当前位置:文档之家› 海上风机基础结构力学分析_王懿

海上风机基础结构力学分析_王懿

海上风机基础结构力学分析_王懿
海上风机基础结构力学分析_王懿

海上风机基础的防冰结构

(10)授权公告号 (45)授权公告日 2014.02.05 C N 203420289 U (21)申请号 201320485081.X (22)申请日 2013.08.08 E02D 31/00(2006.01) E02D 27/52(2006.01) E02D 27/44(2006.01) (73)专利权人上海电力设计院有限公司 地址200025 上海市黄浦区重庆南路310号 18-22楼 (72)发明人邹辉 (74)专利代理机构上海富石律师事务所 31265 代理人 刘峰 (54)实用新型名称 海上风机基础的防冰结构 (57)摘要 本实用新型公开了一种海上风机基础的防冰 结构,包括一用于抵抗外部撞击的防冰锥和两用 于将所述防冰锥固定连接在海上风机桩基础上的 抱箍,所述防冰锥包裹环设于海上风机桩基础的 高潮位和低潮位之间,所述防冰锥的上端部通过 一所述抱箍固定连接在所述海上风机桩基础的高 潮位,所述防冰锥的下端部通过另一所述抱箍固 定连接在所述海上风机桩基础的低潮位。本实用 新型将防冰锥套设在海上风机桩基础最频繁遭遇 海冰撞击的高潮位和低潮位之间,有效增强海上 风机基础的防撞击性能和抗海冰流激振动动力能 力。同时,在防冰锥的上下两端部处通过抱箍便将 其固定安装在所述海上风机桩基础上,施工更加 便捷有效。 (51)Int.Cl. 权利要求书1页 说明书3页 附图2页 (19)中华人民共和国国家知识产权局(12)实用新型专利权利要求书1页 说明书3页 附图2页(10)授权公告号CN 203420289 U

1/1页 1.一种海上风机基础的防冰结构,其特征在于:包括一用于抵抗外部撞击的防冰锥和两用于将所述防冰锥固定连接在海上风机桩基础上的抱箍,所述防冰锥包裹环设于海上风机桩基础的高潮位和低潮位之间,所述防冰锥的上端部通过一所述抱箍固定连接在所述海上风机桩基础的高潮位,所述防冰锥的下端部通过另一所述抱箍固定连接在所述海上风机桩基础的低潮位。 2.如权利要求1所述的海上风机基础的防冰结构,其特征在于:所述防冰锥由一上圆台和一下圆台对接组成,所述上圆台的上底面通过所述抱箍套设在所述海上风机桩基础的高潮位,所述下圆台的下底面通过另一所述抱箍套设所述海上风机桩基础的低潮位,所述上圆台的下底面和所述下圆台的上底面在所述海上风机桩基础的平均潮位处对接,所述上圆台的上底面直径小于所述上圆台的下底面直径,所述下圆台的上底面直径大于所述下圆台的下底面直径,所述上圆台的下底面直径与所述下圆台的上底面直径相等。 3.如权利要求1或2所述的海上风机基础的防冰结构,其特征在于:所述防冰锥的外周侧面覆盖设置有靠泊橡胶护舷。 4.如权利要求1或2所述的海上风机基础的防冰结构,其特征在于:在位于所述海上风机桩基础高潮位向上延伸设置有外部船舶辅助爬梯。 5.如权利要求2所述的海上风机基础的防冰结构,其特征在于:所述上圆台和下圆台的对接面与所述海上风机桩基础的平均潮位处重合,且所述上圆台和下圆台以所述对接面为对称面上下对称。 6.如权利要求2所述的海上风机基础的防冰结构,其特征在于:所述上圆台的母线和所述上圆台的轴之间的夹角为28-32°。 7.如权利要求2所述的海上风机基础的防冰结构,其特征在于:所述下圆台的母线和所述下圆台的轴之间的夹角为28-32°。权 利 要 求 书CN 203420289 U

海上风机发展

海上风机未来发展的重心--大功率海上风机 具体到我国来说,“十二五”期间,我国建立了大功率风电机组整机设计制造技术体系,3~6兆瓦的海上风电机组实现示范应用,大型风电场运行管理等关键技术开始实际应用。 据有关人士介绍,上海电气(601727)已于去年成功引进西门子6兆瓦海上风机机型,湘电风能也开始推广其5兆瓦风机,而陆上风电市场的龙头企业金风科技(002202)也已拥有6兆瓦样机。记者近日从国家能源局官网获悉,国家能源局印发的《能源技术创新“十三五规划”》(以下简称《规划》)提出,“十三五”期间,我国将实现5~6兆瓦等级大型海上智能风电机组应用推广,降低海上风电场的度电成本,实现大型海上风电机组安装规范化和机组运维智能化。 正因如此,此次《规划》就提出,“十三五”期间,我国将完善高可靠性低度电成本海上风电机组整体优化设计技术,应用推广大型海上风电机组的基础工程设计和建造技术,以及大型海上风电场的智能化监控运行维护技术。 在全球范围内,海上风机正朝着更大容量发展。这一趋势近年来在欧洲格外明显。实际上,我国也正朝着研制大功率海上风机方向迈进。湘电风能2015年底中标福建中闽能源福建莆田平海湾50兆瓦海上风电项目,该项目是国内乃至亚洲第一个采用5兆瓦机型的商业化海上风电项目,同时也是全球第一个采用5兆瓦直驱永磁风机的商业化海上风电项目。 此外,突破8兆瓦及以上高可靠性海上风机的关键技术已经被列入中国电机工程学会编制的《“十三五”电力科技重大技术方向研究报告》。按照规划,到2020年我国将具备8兆瓦及以上大型海上风机制造能力,同时突破海上风电施工建设、并网运行关键技术,建成海上风电场全景监视及综合控制系统,在海上风电场施工建设水平、运维检测等方面将赶超欧美先进水平。 据中国气象局测绘计算,我国近海水深5米到25米范围内50米高度风电可装机容量约2亿千瓦;5米到50米水深70米高度风电可装机容量约为5亿千瓦。虽然目前我国仅占全球海上风电8.4%的市场份额,但我国海上风电的发展潜力非常巨大。 首个国家海上风电示范工程——上海东海大桥海上风电场在建设之初,面临着技术、设备、标准等空白。国外风电巨头的技术垄断和价格封锁、海上恶劣的自然环境、我国沿海地区独特的淤泥地质和台风天气等都给这一项目带来了重重困难。在这种情况下,国内整机商和上海勘探设计研究院等科研机构及施工机构紧密协作实现了项目的成功建设,可以说为我国风电产业积累了海上风电安装制造、整机开发、风电运维等多方面的宝贵经验。 不可否认,我国海上风电仍处于起步阶段。与陆上风电相比,海上风电发展更多面临产业自身技术层面的问题,包括机组技术、施工技术、输电技术、运维技术等方面都无法满足海上风电发展的需要。

