当前位置:文档之家› 低倍数泡沫灭火系统设计规范

低倍数泡沫灭火系统设计规范

低倍数泡沫灭火系统设计规范
低倍数泡沫灭火系统设计规范

低倍数泡沫灭火系统设计规范

第一章总则

第1.0.1条为了合理地设计低倍数空气泡沫灭火系统(以下简称泡沫灭火系统),减少火灾损失,保障人身和财产安全,制订本规范。

第l.0.2条泡沫灭火系统的设计,必须遵循国家的有关方针、政策,做到安全可靠,技术先进,经济合理,管理方便。

第1.0.3条本规范适用于加工、储存、装卸、使用甲(液化烃除外)、乙、丙类液体场所设置的泡沫灭火系统的设计。

本规范不适用于船舶、海上石油平台等场所设置的泡沫灭火系统的设计。

[说明]根据我国的规范体系,建筑类规范规定低倍数泡沫灭火系统的设置场所,本规范规定低倍数泡沫灭火系统的选型与具体设计。为了更加明确这一点,做此修改。

第1.0.4条泡沫灭火系统的设计,除执行本规范的规定外,尚应符合国家现行的有关标准、规范的要求。

第二章泡沫液和系统型式的选择

第一节泡沫液的选择、储存和配制

第2.1.1条对非水溶性甲、乙、丙类液体储罐,当采用液上喷射泡沫灭火时,可选用蛋白、氟蛋白、水成膜或成膜氟蛋白泡沫液;当采用液下喷射泡沫灭火时,应选用氟蛋白、水成膜或成膜氟蛋白泡沫液。

[说明]本规范的规定与美国、英国等国家相关标准的规定类似。

20世纪 80年代初,英国 Angus 公司以水解蛋白为基料,添加适宜的氟碳表面活性剂制成了成膜氟蛋白泡沫液(FFFP), 20世纪 90丰代我国开发了这种泡沫液。该泡沫液不但具有氟蛋白泡沫液的特点,而且还具有水成膜泡沫液的成膜特点,是当今普遍使用的泡沫液种类之一。

从灭火角度,抗溶性氟蛋白泡沫液、抗溶性水成膜泡沫液和抗溶性成膜氟蛋白泡沫液等也适用液下喷射泡沫灭火,但其价格较贵,对单纯的非水溶性甲、乙、丙类液体储罐本规范不推荐采用上述抗溶泡沫液。

第 2.1.1A条保护非水溶性甲、乙、丙类液体的泡沫喷淋系统、泡沫枪系统、泡沫炮系统,当采用泡沫喷头、泡沫枪、泡沫炮等吸气型泡沫产生装置时,可选用蛋白、氟蛋白、水成膜或成膜氟蛋白泡沫液;当采用水喷头、水枪、水炮等非吸气型喷射装置时,应选用水成膜或成膜氟蛋白泡沫液。

[说明]水成膜、成膜氟蛋白泡沫混合液施加到非水溶性液体燃料表面上时,能产生一层防护膜。其灭火效力不仅与泡沫性能有关,更重要的是依赖于它的成膜性及其防护膜的坚韧性和牢固性。所以水成膜、成膜氟蛋白泡沫液也适用于水喷头、水枪、水炮等非吸气型喷射装置。

第2.1.2条对水溶性甲、乙、丙类液体和含氧添加剂含量体积比超过10%的无铅汽油,以及用一套泡沫灭火系统同时保护水溶性和非水溶性甲、乙、丙类液体的,必须选用抗溶性泡沫液。

[说明]汽油中的含氧添加剂主要是醚、醇等水溶性液体,对普通泡沫具有很强的破坏作用。无铅汽油中含氧添加剂含量体积比超过10%时,用普通泡沫液灭火困难,所以也必须选用抗溶性泡沫液。为此,参照NFPA11-1998《低倍数泡沫灭火系统标准》增加相应要求。

当添加剂为多组分的混合物时,只计算含氧元素的那些组分的净含量。

某些储罐区既有水溶性液体储罐又有非水溶性液体储罐,某些桶装库房同时存有水溶性和非水溶性液体,为了降低工程造价设计一套泡沫灭火系统是可行的,但须选抗溶性泡沫液。用抗溶性泡沫液扑救非水溶性甲、乙、丙类液体时,其设计要求与普通泡沫液相同。

第2.1.3条泡沫液的储存温度,应为0-40℃,且宜储存在通风干燥的房间或敞棚内。

第2.1.4条用于配制泡沫混合液的水源,应符合下列要求:

一、配制泡沫混合液的水源应按泡沫液适宜的水质要求配备;

二、配制泡沫混合液的水温宜为4℃~35℃

「说明」淡水是配制各类泡沫混合液的最佳水源。某些泡沫液也适宜于用海水配制混合液。一种泡沫液是否适宜于用海水配制混合法,取决于其耐海水(或硬水)的性能。因此,选择水源时,应考虑与所选泡沫液要求的水质是否相适宜。为此,将原规范一、二、三款合并为目前的一款,四款改为二款。

①注:局部修订条文中标有黑线的部分为修订的内容

第二节系统型式的选择

第2. 2.1条选择固定式、半固定式或移动式泡沫灭火系统类型时,应符合相关规范的规定。

[说明]现行国家标准《石油化工企业设计防火规范》、《石油库设计规范》、《原油和天然气工程设计防火规范》分别对各自行业设置固定式、半固定式和移动式泡沫灭火系统的场所进行了规定,全面修订中的《建筑设计防火规范》拟将上述三个“规范”未包括的使用泡沫灭火系统场所进行规定,设计时应根据上述“规范”选择泡沫灭火系统类型,所以删除本节原条文,予以重新编制。

第2.2.2条储罐区泡沫灭火系统的选择,应符合下列要求:

一、非水溶性甲、乙、丙类液体的固定项储罐,可选用液上喷射泡沫灭火系统、液下喷射泡沫灭火系统或半液下喷射泡沫灭火系统;

二、水溶性甲、乙、丙类液体的固定顶储罐,应选用液上喷射泡沫灭火系统或半液下喷射泡沫灭火系统;

三、甲、乙、丙类液体的外浮顶和内浮顶储罐应选用液上喷射泡沫灭火系统;

四、非水溶性液体的外浮项储罐、内浮顶储罐、直径大于 18m的固定顶储罐以及水溶性液体的立式储罐,不应选用泡沫炮作为主要灭火设施。

五、高度大于7m、直径大于9m的固定顶储罐,不应选用泡沫枪作为主要灭火设施。

[说明] 一、液上喷射泡沫灭火系统适用于固定顶、外浮顶和内浮顶三种储罐;

二、液下喷射泡沫灭火系统不适用于外浮顶和内浮顶储罐,其原因是浮顶阻碍泡沫的正常分布,当只对外浮顶或内浮顶储罐的环形密封处设防时,无法将泡沫全部输送到该处。

当以液下喷射的方式将泡沫注入水溶性液体后,由于水溶性液体分子的极性和脱水作用,泡沫会遭到破坏,无法浮升到液面实施灭火。所以液下喷射泡沫灭火系统不适用于水溶性甲、乙、丙液体固定顶储罐的灭火.

三、半液下喷射是泡沫灭火系统应用形式之一,某些发达国家应用多年,

四、对于外浮顶储罐,其设防区域为环形密封区,泡沫炮难以将泡沫施加到该区域。类似的原因泡沫炮也不适用于内浮顶储罐。泡沫炮为强施放喷射泡沫,由于泡沫会潜入水溶性液体中,使泡沫脱水而遭到破坏,所以不适用于水溶性液体固定顶储罐。直径大于 18 m的固定顶储罐发生火灾时,罐顶一般只撕开一条口子,全掀的案例很少。泡沫炮难以将泡沫施加到储罐内。美、英等国家的相关标准也作了相同或相近的规定。

五、灭火人员操纵泡沫枪难以对罐壁更高、直径更大的储罐实施灭火。美、英等国家的相关标准也作了相近的规定。

第2.2.3条下列场所宜选用泡沫喷淋系统

一、非水溶性甲、乙、丙类液体可能泄漏的室内场所;

二、泄漏厚度不超过25mm的水溶性甲、乙、丙类液体可能泄漏的室内场所;

三、泄漏厚度超过25mm但有缓冲物的水溶性甲、乙、丙液体可能泄漏的室内场所。

[说明]本条是根据多年的试验研究、工程应用的经验及参考发达国家的标准制订的,同时也保留了原“规范”的内容。所述的缓冲物可以是专门设置的缓冲装置,也可以是非专门设置的固定设

备、金属物品或其它固体不燃物。通过公安部天津消防科学研究所的试验,对于厚度超过25 mm 但有金属板或金属桶之类的缓冲物时,灭火是切实可行的。

第2.2.4 条汽车槽车或火车槽车的甲、乙、丙类液体装卸栈台可选用泡沫喷淋系统或泡沫炮系统。

[说明] 本条是参照 NFPA11- 1998《低倍数泡沫灭火系统标准》制定的。在选用栈台泡沫灭火系统时应综合考虑整个栈台的尺寸规格、所涉及的液体类别、临近的其他危险场所及暴露场所、排水设施、常年风向、环境温度和人员配备等因素。

第2.2.5条设有围堰的甲、乙、丙类液体室外流淌火灾区域应根据保护区域具体情况选用泡沫喷淋系统、泡沫炮或泡沫枪系统。

[说明]本条所述的围堰是指用土或其他不燃结构材料建造,并能将深度大于25 mm的燃料限定住的护堤。

本条是参照 NFPA11—1998《低倍数泡沫灭火系统标准》、 BS 5 3 0 6、 Part 6《低倍数泡沫灭火系统标准》制定的。

第2.2.6条无围堰的甲、乙、丙类液体室外流淌火灾区域宜选用移动式泡沫炮或泡沫枪系统。

[说明]本条所述无围堰的甲、乙、丙类液体室外流淌火灾区域是指发生甲、乙、丙类液体流淌时无路牙、防护堤、房屋墙等结构物限制的场所。该场所的甲、乙、丙类液体流淌厚度限定在 2 5 mm 之内。

本条是参照NFPA 11-1998《低值数泡沫灭火系统标准》、 BS 5 3 0 6、 Part 6《低倍数泡沫灭火系统标准》制定的。

第三章系统设计

第一节一般规定

第3.1.1条泡沫混合液设计用量的确定应符合下列要求:

一、泡沫灭火系统扑救储罐区一次火灾的泡沫混合液设计用量,应按式3.1.1—1计算,并应按罐内用量、该罐辅助泡沫枪用量、管道剩余量三者之和最大的储罐确定:

M1 = A12R12T1+n2Q f2t + V

(3.1.l—1)

式中:M1 -- 扑救一次火灾的泡沫混合液设计用量(L);

A1 --单个储罐的保护面积(m2);

R1--泡沫混合液供给强度(L/min2m 2);

T1--泡沫混合液连续供给时间(min);

n --计算储罐的辅助泡沫枪数量;

Qf--每支辅助泡沫枪的泡沫混合液流量( L/min);

t --泡沫枪的混合液连续供给时间(min);

V--系统管道内泡沫混合液剩余量(L)。

二、泡沫喷淋系统扑救一次火灾的泡沫混合液设计用量应按式3.1.1--2计算:

M2=A22R22T2 (3.1.1—2)

式中:M2一泡沫喷淋系统扑救一次火灾的泡沫混合液设计用量(L);

A2 --泡沫喷淋系统的最大保护面积(m2)

R2 --泡沫喷淋系统泡沫混合液供给强度(L/min2m2 );

T2 --泡沫喷淋系统泡沫混合液连续供给时间( min)。

三、泡沫炮、泡沫枪系统扑救一次火灾的泡沫混合液设计用量应按式3.1.1—3计算:

M3=1.2 A32R32T3(3.1.1—3)s

式中:M3 -- 泡沫炮、泡沫枪系统扑救一次火灾的泡沫混合液设计用量(L);

A3 -- 泡沫炮、泡沫枪系统扑救一次火灾的最大保护面积(m2);

