当前位置:文档之家› 太阳能电池铝浆

太阳能电池铝浆

关于太阳能电池正面银浆的一些新总结

关于太阳能电池正面银浆的一些新总结关于正银的一些新总结(一) 铝浆在大家都还没怎么大讨论就已经实际大规模生产了,在这期间标准化的铝粉供应起到了技术扩散的作用。正银从开始杜邦是标准外国内没有任何标准的材料供应,于是大家热烈的讨论正银是从各类原材料开始的。记得开始最为大家津津乐道的就是哪家银粉的振实密度超过5了,似乎超过了就是正银用的银粉了。似乎很快全国各地的银粉供应商各个大学研究报告都超过5了,晒出的电镜照片都是标准完美,似乎杜邦都有所不如。银粉有了,大家就开市讨论玻璃粉了,而去年横空出世的一款韩国玻璃粉(似乎专门为国内量身定做)使得大家都要赶超杜邦了。有机并没被大家怎么重视,因为没有掀起什么激烈大讨论,也许这个有机不管哪一家都是自己合成的,其并没成为一个可销售的商品,所以也就没怎么讨论,可实际大家的有机如何只有自己最清楚了。 各类原料都有了,而浆料的工艺几十年了没多大变化,市场似乎还在稳步增长,一切预示着今年要成为一个国产正银的爆发年,我们都将一起来见证这个关键时期。 那作为已经成为市场大佬的杜邦、贺利氏以及新贵三星、硕禾又会如何应对呢。到目前为止,我们从可见报道的资料中总结发现,其中最系统讲解正银原理模型的还是那位叫希拉里穆罕默德的家伙。然后就是杜邦提出的银纳米胶体粒子隧道导电机理,及棒子提出了电化学的氧气氛下银离子腐蚀导电机理,当然最终结构是一样的,只是在对得到这个最终的银纳米胶体粒子隧道导电结构的过程解释不同。而国内对于正银机理的探讨有见报道的主要是杨云霞教授及昆明诺曼。 硕禾作为市场新贵,通过前期的铝浆及背银的沉淀,其所需的市场客户关系及原料供应都很充分,而且基于台湾的优势应该也是得到了杜邦的一些原料供应支持,因此硕禾的突破就不奇怪了。三星延续自己当年的星期天工程师战术,挖到了大佬们的核心人才实现了突破也不奇怪。反观国内基本上想搞正银的都觉得这个天下大半是我的多好啊,那个利润那个杜邦……但落实到实际操作时则分为许多派系。一个就是土法上马的本土派,不管原理模型就从这个仿制开始,实践中体会原理模型再总结理论,以期实现突破,突破不了的就到处打听哪有神奇的玻璃粉哪有神奇的添加剂;再者就是大手笔的投入购置全豪华的国外专家团队,一切从头开始,这个模式估计到今年就要见分晓了,如果成功则为浆料行业创立了一种新模式,不成功我不知该如何说,因为这种方法在国外的确是行的通的是经过实践检验的也是一直都这么做的。 关于正银的一些新总结(二) 国内的派系林立你无法准确地分出几类来,不像国外就那么几家。因为国内不等你分完类,这个类别里边的公司就已经变了,原来是这个类别的很快又变成另一个了,原来还有很快就又没有了。不管是哪一类都有一个大梦想,那正银的天下…… 除了市场已有的这四大家及国内的各类派系,还有一些国外的大佬们虎视眈眈,图谋逐

太阳能电池板选择

太阳能电池板选择
太阳能电池的最大功率 Pmax=开路电压×短路电流, 这是它们的理想功率, 而平时大家衡量太阳能电池的是额定功率 Pm。实际中额定功率是小于最大功率 的,主要是由于太阳能电池的输出效率 u 只有 70%左右。在使用中由于受光强 度的不同,所以不同时刻的功率也是不同的,根据实验数据它的实际平均功率 P=0.7Pm。如果太阳能电池要直接带动负载,并且要使负载长期稳定的工作, 则负载的额定功率为 Pr=0.7Pm。 如果按照负载的功率选择太阳能电池的功率则 电池的功率为: Pm=1.43Pr。 就是说太阳能电池的功率要是负载功率的 1.43 倍。 在选择太阳能电池的功率时,应合理选择负载的耗电功率,这样才能使发电功 率与耗电功率处于一种平衡状态。当然太阳能电池的发电功率也会受到季节、气 候、地理环境和光照时间等多方面因素的制约。
蓄电池的使用(这里仅以夏季为例,介绍太阳能电池与蓄电池在一般情况下的使用)
蓄电池是一种储存电能的容器,常被作为其它电路的“能源基地”。由于太 阳能电池所产生的电力有限,因此要尽可能的扩大“基地”的储电容量,但也不 能无限扩大,因为太阳能电池只能在白天发电,其日发电量 M=发电功率(最 大输出功率)×有效光照时间×发电时间,由此它的日电量等于输出电流与有效 光照时间的乘积,即:C=IH(Ah)。而蓄电池的容量则使放电时间和放电电流的乘 积,因此计算公式为:C=IH(单位 Ah,就是额定 1A 的电流放电一小时)。那么 太阳能电池和蓄电池在容量和电量上使如何计算的呢?我们可以通过电功率公 式:P=IU 演化为:P=Iuh/h=CU/h。

