当前位置:文档之家› 杨波博士论文LLC谐振变换chapter 5

杨波博士论文LLC谐振变换chapter 5

杨波博士论文LLC谐振变换chapter 5
杨波博士论文LLC谐振变换chapter 5

Chapter 5 Improvements of LLC Resonant Converter

From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter will be investigated: integrated magnetic design and over load protection.

5.1 Magnetic design for LLC Resonant Converter

From previous discussion, the power stage could be designed according to the given specifications. The outcome of the design is the desired values for the components. For these components, power devices and capacitors are obtained from manufactures, which already reflect the state of the art technology. Within all these components, magnetic is the one need to be physically designed and built by power electronics researcher. In this part, the design of magnetic component for LLC resonant converter will be discussed.

5.1.1 Discrete design and issues

For a LLC resonant converter, the magnetic components need to be designed are shown in Figure 5.1. There are three magnetic components: Lr, Lm and transformer T. From the configuration of Lm and transformer T, it is easy to build

Lm as the magnetizing inductance of transformer. So in fact, we are trying to build one resonant inductor and one transformer with magnetizing inductance.

Figure 5.1 Magnetic structure for LLC resonant converter

There are several ways to build them. One is using discrete components, with one magnetic core to build the resonant inductor and one magnetic core to build the transformer and magnetizing inductor Lm. The benefit of this method is that the design procedure is well established.

Next, a discrete design is presented and simulation result is showed to provide a reference for later integrated magnetic designs. For LLC resonant converter, the resonant inductor Lr has pure AC current through it, so we use soft ferrite core for both inductor and transformer.

Figure 5.2 shows the discrete design of the magnetic for LLC resonant converter. Two U cores were used to build the resonant inductor and gapped transformer. Fig.6 shows the simulation results of flux density in the core. For

each U core, the cross-section area is 116.5mm2. Design result: nl=12, np: ns: ns=16:4:4, gap1=1.45mm and gap2=0.6mm.

(a) (b)

Figure 5.2 Discrete magnetic design (a) schematic (b) physical structure

(a) Inductor

(b) Transformer

Figure 5.3 Flux density simulation result (a) Inductor, and (b) Transformer

Figure 5.3 shows the flux density in each core at 400V input with switching frequency at 200kHz. As seen in the graph, the flux densities in both cores are pretty high. Both cores with high flux density excitation will contribute to the total core loss. For high frequency, core loss is a major limitation on pushing to higher frequency and smaller size. Figure 5.4 shows the peak-to-peak flux density for each core with different input voltage. At low input voltage, the flux density will increase, but it is not critical because of short operating time.

(a) Inductor

(b) Transformer

Figure 5.4 Peak to peak flux density under different input voltage at full load

The drawbacks of this method are: 1. Two magnetic cores are needed, which results in more components count and connections, 2. High magnetic loss caused by high flux ripple in magnetic structure, 3. Large footprint is needed for the whole structure.

In recent years, integrated magnetic has been investigated for many different applications. For asymmetrical half bridge with current doubler, all the magnetic components could be integrated into one magnetic structure with integrated magnetic concept [C1][C5]. In this part, the integrated magnetic structure will be discussed for LLC resonant converter. It integrated all magnetic components into one magnetic core. Through magnetic integration, the component count and footprint are reduced, the connections is also reduced. With proper design; flux ripple cancellation can be achieved, which can reduced the magnetic loss, and reduce the magnetic core size.

In the next part, the integrated magnetic designs for LLC resonant converter will be discussed and compared.

5.1.2 Integrated magnetic design

5.1.2.1 Real transformer with leakage and magnetizing inductance

First structure is just use one transformer and uses the leakage inductance as resonant inductor. The configuration of magnetic components for LLC resonant converter is exactly the same as a real transformer with magnetizing inductance

and leakage inductance. It is natural to think about using one real transformer to get all the needed components. The issues with structure are:

1. The leakage inductance cannot be accurately controlled which will determine the operating point of the converter,

2. When we build Lr this way, the leakage inductance will not only exist on primary side, it will also exist on secondary side of the transformer. So the result get from real transformer will be as in Figure 5.5. L lp and L ls have similar value when transferred to same side of the transformer.

Figure 5.5 Structure with real transformer

Figure 5.6 Desired magnetic components configuration

Figure 5.7 Magnetic components configuration from real transformer

(a)

(b)

Figure 5.8 Voltage stress of output diodes D1 D2 (a): desired structure (b) real transformer When the leakage inductance exists on secondary side, it will increase the voltage stress on secondary rectifier diode. This requires us to use higher voltage rating diode, which will increase the conduction loss of the output rectifier. Figure 5.8 shows the simulate waveforms of secondary diodes voltage stress with

magnetic structure in Figure 5.6 and Figure 5.7. We can see that with inductor on the secondary side, the voltage stress of the diodes is much higher.

From above discussion, we can see that the desired magnetic structure will need to provide accurate control of Lr and Lm, at that same time, minimize the inductance on secondary side, which could not be achieved with just a transformer with leakage and magnetizing inductance. Next more complex integrated magnetic structure will be investigated.