IEC614003海上风力机设计要求

IEC 61400-3 风力机- 第三部分:海上风力机设计要求 1概述 IEC 61400的这一部分的要求是评估海上风力机场地的外部条件和联合IEC 61400-1一起指定确保海上风力机工程完整性的基本设计要求。其目的是提供适当的水平保护风力机在计划使用期那不受任何危险的伤害。 这个标准主要关注海上风力机的结构部件的工程完整性,也考虑到子系统例如控制和保护机制,内部电力系统和机械系统。 2主要元素 概述 以下条款中给定了确保海上风力机的结构、机械、电力和保护系统的安全的工程和技术要求。这个要求规范应用于海上风力机的设计、制造、安装和操作和维护手册以及相关质量管理程序,另外也考虑到按照在海上风力机的安装、运行和维护过程中使用的各种惯例制定安全程序。 设计方法

海上风力机设计过程 安全分类 普通安全类型:应用于故障结果威胁到人员伤害或其他社会或经济结果。 特殊安全类型:应用于安全要求由当地规则决定和/或安全要求由制造商 和客户共同决定。 质量保证 推荐设计系统遵守ISO 9001的要求。

转子-机舱装配标记 以下信息必须显著的标识在转子-机舱装配排上: ●制造商和国家 ●模拟和连续号码 ●生产年份 ●参考风速 ●轮毂高度运行风速范围 ●运行环境温度范围 ●IEC风力机分类 ●风力机终端额定电压 ●风力机终端频率或在标称值上的变化大于2%时的频率范围。 3外部条件 概述 海上风力机的环境和电网条件可能影响它们的载荷、耐久和运行。为了确保适当的安全和可靠性级别,环境、电网和土壤参数将被考虑到设计中并明白的规定在设计文件里。 环境条件被细分为风力条件、海洋条件(海浪、洋流、水深、海水结冰、海洋植物、海底运动和冲刷)和其它环境条件。电力条件涉及电网条件。 外部条件在细分为普通和极端外部条件。普通外部条件通常涉及周期性结构载荷条件,极端条件表现为罕见的极端设计条件。设计载荷情况将包括潜在的危机联合这些风力机运行模型和其它设计工况的极端条件。 风力机分类 对于海上风力机定义风力机分类依照风速和湍流参数保留适当的设计转子-机舱装配。 更进一步的分类,S类,被定义为使用设计者和/或客户要求的特殊风力或其它外部条件或特殊安全分类。 设计使用寿命至少为20年。

全球十大风机制造商情况介绍

全球十大风机制造商情况介绍 根据全球风能理事会(GWEC)统计数据,在经济萧条的大背景下,2009年全球风力发电能力仍然增长了31%,总装机容量也增加了3.75万兆瓦,达到15.79万兆瓦。其中,中国2009年的新装机量更是超过了美国,以1.3万兆瓦的总量排名全球第一。风力发电在提倡能源清洁化的今天,正逐步成为电力行业中不可或缺的一员。作为风力发电重要的设备之一,风力发电机的重要性不言而喻。全球目前有哪些主要风机制造商,他们各自的发展和运营情况又如何?本期跨国经营版选择了全球10家主要风机制造企业,为您一一介绍。https://www.doczj.com/doc/a95489622.html, 中国风电材料设备网 一、风机制造领头羊维斯塔斯(Vestas)cnwpem·cn 提及风机制造,维斯塔斯是一个很难被绕开的名字。来自丹麦的风电设备巨头以大约20%的市场份额牢牢占据了全球第一大风机制造商的位置。https://www.doczj.com/doc/a95489622.html, 维斯塔斯的历史,最早可以追溯到1898年。这一年,

年仅22岁的铁匠汉森(H.S. Hansen)来到风力资源丰富的丹麦海滨小镇Lem,开办了自己的第一家工坊。其后的几十年间,这间小小的工坊逐渐发展为一家私人有限公司。1945年,铁匠汉森之子彼得·汉森与9位同事合力创办了西日德兰钢铁技术公司,此后不久,这家公司即更名为今天的维斯塔斯(Vestas)。创建伊始,公司产品不过是搅拌器一类的家庭厨房用品。1971年,维斯塔斯聘用了一位工程师Bringer Madsen,开始尝试制造风力发电机。风机被设计为打蛋器的形状,不过,后来证明这种风机无法生产持续而有价值的电力。与此同时,在丹麦的另一座小镇上,两名铁匠也在研究风力发电机。他们找到维斯塔斯,并最终与该公司合作,制造出类似现代所用的三叶风机。https://www.doczj.com/doc/a95489622.html, 1979年,维斯塔斯出售并安装了第一台风力发电机。这台机器的转子长10米,发电能力为30千瓦。由此,维斯塔斯正式踏上了风机制造之路。1985年,维斯塔斯成功研发世界第一台变桨距风机,使得风机叶片可以根据风况时刻微调叶片的角度,从而大大提升风机的发电量。这一特性很快成为维斯塔斯的卖点。然而,一年之后,维斯塔斯却经历了一