R3 -- 泡沫炮、泡沫枪系统泡沫混合液供给强度(L/min2m2);

T3 -- 泡沫炮、泡沫枪系统泡沫混合液连续供给时间(min)。

[说明]本条第一部分是原规范第3.1.1条与第3.1.2条的合并与修改。如执行原规范第3.1.1条“储罐区泡沫灭火系统设计,其泡沫混合液用量,应满足扑救储罐区内泡沫混合液最大用量的单罐火灾和扑救该储罐流散火灾所设辅助泡沫管枪混合液用量之和的要求”,对于某些多罐和水溶性与非水溶性甲、乙、丙类液体共存的储罐区可能会导致错误设计,且该条语句表达不通顺。修改后的条文规定泡沫灭火系统扑救储罐区一次火灾的泡沫混合液设计用量按罐内用量、该罐辅助管枪用量、管道剩余量三者之和为最大的一个储罐进行设计,避免了上述问题。

用泡沫炮或泡沫枪扑灭火灾时,受风等环境因素的影响,喷出的泡沫会有一定的损失。风力愈大、射程愈远,损失愈大。所以确定泡沫炮、泡沫枪流量时,应将其损失计算在内。出于安全,确定了1.2倍的参数。

第3.1.2条储罐的保护面积应按下列规定确定:

一、固定顶储罐、浅盘式和浮盘采用易熔材料制作的内浮顶储罐,应为其储罐的横截面积;

二、外浮顶储罐,单、双盘式内浮顶储罐,应为罐壁与泡沫堰板间的环形面积。

[说明]一、本条一款为原规范第3.2.1条的一部分,这一规定同样适用于液下喷射、半液下喷射泡沫灭火系统,所以调整至本节进行一般规定。

二、本条二款由原规范第3.2.2条和第3.2.3条的部分内容归纳而成。

自八十年代初,在发达国家外浮顶储罐泡沫灭火系统的泡沫喷射口(含泡沫产生器),就有罐壁设置和浮顶设置两种方式。近几年我国某些地方采用了浮顶设置形式,本款含采用从浮顶密封上方和金属挡雨板下施放泡沫的泡沫喷射口(含泡沫产生器)浮顶设置方式的保护面积确定。

三、本规范引用了现行《石油库设计规范》的储罐名称,而现行行业标准《石油化工立式圆筒形钢制焊接储罐设计规范》SH3046— 92将内浮顶储罐的浮盘分为单盘、隔舱式单盘、双盘、在浮筒上的金属顶四种,两者名称不一致。本规范所称的浅盘即后者所称的单盘,本规范所称的单、双盘对应后者的隔舱式单盘、双盘。若《石油库设计规范》改变名称,本规范也会相应变更。

第3.1.3条采用固定式泡沫灭火系统时,除设置固定式泡沫灭火设备外,同时还应设置泡沫钩管、泡沫枪和泡沫消防车等移动泡沫灭火设备。

第3.1.4条设置固定式泡沫灭火系统的储罐区,应在其防火堤外设置用于扑救液体流散火灾的辅助泡沫枪,其数量及其泡沫混合液连续供给时间,不应小于表3.1.4的规定。每支辅助泡沫枪的泡沫混合液流量不应小于 240L/min。

泡沫枪数量和连续供给时间表3.1.4

[说明]本条有三层含义:一是提出对设置固定式泡沫灭火系统的储罐区,在其防火堤外设置用于扑救液体流散火灾的辅助泡沫枪要求,比原规范明确了;二是提出设置数量及其泡沫混合液连续供给时间根据所保护储罐直径确定的要求,呼应本节第3.1.1条;三是原规范的要求。

原规范规定了辅助泡沫枪型号,其单只流量较BS 5 3 0 6 Part 6和N F P A 11的规定大出一倍以上,为此对其进行了修改。

第3.1.5条当储罐区固定式泡沫灭火系统的泡沫混合液流量大于或等于100L/s时,系统的泵、比例混合装置及其管道上的控制阀、干管控制阀宜具备遥控操纵功能,所选设备设置在有爆炸和火灾危险的环境时且应符合《爆炸和火灾危险环境电力装置设计规范》的规定。

[说明]甲、乙、丙类液体储罐区危险程度及火灾后的损失一般均高于其他民用场所,但目前应用于该类场所的泡沫灭火系统,对其控制功能的设计要求一般低于其他灭火系统,为了适当提高泡沫灭火系统的防范能力提出此条要求。

第3.1.6条在固定式泡沫灭火系统的泡沫混合液主管道上应留出泡沫混合液流量检测仪器安装位置;在泡沫混合液管道上应设置试验检测口。

[说明]为验证安装后的泡沫灭火系统是否满足规范和设计要求,要对安装的系统按有关规范的要求进行检测,为此所作的设计应便于检测设备的安装和取样。

第3.1.7条储罐区固定式泡沫灭火系统与消防冷却水系统合用一组消防给水泵时,应有保障泡沫混合液供给强度满足设计要求的措施,且不得以火灾时临时调整的方式来保障。

[说明]出于降低工程造价的考虑,有些设计将储罐区泡沫灭火系统与消防冷却水系统的消防泵合用。但由于两系统的工作状态不同,且多数储罐区的储罐规格也不尽相同,有的相差很大,致使有些系统使用困难。为此提出本条要求,对此类设计加以约束。

第3.1.8条采用固定式泡沫灭火系统的储罐区,应沿防火堤外侧均匀布置泡沫消火栓。泡沫消火栓的间距不应大于6Om,且设置数量不宜少于4个。

[说明]本条规定布置的泡沫消火栓,其功能是连接泡沫枪扑救储罐区防火堤内流散火灾。泡沫消火栓的设置大致有两种形式,一种是安装在固定系统的泡沫混合液管道上;另一种是由水消火栓、独立泡沫液储罐(桶)和泡沫比例混合器构成。不管哪一种形式,保证一定数量和间距是必要的。现行国家标准《石油化工企业设计防火规范》规定水消火栓的间距不大于60 m,为使储罐区消防设施的布置有章法,本条采纳了这一参数。

第3.1.9条储罐区固定式泡沫灭火系统宜具备半固定系统功能。

[说明]甲、乙、丙类液体储罐发生火灾时,通常会有泡沫消防车等救援。根据有关组织对我国已发生的地上金属固定顶储罐火灾统计表明,容积大于2000 m3(直径16m)以上的储罐发生火灾时多在罐顶与罐壁的弱焊接处局部掀开一条口子,罐顶全掀的几率较小,且直径越大全掀的几率越小,泡沫消防车不能直接有效地将灭火泡沫施加到局部开口子的着火储罐内;浮顶储罐的泡沫

灭火系统主要是针对其密封区域火灾而设计的,泡沫消防车不能将泡沫直接有效地喷射到其密封区域,且浮顶也没有考虑其导致的冲击载荷,一旦使用,有击沉浮顶之危险;泡沫消防车也不宜直接向水溶性甲、乙、丙类液体储罐供给泡沫,原因是大部分泡沫会潜入液体中湮灭而不能灭火。所以推荐储罐区固定式泡沫灭火系统具备半固定系统功能,就等于多了一种措施。

当泡沫混合液管道在防火堤外环状布置时,利用环状管道上设置泡沫消火栓就能实现半固定系统功能,但不如在通向泡沫产生器的支管上设置带控制阀的管牙接口方便。如何实现该功能,由设计者与业主协商。

第二节 储罐区液上喷射泡沫灭火系统的设计

第32221条 固定顶储罐固定式、半固定式液上喷射泡沫灭火系统的泡沫混合液供给强度及连续供给时间,应符合下列规定:

一、对于非水溶性的甲、乙、丙类液体,不应小于表3.2.1—1的规定。

泡沫混合液供给强度和连续供给时间 表3.2.1-1

注1:如果采用大于上表规定的混合液供给强度,混合液连续供给时间可按相应的比例缩短,但不得小于上表规定时间的80%。

注2:含氧添加剂含量体积比大于10%的无铅汽油,其抗溶泡沫混合液供给强度不应小于6L /min2m2、连续供给时间不应小于40 min

二、水溶性的甲、乙、丙类液体,不应小于表3.2.1一2的规定。

泡沫混合液供给强度和连续供给时间 表3.2.1-2

注:本表未列出的水溶性液体,其泡沫混合液供给强度和连续供给时间由试验确定。

[说明] 删除了原条文中固定顶储罐燃烧面积确定的内容,并参照BS 5 3 0 6 Part 6《低倍数泡沫灭火系统标准》、NFPA 11—1998《低倍数泡沫灭火系统标准》、ISO 7 0 7 6 《泡沫灭火系统标准》等,对表3.2.1一 1进行了修改。

第3.2.2条外浮顶储罐泡沫灭火系统的设计,应符合下列规定:

一、泡沫混合液供给强度不应小于12.5L/(min2m2),连续供给时间不应小于3 0min,单个泡沫产生器的最大保护周长应符合表3.2.2的规定:

单个泡沫产生器的最大保护周长表3.2.2

二、当泡沫喷射口设置在罐壁顶部、密封或挡雨板上方时,机械密封方式储罐的泡沫堰板高度不应小于0.3 m,且应高出密封圈 0.1m;软密封方式储罐的泡沫堰板高度不应小于O.9m。当泡沫喷射口设置在金属挡雨板下部时,泡沫堰板高度不应小于0.3m。

三、当泡沫喷射口设置在罐壁顶部时,泡沫堰极与罐壁的间距不应小于0.6m。当泡沫喷射口设置在浮顶上时,泡沫堰板与罐壁的间距不宜小于O.6m。

四、应在泡沫堰板的最低部位设排水孔,其开孔面积宜按每1m2环形面积设两个长12mm、高8mm 的矩形孔确定。

五、当采用从金属挡雨板下部喷射泡沫的方式时,其挡雨板必须是不含任何可燃材料的金属板。

[说明]一、目前泡沫喷射口的设置方式有两种,第一种是设置在罐壁顶部,原规范就是针对这种方式的;第二种是设置在浮顶上,它又分为泡沫喷射口设置在密封或挡雨板上方和泡沫喷射口设置在金属挡雨板下部(见图 3.2.2)。表 3.2.2中“密封或挡雨板上方” 即指前者,“金属挡雨板下部”即指后者。

B泡沫喷射口安装在金属挡雨板下部

图3.2.2泡沫喷射日在浮顶上的安装方式

根据技术分析及有关设计、生产单位反映的意见,认为原条文规定的单个泡沫产生器的最大保护周长偏长,且规定了产品型号,限制了其它产品的使用,不利于与国际标准接轨。参照 NFPA11- 1998《低倍数泡沫灭火系统标准》BS5306 Part6《低倍数泡沫灭火系统标

准》对表3.2.2进行了修改,并删除了外浮顶储罐保护面积确定的内容。

二、本款由原规范第二款的部分规定与新增对在浮顶上设置泡沫喷射口的规定综合而成的。

三、本款为新增的。根据大庆市某油库的试验,并参照 NFPA 11—1998《低倍数泡沫灭火系统标准》,泡沫堰板距离罐壁0.6m为宜,故对原规范第二款的部分规定作此修改。从灭火角度,泡沫喷射口浮顶上设置方式的泡沫堰板距离罐壁可进一步减小,但为方便密封检修,故规定不宜小于0.6m。

四、本款是原规范第二款规定的部分内容,为便于表述另列一款。

第3.2.3条内浮顶储罐的泡沫灭火系统的设计,应符合下列规定:

一、浅盘式和浮盘采用易熔材料制作的非水溶性甲、乙、丙类液体内浮顶储罐的供给强度和连续供给时间,应按本规范第3.2.1条一款的规定执行。水溶性甲、乙、丙类液体内浮顶储罐,当设有泡沫缓冲装置时,泡沫混合液供给强度和连续供给时间应按本规范第3.2.1条二款的规定执行;未设泡沫缓冲装置时,泡沫混合液的供给强度应按本规范第3.2.1条二款的规定执行,但泡沫混合液连续供给时间应在本规范第3.2.1条二款规定的基础上增加5O%。