5.1.2.2 Integrated magnetic design A

From discrete design, just combine them together with an EE core, we will be able to integrate the two components into one magnetic component as shown in Figure 5.9.

Figure 5.9 Integrated Magnetic Designs A

E42/21/20 core is used. The cross-section area of is 233mm2. For the outer legs, they have same cross-section area as discrete design. Turn number nl, np and ns is the same as in discrete design. For this design, the inductor and transformer

design is decoupled. Discrete design procedure still can be used. Figure 5.10 shows the simulation result of for this structure.

Figure 5.10 Flux density simulation result for Design A

It can be seen from the simulation result: for inductor and transformer leg, the flux density is the same as discrete design. But for center leg, the flux density is much smaller than discrete case. This will greatly reduce the magnetic loss in the big part of the magnetic component.

Figure 5.11 Center leg flux density for different input voltage

Figure 5.11 shows the center leg flux density for whole input voltage range. Compare with discrete design, the flux density is only half of the transformer leg and much smaller than inductor leg within all input voltage range.

The problem for this structure is the gapping. In this structure, we are using E cores. The air gap is on two outer legs while there is no air gap on center leg. This structure is not good in several aspects: first, this core structure is not a standard. The standard core normally has air gap on the center leg or no air gap at all. Second, it is not a mechanical stable structure, very accurate gap filling need to be provided. Otherwise, the accuracy of the components value will be impacted. Also, when force is applied which happens when the converter is working, the core tends to vibrate. This vibration will cause broken of the core.

A desired core structure will have air gap on center leg or same air gap for all three legs. Following part will try to establish an electrical circuit model for a general integrate magnetic structure. From the model, we can investigate new core structures.

5.1.2.3 Extraction of Common Structure for Integrated Magnetic

In the past, lot of research was done on integrated magnetic design for power converters. Review those paper, we can find that most of them are based on EE core structure or three legs structure. The difference between different designs is the placement of windings and air gaps.

In this part of the paper, the general circuit model of an EE core with four windings is used as a general structure as shown in Figure 5.12. There are air gaps on each leg. This is a very commonly used structure, many integrated magnetic design for PWM converter also used this structure with some change on the air gap or winding placement [C5].

The reason of choosing this structure for LLC resonant converter is as following:

To integrate two magnetic components, usually we need three magnetic paths. In the LLC resonant converter, although we have three magnetic components, Lm and transformer T can be build with an air-gapped transformer. So in fact we need integrated two magnetic components: series resonant inductor Lr and gapped transformer T. An EE core structure will be a reasonable choice.

Figure 5.12 general magnetic structures for Integrated magnetic The model is derived through duality modeling method [E4]. Through this method, we can get the electrical circuit model of a physical magnetic structure. All the components in the model are related to the physical structure of the magnetic structure. Figure 5.13 shows the reluctance model of magnetic structure

shown in Figure 5.12. Figure 5.14shows electrical circuit model form this structure. In the structure, we have two sets of ideal transformer and three inductors.

Figure 5.13 Reluctance model of general integrated magnetic structure For the two ideal transformers, they have same turns ratio as in real physical structure. For the three inductors, they are correspond to each air gap and reflected to first winding n1. They can also be reflected to other windings as necessary. The value of each inductors are as following:

Figure 5.14 Circuit model of general integrated magnetic structure Base on this circuit model, we will investigate more integrated magnetic structures.

5.1.2.4 Integrated magnetic design B for LLC resonant converter

As discussed in structure A, the air gapping for structure A is not easy to implement. In this part, we will investigate structure with same air gap for all three legs and same winding structure as shown in Figure 5.15.

Figure 5.15 Integrated Magnetic Designs B

The electrical model of this structure can be easily got from general structure. Compare this structure with general structure; design B has only one winding on left side leg. By simplify the general model we can get following circuit model of design B as shown in Figure 5.16.

Figure 5.16 Electrical circuit model of integrated magnetic structure B Base on the electrical circuit model of the structure, next terminal 2 and 3 are connected, which gives following circuit model.

Figure 5.17 Electrical model of connecting dot-marked terminal with unmarked terminal

From circuit model in Figure 5.17, write the input current and voltage equations and solve them, then we can get the equivalent circuit of the structure. For this circuit, it has two modes. One mode is n3 is connected to output voltage. During this mode, the energy is transferred from primary to output. During the other mode, both secondary windings n3 are not connecting. We will derive the equivalent circuit for these two modes separately.

(mode a)

(mode b)

Figure 5.18 Two operation modes for LLC resonant converter For operation mode (a), we can get following equations:

in 1v =v n1

n2dt di L11+ in 0v =v n1

n2v dt di L011++ Vo n3n1=

v 1 in i =i i 10+

From above equations, we can get the relationship of input voltage, input current and output voltage as following:

)L0

L1L1n1(n2n3Vo dt di L0L1L0L1=vin in ++++?1 From this equation, we can get the equivalent circuit during this mode as in Figure 5.19.

Figure 5.19 Equivalent-circuit for mode (a) In this circuit, Lr, Lm and na are as following:

L0

L1L0L1=Lr +?