几种新型太阳能电池性能比较

以化合物半导体为基体制成的太阳能电池。在种类繁多的化合物半导体材料中,不乏兼备优良光电特性、高稳定性、宜于加工制造的太阳能电池材料。化合物可构成同质结太阳能电池、异质结太阳能电池和肖特基结太阳能电池。它既可制成高效或超高效太阳能电池,又可制成低成本大面积薄膜太阳能电池,从而拓宽了光电材料的研究范围,也极大地丰富了太阳能电池家族。目前,世界上光电转换效率最高的是化合物半导体太阳能电池(如砷化镓太阳能电池效率η=24%~28%),或者是以化合物作为重要组分的太阳能电池(如砷化镓和硅叠合聚光太阳能电池效率η=32%~37%,薄膜硒铟铜/非晶硅太阳能电池效率η=14%~17%)。 在元素周期表中的Ⅲ-Ⅴ族化合物半导体,如砷化镓(GaAs)、磷化铟(InP);Ⅱ-Ⅵ族化合物半导体,如硫化镉(CdS)、硒化镉(CdSe)、碲化镉(CdTe)、硫化锌(ZnS)、硒化锌(ZnSe)、碲化锌(ZnTe)等,都具有直接禁带跃迁的能带结构,吸收系数大,结构比较稳定。若用Ⅰ-Ⅲ族元素取代Ⅱ-Ⅵ族化合物中的Ⅱ族元素,则得到Ⅰ-Ⅲ-Ⅵ族三元化合物,如硒铟铜(CuInSe)、硫铟铜(CuInS)等。对应地,用Ⅱ-Ⅳ族元素代替Ⅲ-Ⅴ族化合物中的Ⅲ族元素,则构成Ⅱ-Ⅳ-Ⅴ族三元化合物,如锌硅砷(ZnSiAs2)等。从中可以挑选禁带宽度适合于吸收不同波长的太阳光、且可制成低电阻p型或n型基体的化合物半导体来制造太阳能电池。 具有代表性的化合物半导体太阳能电池有砷化镓太阳能电池、硫化镉太阳能电池和硒铟铜太阳能电池。 砷化镓太阳能电池Ⅲ-Ⅴ族化合物太阳能电池,其主要特点是: (1) GaAs的禁带宽度达1.43 eV,能有效地吸收太阳光,其理论效率达28%。 (2) GaAs是直接禁带跃迁材料,吸收系数大。吸收90%的太阳能只需5μm厚的GaAs,而硅则需厚为100μm以上才能吸收同样多的太阳能。 (3)耐高温,耐辐射,适宜于做聚光太阳能电池(聚光比可以高达1000~1735倍),也适宜于做太空飞行器上用的太阳能电池。 砷化镓太阳能电池的主要缺点是:价格昂贵,功率/重量比小,表面复合速度大等。 自1956年砷化镓太阳能电池问世以来,已制成pn结GaAs同质结太阳能电池和GaAlAs/GaAs 异质面太阳能电池等。砷化镓还可以分别与元素半导体、其他化合物构成许多异质结构的多晶薄膜GaAs太阳能电池。砷化镓太阳能电池的结构类同于硅太阳能电池,开路电压为0.88~1.0 V,短路电流密度稍低,一般为20~30 mA/cm2。 硫化镉太阳能电池是最先问世的Ⅱ-Ⅵ族化合物太阳能电池。硫化镉的禁带宽度为2.42 eV,吸收系数大,是比较理想的异质结窗口材料,CdS-Cu2S太阳能电池的效率极限为17.8%。但在研究中发现,CdS-Cu2S电池在自然光照条件下,铜离子会在pn结中宏观迁移,因而造成输出功率下降。现在正在用CdTe和其他合适的材料来制造低成本薄膜太阳能电池。 碲化镉太阳能电池碲化镉具有稳定性好、薄膜沉积速度快、价格便宜等优点,因而碲化镉与硒铟铜同样被选为当前最有希望的两种薄膜化合物太阳能电池之一。其光电转换效率,1991年为12.5%,1995年为15.8%,2000年有可能达到18%而进入产业化生产。 硒铟铜太阳能电池性能最好的Ⅰ-Ⅲ-Ⅵ族化合物太阳能电池。硒铟铜是目前已知的Ⅰ-Ⅲ-Ⅵ族三元化合物半导体中性能最好的光电材料,禁带宽度为1.01~1.04 eV,有直接能带结构,在异质结电池中可作为理想的基体材料。硒铟铜与硫化镉、碲化镉材料一样,可以用真空沉积法、喷涂法、丝网印刷法和悬浮电镀法制造薄膜电池。电池结构与硅薄膜电池类同。也可制成前壁型和后壁型两种。CuInSe电池的开路电压比硅的低,约为0.4~0.5 V,而短路电流密度可高达40 mA/cm2左右,是一种稳定性比较好的薄膜太阳能电池。其光电转换效率,1991年为13%,1995年为17%,2000年可达20%。