二、单、双盘式内浮顶储罐的泡沫混合液的供给强度、单个泡沫产生器保护周长和连续供给时间均应按本规范第3.2.2条的第一款规定执行,泡沫堰板距离罐壁不应小于 O.55m,其高度不应小于 O.5m。

[说明]本规范执行过程中,发现对浅盘式和浮盘采用易熔材料制作的水溶性甲、乙、丙类液体内浮项储罐的规定欠明确,且有设计单位和消防建审部门询问过此类储罐的泡沫系统如何设计,为此本条将此类内浮顶储罐按是否设置泡沫缓施装置分别规定设计要求。

第3.2.4条液上喷射泡沫灭火系统泡沫产生器的设置,应符合下列规定:

一、固定顶储罐、浅盘式和浮盘采用易熔材料制作的内浮顶储罐的泡沫产生器型号及数量,应根据计算所需的泡沫混合液流量确定,且设置数量不应小于表3.2.4的规定:

泡沫产生器设置数量表 3.2.4

注:对于直径大于35m的储罐,其横截面积每增加300m2,应至少增加1个泡沫产生器。

二、外浮顶储罐和单、双盘式内浮顶储罐的泡沫产生器,其型号和数量应按本规范第3.2.2条的要求来确定。

三、当一个储罐所需的泡沫产生器数量超过一个时,宜选用同规格的泡沫产生器,且应沿罐周均匀布置。

四、储有水溶性甲、乙、丙类液体的固定顶储罐应设置泡沫缓冲装置。

五、泡沫喷射口设置在外浮顶储罐的罐壁顶部时,应配置泡沫导流罩;泡沫喷射回设置在浮顶上时,泡沫喷射回应采用两个出口直管段的长度均不小于其直径5借的T型管,且T型管的横管段应保持水平;设置在密封或挡雨板上方的泡沫喷射日在伸入泡沫堰板后应向下倾斜3O°—6O°。

[说明]原“规范’表3.2.4按储罐直径规定的泡沫产生器数量偏多,如一个直径22.5m(容量5000 m3 )的储罐按原“规范”泡沫产生器最小设置数量为3个,而按NFPA 11泡沫产生器最小设置数量为1个,差别太大。为保证本规范规定的参数既安全可靠,又体现经济性,对表3.2.4进行了修改。

删除了原“规范”三款的条文。为使各泡沫产生器工作压力和流量的均衡以利于灭火,推荐相同型号的泡沫产生器并要求其均布。

对于水溶性甲、乙、丙类液体固定顶储罐不设缓冲装置难以灭火,本规范规定的设计参数是建立在设有缓冲装置基础上的。原规范在条文说明中叙述了设置要求,现予以明确。

本条要求是为了减少泡沫损失和有利于泡沫的分布,设置泡沫导流罩和泡沫喷射口设置在浮顶上要求T型管是行之有效的措施。

第3.2.5条储罐上泡沫混合液管道的设置应符合下列规定:

一、固定顶储罐、浅盘式和浮盘采用易熔材料制作的内浮顶储罐,每个泡沫产生器应用独立的混合液管道引至防火堤外;

二、罐壁顶部设置泡沫喷射口的外浮顶储罐和单双盘式内浮顶储罐的泡沫产生器,可每两个一组在泡沫混合液立管下端合用一根管道引至防火堤外。当三个或三个以上泡沫产生器在泡沫混合液立管下端合用一根管道引至防火堤外时,宜在每个泡沫混合液立管上设控制阀。半固定式泡沫灭火系统引出防火堤外的每根泡沫混合液管道所需的混合液流量不应大于一辆消防车的供给量;

三、连接泡沫产生器的泡沫混合液立管应用管卡固定在罐壁上,其间距不宜大于3m,泡沫混合液的立管下端应设锈渣清扫口。对于外浮顶储罐泡沫喷射口浮顶上设置方式,当泡沫混合液管道从储罐内通过时,应采用具有重复扭转运动轨迹的耐压软管,并不得与浮顶支承相碰撞,且应相距储罐底部的伴热管O.5m以上;

四、外浮顶储罐的梯子平台上设置带闷盖的管牙接口,此接口用管道沿罐壁引至防火堤外距地面

0.7m处,且应设置相应的管牙接口。

[说明]由于引入了泡沫喷射口浮顶上设置方式,在条二款加了该定语。三款增加了泡沫喷射口浮顶上设置方式中对耐压软管、管道连接的要求,并将与水平管道宜用金属软管连接的要求移到了第3.2.6条一款。

第3.2.6条防火堤内泡沫混合液管道的设置应符合下列规定:

一、地上泡沫混合液水平管道,应敷设在管墩或管架上,但不应与管墩、管架固定。与罐壁上的泡沫混合液立管之间宜用金属软管连接。

二、埋地管道距离地面的深度应大于0.3m,与罐壁上的泡沫混合液立管之间应用金属软管或金属转向接头连接:

三、泡沫混合液的管道应有3?坡度坡向防火堤。

[说明]一、本款是原规范第一款的规定与第3.2.5条三款的部分规定综合而成的。

二、将管道埋在地下,突出的优点就是防火堤内整洁,便于防火堤内的日常作业。但也有不利因素,一是控制泡沫产生器的阀门得设置在地下,不利于操作;二是埋地管道的运动受限,对地基的不均匀沉降和储罐爆炸着火时罐体的上冲力敏感;三是不利于管道的维护与更换。为此原规范暗含不推荐将管道理在地下的做法,但由于国内外均有采用,而规范又不便限制,所以增加了此款,本款的宗旨是保护管道免遭破坏。所述金属转向接头可由铸钢、球墨铸铁或可锻铸铁制成。

本条的三款为原规范的第二款。

第3.2.7条防火堤外泡沫混合液管道的设置应符合下列规定:

一、在靠近防火堤外侧处的水平管道上应设置供检测泡沫产生器工作压力的压力表接口。

二、泡沫混合液的管道应有2?的坡度坡向放空阀,管道上的控制阀,应设置在防火堤外,并应有明显标志。

三、泡沫混合液管道上的高处应设排气阀。

[说明]原第一款表达欠确切,其内容现已归纳到3.1.8条。泡沫系统安装完毕后要进行检测,以确定系统设计及安装是否满足相关规范要求,增加的条文就是用于系统检测的。

第3.2.8条删除。

[说明]有关设计计算的内容进行了重新编写,见本章第六节。

第三节储罐区液下喷射泡沫灭火系统的设计

第3.3.1条删除

[说明]:该条的内容已归纳到第二章第二节中。

第3.3.2条地上非水溶性甲、乙、丙类液体固定顶储罐,当采用液下喷射泡沫灭火系统时,应符合下列规定:

一、泡沫混合液的供给强度不应小于5.OL/min2m2;

储存温度超过50℃或粘度大于 40 mm2/s的液体和含氧添加剂含量体积比大于10%的无铅汽油,其泡沫混合液供给强度应由试验确定;

二、泡沫混合液的连续供给时间不应小于 4O min;

三、泡沫进入非水溶性液体的速度:对于甲、乙类液体不应大于 3m/s;对于丙类液体不应大于 6m /s;

四、泡沫喷射口宜采用向上斜的口型,其斜口角度宜为45゜,泡沫喷射管的长度不得小于喷射管直径的20倍。当设有一个喷射口时,喷射口宜设在储罐中心;当设有一个以上喷射口时,应沿罐周均匀设置,且各喷射口的流量宜相等;

五、泡沫喷射口应安装在高于储罐积水层0.3m之上,泡沫喷射口的设置数量不应小于表3.3.2的规定。

泡沫喷射口设置数量表3.3.2

注:对于直径大于4Om的储罐,其横截面积每增加 400m2应至少增加 1个泡沫喷射口。

[说明]参照 NFPA11《低倍数泡沫灭火系统标准》、 BS 5 3 O 6 Part 6《低倍数泡沫灭火系统标准》,对泡沫混合液供给强度和连续供给时间进行了修改,并将泡沫进入非水溶性液体的速度按甲、乙类和丙类分别进行规定。

国内多数设计者理解泡沫管道即为泡沫喷射管,所以许多系统设计为从高背压泡沫产生器出口至储罐内的泡沫喷射口,其管道为同一管径,这样给某些工程带来不便。为了给设计以灵活性,同时又考虑到流体力学参数的稳定,提出泡沫喷射管长度要求。

第3.3.3条液下喷射泡沫灭火系统高背压泡沫产生器的设置,应符合下列规定:

一、设置数量应按本规范第3.3.2条计算的泡沫混合液流量确定;

二、应设置在防火堤外;

三、当一个储罐所需的高背压产生器数量大于1个时,宜并联使用;

四、在高背压泡沫产生器的进口侧应设置检测压力表接口,在其出口侧应设置压力表、背压调节阀和泡沫取样口。

[说明]本条原第二款与第三款的修改条文分别归纳到了本章第六节与第四章第四节中。

根据工程中发现的问题及工程检测的需要,提出了现第二款、第三款、第四款的要求。

第3.3.4条液下喷射泡沫灭火系统的泡沫管线设置应符合下列规定:

一、防火堤内的泡沫管线应按本规范第3.2.6条确定;

二、防火堤外的泡沫管线应设置放空阀并宜有2?的坡度坡向放空阀,不应设置消火栓、排气阀;

三、在靠近储罐的泡沫管线上应设置供系统试验带可拆卸盲板的支管;

四、半固定式系统的泡沫管道应引至防火堤外,并应设置相应的高背压泡沫产生器快装接口。

[说明]:新增第三款是出于工程检测与试验的需要;第四款是对原“规范”的补充。

第3.3.5条删除。

[说明]原第3.3.5条内容已归纳到本章第六节中。

第3.3.6条液下喷射泡沫系统的泡沫混合液管道设置应按本规范第3.2.7条确定。

[说明]水力计算的要求已归纳到本章第六节。

第3.3.7条液下喷射泡沫灭火系统的泡沫管道上应设钢质控制阀和逆止阀及不影响泡沫系统正常运行的防油品渗漏设施。

[说明]目前液下喷射泡沫系统一个较突出的问题就是泡沫喷射管上的逆止阀密封不严,有些系统除关闭了储罐根部的闸阀外,在防火堤外又设置了一道处于关闭状态的闸阀,使该系统处于了半瘫痪状态,即使这样,但还是漏油;有的系统甚至将泡沫喷射管设置成项部高于液面的Ω形,既给安装带来困难,又增加了泡沫管道的阻力,同时又影响美观。目前有采用爆破膜、梭形逆止阀等措施的,为此增加相关要求。

第四节泡沫喷淋系统

第3.4.1条泡沫喷淋系统的保护面积应按保护场所内的水平面面积或水平面投影面积确定。

第3.4.2条当泡沫喷淋系统保护非水溶性甲、乙、丙类液体时,其泡沫混合液供给强度和连续供给时间,不应小于表3.4.2的规定。

泡沫混合液供给强度和连续供给时间表3.4.2

当泡沫喷淋系统保护水溶性甲、乙、丙类液体时,其混合液供给强度和连续供给时间,宜由试验确定。

[说明]本条是在原“规范”等3.4.3条基础上,参照NFPA16-1995《泡沫——水雨淋系统与泡沫——水喷雾系统安装标准》、 BS 5 3 O 6 Part 6 《低倍数泡沫灭火系统标准》、ISO7076《泡沫灭火系统标准》等,结合我国国情制订的。

第3.4.3条泡沫喷淋系统保护非水溶性甲、乙、丙类液体时,宜选用吸气型喷头或带溅水盘的开式非吸气型喷头;当保护水溶性甲、乙、丙类液体时,应选吸气型喷头。

[说明]保护非水溶性甲、乙、丙类液体当选择蛋白、氟蛋白等非成膜类泡沫液时,要选用传统的吸气型泡沫喷头;当选择水成膜、成膜氟蛋白等成膜类泡沫液时,可选用吸气型喷头也可选用开式非吸气型喷头。为减轻泡沫对保护液体的冲击,当选择水成膜、成膜氟蛋白等成膜类泡沫液并选用开式非吸气型喷头时,宜选用带溅水盘的开式非吸气型喷头。保护水溶性甲、乙、丙类液体时,不管选择何种抗溶泡沫液,均无成膜性,所以要选用吸气型泡沫喷头。