风电泰斗和他的漂浮式海上风机基础

风电泰斗和他的漂浮式海上风机基础 随着海上风电向深海远海发展,对水深超过50米的海上风电项目,安装和运维的成本居高不下仍然是一个主要问题。对这些深远海海上风电项目,为减少其生产,安装和运维成本,在固定式基础持续进步的同时,这些年,漂浮式海上风机基础已经逐渐渐发展起来,并走出试验阶段,走向商业化应用了。 最近的一则消息称,丹麦技术大学DTU,及两家丹麦企业DHI和StiesdalOffshoreTechnology正在合作进行一项叫作LIFES50+的测试,用以测试下一代漂浮式海上风电基础,该基础叫TetraSpar,是由Stiesdal公司发明的。6月20日,该测试项目举行了现场示范。这是DTU风能团队在DHI海上波浪盆地进行的漂浮式风力发电机基础的第四次测试活动。 该漂浮式基础使用DTU的10MW风力发电机进行1:60比例模型测试,并考虑两个浮子配置。漂浮式风电机在许多运行和生存条件下经受风浪和波浪考验。 模型测试活动LIFES50+的目标是提供TetraSpar基础的概念证明,并提供该领域的实验测试和数据分析技术。该项目由欧洲地平线2020计划资助,由挪威公司SintefOcean领衔。DTU风电系主导数字建模活动,并参与该项目。来自风电行业,研发和咨询机构的12个合作伙伴共同参与创建新的漂浮式基础结构概念。 DTU和DHI在风电行业都鼎鼎大名,StiesdalOffshoreTechnology是何方神圣? 这个公司的创始人HenrikStiesdal是名副其实的风电前辈,以下关于他的资料(斜体字部分)来源来维基百科。 1978年,HenrikStiesdal(与KarlErikJørgensen一起)设计了代表“丹麦概念”的第一台风力发电机之一。1979年,他将该设计授权给了维斯塔斯公司,当时,维斯塔斯公司是一家丹麦制造企业,生产农用货车、卡车起重机和船用冷却器。Stiesdal的设计形成了维斯塔斯公司崛起成为风力发电机领先制造商的基础。Stiesdal开始在维斯塔斯担任顾问,之后于1983年加入公司担任项目经理。1987年,Stiesdal加入丹麦风力发电机制造商BonusEnergyA/S作为开发专家。1988年,他成为技术经理,2000年担任首席技术官。2004年,BonusEnergyA/S被德国技术公司Siemens收购。Stiesdal成为西门子风力发电的首席技术官,并于2014年底退休。在他的职业生涯中,Stiesdal已经发明了超过175项发明,已经获得650多项有关风力

海上风机发展趋势分析

海上风机发展趋势分析 1海上风电机组的发展历程 在90 年代, Bonus 的 450kW和 Vestas 的 500kW、 550kW、 600kW风电机组曾经在早期的 近海风电场应用, 2000 年以后就没有安装过 2MW以下的海上风电机组。 2001 年以后, Vestas 公司的 2MW和 3MW双馈式海上风电机组在欧洲海上风电场大批量应用,是经受住考验的成熟机型。 Vestas 公司的海上风电机组装机容量约占全球海上风电机组的 35% 左右;同样,西门子公司的 2.3MW和 3.6MW(高速齿轮箱 +异步感应式发电机 +全功率变流器)海 上风电机组也连续十一年在海上风电场大批量应用,是经受住考验的成熟机型,也是目前海上 风电场的主流机型。西门子公司的海上风电机组装机容量约占全球海上风电机组的50%以上。 2008 年以后,德国Repower 公司研制的5MW双馈式异步风电机组已经成功应用于海上风电场, 是传统双馈式风电机组大型化的典范。目前在爱尔兰、比利时和德国海上风电场安装运行。 该机组风轮直径126 米,轮毂高度120 米,额定功率5MW,已经安装使用39 台。在其基础上扩容 的REpower 6M也已经安装了 3 台。 近年来,德国BARD公司推出了5MW海上风电机组,风轮直径122 米,机舱部分重达425叶片长度为60 米, 28.5 吨。由德国Areodyn 公司设计,属于双馈式风电机组大型化的又一个范例。轮毂重量( 包括轴承座和其他附加设备) 70吨。机舱(包括发电机,但不包括叶片和轮毂280 吨。吨,) 德国Multibrid BARD 公司 半直驱型 5MW海上风电机组已经在海上风电场安装18 台,共 5MW风电机组也已在海上风电场投入运行,安装数量超 过 90MW;法 - 德合资的Areva 10 台。该机组额定功率: 5 MW;风轮直径 :116m。机组采用集成化设计:将风力机的主轴、齿轮箱、高速轴和发电机集成在一 起,以减少重量,从而降低成本。传动链为:风轮+单级齿轮箱( 1:9.92)+ 多级永磁发电机。系统采用折中方案,兼顾了双馈式风电机组和直驱式风电机组的优点,折中考虑了性能与价格的关系。 此外, 2003 年 GEwind 公司的 3.6MW双馈式海上风电机组也已在海上风电场投入运行,安装数量 7 台;芬兰 Winwind 公司生产的 3MW半直驱海上风电机组也于 2009 年在海上风电场投入运行,安装数量10 台。但是后来这两个产品都没有继续进入海上风电场,说明它们的性能还不能适应海上风电 场的恶劣环境。 2010 年以后,中国华锐公司生产的3MW半直驱海上风电机组也已在海上风电场投入运行,目前 在海上风电场的安装数量超过50 台。 2011 年,中国上海电气风能公司生产的 3.6 MW 海上风电机组也有一台在海上风电场投入运行, 效果良好。 表1、各国海上风电机组在市场中的累计装机容量及所占比例 国家英国丹麦荷兰中国德国比利时瑞典爱尔兰挪威葡萄 牙 累计装2107.6 835.85246.8209.9198.3195163.6525.2 2.32机容量 (MW) 比例 52.8720.97 6.19 5.27 4.97 4.89 4.110.630.060.05(%) 表 2、各种 2MW以上海上风电机组在市场中的比例 序号产品型号2011 年安装容量2011 年市场份额2011 年累计安2011 年底累计市 ( MW)(%) 装容量 (MW)场份额1西门子 2.3MW48.310.28814.220.42