光伏铝浆专题一应势发展的国产军-索比光伏网

光伏铝浆专题一:应势发展的国产军 【要点导读】: 1、在晶硅太阳电池大批量生产中,铝背场的制作工艺普遍采用丝网印刷铝浆 的方法,铝浆对太阳电池的性能如开路电压、转换效率等有很大影响,是制造太阳电池的关键原材料之一。目前高效铝浆对太阳电池效率有较明显的影响,采用高效铝浆后单晶硅太阳能电池可达到18.2%以上,多晶硅太阳能电池为16.8%以上。 2、目前光伏铝浆基本已实现90%以上的国产化,其中广州儒兴以占有60%以 上市场份额位列第一,台湾硕禾占据第二,湖南利德、武汉优乐、深圳富邦等瓜分剩余市场,形成割据局面;国外企业中略有动作的是美国杜邦、福禄以及日韩几家企业。 3、 2010年全球光伏铝浆需求量达到4000吨,预计2011年光伏铝浆需求量将 达5000吨,根据2011年市场平均售价约35—38万人民币/吨计算,那么整个光伏铝浆市场将达到15-18亿元人民币,面对潜力非凡且有一定利润的铝浆市场,企业间竞争日趋激烈,同质化现象日益明显。 4、电池片越来越薄,其翘曲变形问题日渐凸显,还有附着力、工艺敏感性等 问题,怎么解决这些问题以提高电池转换效率,成为当前硅太阳电池研究开发的热点之一,结合国内几大铝浆企业产品及技术特征,进行逐一比较分析以窥探光伏铝浆技术发展趋势。 光伏发展简史与铝浆简介 太阳能光伏产业在进入21世纪后,以晶硅太阳电池为代表的各产业链产品逐渐开始迈入实用化阶段,由于在太阳电池制造中具有不可或缺的地位与作用,光伏铝浆也随这股发展浪潮迅速发展起来,为此,对于光伏铝浆的发展历程我们

可以结合太阳电池的一个技术指标发展来观察,如表1:太阳电池近几年简要技术指标发展数据统计: 性能指标硅片尺寸 (mm) 硅片厚度 (mm) 栅极线宽 (mm) 烧结 工艺 烧结周 期(min) 峰值 时间 (s) 背场 情况 转换效 率(%) 2003 年 103X103/ 125X125 ≥0.260.20-0.25 银浆、 铝浆 (含 银铝 浆)分 两次 烧结 小于 2.0 小于 2.0 光滑, 不允 许有 铝珠 单晶 ≥16.0 多晶 ≥15.0 (产品) 2004 年 150X150/ 156X156 0.17-0.25 0.20-0.25 银浆、 铝浆 (含 银铝 浆)一 次共 烧结 小于 2.0 小于 2.0 光滑, 不允 许有 铝珠 单晶 ≥16.0 多晶 ≥15.0 (产品) 2010 年 125X125/ 156X156 0.18 0.08-0.10 银浆、 铝浆 (含 银铝 浆)一 次共 烧结 小于 2.0 小于 2.0 光滑, 不允 许有 铝珠 单晶 ≥18.0 多晶 ≥16.8 从上表可知,太阳电池电极由3种浆料(银浆、铝浆、银铝浆)印烧而成,在太阳电池生产工艺中,背电场制作是非常重要的工序。背电场金属铝浆经由丝网印刷并经隧道炉快速热处理后,烧结后能实现良好的欧姆接触,可以在太阳电池硅片的背阳面形成铝背场,提高开路电压,从而提高太阳电池的转换效率。如同银浆一样,太阳电池对光伏铝浆也有着特别的技术要求: 1、具备良好的印刷性能,适宜规模化生产的工艺性, 2、光电转换效率高,特别是开路电压高; 3、附着力好,且与硅片能形成良好的热膨胀匹配; 4、翘曲低,变形量小;