L0L1L1

n1n2=na ++

To find out Lm, we need to analyze mode (b). Same as analysis for mode (a), we can get following equations for Lm:

L0L2L1L0L1n1na L2=Lm 2+++??2

From the equivalent circuit, derive the relationship between terminals; the equivalent circuit above can be simplified into the equivalent circuit, which is the structure we desired. The relationship between resonant inductor, magnetizing inductance and transformer turns ratio is shown also. Base on these equations, the structure can be designed. Following is an example of design: turns ratio 12:3, Lm=14u and Lm = 60uH. The relationship of above equations could be drawn in Figure 5.20. For given turns ratio, there are many different ways to choose n1 and n2 to get the desired na, for example, n1=n2=9, n1=6 and n2=10. The other constrain will be the desired Lm. For this case, the Lm is 4.5 times Lr. To get this Lm, the n2 need to be choosing as 10.

(a) (b)

Figure 5.20 Design curves for integrated magnetic structure B for LLC converter From above discussion, n1=6, n2=10 and n3=3 give us turns ratio 12:3, Lm/Lr = 4.5. Next step will be design the air gap, we knows n1 and L1 value. Follow tradition inductor design equations, the air gap can be designed. Here Lr = 14uH, from the structure it can be seen that: L1 = L3 = 0.5 L2. From the relationship above, it can be calculated that we need L1=21uH to give us equivalent Lr=14uH. With the core cross-section area and turns given, the gap can be easily derived.

In this part, the detailed information of the magnetic is described. For this converter, the core used is EE56/24/19 from Phillips. The core material is 3F3. Two outer legs are used to wind the windings. Air gap is 0.55mm for all legs.

Primary windings are built with 8 strands of AWG#27 wires. Secondary side uses 5mil X 0.9inch copper foil.

Figure 5.21 shows the simulated flux density on each of the legs. From simulation result we can see that the flux density on center leg is greatly reduced. So with this integrated magnetic structure, we can reduce the core loss greatly. Also, with this structure, the air gap is the same for all legs, which is easier to manufacture and doesn’t have mechanical problem.

Figure 5.21 Flux density in each leg for integrated magnetic structure B

5.1.3 Test Result

In this part, the test result of integrated magnetic structure B is tested. It is compared with a discrete design. The test efficiency of integrated magnetic and discrete magnetic is shown in Figure 5.22. Because of flux ripple cancellation effect and less turns number, although the size of the magnetic components is reduced, the efficiency is almost the same for these two designs. In Figure 5.23, the sizes of these two designs were compared. With integrated magnetic, the footprint of the magnetic components could be reduced by almost 30%.

Figure 5.22 Efficiency comparison of integrated and discrete magnetic design for LLC converter

Figure 5.23 Magnetic size comparison of discrete and integrated magnetic

5.1.4 Summary

In this part, the magnetic design for LLC resonant converter is discussed. Discrete design and three method of integrated design were investigated. For discrete design, the footprint is pretty large. Also, there is no flux ripple cancellation effect; the magnetic loss is high in discrete design too. With real transformer, the magnetic components could be built with one magnetic structure.

The problem is difficult to control the leakage inductance. Another integrated

magnetic structure is to integrate the two U cores used to build discrete magnetic. With this method, the problem is the mechanical structure is not a stable structure. To improve this structure, a general integrated magnetic structure is developed. With the model, another integrated magnetic structure is developed with same air gap on all legs. With this magnetic structure, the manufacture is easy. There is no mechanical problem. Also, flux ripple cancellation could be achieved with this structure. Compare with discrete design, the integrated magnetic structure could provide same efficiency with 30% less footprint.

5.2 Over load protection for LLC resonant converter

In previous part of this chapter, the design of power stage was discussed. Base on these discussions, the power stage of LLC resonant converter could be designed for given specifications. Magnetic design is also investigated for LLC resonant converter. Till now we got a converter could convert 400V DC to 48V DC output with high efficiency and high power density. However, to make practical use of this converter, there are still some issues to be solved. Over load protection is one critical issue, which will be discussed in this part.

The purpose of over load protection is to limit the stress in the system during over load condition. Another function is to limit the inrush current during start up when output voltage is zero so that the power converter can be protected from destructive damage under those conditions.

图像阈值分割及去噪的实现毕业论文

图像阈值分割及去噪的实现毕业论文 目录 摘要 (1) Abstract (2) 目录 (3) 引言 (4) 第一章图像噪音 (5) 第二章图像缩放和灰度变换处理 (6) 2.1图像缩放处理方法 (6) 2.2图像灰度变换处理 (6) 第三章图像阈值分割 (8) 3.1 图像分割技术概要 (8) 3.2图像阈值分割原理 (8) 3.3图像阈值分割方法 (9) 第四章图像去噪 (12) 4.1 滤波原理 (12) 4.2滤波实现方法 (12) 第五章仿真实验结果和讨论 (16) 5.1图像二值化算法对比 (16) 5.2图像去噪效果对比 (17)

结论 (21) 参考文献 (22) 致谢语 (23)