海上风力发电机组认证规范

海上风力发电机组认证规范 中国船级社 2012年8月

目 录 第1章 总 则 (1) 第1节 一般规定 (1) 第2节 认证 (2) 第3节运行和维护监控 (3) 第2章 环境与载荷 (4) 第1节 一般规定 (4) 第2节 外部条件 (6) 第3节 设计载荷 (18) 第3章 材料与制造 (39) 第1节 一般规定 (39) 第2节 结构用钢 (41) 第3节 制造与焊接 (43) 第4章 强度分析 (51) 第1节一般规定 (51) 第2节应力计算 (51) 第3节金属材料 (53) 第4节混凝土和灌浆材料 (60) 第5节纤维增强塑料和粘接 (64) 第6节木材 (71) 第5章 结 构 (72) 第1节一般规定 (72) 第2节风轮叶片 (73) 第3节机械结构 (77) 第4节机舱罩和整流罩 (77) 第5节连接 (80) 第6节支撑结构 (88) 第7节基础和地基 (115)

第6章 机械部件 (125) 第1节 一般规定 (125) 第2节 变桨系统 (126) 第3节 轴 承 (128) 第4节 齿轮箱 (130) 第5节 机械制动和锁定装置 (136) 第6节 联轴器 (138) 第7节 弹性支撑 (139) 第8节 偏航系统 (140) 第9节 液压系统 (142) 第10节 海上应用 (143) 第7章 电气系统 (145) 第1节 一般规定 (145) 第2节 电气系统、设备及元器件设计的一般原则 (146) 第3节 电机 (149) 第4节 变压器 (150) 第5节 电力电子变流器 (151) 第6节 中压设备 (152) 第7节 开关和保护装置 (153) 第8节 电缆和电线 (154) 第9节 备用电源 (156) 第10节 海上电网装置 (156) 第11节 并网和装置 (157) 第12节 充电设备和蓄电池 (159) 第8章 控制和安全保护系统 (161) 第1节 一般规定 (161) 第2节 控制和安全保护系统的一般原则 (163) 第3节 控制系统 (165) 第4节 安全保护系统 (166) 第5节 监控和安全处理 (168)

风机锚栓基础设计管理

风机锚栓基础设计管理 论文栏目:设计管理论文更新时间:2015/6/19 15:37:26 283 1前言 风机基础与塔筒的连接形式有很多种,最具代表性的有基础环与锚笼环两种形式。据不完全统计,目前国内已经建成风电场95%以上的风机塔筒与基础连接采用的基础环形式,该种连接方式被认为是安全可靠的。随着部分风电场陆续出现基础环松动的问题,风机供应商、设计单位、施工单位等各方专家进行了多次会诊,目前已基本达成如下共识:基础环直径较大、埋深不足、基础环与周边混凝土连接不可靠,其受力特性相比锚栓差。从设计角度来讲,单机容量1.5MW及以上容量的风机塔筒与基础连接宜采用锚栓[1][2][3]。但是,由于当前用于风机塔架与基础连接的锚栓存在材质无相应规程规范、防腐难度大、锚栓断裂不易更换等问题,由此增加的风险成本,风机供应商和设计单位都在回避。在此前提下,业主推出“风机锚栓基础设计及锚栓组件材料采购打捆”的招标采购形式,相当于EP承包,投标主体必须是设计院。根据目前市场环境条件,设计单位应充分掌握锚栓式基础的市场前景,本着尽最大可能的占领市场份额和为业主服务的目标,积极参与投标。只要做好锚栓材料市场调研,充分进行研究,详细设计,发现风险点,做好风险控制和转移,精工细作,做好设计优化工作,就能在新的市场条件下占据主动。设计单位既要作为设计的主体,同时又是采购的主体,除了要保证结构设计的可靠以外,还应对所需采购锚栓及组件材料的市场情况有充分的了解,这样才能保证整个项目的风险可控,以使效益最大化。因此,作者以下将针对该新的市场环境条件,对风电项目中“风机锚栓基础设计及锚栓组件材料采购打捆”的设计管理进行简单论述,为设计单位提供借鉴。 2产品调研 锚笼环高度一般在3.0m以上,除外露30cm左右之外,其余部分埋入风机基础混凝土。锚栓组件最重要的承力构件是高强预应力锚固螺栓及替代品,其不同于一般的高强预应力锚固螺栓,且国内没有专门针对风电机组的锚栓设计规程,造成目前市场材料供应良莠不齐。经资料收集整理,目前市场上较有名的主要有中船重工713研究所、江苏金海公司、青海金阳光生产的高强预应力锚固螺栓,以及天津二轧生产的精轧钢筋。通过掌握资料,首先应由项目负责人通过电话向供货商了解其产品基本性能,产品应用业绩,目前市场价格等,并初步了解其合作意向。其次,以公司名义向有意向参与合作的供应商发正式询价函件,由