太阳能铝浆市场调研报告

太阳能铝浆市场调研报告 能源对全球经济发展和社会进步起着举足轻重的作用,然而传统的燃料能源正在一天天减少。石油、煤炭、天然气等化石能源价格一再飚升,而且对环境造成的危害日益突出,全球气候变迁导致的气候灾难,同时全球还有20亿人得不到正常的能源供应。这些都迫使人们寻找可再生清洁能源,希望可再生清洁能源能够改变人类的能源结构,维持长远的可持续发展。这时,太阳能以其独有的优势成为人们重视的焦点,丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源。由于技术的进步,太阳能产业的商业化前景看好,未来10年甚至50年内,太阳能产业的年增长速度高达30-40%。 太阳能行业是一个包括光热、光伏光电的巨大产业,近几年国际上光伏发电快速发展。2007年全球太阳能新装容量达2826MWp,其中德国约占47%,西班牙约占23%,日本约占8%,美国约占8%。2007年,在太阳能光电产业链中有大量的投资集中到新产能的提升上。除此之外,太阳能光电企业在2007年间的贷款融资金额增长了近100亿美元,使得该产业规模不断扩大。 虽然受金融危机影响,德国、西班牙对太阳能光伏发电的扶持力度有所降低,但其它国家的政策扶持力度却在逐年加大。日本政府2008年11月发布了“太阳能发电普及行动计划”,确定太阳能发电量到2030年的发展目标是要达到2005年的40倍,并在3-5年后,将太阳能电池系统的价格降至目前的一半左右。2009年还专门安排30亿日元的补助金,专项鼓励太阳能蓄电池的技术开发。2008年9月16日,美国参议院通过了一揽子减税计划,其中将光伏行业的减税政策(ITC)续延2-6年。 我国太阳能光伏产业的现状 光伏产业是世界上发展最快的能源产业之一,在各国政府的扶持下,光伏发电产业自20世纪80年代以来得到了迅速发展。最近10年光伏发电产业的年平均增长率为30%,近5年的年平均增长率为40%。 我国于1958年开始研究光伏电池,其间研究人员进行了大量科学研究实验,付出了辛勤汗水。1971年,光伏电池首次成功应用于我国发射的东方红二号卫星上,从此开始了我国太阳电池在空间的应用历史。同一年,太阳电池首次在海港浮标灯上应用,开始了我国太阳电池地面应用的历史,形成了我国光伏工业的雏形。自1979年到80年代中,我国一些半导体器件厂,如云南、宁波、开封和北京的一些器件厂等,开始利用半导体工业废次单晶硅和半导体器件工艺来生产单晶硅太阳电池,我国光伏工业进入萌发时期。在“六五”和“七五”期间,国家开始对光伏工