第3.4.4条泡沫喷头的布置应符合下列要求:

一、泡沫喷头的布置应根据泡沫混合液的设计供给强度、保护面积和喷头特性确定。

二、应使泡沫直接喷射到保护对象上;

三、泡沫喷头的布置应保证整个保护面积内的泡沫混合液供给强度均匀,任意四个相邻喷头组成的四边形保护面积内的平均泡沫混合液供给强度不应小于设计强度;

四、泡沫喷头周围不应有影响泡沫喷洒的障碍物;

五、泡沫喷头的保护面积和间距应符合表3.4.4的规定:

泡沫喷头的保护面积和间距表3.4.4

[说明]本条是参照 NFPA13 《水喷淋灭火系统安装标准》、 NFPA16《泡沫一水喷淋灭火系统标准》、《自动喷水灭火系统设计规范》GBJ 84-85、《水喷雾灭火系统设计规范》GB 50219—95等标准、规范,结合泡沫喷淋系统特性制订的。

第3.4.5条泡沫喷淋系统宜设置雨淋阀、水力警铃,并应在每个雨淋阀出口管路上设置压力开关,但喷头数小于1O个的单区泡沫喷淋系统可不设雨淋阀和压力开关。

[说明]泡沫喷淋系统是自动启动灭甲、乙、丙类液体初期火灾的灭火系统,为保证其响应时间短,系统启动后能及时通知有关人员,以及系统控制盘监控要设置雨淋阀、水力警铃、压力开关。

须指出,经实践考验,目前采用电磁阀其拒动几率很大。采用电动蝶阀也比采用雨淋阔拒动几率大,且响应时间长。

单区小系统保护的场所火灾负荷小,且其管道较短,响应时间易于保证,为节约投资可不设置雨淋阀与压力开关。

第3.4.6条泡沫喷淋系统应具备自动、手动和应急机械启动功能。在自动控制状态下,系统的响应时间不应大于 60s。

[说明]自动启动并伴有手动和应急机械启动功能,是自动系统一般要求。响应时间是参照《水喷雾灭火系统设计规范》(GB 5O219—95),并结合泡沫喷淋系统的特性制订的。

第3.4.7条泡沫喷淋系统的火灾探测与报警应符合现行国家标准《火灾自动报警系统设计规范》的有关规定。当选用带闭式喷头的传动管传递火灾信号时,传动管的长度不应大于300m,公称直径宜为15mm~25mm,传动管上闭式喷头的布置间距不宜大于 2.5 m。

[说明]系统的火灾探测与报警应符合国家标准《火灾自动报警系统设计规范》的有关规定是一般准则。

由于某些场所适宜选用带闭式喷头的传动管传递火灾信号,许多工程也是这样做的,为保证其可靠制订了该条文。

第3.4.8条飞机库内设置的泡沫---水喷淋系统应按国家标准《飞机库设计防火规范》执行。

第五节泡沫泵站

第3.5.1条泡沫泵站宜与消防水泵房合建,其建筑耐火等级不应低于二级,泡沫泵站与保护对象的距离不宜小于30m,且应满足在泡沫消防泵启动后,将泡沫混合液或泡沫输送到最远保护对象的时间不宜大于5min。

第3.5.2条泡沫消防泵宜采用自灌引水启动。一组泡沫消防泵的吸水管不应少于两条,当其中一条损坏时,其余的吸水管应能通过全部用水量。

第3.5.3条泡沫消防泵站内或站外附近泡沫混合液管道上,宜设置消火栓;泡沫泵站内,宜配置泡沫枪。

第3.5.4条泡沫消防泵,应设置备用泵,其工作能力不应小于最大一台泵的能力。当符合下列条件之一时,可不设置备用泵:

一、非水溶性甲、乙、丙类液体总储量小于2500m3,且单罐容量小于500m3;

二,水溶性甲、乙、丙类液体总储量小于1000m3,且单罐容量小于100m3。

第3.5.5条泡沫泵站的动力源,应符合下列要求之一:

一、一级电力负荷的电源;

二、二级电力负荷的电源并同时设置作备用动力柴油机;

三、全部采用柴油机;

四、不设置备用泵的泡沫泵站,可不设置备用动力。

[说明]设置柴油机比设置柴油发电机要经济,比设置汽油机安全,所以作此规定。关于供电系统的负荷分级与相应要求请参见《供配电系统设计规范》(GB50052—95)。

第3.5.6条泡沫泵站内,应设水池水位指示装置。泡沫泵站应设有与本单位消防站或消防保卫部门直接联络的通讯设备。

第3.5.7条严禁将独立泡沫站设置在防火堤内、围堰内或泡沫喷淋系统保护区内。设置在防火堤外的独立泡沫站与储罐罐壁的间距,应大于20m,且应具备遥控功能。

[说明]独立的泡沫站设置在系统保护区外即着火区域以外是最基本要求。有些储罐区较大、罐组较多,如果将泡沫供给源集中到泵站,5min内不能将泡沫混合液或泡沫输送到最远的保护对象,延误灭火。所以遇到此类情况时,可将泡沫站与泵房分建。有的工程甚至设置了两个以上的泡沫站,以满足输送时间的要求。为了安全,作了如上规定。

第六节泡沫炮、泡沫枪系统

第3.6.1条当泡沫炮、泡沫枪系统作为非水溶性甲、乙、丙类液体固定顶储罐的主要灭火设施时,其泡沫混合液供给强度和连续供给时间不应小于表3.6. 1的规定。

泡沫混合液最小供给强度与连续供给时间表 3.6.1

[说明]本条是由分解原规范第3.2.l条一款中的移动式系统而来的,并参照 BS5306 Part6《低倍数泡沫灭火系统标准》、NFPA 11—1998《低倍数泡沫灭火系统标准》等,对其进行了修改。

第3.6.2条当采用泡沫炮系统保护甲、乙、丙类液体槽车装卸栈台时,应符合下列规定:

一、应能保护栈台顶盖、泵、计量仪器、车辆及与装卸产品有关的各种设备;

二、系统的保护面积,汽车槽车栈台,应按整个栈台地表面积确定;火车槽车栈台,应按不小于5节槽车长所分割的栈区地表面积确定;

三、泡沫混合液供给强度和连续供给时间,不应小于表3.6. 2的规定。

泡沫混合液供给强度和连续供给时间表3.6. 2

[说明]本条为新增条文,是参照NFPA 11~ 1998《低倍数泡沫灭火系统标准》等制订的。

第3.6.3条当泡沫炮、泡沫枪系统保护设有围堰的非水溶性甲、乙、丙类液体流淌火灾场所时,保护面积应按围堰包围的地面面积与其中不燃结构占据的面积之差计算,其泡沫混合液供给强度与连续供给时间,不应小于表3.6.3的规定。

泡沫混合液最小供给强度与连续供给时间表3. 6. 3

[说明]本条为新增条文,由于围堰的限制,液体会积聚一定的深度,为此泡沫混合液供给强度和连续供给时间借鉴了本规范第3.2.1条一款的规定,同时参考了 NFPA 11- 1998《低倍数泡沫灭火系统标准》BS 5 3 0 6 Part 6 《低倍数泡沫灭火系统标准》等国外标准的规定。

第3.6.4条当泡沫炮、泡沫枪系统保护甲、乙、丙类液体泄漏导致的室外流淌火灾场所时,应根据保护场所的具体情况确定最大流淌面积。泡沫混合液供给强度和连续供给时间不应小于表3.6.4的规定。

泡沫混合液供给强度和连续供给时间表 3. 6. 4

「说明」本条为新增条文,是参照BS 5 3 O 6 Part《低倍数泡沫灭火系统标准》NFPA 11一1998《低倍数泡沫灭火系统标准》等制订的。由于无围堰等限制,流淌液体厚度会较浅,单位面积的灭火难度会比有围堰的流淌火小些。

第3.6.5条固定式泡沫炮系统除符合本规范的规定外,尚应符合《固定消防炮灭火系统设计规范》的规定。

第七节水力计算

第3.7.1条泡沫产生器、高背压泡沫产生器和泡沫喷头等泡沫产生装置的泡沫混合液流量宜按式3.7.l计算,也可按制造商提供的压力一流量特性曲线确定。

(3.7.1)

式中:q一泡沫混合液流量(L/s);

k一泡沫产生装置的流量特性系数:

P一泡沫产生装置的进口压力(MPa)。

[说明]本条是新增加的。

原“规范”第3.2.4条三款、第3.3.3条三款分别给出“压力一流量”计算式,该计算式更适用于泡沫喷淋系统的泡沫喷头,所以将其综合成一条。该计算式适用于“规范”中不同的泡沫产生装置。

根据编制规范的原则,给出了上述计算式。但除泡沫喷头外,目前各生产厂商基本都未给出泡沫产生器。高背压泡沫产生器的人系数,所以也可按压力一流量曲线确定泡沫混合液流量。

第3.7.2条泡沫灭火系统的泡沫混合液设计流量应按式 3.7.2计算:

Q=k1Q j (3.7.2)

式中:Q一系统的泡沫混合液设计流量(L/S);

k1一裕度系数(k1≥1.O5);

Q j一系统的泡沫混合液计算流量( L/s)。

[说明]本条的要求是一般准则,目的是保证实际流量不低于计算流量。

第3.7.3条储罐区泡沫灭火系统管道内的泡沫混合液流速,不宜大于3m/s;泡沫喷淋系统管道内的泡沫混合液流量,不宜大于5m/s;液下喷射泡沫灭火系统泡沫喷射管之前的泡沫管道内的泡沫流速宜为3m/s ~ 9 m/s。

立式地面油罐区消防水和低中倍数泡沫灭火系统的设计说明

立式地面油罐区消防给水和泡沫灭火系统的设计[摘要]油罐储油是当前应用最普遍的一种储油方式,本文主要介绍了油罐区火灾危险性及火灾原因,油罐区消防工程的容和现存问题,并根据实例,探讨了油罐区消防给水和低倍数泡沫灭火系统的设计容和步骤。 [关键词] 立式地面油罐消防给水和低倍数泡沫灭火系统设计 一、油罐区的火灾危险和设置消防工程的意义 (一)油罐区的火灾危险性及火灾主要原因 1.火灾危险性 1.1罐中油品主要是由碳氢化合物组成,受热、遇火以及与氧化剂接触都有发生燃烧的危险。油品的闪点和自燃点越低发生燃烧的危险越大。石油产品的蒸汽与空气的混合比例达到爆炸下限浓度时,遇火花即能爆炸。 1.2石油产品的电阻率在1012Ω·CM 左右,最易在装卸、罐装、泵送等作业过程中慢慢积聚产生静电荷导致油罐燃烧爆炸。 1.3粘度低的油品流动扩散性强,如有渗漏会很快向四周流散,油品的扩散、流淌性是导致火灾的危险因素。 1.4石油产品受热后蒸汽压升高、体积膨胀。若容器罐装过满或储存密闭容器中,会导致油罐膨胀,甚至爆炸引起火灾。 1.5油罐中重质或含有水分的油品燃烧时,燃烧的油品有的大量外溢,有的从罐猛烈喷出形成高达70-80米的巨大火柱,火柱顺风向喷射距离可达120米左右,容易直接烧至邻近油罐,扩大受灾面积。 对国炼油厂进行调查的结果表明:在全部油罐火灾中,原油罐占40﹪,汽油罐占32﹪,柴油罐占8﹪,重质油品储罐占20﹪。由此可见,闪点低于28℃的油品占全部油罐火灾的72﹪。立式钢质油罐顶盖全部掀开占40﹪,而大多数情况下是油罐的部分顶盖掀开,造成一定的危险性。 2.油罐区火灾的主要原因 2.1明火引燃、引爆 油罐附近的烟道的火星,车辆喷出的火星、放鞭炮和烧纸的飞火、库区违章吸烟,动明火、电气焊作业等极易引燃泄露在地面的油品或引爆弥漫在空气中的油蒸汽。2001年9月凌晨4时32分,位于新路140号的市大龙洋石油,因倒油过程中油罐汽油外溢,大量挥发气体流动到160米以外的汽车库,当司机发动汽车时,火花引燃汽油挥发气体,导致灌区东北侧建筑物8个储灌发生恶性爆炸火灾。如油品泄露油蒸汽弥漫到锅炉房、灶房、配电站等处极易引起燃烧或爆炸。若油罐未装阻火器,液压安全阀缺油或各封闭口不严密等原因,很容易将外火传入罐,引起燃烧或爆炸。