(完整版)海上风电场+风机基础介绍

海上风电场风机基础介绍技术服务中心业务筹备部

前言 近年来,国家对清洁能源特别是风电的发展在政策上给予了很大支持,使得中国风电得到蓬勃发展。风力发电作为新能源领域中技术最成熟、最具规模化开发条件和商业化发展前景的发电方式,获得了迅猛发展。随着风电机组从陆地延伸到海上,海上风电正成为新能源领域发展的重点。 本文结合国内外海上风电场具体的风机基础,对现有的海上机组的基础类型逐一介绍,目的是对海上风机基础形成一个初步的了解,为公司日后的海上服务业务做铺垫。 为人类奉献白云蓝天,给未来留下更多资源。 2

目录 1 风机基础类型--------------------------------------- 4 1.1 重力式基础----------------------------------------- 4 1. 2 单桩基础------------------------------------------- 6 1. 3 三脚架式基础--------------------------------------- 8 1. 4 导管架式基础-------------------------------------- 10 1. 5 多桩式基础---------------------------------------- 11 1.6 其他概念型基础------------------------------------ 12 2 海上风力发电机组基础维护 -------------------------- 14为人类奉献白云蓝天,给未来留下更多资源。 3

海上风机发展

装机量和融资规模有望双增 欧洲地区依然是全球海上风电迅速增长的“主引擎”,2015年海上风电装机量几乎比2014年翻了一番。其中,德国海上风电装机容量新增达到228万千瓦,占全球新增规模总量的67%,有望助力其超越英国成为海上风电第一大国。 与德国相比,我国海上风电装机增长虽低于预期,但2015年海上风电装机容量新增达到36万千瓦,海上风电累计装机容量超过100万千瓦,我国成为继丹麦、英国和德国之后,全球第四个海上风电装机量突破百万千瓦大关的国家。 在装机量增长的同时,项目融资规模也相应增长。2015年,龙源海安蒋家沙项目、大唐国信江苏滨海项目,两个项目的装机量均突破300兆瓦,融资额均为8.5亿美元,融资规模相对较大。 近年来风力发电在我国电力总装机中的比重已超过7%,成为仅次于火电、水电的第三大电力来源。其中海上风电将凭借其诸多优势有望成为我国风电产业发展的新动力。“十三五”时期各方将合力推动海上风电实现跨越式发展,海上风电将从技术、质量、政策等方面取得显著进步,实现稳步快速推进。 大容量趋势在海上项目更突出 中国海上风电起步于2007年。当年,在渤海湾安装一台金风(GW70/1500)试验样机;2009年至2010年,龙源江苏如东潮间带32.5兆瓦试验风电场建成,共安装了8家整机商的试验样机,包括金风GW90/2500、华锐SL3000/113、联合动力UP1500-82、明阳MY1.5S-82和SCD3.0-100、上海电气W2000-93、远景EN-82/1.5、海装H93-2.0MW、三一SE9320III-S3。2010年,东海大桥102兆瓦海上风电场采用华锐SL3000/90机组,标志着中国首个真正意义上的海上风电场建成。2011年至2013年,龙源如东150兆瓦海上潮间带示范风电场建成,主要来自3家企业批量装机,包括金风GW109/2500、SiemensSWT-101-2.3、华锐SL3000/113。2014年至2015年,中国海上风电开始提速,风电机组主要来自上海电气(W3600M-116-90/80和SWT-4.0-130)、湘电(XE128-5000)和远景(EN-136/4.0)。

海上风力发电机组基础设计

摘要 这篇文章介绍了海上风电场建设概况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。 关键词电力系统;海上风电场;海上风电机组基础;设计

Abstract This article describes the overview of offshore wind farm construction, the composition ofthe offshore wind turbine, offshore wind turbines based on the form-based design ofoffshore wind turbines. Key Words electric power system;Offshore wind farm; Offshore wind turbine foundation; design

1前言 1.1全球海上风电场建设概况 截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增加了21%。 1.2 中国 截至2010年底,中国的风电累计装机容量达到44.7GW,首次居世界首位,亚洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。 1.3海上风力发电机组通常分为以下三个主要部分: (1)塔头(风轮与机舱) (2)塔架 (3)基础(水下结构与地基) ?与场址条件密切相关的特定设计;?约占整个工程成本的20%-30%; ?对整机安全至关重要。支撑结构

2 海上风电机组基础的形式 2.1海上风电机组基础的形式 目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括: ?单桩基础; ?重力式基础; ?吸力式基础; ?多桩基础; ?漂浮式基础 2.1.1单桩基础:(如图1所示) 采用直径3~5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡段,将塔架安装其上。单桩基础一般安装至海床下10-20m,深度取决于海床基类型。此种方式受海底地质条件和水深约束较大,需要防止海流对海床的冲刷,不适合于25m 以上的海域。 2.1.2重力式基础:(如图2所示) 图1 单桩基础示意图