太阳能电池特性测量

太阳能电池特性实验仪 能源短缺和地球生态环境污染已经成为人类面临的最大问题。本世纪初进行的世界能源储量调查显示,全球剩余煤炭只能维持约216年,石油只能维持45年,天然气只能维持61年,用于核发电的铀也只能维持71年。另一方面,煤炭、石油等矿物能源的使用,产生大量的CO 2、SO 2等温室气体,造成全球变暖,冰川融化,海平面升高,暴风雨和酸雨等自然灾害频繁发生,给人类带来无穷的烦恼。根据计算,现在全球每年排放的CO 2已经超过500亿吨。我国能源消费以煤为主,CO 2的排放量占世界的15%,仅次于美国,所以减少排放CO 2、SO 2广义地说,太阳光的辐射能、水能、风能、生物质能、潮汐能都属于太阳能,它们随着太阳和地球的活动,周而复始地循环,几十亿年内不会枯竭,因此我们把它们称为可再生能源。太阳的光辐射可以说是取之不尽、用之不竭的能源。太阳与地球的平均距离为1亿5千万公里。 在地球大气圈外,太阳辐射的功率密度为1.353kW /m 等温室气体,已经成为刻不容缓的大事。推广使用太阳辐射能、水能、风能、生物质能等可再生能源是今后的必然趋势。 2 ,称为太阳常数。到达地球表面时,部分太阳光被大气层吸收,光辐射的强度降低。在地球海平面上,正午垂直入射时,太阳辐射 的功率密度约为1kW /m 2 太阳能发电有两种方式。光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成蒸气,再驱动汽轮机发电,太阳能热发电的缺点是效率很低而成本很高。光—电直接转换方式是利用光生伏特效应而将太阳光能直接转化为电能,光—电转换的基本装置就是太阳能电池。 ,通常被作为测试太阳电池性能的标准光辐射强度。太阳光辐射的能量非常巨大,从太阳到地球的总辐射功率比目前全世界的平均消费电力还要大数十万倍。每年到达地球的辐射能相当于49000亿吨标准煤的燃烧能。太阳能不但数量巨大,用之不竭,而且是不会产生环境污染的绿色能源,所以大力推广太阳能的应用是世界性的趋势。 与传统发电方式相比,太阳能发电目前成本较高,所以通常用于远离传统电源的偏远地区,2002年,国家有关部委启动了“西部省区无电乡通电计划”,通过太阳能和小型风力发电解决西部七省区无电乡的用电问题。随着研究工作的深入与生产规模的扩大,太阳能发电的成本下降很快,而资源枯竭与环境保护导致传统电源成本上升。太阳能发电有望在不久的将来在价格上可以与传统电源竞争,太阳能应用具有光明的前景。 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 实验内容 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量

正面银浆这些事[转自肖蓓老师博客]

进入2013,还看正面银浆! 在过去的1年里,光伏产业经历了一系列事件:中国两家最大的光伏领军企业赛维、尚德先后遭遇债务危机,多家国际知名企业宣告破产,美国、欧盟对华光伏产品展开“双反”,中国分布式发电相关政策发布……。 作为与这个产业息息相关的原材料供应商,太阳能浆料领域也发生了不小变化,愈演愈烈的知识产权纠纷、新品推出后的市场争夺、业绩遭遇滑铁卢后的企业战略调整、从未放弃的其他浆料供应商…… 这个被高技术门槛圈出来的细分产业,总有些事情让人不得不关注,一如它的高利润,总让人垂涎;而一两家独大的局面,也总有人想要打破。 专利的恩怨纠葛 2012年6月,杜邦公司向贺利氏(Heraeus)及其客户SolarWorld Industries America, Inc.(德国SolarWorld集团之美国子公司)提出诉讼,指控其涉嫌侵害杜邦公司近期发表的光伏电池技术正面电极金属浆料材料的专利。 七月,杜邦电子与通讯事业部大中国区总裁郑宪志在出席Solarbuzz 于上海举办的中国光伏研讨会时,特别强调创新对于推进光伏行业发展至关重要,而保护知识产权在现今竞争日益激烈的光伏市场也愈趋重要。郑宪志呼吁业界,对防止侵权给予更多的支持,并对使用“侵权”材料来生产和销售下游产品的电池、组件制造商、光伏系统开发商以及业主给予更强烈的反对。早在2011年9月,杜邦公司就控告贺利氏专利侵权,而该案件仍在审理中。 由于牵扯到了敏感的“双反”始作俑者SolarWorld,杜邦公司的控告对贺利氏的影响比以往更大,他们的客户—大部分中国光伏电池、组件企业对“双反”及SolarWorld持反感态度,这让他们需要在客户方展开销售与服务的同时,还需要做更多解释。迫于种种,贺利氏与去年八月展开反击,发表了措辞强硬的声明,称杜邦是在用法律手段威胁公司客户,并通过错误信息降低贺利氏产品的信誉。 同时,对于杜邦公司的指责,贺利氏指出杜邦早先在诉讼中指责贺利氏侵犯其编号为254和504的两项专利,在杜邦最近的一份有关贺利氏的专利侵权声明中却对这两项专利全然不提,这表明杜邦已经间接承认其并没有确切证据证明贺利氏窃取了杜邦的浆料专利。 如此高调的控告与对掐引发业内高度关注,而关注这两家公司其他方面的较量也随之浮出水面:产品、市场份额、技术实力、人才队伍、销售都进入你争我夺的比较中。 “杜邦的产品价格昂贵,但是稳定,平均下来综合成本也就差不多,如今不论从声势、规模还是客户评价,渡边那个略胜一筹,你只要想一想现在国内杜邦的比例以及人们对18A的期望值就知道了。”一位在一线光伏电池厂做工艺的技术人员这样说,此前他们公司曾用过一小段国产产品,但他表示如果工艺人员想操作省心,企业要电池效率,建议还是用杜邦或贺利氏。 细数两家企业历年正面接触电极系列产品,杜邦开发更新速度平均在每年一

