 变大,变小,变大 B. 变小,变大,变小 C. 不变,变大,变小 D. 不变,变小,变大 6. 在重力场中,固粒的自由沉降速度与下列因素无关() A.粒子几何形状 B.粒子几何尺寸 C.粒子及流体密度 D.流体的流速 7. 当其他条件都保持不变时,提高回转真空过滤机的转速,则过滤机的生产能 力()。 A.提高 B.降低 C.不变 D.不一定 8. 当间壁两侧流体的对流传热系数存在下列关系α1<<α2,则要提高总传热系 数K应采取的有效措施为()。 A.提高α1 B.提高α2 C.提高α1,降低α2 D.不确定 9. 根据因次分析法,对于强制对流传热,其准数关联式可简化为() A. Nu=f(Re,Pr,Gr) B. Nu=f(Re,Gr) C. Nu=f(Pr,Re) D. Nu=f(Pr,Gr)

化工原理期末试题-2-答案

徐州工程学院试卷 — 学年第 学期 课程名称 化工原理 试卷类型 考试形式 闭卷 考试时间 100 分钟 命 题 人 年 月 日 教研室主任(签字) 年 月 日 使用班级 教学院长(签字) 年 月 日 班 级 学 号 姓 名 一、单选题(共15题,每题2分,共计30分) 1. 滞流内层越薄,则下列结论正确的是 D A 近壁面处速度梯度越小 B 流体湍动程度越低 C 流动阻力越小 D 流动阻力越大 2. 判断流体流动类型的准数为___ A ____。 A . Re 数 B. Nu 数 C . Pr 数 D . Gr 数 3. 在一水平变径管路中,在小管截面A 和大管截面B 连接一U 形压差计,当流体流过该管 段时,压差计读数R 值反映的是 A A A 、 B 两截面间的压强差 B A 、B 两截面间的流动阻力 C A 、B 两截面间动压头变化 D 突然扩大或缩小的局部阻力 4. 离心泵铭牌上标出的流量和压头数值是 A 。 A. 最大流量下对应值 B. 操作点对应值 C. 计算值 D. 最高效率点对应值 5. 离心泵在一定管路系统下工作时,压头与被输送液体的密度无关的条件是 D A Z 2-Z 1=0 B Σh f = 0 C 22 21022 u u -= D p 2-p 1 = 0 6. 含尘气体,初始温度为30℃,须在进入反应器前除去尘粒并升温到120℃,在流程布置 上宜 A A. 先除尘后升温 B. 先升温后除尘 C. 谁先谁后无所谓 7. 穿过2层平壁的稳态热传导过程,已知各层温差为△t 1=100℃, △t 2=25℃,则第一、二层 的热阻R 1、R 2的关系为_____D______。 A. 无法确定 B. R 1 = 0.25R 2 C. R 1 = R 2 D. R 1 = 4R 2 8. 在蒸汽-空气间壁换热过程中,为强化传热,下列方案中那种在工程上最有效 B A 提高蒸汽流速 B 提高空气流速 C 采用过热蒸汽以提高蒸汽流速 D 在蒸汽一侧管壁上装翅片,增加冷凝面积并及时导走冷凝热。 9. 在吸收操作中,吸收塔某一截面上的总推动力(以气相组成表示)为 A A. Y -Y* B. Y*- Y C. Y -Yi D. Yi - Y 10. 含低浓度溶质的气体在逆流吸收塔中进行吸收操作,若进塔气体流量增大,其他操作条 件不变,则对于气膜控制系统,其出塔气相组成将 A A. 增大 B. 变小 C. 不变 D. 不确定 题号 一 二 三 四 五 六 七 八 总分 总分 30 15 15 40 100 得分

化工原理实验习题答案

化工原理实验习题答案 Prepared on 22 November 2020

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封液封高度如何计算 答:保证塔内液面,防止气体漏出,保持塔内压力. 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量 为宜。 (2)测定填料塔的流体力学性能有什么工程意义 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一

(4)为什么二氧化碳吸收过程属于液膜控制 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制(5)当气体温度和液体温度不同时,应用什么温度计算亨利系数 答:液体温度。因为是液膜控制,液体影响比较大。 2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。而且由于冷凝压力的升高致使排气压力升高,还会减少压缩机的使用寿命。应把握好空气的进入,和空气的质量。 3.答:冷凝水不及时排走,附着在管外壁上,增加了热阻,降低传热速率。在外管 最低处设置排水口,及时排走冷凝水。 4.答:靠近蒸气温度因为蒸气冷凝传热膜系数远大于空气膜系数。 5. 答:基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故 (ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 3、离心泵特性曲线测定 1、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。 2、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。