引言 数字图像处理是从 20 世纪 60 年代以来随着计算机技术和 VLSI 的发展而产生、发展和不断成熟起来的一个新兴技术领域,它在理论上和实际应用上都取得了巨大的成就,并引起各方面人士的广泛重视[1]。首先,视觉是人类最重要的感知手段,图像又是视觉的基础。因此数字图像成为心理学、生物医学、计算机科学等诸多方面的学者研究视觉感知的有效工具。其次,数字图像处理在军事、遥感、工业图像处理等大型应用中也有不断增长的需求。为适用特殊的场合和获得较好的视觉效果,常常需要一种有效的方法来对图像进行处理。 数字图像处理技术从广义上可看作是各种图像加工技术的总称。它包括利用计算机和其他电子设备完成的一系列工作,如图像分割、图像变换、图像去噪等。本文主要是在整合各种优秀的阈值分割和滤波算法的基础上,实现对图像进行分割和去噪,达到处理和读取图像的目的。在MATLAB仿真的基础上,比对各种分割和去噪方法的优缺点。

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

基于小波变换的语音信号去噪(详细)

测试信号处理作业 题目:基于小波变换的语音信号去噪 年级:级 班级:仪器科学与技术 学号: 姓名: 日期:2015年6月

基于小波变换的语音信号去噪 对于信号去噪方法的研究是信号处理领域一个永恒的话题。经典的信号去噪方法,如时域、频域、加窗傅立叶变换、维纳分布等各有其局限性,因此限制了它们的应用范围。小波变换是八十年代末发展起来的一种新时-频分析方法,它在时-频两域都具有良好的局部化特性;并且在信号去噪领域获得了广泛的应用。 目前已经提出的小波去噪方法主要有三种:模极大值去噪、空域相关滤波去噪以及小波阈值去噪法。阈值法具有计算量小、去噪效果好的特点,取得了广泛的应用。然而在阈值法中,阈值的选取直接关系到去噪效果的优劣。如果阈值选取过小,那么一部分噪声小波系数将不能被置零,从而在去噪后的信号中保留了部分噪声信息;如果阈值选的偏大,则会将一部分有用信号去掉,使得去噪后的信号丢失信息。 1、语音信号特性 由于语音的生成过程与发音器宫的运动过程密切相关,而且人类发音系统在产生不同语音时的生理结构并不相同,因此使得产生的语音信号是一种非平稳的随机过程(信号)。但由于人类发生器官变化速度具有一定的限度而且远小于语音信号的变化速度,可以认为人的声带、声道等特征在一定的时间内(10- 30ms)基本不变,因此假定语音信号是短时平稳的,即语音信号的某些物理特性和频谱特性在10-30ms的时间段内近似是不变的,具有相对的稳定性,这样可以运用分析平稳随机过程的方法来分析和处理语音信号。在语音增强中就是利用了语音信号短时谱的平稳性。 语音信号基本上可以分为清音和浊音两大类。清音和浊音在特性上有明显的区别,清音没有明显的时域和频域特性,看上去类似于白噪声,并具有较弱的振幅;而浊音在时域上有明显的周期性和较强的振幅,其能量大部分集中在低频段内,而且在频谱上表现出共振峰结构。在语音增强中可以利用浊音所具有的明显的周期性来区别和抑制非语音噪声,而清音由于类似于白噪声的特性,使其与宽带平稳噪声很难区分。 由于语音信号是一种非平稳、非遍历的随机过程,因此长时间时域统计特性对语音信号没有多大的意义,而短时谱的统计特性对语音信号和语音增强有着十分重要的作用。语音信号短时谱幅度统计特性的时变性,使得语音信号的分析帧在趋于无穷大时,根据中心极限定理,其短时谱的统计特性服从高斯(Gauss)分布,而在实际应用时只能在有限帧长下进行处理,因此,在有限帧时这种高斯分布的统计特性是一种近似的描述,这样就可以作为分析宽带噪声污染的带噪语音信号增强应用时的前提和假设。

小波变换去噪论文

摘要 小波变换归属于数学领域的调和函数的范畴,是调和分析几十年来的一个突破性进展,并且在很多科技领域内得到了广泛应用。本文旨在探讨小波变换理论,并结合专业中的地震信号去噪展开研究。 论文以小波变换为核心,首先介绍了论文研究的目的、意义及主要研究内容,由此引出了小波变换理论,并对其原理做了详细阐述。这不仅包括连续小波,离散小波,多分辨率分析方法还包括与传统傅氏变换等的对比,从而在理论上明确其性能特点的优越性。本文选定了小波阈值去噪方法。由此结合给定的信号应用matlab 进行处理,并通过对比处理结果为本文后面的处理工作选定合适的参数。从所做例子来看,小波阈值处理达到了很好的去噪效果。论文应用matlab 模拟微地震信号,结合小波阈值去噪方法对微地震信号进行了处理。在文中给出了信号的原始模拟信号,加噪信号及处理后的效果图,从图中可以看出,小波阈值去噪完成了模拟微地震信号的去噪处理。另外,对实际的微地震资料进行了试处理,达到了去噪的目的。 关键词:小波变换;去噪;微地震;分解;重构