几种太阳能电池的工作原理及区别

单晶硅、多晶硅、非晶硅、薄膜太阳能电池 的工作原理及区别 硅太阳能电池的外形及基本结构如图1。其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。上表面为N+型区,构成一个PN+结。顶区表面有栅状金属电极,硅片背面为金属底电极。上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。 当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。当光伏电池两端接一负载后,光电池就从P 区经负载流至N+区,负载中就有功率输出。 太阳能电池各区对不同波长光的敏感型是不同的。靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。电池基体域

产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。 2.单晶硅太阳能电池 单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行。这样就在硅片上形成PN结。然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料

有关太阳能正银

有关太阳能正银/铝浆 上周应朋友之邀,去了无锡尚德,跟他们的技术负责部门聊了聊,现总结如下,与大家共享。就目前来看,尚德所使用铝浆就儒兴一家符合。他们有一条专门的实验线用于检验各类材料,而且愿意配合大家来做试验,也希望打破儒兴一家供应的风险。可到现在杜邦/FERRO/东洋/俄罗斯/东洋/东进/三星/硕禾/国内的几家(就不点名了),都不能通过试验。虽然各家都有不同的工艺问题,包括儒兴也有。但有一项硬指标——剥离强度,即附着力的试验,就儒兴一家通过。尚德的要求很高,剥离强度要求大于20N,因为它承诺自己的电池寿命是25年,超过国际通行的20年,所以对剥离强度要求很严。国标20N是他们起草的,而他们自己内控的就到25N了,所以大家就很难通过了。尚德作为行业的领头羊,确实具有大家风范,每月都会与供应商进行技术研讨,以指导供应商开发符合他们最新电池技术所需的材料,杜邦/FERRO/贺力氏都得益于这种交流,因此他们可以不断的开发一代又一带的正银。国内大家现在都喊着正银搞出来了,可市场上到底认可那一家了。你现在是可以搞正银了,可杜邦早已给你预备好了几代正银的技术储备。你到149,我就159,你159,我后面16A/179/灌孔银浆等都给你预备着呢。即使你勉强跟上了我的技术,那我降价。因为你拿银粉的价格比我高的多,在同样的价格下,我的利润空间就高了,而大厂肯定还是认可我杜邦的。就算是小厂现在勉强用你的正银了,好你惹恼了我杜邦,那对不起以后技术再更新的时候就不要找我了。请问,你是相信杜邦的技术更新呢,还是相信国内的呢!再者,儒兴/东洋/硕禾/俄罗斯为什么不搞正银,他们的市场渠道可以说很通了,而且由于在铝浆方面的成功,在资金/技术层面应该说在太阳能浆料领域里比国内其它要搞正银的强吧,可他们为什么搞不出来呢。正银相对铝浆对电性能的贡献更大,提升空间也更大,就目前的技术体系,正银的改进就可使电池的效率超过20%,而铝浆发展到现在可以说体系基本没多大变化,而且之所以国内能领先,很大程度上得益于国内氮气雾化的球形铝粉。国外是没有的,他们都是空气雾化的奇形怪状的粉。搞铝浆的同行大概都知道了,儒兴在谭老师还在里边的时候,一次技术突破提高效率0.9,就是因为采用了国内球形铝粉。又回到尚德用儒兴铝浆的主题上,杜邦/FERRO的铝浆通不过尚德的试验,我们姑且认为就是铝粉的缘故吧。可硕禾/俄罗斯/还有东洋(又是小鬼子,很可怕,曾想图谋收编国内所有的铝粉厂来控制我们。最后收购了吉维信,也是为了得到球形铝粉,用他们自己的粉生产的铝浆出了小岛就不行,天合用的恐怕也是收购吉维信后的事了。)铝粉是国内采购的,为什么仍然同不过剥离强度试验呢,可见儒兴必有高招了,肯定是添加了现有公开的技术资料里没有的提到的某种材料了,留待大家去破解吧。不过铝浆的技术发展到现在,在技术层面又到了一个快要突破的时候了。听说无锡儒兴联合山东的厂家要自己建铝粉厂了。大家要注意了,铝浆要怎么突破,走到现在大家可能都知道了,就是要动主材铝粉了。儒兴就是想这么干了,他自己为什么建铝粉厂,因为他已经知道需要什么样的铝粉了,为了技术保密同时保证供应及质量可控,就自己建厂生产所需的铝粉,不象现在儒兴用的铝粉大家都可以拿到。所以,他又要领先了,他的地位还是无可撼动。好,再说说正银。儒兴确实已是世界最大的浆料厂商了,今年近