化工原理在高考题中的渗透

化工原理在高考题中的渗透 黄明建 高考化学命题“注重测量考生自主学习的能力,重视理论联系实际,关注与化学有关的科学技术、社会经济和生态环境的协调发展,以促进考生在知识与技能、过程与方法、情感态度与价值观等方面的全面发展。”在《2014年普通高等学校招生全国统一考试北京卷考试说明》中涉及联系“生产”实际的要求就超过了5处,结果在今年的高考卷中就出现了26、27两道相关的大题。 那么,在高考中,化工原理的相应考点如何呈现?考生如何应对?这是我们需要关注的问题。 目前,在高考题中,化工原理的呈现主要有两种形式:一是以生产流程为基本信息;二是以模拟化工生产的实验装置和过程为基本素材。考查考生对一些化学反应基本原理、生产流程、操作方法的理解和灵活处理问题的思维能力。 【例1】2014北京卷26 NH3经一系列反应可以得到HNO3和NH4NO3,如下图所示。 (1)Ⅰ中,NH3和O2在催化剂作用下反应,其化学方程式是________________________。(2)Ⅱ中,2NO(g) +O2(g) 2NO2(g) 。在其他条件相同时,分别测得NO的平衡转化率在不同压强(p1、p2)下随温度变化的曲线(如右图)。 ①比较p1、p2的大小关系_____________。 ②随温度升高,该反应平衡常数变化的趋势是__________。 (3)Ⅲ中,将NO2(g)转化成N2O4(l),再制备浓硝酸。 ①已知:2NO 2(g) N 2O4(g) ΔH1 2NO2(g) N2O4(l) ΔH2

②N2O4与O2、H2O化合的化学方程式: ______________________________________。 (4)Ⅳ中,电解NO制备NH4NO3,其工作原理 如右图所示,为使电解产物全部转化为NH4NO3, 需补充物质A,A是________,说明理由: __________________________________________ ______________________________________。 【解析】 本题以硝酸工业生产的主要流程为载体。联系其主要反应考查了相关的化学方程式、化学平衡原理、热化学、电解原理与氧化还原理论的应用。体现了北京高考化学命题的一个重要指导思想——“试题的选材不在枝节问题上或非主干知识上设置陷阱,突出基础必会知识、主干核心知识和内化的学习能力的考查”。 (1)氨的催化氧化及其方程式是考生所熟悉的,属于基础知识。 (2)要求考生能通过图象分析化学平衡条件(温度和压强)对NO平衡转化率的影响。由于2NO(g) +O2(g) ?2NO2(g)是一个气体物质计量数减小的可逆反应,故增大压强有利于提高NO转化率。再从图象看,当温度一定(如400℃),p2对应的NO转化率比p1高,所以,p2>p1;当压强一定(如p2),NO转化率随温度升高而减小。所以,平衡常数K=c2(NO2) /c2(NO)·c(O2)会随温度升高而减小。 本题间接介绍了硝酸工业中NO氧化的条件:在工业操作条件(800℃~900℃)下,NO不能氧化成NO2(转化率为0)。只有降温到约150℃以下,才有利于NO的氧化。也可以帮助我们理解:为什么“氨的催化氧化”与“NO氧化成NO2”要分别在Ⅰ、Ⅱ两个不同的生产环节完成,而不是在同一环节中进行。 (3)NO2转化为N2O4是一个放热过程(即物质能量降低的过程),这个知识点在高中《化学反应原理》模块的学习以及2014年北京高考说明中的样题(16)均有明确的要求。 (4)要求考生能将电解原理的知识应用到“电解NO制备NH4NO3”的实际问题中,通过阴、阳极转移电子量相等(或氧化剂、还原剂之间转移的电子数相等的原则),推 知从电解槽出来的溶液中含有HNO3,进而得知:需要补充的物质A应该是NH3。 高温 【答案】26.(1)4NH3+5O2 =4NO+6H2O(2)①p2>p1②减小 (3)①A ②2N2O4+O2+2H2O=4HNO3 (4)NH3根据反应:8NO + 7H2O=3NH4NO3 + 2HNO3,电解产生的HNO3。(或通过电极反应产物中n(NH4+)∶n(NO3-) ∶n(H+) =3∶5∶2,也可以说明。)