仓库泡沫-水雨淋灭火系统设计探讨

仓库泡沫-水雨淋灭火系统设计探讨 摘要:通过优化泡沫-水雨淋系统中每个雨淋阀控制面积大小及喷淋区域分割,满足使用功能、安全要求。本文以丙类可燃液体仓库设计平面为例,比较了不同喷淋分割的设计流量、消防水量及消防水池容积,推荐采用增加雨淋阀组合理分割各组阀门控制区域,减小雨淋系统设计流量、消防水量及消防水池容积。 关键词:泡沫-水雨淋系统雨淋阀丙类可燃液体仓库消防水池泡沫罐 Design Research of Warehouse Foam - Water Deluge System Chen Qi Shanghai Youwei Engineering Design Co., Ltd, Shanghai 200333 Abstract: The area and spray region segmentation of foam-water deluge system deluge valve were be optimized to ensure the function and safety in use. C class combustible liquid warehouse design was taken as an example to compare the design flow, firefighting water amount and firefighting water pool capacity of different spray segmentation. Deluge valve should be increased to reasonably segment the value control area, which will help to decrease the the design flow, firefighting water amount and firefighting water pool capacity of deluge system. Keywords: Foam - Water Deluge System, Deluge valve, C class combustible liquid warehouse, Fire pool, Foam tank 随着工业飞速发展,集中存储化工物料仓库也越来越多,安全隐患频发,泡沫-水雨淋系统的规范为此类仓库消防设计提供的有效支持,极大的降低了此类仓库火灾危害。 笔者有幸参加某大型化工企业丙类仓库项目设计,项目设计期间新版《建筑设计防火规范》未发布实施,送审过程中新版发布,突增8.3.2条第7款,本文将结合笔者设计经历,以丙类可燃液体仓库为例,着重分析、探讨泡沫-雨淋系统设计。 2丙类可燃液体仓库工程实例 2.1工程概况 某丙类可燃液体物质存储仓库占地面积1863.85m2,建筑面积6136.81m2,体积为48386m3,钢筋混凝土结构,耐火等级二级,层高7.8m,储物高度6m,共3层,每层2个防火分区。 2.2项目执行的主要规范条款 2.2.1按照《建筑设计防火规范》(GB50016-2014,下称“建规”)8. 3.2条第7款“每座占地面积大于1500m2或总建筑面积大于3000m2的其它单层或多层丙类物品仓库”应设置自动喷水灭火设施【2】。 2.2.2依据《自动喷水系统灭火系统设计规范》(GB50081-2001,2005年版,下称“喷规”)4.2.7条规定此仓库应设置喷水—泡沫联用系统,火灾危险等级为仓库危险Ⅱ级。 2.2.3喷规第4.2.7条规定“存在较多易燃液体的场所,宜按下列方式之一采用自动喷水—泡沫联用系统【1】: (1)采用泡沫灭火剂强化闭式系统性能; (2)雨淋系统前期喷水控火,后期喷泡沫强化灭火效能; (3)雨淋系统前期喷泡沫灭火,后期喷水冷却防止复燃;系统中泡沫灭火剂的选型、储存及相关设备的配置,应符合现行国家标准《泡沫灭火系统设计规范》(GB 50151-2010,下称“泡沫规“)的规定。

高、中、低倍数泡沫灭火系统分类应用探讨

高、中、低倍数泡沫灭火系统分类应用探讨 2-24 消防泡沫灭火系统按发泡倍数分类为:低倍数泡沫灭火系统,发泡倍数低于20倍;中倍数泡沫灭火系统,发泡倍数20~200倍;高倍数泡沫灭火系统,发泡倍数200~1000倍。 一、低倍数泡沫灭火系统: 低倍数泡沫灭火系统按使用方式的不同分类为:低倍数泡沫灭火系统、泡沫喷淋灭火系统。低倍数泡沫灭火系统适用于加工、储存、装卸、使用甲(液化烃除外)、乙、丙液体的场所。如:油田、炼油厂、化工厂、码头、地下车库、飞机库、机场、燃油锅炉房等场所。 1.低倍数泡沫灭火系统 低倍数泡沫灭火系统主要由消防水泵、压力式泡沫比例混合装置、瑞港消防、泡沫产生器、雨淋阀、及其它阀门和管件等组成。当一定压力的消防水经泡沫比例混合装置与泡沫灭火剂混合后,形成一定比例的泡沫混合液,经泡沫产生器生成空气泡沫,由泡沫喷口沿罐壁淌下,覆盖燃烧液体表面,从而窒息灭火。 2.泡沫喷淋灭火系统(泡沫-水喷淋自动灭火系统) 在自动喷水灭火系统中配置可供给泡沫混合液的泡沫比例混合装置,组成既可喷水又可喷泡沫的固定灭火系统。它可以是开式系统,也可以是闭式系统。广州瑞港消防设备有限公司生产的这种系统在深圳用得比较早,当有火灾发生时,安装于保护区的火灾探测器有信号传至控制柜,闭式喷头的玻璃球破裂喷水,此时,手动或自动开启雨淋阀、消防泵、管路阀门,系统工作。压力消防水经瑞港泡沫比例混合装置与泡沫液混合,形成一定比例的泡沫混合液,经喷头喷洒空气泡沫达到灭火效果。 泡沫喷淋灭火系统主要由消防水泵、泡沫比例混合装置、喷头、水流指示器、湿式报警阀、雨淋阀及其它阀门、管道等组成。 注:1.根据使用方式可分为:开式泡沫喷淋灭火系统和闭式泡沫喷淋灭火系统。 2.该系统喷头既可用泡沫喷头,也可用洒水喷头。 3.当选用洒水喷头时,必须使用水成膜泡沫液或成膜氟蛋白泡沫液。 4.泡沫-水喷淋联用系统也称ZP系统,ZP32即混合液流量为32L/s的自动泡沫喷淋系统。 5. 《汽车库、修车库、停车场设计防火规范》7.3.1/.2中规定:“Ⅰ类地下汽车库、Ⅰ类修车库宜设置泡沫喷淋灭火系统。泡沫喷淋系统的设计、泡沫液的选用应按现行国家标准《低倍数泡沫灭火系统设计规范》的规定执行。” 二、高倍数、中倍数泡沫灭火系统 1..适用范围及场所 中、高倍数泡沫灭火系统适于扑救A类、B类火灾,有限封闭空间火灾,控制液化石油气、液化天然气的流淌性火灾。 如:固体物质仓库、易燃液体仓库、有火灾危险的工业厂房、地下建筑工程、各种船舶的机舱、泵舱、货舱等、贵重仪器设备和物质、可燃易燃液体及液化石油气和液化天然气的流淌性火灾。 2..系统组成 高倍数、中倍数泡沫灭火系统主要由消防水泵、泡沫比例混合装置、泡沫发生器、阀门、管道等组成。

泡沫灭火系统设计规范

规范明细 第一章总则 第1.0.1条为了合理地设计低倍数空气泡沫灭火系统(以下简称泡沫灭火系统),减少火灾损失,保障人身和财产安全,制订本规范。 第l.0.2条泡沫灭火系统的设计,必须遵循国家的有关方针、政策,做到安全可靠,技术先进,经济合理,管理方便。 第l.0.3条本规范适用于加工、储存、装卸、使用甲(液化烃除外)、乙、丙类液体场所的泡沫灭火系统设计。 本规范不适用于船舶、海上石油平台等的泡沫灭火系统设计。 第1.0.4条泡沫灭火系统的设计,除执行本规范的规定外,尚应符合国家现行的有关标准、规范的要求。 第二章泡沫液和系统型式的选择 第一节泡沫液的选择、储存和配制 第2.1.1条对非水溶性甲、乙、丙类液体,当采用液上喷射泡沫灭火时,宜选用蛋白泡沫液、氟蛋白泡沫液或水成膜泡沫液;当采用液下喷射泡沫灭火时,必须选用氟蛋白泡沫液或水成膜泡沫液。 第2.1.2条对水溶性甲、乙、丙类液体,必须选用抗溶性泡沫液。 第2.1.3条泡沫液的储存温度,应为0-40℃,且宜储存在通风干燥的房间或敞棚内。 第2.1.4条泡沫液配制成泡沫混合液,应符合下列要求: 一、蛋白、氟蛋白、抗溶氟蛋白型泡沫液,配制成泡沫混合液,可使用淡水或海水; 二、凝胶型、金属皂型泡沫液,配制成泡沫混合液,应使用淡水; 三、所有类型的泡沫液,配制成泡沫混合液,严禁使用影响泡沫灭火性能的水; 四、泡沫液配制成泡沫混合液用水的温度宜为4~35℃。 第二节系统型式的选择

第2.2.1条系统型式的选择,应根据保护对象的规模、火灾危险性、总体布置、扑救难易程度、消防站的设置情况等因素综合确定。 第2.2.2条下列场所之一,宜选用固定式泡沫灭火系统: 一、总储量大于、等于500m^3独立的非水溶性甲、乙、丙类液体储罐区; 二、总储量大于、等于200m^3水溶性甲、乙、丙类液体立式储罐区。 三、机动消防设施不足的企业附属非水溶性甲、乙、丙类液体储罐区。 第2.2.3条下列场所之一,宜选用半固定式泡沫灭火系统: 一、机动消防设施较强的企业附属甲、乙、丙类液体储罐区; 二、石油化工生产装置区火灾危险性大的场所。 第2.2.4条下列场所之一,宜选用移动式泡沫灭火系统: 一、总储量不大于500ms、单罐容量不大于200m^3,且罐壁高度不大于7m的地上非水溶性甲、乙、丙类液体立式储罐; 二、总储备小于200m^3、单罐容量不大100m^3,且罐壁高度不大于5m的地上水熔性甲、乙、丙类液体立式储罐; 三、卧式储罐; 四、甲、乙、丙类液体装卸区易泄漏的场所。 第三章系统设计 第一节储罐区泡沫灭火系统设计的一般规定 第3.1.1条储罐区泡沫灭火系统设计,其泡沫混合液量,应满足扑救储罐区内泡沫混合液最大用量的单罐火灾和扑救该储罐流散液体火灾所设辅助泡沫枪混合液用量之和的要求。 第3.1.2条储罐区泡沫液的总储量除按规定的泡沫混合液供给强度、泡沫枪数量和连续供给时间计算外,应增加充满管道的需要量。 第3.1.3条采用固定式泡沫灭火系统时,除设置固定式泡沫灭火设备外,同时还应设置泡沫钩管、泡沫枪和泡沫消防车等移动泡沫灭火设备。