海上风电风机基础选型

海上风电场风机基础选型 1.概述 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。海上有丰富的风能资源和广阔平坦的区域,离岸10 km的海上风速通常比沿岸陆上25%;海上风湍流强度小,具有稳定的主向,机组承受的疲劳负荷较低,使得风机寿命;风切变小,因而塔架可以较低;在海上开发风能,受噪声、景观、鸟类、电磁波干扰等问题较少;海上风电场不涉及土地征用等问题,人口比较集中,陆地面积相对较小、濒临海洋家或地区,较适合发展海上风电。海上风能利用不会造成大气污染和产生任何有害,可减少温室效应气体的排放,环保价值可观,海上风电的这些优点,使得近海风力发电技术成为近年来研究和应用的热点。 发电成本是海上风电发展的瓶颈,影响海上风电成本的主要因素是基础结构成本(包括制造、安装和维护)。目前,海上风电场的总投资中,基础结构占20~30%,而陆上风电场仅为5~10%。因此发展低成本的海上风电基础结构是降低海上风电成本的一个主要途径。 2.风机基础结构型式 海上风电机组的基础被认为是造成海上风电成本较高的主要因素之一。目前国外研究和应用的海上风机基础从结构结构型式上主要分为重力式基础、桩基础及悬浮式基础。前两种形式已在欧洲海上风电场建设中得到广泛应用,悬浮式基础为正在研制阶段的深水海上风电技术。 2.1.重力式基础 重力固定式基础体积较大,靠重力来固定位置,主要有钢筋混凝土沉箱型或钢管柱加钢制沉箱型等等,其基础重量和造价随着水深的增加而成倍增加,丹麦的Vindeby 、Tun? Knob、Middelgrunden和比利时的Thornton Bank海上风电场基础采用了这种传统技术。 重力式基础适合坚硬的黏土、砂土以及岩石地基,地基须有足够的承载力支撑基础结构自重、上部风机荷载以及波浪和水流荷载。重力式基础一般采用预制圆形空腔结构(图2-1),空腔内填充砂、碎石或其他密度较大的回填物,使基础有足够自重抵抗波浪、水流荷载以及上部风机荷载对基础产生的水平滑动、

海上风机技术

Offshore Wind Turbine Technology
海上风机技术
DNV / Royal Norwegian Consulate: Technical Workshop on Offshore Wind DNV / 挪威领事馆:海上风电技术研讨会 挪威领事馆:
Dayton Griffin 20 June 2011

Offshore Turbine Technology/海上风机技术 海上风机技术
Major trends in turbine design / technology 风机设计/技术发展的主要趋势 Industry experience 行业经验 Technical risks and mitigation 技术风险和应对方案
Offshore Turbine Technology 16 June 2011 ? Det Norske Veritas AS. All rights reserved. 2

Turbine Design Trends/风机设计趋势 风机设计趋势
Turbine Size/风机尺寸 Limitations for land-based turbines/陆上风机的局限性 - Transportation logistics/运输物流 - Aerodynamic noise/气动噪声 Innovations for deepwater and remote locations/远海深水风机的创新 Constraining O&M costs/运维成本的限制 - Robust design/坚固性设计 - Remote monitoring/远程监测
Offshore Turbine Technology 16 June 2011 ? Det Norske Veritas AS. All rights reserved. 3

1.5兆瓦风力发电机组塔筒及基础设计解析

1.5兆瓦风力发电机组塔筒及基础设计 摘要:风能资源是清洁的可再生资源,风力发电是新能源中技术最成熟、开发条件最具规模和商业化发展前景最好的发电方式之一。塔筒和基础构成风力发电机组的支撑结构,将风力发电机支撑在60—100m的高空,从而使其获得充足、稳定的风力来发电。塔筒是风力发电机组的主要承载结构,大型水平轴风力机塔筒多为细长的圆锥状结构。一个优良的塔筒设计,可以保证整机的动力稳定性,故塔筒的设计不仅要满足其空气动力学上得要求,还要在结构、工艺、成本、使用等方面进行综合分析。基础设计与基础所处的地质条件密不可分,良好的地质条件可以为基础提供可靠的安全保证,从风机塔筒基础特点的分析可以看出,风机塔筒基础的重要性及复杂性是不言而喻的。在复杂地质条件下如何确定安全合理的基础方案更是重中之重。 关键词:1.5兆瓦;风力发电机组;塔筒;基础;设计 1、我国风机基础设计的发展历程 我国风机基础设计总体上可划分为三个阶段,即2003年以前小机组基础的自主设计阶段,2003— 2007年MW机组基础设计的引进和消化阶段,2007年以后MW机组基础的自主设计阶段, 在2003年以前,由于当时的鼓励政策力度不大,风电发展缓慢,2002年末累计装机容量仅为46.8万kw,当年新增装机容量仅为6.8万kw,项目规模小、单机容量小,国外风机厂商涉足也较少,风机基础主要由国内业主或厂商委托勘测设计单位完成,设计主要依据建筑类的地基规范。 从2003年开始,由于电力体制改革形成的电力投资主体多元化以及我国开始实施风电特许权项目,尤其是2006年《可再生能源法》生效以后,国外风机开始大规模进入中国,且有单机容量600kw、750kw很快发展到850kw、1.0MW、1.2MW、1.5MW 和2.0MW,国外厂商对风机基础设计也非常重视,鉴于国内在MW风机基础设计方面的经验又不够丰富,不少情况下基础设计都是按照厂商提供的标准图、国内设计院