化工原理期末考试试题(2013年版) 2

化工原理期末考试试题 一.填空题 1.精馏操作的目的是使混合物得到近乎完全的分离,某液体混合物可用精馏方法分离的必要条件是混合液中各组分间挥发度的差异。 2.进料热状态参数q的物理意义是代表精馏操作线和提馏段操作线交点的轨迹方程,对于饱和液体其值等于0 ,饱和蒸汽q等于1 。 3.简单蒸馏与平衡蒸馏的主要区别是简单蒸馏是非定态过程。 4.吸收操作的目的是分离气体混合物,依据是组分在溶剂中溶解度之差异。5.连续精馏正常操作时,增大再沸器热负荷,回流液流量和进料量和进料状态不变,则塔顶馏出液中易挥发组成的摩尔组成X D将增大,塔底采出液中易挥发组成的摩尔组成X W将减小。(减小,增大,不变,变化不确定) 6.平衡蒸馏(闪蒸)的操作温度是在操作压力下混合物的泡点和露点温度之间。 (泡点温度,露点温度,泡点和露点温度之间) 7.液-液萃取操作中,操作温度,有利于分离。(降低,升高,保持恒定)。8.多级逆流萃取操作,减少溶剂用量,完成规定的分离任务所需的理论级数。(增大、减小、不变) 9.实际生产中进行间歇精馏操作,一般将和两种操作方式结合起来。(恒定回流比,恒定产品组成) 10.请写出两种常用的解吸操作方法:和。升温,气提,降压(三写二) 11.在吸收塔的设计中,气体流量,气体进出口组成和液相进口组成不变,若减少吸收剂用量,则传质推动力减小,设备费用增多。(减小,增多) 12.当温度升高时,溶质在气相中的分子扩散系数升高,在液相中的分子扩散系数升高。(升高,升高) 13.吸收操作的基本依据是组分在溶剂中溶解度之差异,精馏操作的基本依据是各组分间挥发度的差异。 14.蒸馏是分离均相液体混合物的一种方法,蒸馏分离的依据是挥发度差异。15.恒沸精馏与萃取精馏都需加入第三组分,目的分别是使组分间相对挥发度增大、改变原组分间的相对挥发度。 16.如果板式塔设计不合理或操作不当,可能产生严重漏液、严重泡沫夹带及液泛等不正常现象,使塔无法工作。 17.板式塔的类型有泡罩塔、浮阀塔、筛板塔(说出三种);板式塔从总体上看汽液两相呈逆流接触,在板上汽液两相呈错流接触。 18.易溶气体溶液上方的分压小,难溶气体溶液上方的分压大,只要组份在气相

化工原理实验思考题及答案

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的C~Re关系曲线应在单对数坐标纸上标绘。 2.孔板流量计的V S ~ R关系曲线在双对数坐标上应为_直线—。 3.直管摩擦阻力测定实验是测定入与Re的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定直管阻力和局部阻力。 5.启动离心泵时应关闭出口阀和功率开关。 6.流量增大时离心泵入口真空度增大出口压强将减小。 7 .在精馏塔实验中,开始升温操作时的第一项工作应该是开循环冷却水。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小。 10.在传热实验中将热电偶冷端放在冰水中的理由是减小测量误差。 11.萃取实验中_水_为连续相,煤油为分散相。 12.萃取实验中水的出口浓度的计算公式为C E1=V R(C R1-C R2)/V E。 13.干燥过程可分为等速干燥和降速干燥。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为5% ,其过滤介质为帆布。 16.过滤实验的主要内容测定某一压强下的过滤常数。

17.在双对数坐标系上求取斜率的方法为:需用对数值来求算,或者直接用 尺子在坐标纸上量取线段长度求取。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为:先将手动旋钮旋 至零位,再关闭电源 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是:要有一组数据处理的计 算示例。 21.在阻力实验中,两截面上静压强的差采用倒U形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加 空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q值,实验中需要测定 进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa 如果达到0.008?0.01mPa可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互

相关主题
文本预览
相关文档 最新文档