ABSTRACT The wavelet transform attributables to the mathematical field of harmonic function areas, it’s a breakthrough progress, and in many areas of science and technology has been widely used. This study aims to explore wavelet transform theory, and the combination of professional study of seismic signal de-noising. Papers to wavelet transform at the core, first of all, on paper the purpose of thestudy, the significance and major research content, which leads to the wavelettransform theory, and its principles expounded in detail.This includes not only thecontinuous wavelet, wavelet, multire solution analysis methods include traditional Fourier transform contrast, in theory, clear the superiority of its performance characteristics. The paper selected through comparative study of wavelet de-noising threshold method.This combination of a given signal processing applications matlab,and by comparing the results of this paper to the back of the appropriate handling of the selected parameters. From doing example, wavelet thresholding to deal with a very good de-noising effect. Papers matlab simulated micro-seismic signal applications, wavelet de-noising threshold with this method micro-seismic signal processing. In this paper the original analog signal, the signal plus noise and the effects of treatment plans, as can be seen from Fig, wavelet de-noising threshold completed micro-seismic signal de-noising analog processing. Key words: wavelet;de-noising;micro-seismic;decompose;compose

最新图像去噪处理的研究及MATLAB仿真

图像去噪处理的研究及M A T L A B仿真

目录 引言 (1) 1图像去噪的研究意义与背景 (2) 1.1数字图像去噪研究意义与背景 (2) 1.2 数字图像去噪技术的研究现状 (3) 2 邻域平均法理论基础 (3) 2.1 邻域平均法概念 (3) 3 中值滤波法理论基础 (3) 3.1中值滤波法概念 (3) 3.2中值滤波法的实现 (4) 4中值滤波法去噪技术MATLAB仿真实现 (4) 4.1Matlab仿真软件 (4) 4.2中值滤波法的MATLAB实现 (5) 4.3邻域平均法的MATLAB实现 (6) 总结 (8) 全文工作总结 (8) 工作展望 (8) 参考文献 (9) 英文摘要 (10) 致谢语 (11)

图像去噪处理的研究及MATLAB仿真 电本1102班姓名:杨韬 指导老师:刘明军摘要:图像是生活中一种重要的信息来源,通过对图像的处理可以帮助我们了解信息的内在信息。数字图像去噪声涉及光学系统、微电子技术、计算机科学、数学分析等领域,是一门综合性很强的边缘科学,如今其理论体系非常完善,且其应用很广泛,在医学、军事、艺术、农业等都有广泛且充分的应用。MATLAB是一种高效的工程计算语言,在数值计算、数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。MATLAB是一种向量语言,它非常适合于进行图像处理。 本文概述了邻域平均法与中值滤波法去噪的基本原理。对这两种常用的去噪方法进行了分析比较和仿真实现。最后根据理论分析和实验结果,讨论了一个完整去噪算法中影响去噪性能的各种因素。为实际工作中的图像处理,去噪方法的选择和改进提供了数据参考和依据。 关键字:邻域平均法;中值滤波法;MATLAB 引言 图像因为一些原因总会被外界干扰,所以图像质量往往不是很好,而质量不好的图片又不容易进行进一步的处理。在对图像的地处理过程中,图像去噪是很重要的一个环节,所以想对图像进行进一步的处理,对图像的去噪就变得重要起来,所以很多研究人员对这一课题进行了比较全面的研究,图像的处理最传统的方法是在空域中的处理,也就是说在图像的空间范畴内对图像质量进行改善。也可以对图像进行平滑处理等,这属于第一类图像处理方法。 中值滤波法与邻域平均法是出现最早的去噪手段,而且由于其具备良好的空频特性,实际应用也非常广泛。其中图像的邻域平均去噪方法是众多空域图像去噪方法中效果最好的去噪方法。基本思想就是用邻近的像素平均值来代替噪声的像素,且图像尺寸越大,去噪

基于小波变换的信号去噪论文

河南农业大学 本科生毕业论文 题目基于小波变换的信号去噪研究 学院理学院 专业班级信安3班 学生姓名秦学珍 指导教师吴莉莉 撰写日期:年月日

基于小波变换的信号去噪研究 秦学珍 摘要 小波变换是一种新型的数学分析工具,是80年代后期迅速发展起来的新兴学科。小波变换具有多分辨率的特点,在时域和频域都具有表征信号局部特征能力,适合分析非平稳信号,可以由粗及精地逐步观察信号。小波分析的理论和方法在信号处理、图像处理、语音处理、模式识别、量子物理等领域得到越来越广泛的应用,它被认为是近年来在工具及方法上的重大突破。 信号的采集与传输过程中,不可避免会受到大量噪声信号的干扰,对信号进行去噪,提取出原始信号是一个重要的课题。那么究竟应该如何从含噪声的信号中提取出原始的信号,这就成了最重要的问题。经过长期的探索与努力、实验仿真,对比于加窗傅里叶对信号去噪,提取原始信号的方法,终于找到了一种全新的信号处理方法——小波分析。它将信号中各种不同的频率成分分解到互不重叠的频带上,为信号滤波、信噪分离和特征提取提供了有效途径,特别在信号去噪方面显出了独特的优势。 本文从小波变换的定义和信号与噪声的不同特性出发,在对比分析了各种去噪方法的优缺点基础上,运用了对小波分解系数进行阈值化的方法来对一维信号去噪,该方法对去除一维平稳信号含有的白噪声有非常满意的效果,具有有效性和通用性,能提高信号的信噪比。与此同时,本文还补充介绍了强制消噪处理、默认阈值处理、给定软阈值处理等对信号消噪的方法。在对含噪信号运用阈值进行消噪的过程中,对比了用不同分解层数进行处理的去噪效果。 本文采用的是用传感器采集的微弱生物信号。生物信号通常是噪声背景小的低频信号,而噪声信号通常集中在信号的高频部分。因此,应用小波分解,把信号分解成不同频率的波形信号,并对高频波进行相关的处理,处理后的高频信号在和分离出的低频信号进行重构,竟而,就得到了含少量噪声的原始信号。而且,随着分解层数的不同,小波去噪的效果也是不同的。并对此进行了深入