低倍数泡沫灭火系统设计

低倍数泡沫灭火系统设计 第一章总则 第1.0.1条为了合理地设计低倍数空气泡沫灭火系统(以下简称泡沫灭火系统),减少火灾损失,保障人身和财产安全,制订本规范。 第l.0.2条泡沫灭火系统的设计,必须遵循国家的有关方针、政策,做到安全可靠,技术先进,经济合理,管理方便。 第1.0.3条本规范适用于加工、储存、装卸、使用甲(液化烃除外)、乙、丙类液体场所设置的泡沫灭火系统的设计。 本规范不适用于船舶、海上石油平台等场所设置的泡沫灭火系统的设计。 [说明]根据我国的规范体系,建筑类规范规定低倍数泡沫灭火系统的设置场所,本规范规定低倍数泡沫灭火系统的选型与具体设计。为了更加明确这一点,做此修改。 第1.0.4条泡沫灭火系统的设计,除执行本规范的规定外,尚应符合国家现行的有关标准、规范的要求。 第二章泡沫液和系统型式的选择 第一节泡沫液的选择、储存和配制 第2.1.1条对非水溶性甲、乙、丙类液体储罐,当采用液上喷射泡沫灭火时,可选用蛋白、氟蛋白、水成膜或成膜氟蛋白泡沫液;当采用液下喷射泡沫灭火时,应选用氟蛋白、水成膜或成膜氟蛋白泡沫液。 [说明]本规范的规定与美国、英国等国家相关标准的规定类似。 20世纪 80年代初,英国 Angus 公司以水解蛋白为基料,添加适宜的氟碳表面活性剂制成了成膜氟蛋白泡沫液(FFFP), 20世纪 90丰代我国开发了这种泡沫液。该泡沫液不但具

有氟蛋白泡沫液的特点,而且还具有水成膜泡沫液的成膜特点,是当今普遍使用的泡沫液种类之一。 从灭火角度,抗溶性氟蛋白泡沫液、抗溶性水成膜泡沫液和抗溶性成膜氟蛋白泡沫液等也适用液下喷射泡沫灭火,但其价格较贵,对单纯的非水溶性甲、乙、丙类液体储罐本规范不推荐采用上述抗溶泡沫液。 第 2.1.1A条保护非水溶性甲、乙、丙类液体的泡沫喷淋系统、泡沫枪系统、泡沫炮系统,当采用泡沫喷头、泡沫枪、泡沫炮等吸气型泡沫产生装置时,可选用蛋白、氟蛋白、水成膜或成膜氟蛋白泡沫液;当采用水喷头、水枪、水炮等非吸气型喷射装置时,应选用水成膜或成膜氟蛋白泡沫液。 [说明]水成膜、成膜氟蛋白泡沫混合液施加到非水溶性液体燃料表面上时,能产生一层防护膜。其灭火效力不仅与泡沫性能有关,更重要的是依赖于它的成膜性及其防护膜的坚韧性和牢固性。所以水成膜、成膜氟蛋白泡沫液也适用于水喷头、水枪、水炮等非吸气型喷射装置。 第2.1.2条对水溶性甲、乙、丙类液体和含氧添加剂含量体积比超过10%的无铅汽油,以及用一套泡沫灭火系统同时保护水溶性和非水溶性甲、乙、丙类液体的,必须选用抗溶性泡沫液。 [说明]汽油中的含氧添加剂主要是醚、醇等水溶性液体,对普通泡沫具有很强的破坏作用。无铅汽油中含氧添加剂含量体积比超过10%时,用普通泡沫液灭火困难,所以也必须选用抗溶性泡沫液。为此,参照NFPA11-1998《低倍数泡沫灭火系统标准》增加相应要求。 当添加剂为多组分的混合物时,只计算含氧元素的那些组分的净含量。 某些储罐区既有水溶性液体储罐又有非水溶性液体储罐,某些桶装库房同时存有水溶性和非水溶性液体,为了降低工程造价设计一套泡沫灭火系统是可行的,但须选抗溶性泡沫液。用抗溶性泡沫液扑救非水溶性甲、乙、丙类液体时,其设计要求与普通泡沫液相同。 第2.1.3条泡沫液的储存温度,应为0-40℃,且宜储存在通风干燥的房间或敞棚内。

气体灭火系统设计规范条文说明

气体灭火系统设计规 条文说明

目录 1. 总则 (39) 2. 术语与符号 (41) 2.1 术语 (41) 3. 设计要求 (42) 3.1 一般规定 (42) 3.2 系统设置 (45) 3.3 七氟丙烷灭火系统 (48) 3.4 IG541混合气体灭火系统 (62) 3.5 热气溶胶预制灭火系统 (68) 4. 系统组件 (69) 4.1 一般规定 (69) 5. 操作与控制 (70) 6. 安全要求 (71)

1. 总则 1.0.1 本条阐明本《规》是为了合理地设计气体灭火系统,使之有效地达到扑灭火灾,保护人身和财产安全的目的。1.0.2 本《规》属于工程建设规标准中的一个组成部分,其任务是解决用于工业和民用建筑中新建、改建、扩建工程中有关设置气体全淹没灭火系统的消防设计问题。 气体灭火系统的设置部位,应根据国家标准《建筑设计防火规》、《高层民用建筑设计防火规》等其它有关国家标准的规定及消防监督部门针对保护场所的火灾特点、财产价值、重要程度等所作出的有关要求确定。 当今,国际上已开发出化学合成类及惰性气体类等多种替代哈龙的气体灭火剂。其中七氟丙烷及IG541混合气体灭火剂在我国哈龙替代气体灭火系统中应用较广,且已应用多年,有较好的效果,积累了一定经验。七氟丙烷是目前替代物中效果较好的产品。其对臭氧层的耗损潜能值ODP=0,温室效应潜能值GWP=0.6,大气中存留寿命ALT=31(年),灭火剂毒性——无毒性反应浓度NOAEL=9%,灭火设计基本浓度C=8%,具有良好的清洁性——在大气中完全汽化不留残渣、良好的气相电绝缘性及良好的适用于灭火系统使用的物理性能,自20世纪90年代初,工业发达国家首选用其替代哈龙灭火系统并取得成功。IG541灭火剂由N2、Ar、CO2三种惰性气体,按一定比例混合而成,其ODP=0,使用后以其原有成分回归自然,灭火设计浓度一般在37%~43%之间,在此浓度人员短时间停留不会造成生理影响。系统压源高,管网可布置较远。1994年1月美国率先制定出洁净气体灭火系统设计标准(NFPA2001),国际标准化组织(ISO)亦制订了国际标准《洁净气体灭火剂一物理性能和灭火系统设计》(ISO14520)。应用实践表明,七氟丙烷灭火系统和IG541混合气体灭火系统均能有效地达到预期的保护目的。 热气溶胶灭火技术是由我国消防科研人员于20世纪六十年代首先提出的,自90年代中期始,热气溶胶产品作为哈龙替代技术的重要组成部分在我国得到了大量使用。基于以下考虑,将热气溶胶预制灭火系统列入本《规》:

泡沫灭火系统设计规范-GB50151-2010要点

前言 Code of design for foam extinguishing systems GB50151-2010 中华人民共和国住房和城乡建设部公告第737 号 关于发布国家标准 《泡沫灭火系统设计规范》的公告 现批准《泡沫灭火系统设计规范》为国家标准,编号为GB50151-2010,自2011年6月1日起实施。其中,第3.1.1、3.2.1、3.2.2(2)、3.2.3、3.2.5、3.2.6、3.3.2(1、2、3、4)、3.7.1、3.7.6、3.7.7、4.1.2、4.1.3、4.1.4、4.1.10、4.2.1、4.2.2(1、2)、4.2.6(1、2)、4.3.2、4.4.2(1、2、3、5)、6.1.2(1、2、3)、6.2.2(1、2、3)、6.2.3、6.2.5、6.2.7、6.3.3、6.3.4、7.1.3、7.2.1、7.2.2、7.3.5、7.3.6、8.1.5、8.1.6、8.2.3、9.1.1、9.1.3条(款)为强制性条文,必须严格执行。原《低倍数泡沫灭火系统设计规范》GB50151-92(2000年版)和《高倍数、中倍数泡沫灭火系统设计规范》GB50196-93(2002年版)同时废止。 本规范由我部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国住房和城乡建设部 二0一0年八月八日

本规范是根据原建设部《关于印发<2006 年工程建设标准规范制订、修订计划(第一批)>的通知》(建标[2006]77 号)和《关于同意调整国家标准< 低倍数泡沫灭火系统设计规范>修订计划的复函》(建标标函[2006]50 号)的要求,由公安部天津消防研究所会同有关单位,在《低倍数泡沫灭火系统设计规范》GB50151-92 (2000 年版)和《高倍数、中倍数泡沫灭火系统设计规范》GB50196- 93 (2002 年版)的基础上,通过合并,并进行修订而成。 本规范在编制过程中,编制组遵照国家有关基本建设的方针、政策,以及“预防为主、防消结合”的消防工作方针,以科学严谨的态度,与有关单位合作先后开展了泡沫喷雾系统灭油浸变压器火灾、公路隧道泡沫消火栓箱灭轿车火、凝析轻烃低倍数泡沫灭火、环氧丙烷储罐抗溶泡沫灭火等大型试验研究;深入相关单位调研,总结国内外近年来的科研成果、工程设计、火灾扑救案例等实践经验;借鉴国内外有关标准、规范的新成果,开展了必要的专题研究和技术研讨;广泛征求了国内有关设计、研究、制造、消防监督、高等院校等部门和单位的意见,最后经审查定稿。 本规范共分9 章1个附录。主要内容有:总则、术语、泡沫液和系统组件、低倍数泡沫灭火系统、中倍数泡沫灭火系统、高倍数泡沫灭火系统、泡沫—水喷淋系统与泡沫喷雾系统、泡沫消防泵站及供水、水力计算等。 与原国家标准《低倍数泡沫灭火系统设计规范》GB50151-92 (2000 年版)和《高倍数、中倍数泡沫灭火系统设计规范》GB50196-93 (2002 年版)相比,本规范主要有下列变化: 1、合并了《低倍数泡沫灭火系统设计规范》与《高倍数、中倍数泡沫灭火系统设计规范》;

气体灭火系统设计规范

气体灭火系统设计 规范

气体灭火系统设计规范 Code for design of gas fire extinguishing systems 标准号:GB 50370- 发布日期:年 03 月 02 日 实施日期:年 05 月 01 日 发布单位:中华人民共和国建设部 / 中华人民共和国国家质量监督检验检疫总局 出版单位:中国计划出版社 摘要:本规范是根据建设部建标 [ ]269 5- 文《——年度工程建设国家标准制定、修订计划》要求编制完成的。本规范共分六章内容包括 : 总则、术语和符号、设计要求、系统组件、操作与控制、安全要求等。 其中,第 3.1.4、3.1.5、3.1.15、3.1.16、3.2.7、3.2.9、3.3.1、3.3.7、3.3.16、3.4.1、 3.4.3、3.5.1、3.5.5、4.1.3、4.1.4、4.1.8、4.1.10、5.0.2、5.0.4、5.0.8 等条为强制性条文。 1 总则 1.0.1 为合理设计气体灭火系统,减少火灾危害,保护人身和财产的安全,制定本规范。 1.0.2 本规范适用于新建、改建、扩建的工业和民用建筑中设置的七氟丙烷、 IG541 混合气体和热气溶胶全淹没灭火系统的设计。 1.0.3 气体灭火系统的设计,应遵循国家有关方针和政策,做到安全可靠、技术先进、经济合理 1.0.4 设计采用的系统产品及组件,必须符合国家有关标准和规定的要求。 1.0.5 气体灭火系统设计,除应符合本规范外,还应符合国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 防护区 protected area 满足全淹没灭火系统要求的有限封闭空间。 2.1.2 全淹没灭火系统 total flooding extinguishing system 在规定的时间内,向防护区喷放设计规定用量的灭火剂,并使其均匀地充满整个防护区的灭火系统。

泡沫灭火系统-计算实例

一、设计依据: 1.业主提供的石油库设计图纸 2.《石油库设计规范》GB50074-2002 3.《建筑设计防火规范》GBJ16-87 4.《低倍数泡沫灭火系统设计规范》GB50151-92 及2000年局部修订条文 二、设计内容: 保护对象:500M3立式固定拱顶钢制保温储罐2座[D=9M,H=10M)。 灭火方式:采用固定式液上喷射泡沫灭火系统,并移动泡沫枪辅助灭火 灭火剂:6%氟蛋白泡沫液,其混合比为6% 冷却方式:采用移动式水冷却 (一)、泡沫用量 1.储罐的保护面积(A1) 根据规范第3.1.2条一款规定: A1=3.14D2=3.14x92/4=63.585m2 2.根据规范第 3.2.1条一款规定:泡沫混合液供给强度 q=6.0L/min.m2 连续供给时间t1 :不小于30min(注:闪点为60°C的轻柴油为丙类液体)3.计算泡沫混合液流量(Q) Q=q.A1=6×63.585=381.51L/min 4.根据规范第3.2.4条规定:泡沫产生器数量及流量(Q产)PC8泡沫产生器2个,Q产为480L/min 注:泡沫产生器工作压力按0.5MPa计 5.泡沫枪数量及连续供给时间、流量Q枪 根据规范第3.1.4条,用于扑救防火堤内流散液体火灾的泡沫枪数量为1