风电场风机基础设计方案标准

附件3 中国国电集团公司 风电场风机基础设计标准 1 目的 为规范中国国电集团公司的风力发电工程中的风机基础设计工作,统一风机基础设计的内容、深度,本着因地制宜、保护环境和节约资源的原则,做到技术先进、安全适用、经济合理、便于施工,特制定本标准。本标准主要规定了风力发电工程中风机基础设计基本原则和方法,涉及地基基础的工程地质条件、荷载、基础选型、设计流程、地基处理、基础构造等内容。 2 范围 本标准适用于中国国电集团公司全资和控股建设的的陆上风力发电工程风机的地基基础设计。 3 引用标准和文件 《风电场工程等级划分及设计安全标准》FD002-2007 《风电机组地基基础设计<试行)》FD003-2007 《建筑地基基础设计规范》GB 50007-2002 《高耸结构设计规范》GBJ 50135-2006 《混凝土结构设计规范》GB 50010-2018 《建筑地基处理技术规范》JGJ79-2002

《冻土地区建筑地基基础设计规范》JGJ 118-98 《建筑抗震设计规范》GB 50011-2018 《构筑物抗震设计规范》GB 50191-93 《建筑桩基技术规范》JGJ 94- 2008 《工业建筑防腐蚀设计规范》GB 50046-2008 《水工建筑物抗冰冻设计规范》DL/T 5082-1998 《混凝土外加剂应用技术规范》GB50119-2003 《大体积混凝土施工规范》GB50496-2009 《湿陷性黄土地区建筑规范》GB 50025-2004 《膨胀土地区建筑技术规范》GBJ 112-1987 《建筑变形测量规程》JGJ/T8-97 4 术语和定义 本标准中的术语定义与下列标准中的规定相同: 《风电机组地基基础设计设计规定<试行)》FD003-2007 《混凝土结构设计规范》GB50010-2018 5 一般规定 5.1基础设计应本着因地制宜、保护环境和节约资源的原则,做到安全适用、经济合理、技术先进、便于施工。 5.2风电机组地基基础主要按《风电机组地基基础设计规定<试行)》设计。对于湿陷性土、多年冻土、膨胀土和处于侵蚀环境、受温度影响的地基等,尚应符合国家现行有关标准的要求。 5.3风机基础设计采用极限状态设计方法,荷载和分项系数的取

海上风力发电机组基础设计

近海风力发电(作业) 摘要 这篇文章介绍了海上风电场建设概况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。 关键词电力系统;海上风电场;海上风电机组基础;设计 1

Abstract This article describes the overview of offshore wind farm construction, the composition ofthe offshore wind turbine, offshore wind turbines based on the form-based design ofoffshore wind turbines. Key Words electric power system;Offshore wind farm; Offshore wind turbine foundation; design -2-

1前言 1.1全球海上风电场建设概况 截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增加了21%。 1.2 中国 截至2010年底,中国的风电累计装机容量达到44.7GW,首次居世界首位,亚洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。 1.3海上风力发电机组通常分为以下三个主要部分: (1)塔头(风轮与机舱) (2)塔架 (3)基础(水下结构与地基) 与场址条件密切相关的特定设计; 约占整个工程成本的20%-30%; 对整机安全至关重要。支撑结构 -3-

2 海上风电机组基础的形式 2.1海上风电机组基础的形式 目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括: 单桩基础; 重力式基础; 吸力式基础; 多桩基础; 漂浮式基础 2.1.1单桩基础:(如图1所示) 采用直径3~5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡段,将塔架安装其上。单桩基础一般安装至海床下10-20m,深度取决于海床基类型。此种方式受海底地质条件和水深约束较大,需要防止海流对海床的冲刷,不适合于25m 以上的海域。 2.1.2重力式基础:(如图2所示) 图1 单桩基础示意图 -4-

风力发电风机基础施工方案(完整版)

一、编制依据: 1、根据图纸设计的要求进行施工。 2、建设部发放《混凝土结构工程施工质量验收规范》。 3、国家电力公司发放《电力施工质量检验及评定标准》 4、电力建设安全规程。 5、施工组织设计书 二、工程概况: 本工程B标段共11个风机基础,风机基础全部为钢筋混凝土基础,基础垫层混凝土设计强度为C15,基础混凝土设计强度为C35,基础采用定型钢质模板,以保证混凝土表面光洁度、平整度和整体性良好。

2:工程车辆配置表 三、施工流程: 1、测量放线 根据设计蓝图及甲方提供的固定成果桩成果表进行测量放线,并在适当位置做控制点且设置保护措施,使控制桩不宜被破坏。在施工测量过程中认真审核图纸,施工测量完成并且经过公司三级检验确认无误后,请甲方及监理单位有关人员进行查验后,进行土方开挖工作。 2、土方工程 (1)基坑开挖时,应对平面控制桩、水准点、基坑平面位置、水平标

高、边坡坡度等经常复测检查。 (2)基坑开挖时,应遵循先深后浅或同时进行的施工程序。挖土应自上而下水平分段分层进行,每层0.3m左右,边挖边检查坑底宽度及坡度,不够时及时修整,每3m左右修一次坡,至设计标高,再统一进行一次修坡清底,检查坑底宽和标高,要求坑底凹凸不超过2.0cm。 (3)雨季施工时,基坑槽应分段开挖,挖好一段浇筑一段垫层,并再基槽两侧围以土堤或挖排水沟,以防地面雨水流入基坑槽,同时应经常检查边坡和支撑情况,以防止坑壁受水浸泡造成塌方。 (4)挖掘发现地下管线(管道、电缆、通讯)等应及时通知有关部门来处理,如施工必须毁坏时,亦应事先取得原设置或保管单位的书面同意。 (5)土方开挖一般应按从上往下分层分段依次进行,随时做成一定的坡势。如用机械挖土,基坑深3.2m可以一次开挖。再接近设计坑底标高或边坡边界时应预留200-300mm厚的土层,用人工开挖和修整,边挖边修坡,以保证不扰动土和标高符合设计要求。 3、模板工程 (1)材料选用定型钢质模板。 (2)模板及支架必须符合下列规定:A:保证工程结构和构件各部位形状尺寸和相互位置的正确;B:具有足够的承载能力、刚度和稳定性,能可靠的承受混凝土的自重和侧压力,以及在施工中承受荷载;C:构造简单,安装方便并便于钢筋的绑扎、安装和混凝土的浇注养护等要求;D:模板的接缝不应漏浆。 (3)模板与混凝土的接触面应刷隔离剂,对油质类等影响结构或妨碍混凝土装饰工程的隔离剂不宜采用。严禁隔离剂污染钢筋与混凝土接槎处。