基于小波变换的去噪方法

文章编号:1006-7043(2000)04-0021-03 基于小波变换的去噪方法 林克正 李殿璞 (哈尔滨工程大学自动化学院,黑龙江哈尔滨150001) 摘 要:分析了信号与噪声在小波变换下的不同特点,提出了基于小波变换的去噪方法,且将该去噪算法 用算子加以描述,给出了具体实例.小波变换硬阈值去噪法和软阈值去噪法的性能比较及仿真实验,表明基于小波变换的去噪方法是非常有效的.!关 键 词:小波变换;去噪;奇异性检测;多尺度分析 中图分类号:TN911.7 文献标识码:A Denoising Method Based on Wavelet Transform Lin Ke-zheng Li Dian-pu (Automation Coiiege ,Harbin Engineering University ,Harbin 150001,China ) Abstract :This paper anaiyzes the different characteristics of noise and signai under waveiet transform and proposes the denoising method based on waveiet transform.The denoising aigorithm based on waveiet transform are described with some operators.Some exampies are demonstrated.The performance of denoising with hard and soft threshoid method based on waveiet transform are compared in computer simuiation.The simuiation shows that the denoising method based on waveiet transform is very effective. Key words :waveiet transform ;denoising ;singuiarity detection ;muitiresoiution anaiysis 提取掩没在噪声中的信号是信号处理的一项重要课题.实际的信号总是含有噪声的,当待检测信号的输入信噪比很低,各种噪声幅值大、分布广,而干扰信号又与真实信号比较接近时,用传统的时域或频域滤波往往不能取得预期效果.D.L.Donoho 提出的非线性小波方法从噪声中提取信号 效果最明显[2-5] ,并且在概念上也有别于其它方 法,其主要思想有局部极大值阈值法、全局单一阈 值法[3]和局部SURE 多阈值法[4] .在此基础上,本文首先分析了信号和噪声在小波变换下的不同特 性,据此可有效地从噪声信号检出有用的信号,用算子的形式对基于小波变换的去噪方法进行了统一的描述,并提出了一种可浮动的自适应阈值选取方法. 1 小波分析基础 1.1 信号的小波变换 [1] 设母波函数是!(t ),伸缩和平移因子分别为a 和6,小波基函数!a ,6(t ) 定义为!a , 6(t )=1! a !(t -6 a )(1)式中,6"R ,a "R -{0}. 函数f (t )" 2 (R ) 的小波变换W a ,6(f )定义为 W a ,6(f )==1!a # - f (t )!(t -6 a )d t (2)小波变换W a ,6(f )就是函数f (t )" 2 (R ) 在对应函数族!a ,6(t )上的分解.这一分解成立的前提是母波函数!(t )满足如下容许性条件 !=# 0I ^!(")I 2" d "< (3)式中^!(")是!(t )的傅立叶变换.由小波变换W a ,6(f ) 重构f (t )的小波逆变换# 收稿日期:1999-10-22;修订日期:2000-7-20;作者简介:林克正(1962-),男,山东蓬莱人,哈尔滨工程大学博士研究生,哈尔滨理工大学副教授,主要研究方向:小波分析理论及图像处理. 第21卷第4期哈尔滨工程大学学报Voi.21,N.42000年8月Journai of Harbin Engineering University Aug.,2000

数字图像处理论文——各种题目

长春理工大学——professor——景文博——旗下出品 1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像 2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容:

基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1>对原始参考图和实时图像进行去噪处理; 2>对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑; 3> 判断目标大小,若目标超过整幅图像的一定比例时,说明目标进入摄像保护区域,系统对监测人员进行提示(提示方式自选)。 4>显示每步处理后的图像; 5>分析此种图像监控方式的优缺点。 背景目标出现目标提取 4车牌识别图像预处理技术 主要内容: 车辆自动识别涉及到多种现代学科技术,如图像处理、模式识别与人工智能、计算机视觉、光学、机械设计、自动控制等。汽车作为人类生产、生活中的重要工具被广泛的使用,实现自动采集车辆信息和智能管理的车牌自动识别系统具有十分重要的意义: 要求: 1>对原始车牌图像做增强处理; 2>对增强后的彩色图像进行灰度变换; 3>对灰度图像进行直方图均衡处理; 4>选取自适应的阈值,对图像做二值化处理; 5>显示每步处理后的图像; 6>分析此种图像预处理的优缺点及改进措施,简要叙述车牌字符识别方法 原始车牌图像处理后的车牌图像 5医学细胞图像细胞分割图像增强算法研究 主要内容: 医学图象处理利用多种方法对各种图像数据进行处理,以期得到更好的显示效果以便医生根据细胞的外貌进行病变分析。 要求: 1>通过对图像的灰度变换调整改变细胞图像的灰度,突出感兴趣的细胞和细胞核区域。 2>通过直方图修改技术得到均衡化或规定化等不同的处理效果。 3>采用有效的图像平滑方法对细胞图像进行降噪处理,消除图像数字化和传输时所混入的噪声,提高图像的视觉效果。 4>利用图像锐化处理突出细胞的边缘信息,加强细胞的轮廓特征。 5>显示每步处理图像,分析此种细胞分割图像预处理方法的优缺点。 原始细胞图像 图像处理后的细胞图像 6瓶子灌装流水线检测是否液体灌装满瓶体 当饮料瓶子在罐装设备后要进行液体的检测,即:进行判断瓶子灌装流水线是否灌装满瓶体的检测,如液面超过瓶颈的位置,则装满,否则不满,如果不满则灌装液体不合格,需重新进行灌装。 具体要求: 1)将原进行二值化 2)二值化后的图像若不好,将其滤波再进行膨胀处理,并重新进行二值化

基于小波变换的图像去噪方法研究毕业设计

题目基于小波变换的图像去噪方法研究

毕业论文﹙设计﹚任务书 院(系) 物理与电信工程学院专业班级通信1101班学生姓名陈菲菲 一、毕业论文﹙设计﹚题目基于小波变换的图像去噪方法研究 二、毕业论文﹙设计﹚工作自 2015 年 3 月 1 日起至 2015 年 6 月 20 日止 三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室 四、毕业论文﹙设计﹚的内容 1、图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。一般图像的能量主要集中在低频区域中,只有图像的细节部的能量才处于高频区域中。因为在图像的数字化和传输中常有噪声出现,而这部分干扰信息主要集中在高频区域内,所以消去噪声的一般方法是衰减高频分量或称低通滤波,但与之同时好的噪方法应该是既能消去噪声对图像的影响又不使图像细节变模糊。为了改善图像质量,从图像提取有效信息,必须对图像进行去噪预处理。 设计任务: (1)整理文献,研究现有基于小波变换的图像去噪算法,尝试对现有算法做出改进; (2)在MATLAB下仿真验证基于小波变换的图像去噪算法。 2、要求以论文形式提交设计成果,应掌握撰写毕业论文的方法,应突出“目标,原理,方法,结论”的要素,对所研究内容作出详细有条理的阐述。 进度安排: 1-3周:查找资料,文献。 4-7周:研究现有图像去噪技术,对基于小波变换的图像去噪算法作详细研究整理。 8-11周:研究基于小波的图像去噪算法,在MATLAB下对算法效果真验证。 12-14周:分析试验结果,对比各种算法的优点和缺点,尝试改进算法。 15-17周:撰写毕业论文,完成毕业答辩。 指导教师陈莉系(教研室) 系(教研室)主任签名批准日期 2015.1.1 接受论文 (设计)任务开始执行日期 2015.3.1 学生签名

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

数字图像处理论文,图像去噪

数字图象处理(论文) 学 院 计算机学院 专 业 计算机科学与技术、管路敷设技术标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

图像去噪算法论文 图像在生成或传输过程中常常因受到各种噪声的干扰和影响而使图像爱那个的质量下降,对后续的图像处理(如分割、理解等)产生不利影响。因此,图像爱那个去噪是图像处理中的一个重要环节。而对图像去噪的方法又可以分为两类,一种是在空间域内对图像进行去噪,一种是将图像变换到频域进行去噪的处理。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声,还有加性、乘性噪声等,如上,减少噪声的方法,可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法。图像频率域去噪方法是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。在这节课上我学习的是借助Matlab 软件对图像进行处理。在图像去噪方面,在 Matlab 中常用的去噪函数有 imfilter( ), wiener2( ), medfilt2( ), ordfilt2( )以及小波分析工具箱提供的wrcoef2( )和 wpdencmp( )等,好像随着Matlab 的发展,有些函数变了,不过早大致上变化不大,也有可能是我下载的Matlab 不完整吧,总之在实践过程中有些错误让我很纠结。因为我是刚接触到这类知识,所以很多都还不懂,虽然从课上有了一些了解,但我觉得还远远不够,然而最近实在时间不多,只、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积:

小波变换图像去噪的算法研究自设阈值

基于小波的图像去噪 一、小波变换简介 在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积: () dx a b x a x f f x W b a b a )(1)(,,,-ψ=ψ=?+∞ ∞- (3) 与时域函数对应,在频域上则有:

())(,ωωa e a x j b a ψ=ψ- (3) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 二、图像去噪描述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为: g(x,y)= f(x,y)+ n(x,y), (4) 其中,n(x,y)和图像光强大小无关。 图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。 图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