支,其泡沫枪的泡沫混合液流量不应小于240L/min,选Q枪=240L/min 即PQ4型泡沫枪:1支连续供给时间t2:不小于20min 6.泡沫混合液用量M混V (系统管道内泡沫混合液剩余量):考虑设DN100管道170.0m及DN65管道150.0m。管道容积为1823L M混=n产×Q产×t1+n枪×Q枪×t2+V(系统管道内泡沫混合液剩余量)=2×480×30+1×240×20+3800=28800+4800+1823 =35423L 7.泡沫液用量V=K.V混/1000=6%×35423/1000=2125L/1000=2.125M3则泡沫贮罐的容积为2.125m3 配制泡沫混合液所需的水量为:35423L×94%=33298L=33.298M3 泡沫比例混合器的流量为:8×2+4=20L/S 配制泡沫混合液的水流量:20L/S×94%=18.8L/S 8.根据规范第3.7.3条储罐区泡沫灭火系统管道内的泡沫混合液流速,不宜大于3m/s 主管初选管径DN100 流速S=4Qmax/3.14D2=(2×480+1×240) ×4/3.14×0.12×60×1000=2.265M/S 规范第3.7.3条泡沫灭火系统管道内的混合液流速不宜大于3M/S 故管径DN100选择合适 9.泡沫产生器下面混合液立管初选管径DN65 S=1×480×4/3.14×0.0652×60×1000=2.412m/s<3m/s 管径DN80合适 10.计算管道沿程压力损失h沿 根据第3.7.4条计算单位长度泡沫混合液管道压力损失 I=0.0000107V2/D 1.3 1)从泡沫产生器到防火堤外缘DN65管段,罐高10m,罐外壁至防火堤外缘 距离按32m计,总长45m 每m管道压力损失I=0.0000107V2/D 1.3

小型飞机库泡沫灭火系统的设计与施工

仅供参考[整理] 安全管理文书 小型飞机库泡沫灭火系统的设计与施工 日期:__________________ 单位:__________________ 第1 页共4 页

小型飞机库泡沫灭火系统的设计与施工随着我国经济建设规模的扩大,民航系统执管大型客机的航空公司已达30家,都需要建筑飞机维修库,现结合山东太古飞机库的施工情况,谈一下小型飞机库泡沫灭火系统设计与施工中的几个问题。 根据飞机库停放和维修区的防火分区允许最大面积规定:I类飞机库30000m^2;Ⅱ类飞机库5000m^2;Ⅲ类飞机库3000m^2。山东太古飞机库停放和维修区建筑面积为2770m^2,属于Ⅲ类飞机维修库。此工程主要设置了固定式手控泡沫炮、半固定式泡沫枪、消火栓灭火系统,灭火剂选用3%AFFT水成膜泡沫液。 一、泡沫炮灭火系统 据飞机库设计规范,泡沫炮一次灭火泡沫混合液的连续供给时间不应小于10分钟,消防水连续供给时间不应小于30分钟。依据泡沫炮压力——流量曲线表查得:当泡沫炮进口工作压力为0.5—0.6Mpa时,流量为25L/s,故两门炮每次灭火所需泡沫浓缩液=25L/s×2门 ×60S×10min×3%=900(L),每次灭火所需消防用水量=25L/s×2门×60S×(10×0.97+20)/1000=89.1m^3。据产品说明书及实验实测数据,可保证两股射流同时到达飞机停放和维修区任一部位。 二、泡沫枪及消火栓灭火系统 据飞机库设计规范,泡沫枪一次灭火泡沫混合液的连续供给时间不应小于20分钟,消防水连续供给时间不应小于2h。依据泡沫枪压力——流量曲线表查得:当泡沫枪进口工作压力为0.5—0.6Mpa时,流量为4.0L/s,有效射程17M。当使用两支泡沫枪同时灭火时每次所需泡沫浓缩液=4.0L/s×2门×60S×20min×3%=288(L),每次灭火所需消防用水量=4.0L/s×2门×60S×120min/1000=57.6m^3。机库 第 2 页共 4 页

七氟丙烷气体消防系统规范

七氟丙烷(HFC-227ea)洁净气体灭 火系统设计规范 七氟丙烷(HFC-227ea)洁净气体灭火系统设计规范 1 总则 第1.0.1条为了合理设计七氟丙烷灭火系统,减少火灾危害,保护人身及财产的安全,制定本规范。 第1.0.2条本规范适用于工业和民用建筑中新建、改建、扩建工程设置的七氟丙烷全淹没灭火系统。 第1.0.3条七氟丙烷灭火系统的设计,应做到安全可靠、技术先进、经济合理. 第 1.0.4条七氟丙烷灭火系统可用于扑救下列火灾: 1、电气火灾; 2、液体火灾或可熔化的固体火灾; 3、固体表面火灾; 4、灭火前应能切断气源的气体火灾。 第1.0.5条七氟丙烷灭火系统不得用于扑救下列物质的火灾: 1、含氧化剂的化学制品及混合物,如硝化纤维、硝酸钠等; 2、活泼金属,如钾、钠、镁、钛、锆、铀等; 3、金属氢化物,如氢化钾、氢化钠等; 4、能自行分解的化学物质,如过氧化氢、联胺等。 第1.0.6条灭火剂七氟丙烷hfc227ea的化学分子式为cf3chfcf3,其质量应符合下列技术 规定。 2术语、符号 2.1术语 第 2.1.1条防护区 能满足七氟丙烷全淹没灭火系统要求的有限封闭空间。 第 2.1.2条全淹没灭火系统

在规定的时间内,向防护区喷射一定浓度的七氟丙烷,并使其均匀地充满整个防护区的灭火系统。 第 2.1.3条预制灭火装置 按一定的应用条件,将七氟丙烷储存装置和喷放喷头等部件预先组合成套的灭火装置。 第 2.1.4条组合分配系统 用一套七氟丙烷储存装置保护两个或两个以上防护区的灭火系统第 2.1.5条灭火浓度 在101kpa大气压和规定的温度条件下,扑灭某种火灾所需七氟丙烷在空气中的最小体积百分比。 第 2.1.6条惰化浓度 当引火源加入时,在101kpa大气压和规定的温度条件下,能抑制空气中任意浓度的可燃气体或可燃液体蒸汽的燃烧发生所需的七 氟丙烷在空气中的最小体积百分比。 第 2.1.7条浸渍时间 在防护区内维持设计规定的七氟丙烷浓度,使火灾完全熄灭所需的时间。 第 2.1.8条充装率 充装在储存容器中的七氟丙烷质量与容器的容积之比,单位为kg/m3。 第 2.1.9条泄压口 七氟丙烷喷放时,防止防护区过压的开口。 2.2 符号

灌区泡沫灭火系统设计

第4章罐区泡沫灭火系统设计 泡沫灭火系统主要由消防水泵、泡沫灭火剂储存装置、泡沫比例混合装置、泡沫产生装置及管道等组成。泡沫灭火系统的实质也是一种水消防设施,它是将水与泡沫液按要求的比例混合,然后吸入空气产生泡沫,利用泡沫覆盖燃烧物或将保护对象淹没实现灭火。 4.1 泡沫系统形式及组成 4.1.1 低倍数泡沫灭火系统 泡沫体积与其混合液体积之比称为泡沫的倍数,按照系统产生泡沫的倍数不同,泡沫系统分为低倍数泡沫灭火系统、中倍数泡沫灭火系统、高倍数泡沫灭火系统。低倍泡沫系统被广泛用于生产、加工、储存、运输和使用甲、乙、丙类液体的场所,并早已成为甲、乙、丙类液体储罐区及石油化工装置区等场所的消防主力军。 低倍数泡沫是指泡沫混合液吸入空气后,体积膨胀小于20倍的泡沫。低倍数泡沫灭火系统主要用于扑救原油、汽油、煤油、柴油、甲醇、丙酮等B类的火灾,适用于炼油厂、化工厂、油田、油库、为铁路油槽车装卸油的鹤管栈桥、码头、飞机库、机场等。一般民用建筑泡沫消防系统等常采用低倍数泡沫消防系统。低倍数泡沫液有普通蛋白泡沫液,氟蛋白泡沫液,水成膜泡沫液(轻水泡沫液),成膜氟蛋白泡沫液及抗溶性泡沫液等几种类型。本设计选用普通蛋白泡沫液,原料易得,生产工艺简单、成本低,泡沫稳定性及抗烧性好。 4.1.2 固定式泡沫灭火系统 GB50151-92《低倍数泡沫灭火系统设计规范》第2.2.2中规定甲、乙、丙类液体的外浮顶储罐和内浮顶储罐应选用液上喷射泡沫灭火系统。液上喷射泡沫系统是指将泡沫从燃烧液体上方施加到燃烧液体表面上实现灭火的泡沫系统。它有固定式、半固定式、移动式三种,它适用于固定顶储罐、外浮顶储罐、内浮顶储罐。 曾国保的《石油库固定泡沫灭火系统设计要点》中曾提到:总容量在500m3以上的石油库油罐区均应设置固定泡沫灭火系统。固定式泡沫灭火系统由固定的泡沫液消防泵、泡沫液贮罐、比例混合器、泡沫混合液的输送管道及泡沫产生装

谨记!机房气体灭火系统设计的11点要求!

谨记!机房气体灭火系统设计的11点要求! 、火灾探测方式的选择 目前在机房消防设计中一般都采用:吊顶内采用点型定温和点型感烟探测器,因为吊顶内一般都安装有照明设备,这些设备老化后也极易产生不安全因素;吊顶下也采用点型定温和点型感烟探测器;地板内一般布置缆式线性定温探测器,因为点型探测器已经在此种工况内不能发挥它的正常作用。这种设计方法在国内非常普遍,消防审核及验收应该是没有任何问题的。 从探测速度上来讲,上述方法并不是最理想的。机房内的工况也是非常复杂的,例如,地板内布置缆式线性感温探测器,因为此类探测器在地板内呈s状布置,探温点毕竟很稀疏,而地板内的大量缆线着火一般都有大量的烟雾发出,然后才会有足够温升去触动缆式线性感温探测器,探测速度始终不尽如人意。有人提出在地板内加装点型烟感,此种提法只能在地板内不进行通风的前提下提,而且要考虑烟感的安装位置、数量,要考虑探测器本身的厚度(烟气向上),而且要考虑烟感的误报警。最理想的办法是:探测烟雾采用主动吸气式感烟探测装置,并对通风口做重要监视;探温采用差定温缆式感温探测器,除对通讯电缆做s 状布置外还应对通风口做同样重要的布置。 对吊顶内和吊顶下采用点型感温感烟探测器同样存在与地板内相同的问题。最理想的办法是:吊顶内和吊顶下都采用吸气式感烟探测方式,要探测速度更快还可直接将吸气管深入到机柜内进行探测;吊顶内和吊顶下采用缆式线性探测首先美观问题就不好处理,所以此时在吊顶内和