中国海上风力发电发展现状以及趋势

中国海上风力发电发展现状以及趋势【摘要】:由于具有资源丰富,对人们的生产生活影响小,以及不占用耕地等优势,近几年,我国的海上风力发电得到越来越多的关注。本文就我国近海风电的行业背景、海上风电市场区域分析、国家政策、社会效益、技术支持、发展瓶颈及建议、以及未来发展趋势等几个方面进行论述。 【关键词】:海上风力发电,发展现状,发展趋势,海上风电技术,社会效益,国家政策 前言: 相对于我国陆地风能,海上风能以其资源丰富,风速稳定,对环境负面影响小,装机容量大,且不占用耕地等优势得到了众多风电开发商的青睐。 经过连续多年的高速增长,我国风电装机容量已居世界第1位。目前我国正在大力推动海上风电发展,将从以陆上风电开发为主向陆上和海上风电全面开发转变,目标是成为海上风电大国。近年来,政府相关部门多次出台技术和管理政策,大力推动我国海上风电开发进程。 1、行业背景: 我国近海风能资源丰富。拥有18,000多公里长的大陆海岸线,可利用海域面积多达300多万平方公里,是世界上海上风能资源最丰富的国家之一。据统计,我国可开发利用的风能资源初步估算约为10亿kW,其中,海上可开发和利用的风能储量约7.5亿kW]。 目前我国已经成功并网发电的海上风电项目有:东海大桥海上风电示范项目,响水潮间带实验项目,龙源如东潮间带风电场项目,华能荣成海上风电项目等。另外有南港海上风电项目,江苏大丰200MW海上风电项目等44个项目拟建或者在建。这意味着我国的海上风电正在高速发展着。 另外,随着海上风能的高速发展,也带动着风能产业链的高速发展。我国现有海上风机供应厂家12家,其中以明阳风能以及金风科技最为卓越,在全球最佳海上风机评选中,分别位列第二和第十,这标志着我国风机制造业已经拥有国际先进水平。 据数据分析,未来的15年内,我国风电设备市场的总利润将高达1400亿至2100亿元。巨大的利润,也必将使得我国海上风机制造业得到更加快速的发展。

海上风力发电概况

摘要 绿色能源的未来在于大型风力发电场,而大型风电场的未来在海上。本文简要叙述了全球海上风力发电的近况和一些主要国家的发展计划,并介绍了海上风电场的基础结构和吊装方法。 关键词:海上风电;风力发电机组;基础结构;吊装方法。 要旨 このページグリーンエネルギーの未来は大型風力発電場、大型風力発電の未来は海上。本文は簡単に述べた世界の海上風力発電の近況といくつかの主要国の発展計画を紹介した海上風力発電の基礎構造と架設方法。 キーワード海上風力発電、風力発電ユニット;基礎構造;架設方法。

1 引言 1.1 风力发电是近年来世界各国普遍关注的可再生能源开发项目之一,发展速度非常快。1997~2004年,全球风电装机容量平均增长率达26.1%。目前全球风电装机容量已经达到5000万千瓦左右,相当于47座标准核电站。随着风电技术逐渐由陆上延伸到海上,海上风力发电已经成为世界可再生能源发展领域的焦点。 1.2 海上风能的优点 风能资源储量大、环境污染小、不占用耕地;低风切变,低湍流强度——较低的疲劳载荷;高产出:海上风电场对噪音要求较低,可通过增加转动速度及电压来提高电能产出;海上风电场允许单机容量更大的风机,高者可达5MW—10MW 2 海上风能的利用特点 海上风况优于陆地,风流过粗糙的地表或障碍物时,风速的大小和方向都会变化,而海面粗糙度小,离岸10km的海上风速通常比沿岸陆上高约25%;海上风湍流强度小,具有稳定的主导风向,机组承受的疲劳负荷较低,使得风机寿命更长;风切变小,因而塔架可以较短;在海上开发利用风能,受噪声、景观影响、鸟类影响、电磁波干扰等问题的限制较少;海上风电场不占陆上土地,不涉及土地征用等问题,对于人口比较集中,陆地面积相对较小、濒临海洋的国家或地区较适合发展海上风电海上风能的开发利用不会造成大气污染和产生任何有害物质,可减少温室效应气体的排放。 3 海上风电机组的发展 3.1 第一个发展阶段——500~600kW级样机研制 早在上世纪70年代初,一些欧洲国家就提出了利用海上风能发电的想法,到1991~1997年,丹麦、荷兰和瑞典才完成了样机的试制,通过对样机进行的试验,首次获得了海上风力发电机组的工作经验。但从经济观点来看,500~600kW级的风力发电机组和项目规模都显得太小了。因此,丹麦、荷兰等欧洲国家随之开展了新的研究和发展计划。有关部门也开始重新以严肃的态度对待海上风电场的建设工作。 3.2第二个发展阶段——第一代MW级海上商业用风力发电机组的开发 2002年,5 个新的海上风电场的建设,功率为1.5~2MW的风力发电机组向公共

相关主题
文本预览
相关文档 最新文档