图像去噪去噪算法研究 开题报告

图像去噪去噪算法研究论文开题报告 (1)选题的目的、意义 目的: 由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会受到多种噪声的污染,影响了图像的视觉效果,甚至妨碍了人们正常识别。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。这些噪声在图像上常表现为—引起较强视觉效果的孤立象素点或象素块[1]。一般,噪声信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测信息。要构造一种有效抑制噪声的滤波必须考虑两个基本问题能有效地去除目标和背景中的噪声;同时,也要能很好的保护图像目标的形状、大小及特定的几何和拓扑结构特征。 意义: 噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量[2] [3]。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要[4] [5]。图像去噪作为图像处理的一个重要环节,可以帮助人们更加准确地获得我们所需的图像特征,使其应用到各个研究领域,帮助解决医学、物理、航天、文字等具体问题。如何改进图像去噪算法,以有效地降低噪声对原始图像的干扰程度,并且增强视觉效果,提高图像质量,使图像更逼真,仍存在继续研究的重要意义。 (2)国内外对本课题涉及问题的研究现状 针对图像去噪的经典算法,科学工作者通过努力,提出了一些的改进算法,比如模拟退火法[6]。但是模拟退火法存在的问题是计算过程复杂,计算量大,即使使用计算机代替人工计算也会耗用大量时间。后来在众多研究者的努力下,产生了很多其他不同的方法。而现今已卓有成效的非线性滤波方法有正则化方法、最小能量泛函方法、各向异性扩散法[7] [8]。 目前常用的降噪方法有在空间域进行的,也有将图像数据经过傅里叶等变换以后转到频域中进行的[9]。其中频域里的滤波需要涉及复杂的域转换运算,相对而言硬件实现起来会耗费更多的资源和时间。在空间域进行的方法有均值或加权后均值滤波、中值或加权中值滤波、最小均方差值滤波和均值或中值的多次迭代等。实践证明,这些方法虽有一定的降噪效果,但都有其局限性。比如加权均值在细节损失上非常明显;而中值仅对脉冲干扰有效,对高斯噪声却无能为力[10] [11] [12] [13]。实上,图像噪声总是和有效数据交织在一起,若处理不当,就会使边界轮廓、线条等变得模糊不清,反而降低了图像质量。 对于去除椒盐噪声,主要使用中值滤波算法。中值滤波是在1970年由Tukey提出的一种一维滤波器。它主要是指用实心邻域范围内的所有值的中值代替所作用的点值,但是必须注意的是邻域内的点的个数是正奇数,这是为了保证取中值的便利性,若是偶数,则中值就会产生两个[14] [15]。中值滤波以一种简单的非线性平滑技术。它是以排序统计理论作为基础,有效抑制噪声的非线性处理数字信号技术。中值滤波对消除椒盐噪声非常有效。在图像处理中,常用中值滤波保护图像边缘信息,它是一种经典的去除图像噪声算法[16]。但是它在去除图像噪声过程中,往往会将图像的细节比如细线、棱角的地方破坏掉。后来

基于小波变换的图像去噪

第1章绪论 由于各种各样的原因,现实中的图像都是带噪声的。噪声恶化了图像质量,使图像变得模糊。对同时含有高斯噪声和椒盐噪声的图像先进行混合中值滤波,在滤除椒盐噪声的同时,又很好地保留了图像中的物体细节和轮廓。小波域去噪处理具有很好的时频特性、多分辨分析特性等优点,可以看成特征提取和低通滤波功能的综合。小波模极大值去噪方法能有效地保留信号的奇异点信息,去噪后的信号没有多余振荡,具有较好的图画质量,改进后可以得到更满意的图像。小波相位滤波去噪算法是基于小波变换系数相关性去噪算法的,适于强噪声图像,去噪后也可以改善图像质量。 1.1课题背景 图像信息以其信息量大、传输速度快、作用距离远等优点成为人类获取信息的重要来源及利用信息的重要手段,而现实中的图像由于种种原因都是带噪声的。噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来困难。为了去除噪声,会引起图像边缘的模糊和一些纹理细节的丢失。反之,进行图像边缘增强也会同时增强图像噪声。因此在去除噪声的同时,要求最小限度地减小图像中的信息,保持图像的原貌。经典的图像去噪算法,如均值滤波、维纳滤波、中值滤波等,其去噪效果都不是很理想。 中值滤波是由图基(Turky)在1971年提出的,开始用于时间序列分析,后来被用于图像处理,在去噪复原中得到了较好的效果。它的基本原理是把数字图像或数字序列中的一点的值,用该点的一个邻域中的各点的中值代替。中值滤波在抑制椒盐噪声的同时又能较好地保持图像特征,图像也得到了平滑。对同时含有高斯噪声和椒盐(脉冲)噪声的图像,先进行混合中值滤波处理。基于极值的混合中值滤波兼容了中值滤波和线性滤波的优点,在滤除椒盐噪声的同时又对图像中的物体细节和轮廓进行了很好的保留。基于混合中值滤波和小波去噪相结合的方法,去噪效果好于单纯地使用小波变换去除噪声,或者单纯使用混合中值滤波去除噪声,能获得比单一使用任何一种滤波器更好的效果。

相关主题
文本预览
相关文档 最新文档