吊顶下安装点型定温比较切合实际,而机柜内应该布置差定温缆式感温探测器。此方法虽然复杂而且造价高,但探测速度和确认火灾速度是最快的。 从灭火药剂使用情况来看,及早发现火情后灭火器就可以灭掉,反而节省运行费用,也可将设备的损失降到最低;反之,火灾要形成到一定程度才能报警,此时有可能现场人员已经无法控制,灭火药剂最终也肯定会喷完,且火灾对机房设备的损失也会大的多。 2、灭火系统的选择 目前在有人值守机房主要采用七氟丙烷灭火系统。七氟丙烷灭火系统在机房消防设计中可以采用有管网全淹没灭火形式和无管网全淹没灭火形式,两种形式可在具体工程中进行投资比较后,决定采用哪一种方式。 3、灭火剂储备装正数量计算 七氟丙烷灭火系统的规范中有明确规定,防护区内的灭火浓度应校核设计最高环境温度下的最大灭火浓度,并应符合以下规定。 (1)对于经常有人工作的防护区,防护区内最大浓度不应超过正常安全的的NOAEL值。 (2)对于经常无人工作的防护区,或平时虽有人工作但能保证在系统报警后最长30s延时结束前撤离的防护区,防护区内灭火剂最大浓度不宜超过安全值。 虽然有明确规定,但通常好多工程设计中都将此问题忽略不计,原因有两点,设计者不了解此问题;有意避开此间锤,以求增加利润。然

泡沫灭火系统设计说明计算实例

电厂油库区消防系统计算书 京安工程有限公司二0一0年十一月

一、设计依据: 1.业主提供的石油库设计图纸 2.《石油库设计规范》GB50074-2002 3.《建筑设计防火规范》GBJ16-87 4.《低倍数泡沫灭火系统设计规范》GB50151-92 及2000年局部修订条文 二、设计内容: 保护对象:500M3立式固定拱顶钢制保温储罐2座[D=9M,H=10M)。 灭火方式:采用固定式液上喷射泡沫灭火系统,并移动泡沫枪辅助灭火 灭火剂:6%氟蛋白泡沫液,其混合比为6% 冷却方式:采用移动式水冷却 (一)、泡沫用量 1.储罐的保护面积(A1) 根据规范第3.1.2条一款规定: A1=3.14D2 /4=3.14×92/4=63.585m2 2.根据规范第3.2.1条一款规定:泡沫混合液供给强度q=6.0L/min.m2连续供给时间t1 :不小于30min(注:闪点为60°C的轻柴油为丙类液体) 3.计算泡沫混合液流量(Q) Q=q.A1=6×63.585=381.51L/min 4.根据规范第3.2.4条规定:泡沫产生器数量及流量(Q产)PC8泡沫产生器2个,Q产为480L/min 注:泡沫产生器工作压力按0.5MPa计 5.泡沫枪数量及连续供给时间、流量Q枪 根据规范第3.1.4条,用于扑救防火堤内流散液体火灾的泡沫枪数量为1支,其泡沫枪的泡沫混合液流量不应小于240L/min,选Q枪=240L/min 即PQ4型泡沫枪:1支 连续供给时间t2:不小于20min 6.泡沫混合液用量M混 V (系统管道内泡沫混合液剩余量):考虑设DN100管道170.0m及DN65管道150.0m。管道容积为1823L M混=n产×Q产×t1+n枪×Q枪×t2+V(系统管道内泡沫混合液剩余量)=2×480×30+1×240×20+3800=28800+4800+1823 =35423L 7.泡沫液用量 V=K.V混/1000=6%×35423/1000=2125L/1000=2.125M3 则泡沫贮罐的容积为2.125m3 配制泡沫混合液所需的水量为:35423L×94%=33298L=33.298M3 泡沫比例混合器的流量为:8×2+4=20L/S 配制泡沫混合液的水流量:20L/S×94%=18.8L/S 8.根据规范第3.7.3条储罐区泡沫灭火系统管道内的泡沫混合液流速,不宜大于3m/s 主管初选管径 DN100

气体灭火系统规范方案及标准

WORD格式整理 气体灭火系统及部件 GB 25972 -2010 1范围 本标准规定了气体灭火系统及构成部件的术语和定义、基本参数和型号编制方法、要求、试验方法、检验规则、使用说明书编写要求、灭火剂充装要求。 本标准适用于七氟丙烷(HFC227ea灭火系统、三氟甲烷(HFC23 灭火系统、惰性气体灭火系统[包括:IG-01 (氩气)灭火系统、IG-100 (氮气)灭火系统、IG-55 (氩气、氮气)灭火系统、IG-541 (氩气、氮气、二氧化碳)灭火系统]。 5.5.11手动操作要求 容器阀应具有机械应急启动功能,按 6.16规定的方法进行应急启动手动操作试验,应符合 下列要 求: a)手动操作力不应大于150 N ; b)指拉操作力不应大于50 N ; c)指推操作力不应大于10 N ; 表1系统王件压力

b指充装密度为950 kg/m 3时。 5.1.1.3 系统喷射时间 灭火系统的最大喷射时间为: a)七氟丙烷灭火系统:10 s ; b)三氟甲烷灭火系统:10 s ; c)惰性气体灭火系统:60 s。 5.1.2系统构成 5.121 内贮压式七氟丙烷灭火系统、三氟甲烷灭火系统至少应由灭火剂瓶组、驱动气体瓶组、单向 阀、选择阀(适用于组合分配系统)、驱动装置、集流管、连接管、喷嘴、信号回馈装置、 安全泄放装 置、控制盘、检漏装置、低泄高封阀(适用于具有驱动气体瓶组的系统)、管路管件等部件构成。5.1.2.2 惰性气体灭火系统至少应由灭火剂瓶组、驱动气体瓶组(不适用于直接驱动灭火剂 瓶组的系 统)、单向阀、选择阀(适用于组合分配系统)、减压装置、驱动装置、集流管、连接管、 喷嘴、信号反 馈装置、安全泄放装置、控制盘、检漏装置、低泄高封阀(适用于具有驱动气体瓶组的系统)、管路管 件等部件构成。 5.1.2.3 同一系统各部件应固定牢固、连接可靠,部件安装位置正确,整体布局合理,便于 操作、检 查和维修。 5.124 系统中相同功能部件的规格应一致(选择阀、喷嘴除外),各灭火剂贮存容器的容积、充装密 度或充装压力应一致。 *气体灭火系统设计规范 GB50370-2005 1. 总则 1.0.1 为合理设计气体灭火系统,减少火灾危害,保护人身和财

泡沫灭火系统组件及设置要求

泡沫灭火系统一般由泡沫液、泡沫消防水泵、泡沫混合液泵、泡沫液泵、泡沫比例混合器装置、压力容器、泡沫产生装置、火灾探测与启动控制装置、控制阀门及管道及其它附件组成。系统组件必须经国家级产品质量监督检验机构检验合格,并且必须符合设计用途。 一、泡沫消防泵 (一)泡沫消防水泵、泡沫混合液泵的选择与设置要求 泡沫消防水泵、泡沫混合液泵应选择特性曲线平缓的离心泵,且其工作压力和流量应满足系统设计要求;当采用水力驱动平衡式比例混合装置时,应将其消耗的水流量计入泡沫消防水泵的额定流量内;当采用环泵式比例混合器时,泡沫混合液泵的额定流量应为系统设计流量的倍;泵进口管道上,应设置真空压力表或真空表;泵出口管道上,应设置压力表、单向阀和带控制阀的回流管。 (二)泡沫液泵的选择与设置要求 泡沫液泵的工作压力和流量应满足系统最大设计要求,并应与所选比例混合装置的工作压力范围和流量范围相匹配,同时应保证在设计流量下泡沫液供给压力大于最大水压力;泡沫液泵的结构形式、密封或填充类型应适宜输送所选的泡沫液,其材料应耐泡沫液腐蚀且不影响泡沫液的性能;除水力驱动型泵外,泡沫液泵应按《泡沫灭火系统设计规范》(GB50151-2010)对泡沫消防泵的相关规定设置动力源和备用泵,备用泵的规格型号应与工作泵相同,工作泵故障时应能自动与手动切换到备用泵;泡沫液泵应耐受时长不低于10min 的空载运行。 二、泡沫比例混合器 泡沫比例混合器是一种使水与泡沫原液按规定比例混合成的混合液,以供泡沫产生设备发泡的装置。我国目前生产的泡沫比例混合器有环泵式泡沫比例混合器、压力式泡沫比例混合器、平衡压力泡沫比例混合器、管线式泡沫比例混合器。 (一)环泵式泡沫比例混合器 环泵式泡沫比例混合器固定安装在泡沫消防泵的旁路上,其混合流程如图3-7-7所示。环泵式泡沫比例混合器的限制条件较多,设计难度较大,达到混合比时间较长。但其结构简单、工程造价低且配套的泡沫液储罐为常压储罐,便于操作、维护、检修、试验。 1.适用范围 环泵式泡沫比例混合器适用于建有独立泡沫消防泵站的场所,尤其适用于储罐规格较单一的甲、乙、丙类液体储罐区。 2.设置要求

悬挂式七氟丙烷气体灭火装置设计规范

悬挂式七氟丙烷气体灭火装置设计规范 1、设计依据 1)国家标准GB50370《气体灭火系统设计规范》; 2)国家标准CB50263《气体灭火系统施工及验收规范》; 3)国家现行其他相关的规范、标准、规则等。 2、设计条件 1 )保护对象(用于按照有关规范选定灭火设计浓度C1); 2)防护区的尺寸(用于计算防护区的净容积 V); 3)防护区的最低和最高环境温度(用于计算七氟丙烷灭火剂的蒸汽比容S); 4)防护区所处的海拔高度(选定海拔高度修正系数K)。 3、设计过程 1 )提出系统对防护区的要求; 2)根据保护对象确定灭火浓度; 3)计算防护区净容积; 4)计算灭火剂设计用量; 5)确定装置灭火喷放时间; 6)选定灭火剂储瓶规格及数量; 7)选定装置的型号及数量; 8)计算灭火剂存储用量及储瓶的充装率; 9)计算防护区泄压口面积。 4、系统对防护区的要求 1 )防护区宜以单个封闭空间划分;同一区间的吊顶上和地板下需同时保护时,可合为 一个防护区。

2)一个防护区的面积不宜大于 500卅,且容积不宜大于1600用。 3)防护区应实行完全的防火分隔。防护区围护结构及门窗的耐火极限均不宜低于 0.5h ;吊顶的耐火极限不宜低于0.25h。当防护区的相邻区域设有水喷淋或其他灭火 系统时,其隔墙或外墙上的门窗的耐火极限可低于0.25h,但不应低于 0.25h。当吊顶上和工作层划为同一防护区时,吊顶的耐火极限不做要求。 4)防护区围护结构承受内压的允许压强,不宜低于1200P& 5)防护区的门应为向疏散方向开启的防火门,并安装自动闭门器,以保证在气体喷放时能够处于关闭状态。但亦应保证用于疏散的门在任何状态下,都可以从防护区内部打开。 6)防护区内影响气体灭火效果的各种设备都应能保证在喷放气体前联动停止或关闭,除泄压口外的开口应自动关闭。 7)防护区应有保证人员在30s内疏散完毕的通道和出口。 8)防护区内的疏散通道和出口应设置应急照明和疏散指示标志。 9)防护区的入口处应设置灭火系统的永久性标志牌和气体释放指示灯。 10)灭火后的防护区应通风换气,地下防护区和无窗或设固定窗扇的地上防护区,应设置机械排风装置,排风口宜设在防护区的下部并应直通室外。通风换气的次数按照不少于每小时5次考虑。有可开启外窗的防护区,可采用自然通风换气的方法进行通风换气。 11)防护区应设置泄压口,泄压口应设置在防护区净高的2/3以上,且宜设置在外墙上。当防护区不存在外墙时,可考虑设置在与走廊相隔的内墙上。 12)防护区的最低环境温度不宜低于—10°C。 5、灭火浓度及灭火设计浓度的确定 1)七氟丙烷灭火系统的灭火设计浓度不应小于灭火浓度的 1.3倍,惰化设计浓度不应小于惰化浓度的1.1倍。 2)固体表面火灾的灭火浓度为 5.8%,其他灭火浓度可按附表1取值,惰化浓度可按附表2取值。 3)图书、档案、票据和文物数据库等防护区,灭火设计浓度宜采用10% 4)油浸变压器、带油开关的配电室和自备发电机房等防护区,灭火设计浓度宜采

相关主题
文本预览
相关文档 最新文档