(整理)太阳能电池各电性能参数-草稿.

太阳能电池各电性能参数的本质及工艺意义 ?武宇涛 ? 电性能参数主要有:V oc,Isc,Rs,Rsh,FF,Eff,Irev1,… 电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。 从可控性难易角度来说,V oc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。 当然我们最关心的是效率Eff。而Eff则是以上所有参数的综合表现。 太阳能电池的理论基础建立在以下几个经典公式之上: Voc=(KT/q)×ln(Isc/Io+1) Voc=(KT/q)×ln(N aNd/ni2) 1 2 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 3 4

Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5 图-1太阳能电池的I-V曲线 图-2太阳能电池等效电路 从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。 为了更好地说明各参数间的联系,这里先录用几组数据如下:

表-1 线别Uoc Isc FF Rs Rsh EFF Irev>6>16%Isc>8.2Voc>620FF>78 P156(71)0.6188.2177.20.00381816.11%0.17%78.73%56.2%33.1% 1.3% P156(62)0.6168.2176.60.00413315.92%0.53%56.06%55.2%18.1%0.4% E-CELL(LY)0.6277.2978.10.00312914.68% 1.23%40.03%20.3%69.8%65.8% 以上P156均系LDK片源。 1,Voc 由于光生电子-空穴对在内建场的作用下分别被收集到耗尽层的两端,从而形成电势。所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。 由上面公式1所反映,Voc主要与电池片的参杂浓度(Nd)相关。对于宽△Eg的电池材料,相对会有比较高的Voc;但△Eg过高,又会导致光吸收效率的迅速下降(主要是长波段响应降低),使Isc是降低,所以需要找到一个最佳掺杂深度值。另一方面,高参杂又会引入更多的复合中心,使复合电流增加,同样也降低了Voc。所以在没有引起复合电流增加或者其增量比较小的前提下,参杂浓度的提高对Voc总是有益的。 在上表所示的三种成品电池片中,P156的片子与E-CELL 片子Voc有着显著的不同,这显然是由于冶金级硅的杂质浓度过大导致的。而对于62栅线和71栅线的电池片,由于其总体参杂浓度并没有显著的改变,所以其开压并没有显著差别。从上表还可以看出,E-CELL电池的Isc已经比比另两者有显著降低,我们可以认为对于P156的正常多晶硅电池片其Voc在620mv左右达

12 晶体硅太阳能电池正面用银浆及其制备方法

(10)申请公布号 CN 101964219 A (43)申请公布日 2011.02.02C N 101964219 A *CN101964219A* (21)申请号 201010249934.0 (22)申请日 2010.08.10 H01B 1/22(2006.01) H01B 13/00(2006.01) H01L 31/0224(2006.01) (71)申请人上海九晶电子材料股份有限公司 地址201617 上海市松江区长塔路399号 (72)发明人汪贺杏 胡文晋 (74)专利代理机构上海天翔知识产权代理有限 公司 31224 代理人 陈学雯 (54)发明名称 晶体硅太阳能电池正面用银浆及其制备方法 (57)摘要 本发明涉及一种晶体硅太阳能电池正面用银 浆及其制备方法,它是由微米级银粉、玻璃粉、有 机载体、添加剂组成。该银浆的特点是触变性好 适合印刷宽80-90μm ,高温烧结后高30-35μm 的 栅线;玻璃粉的配方为B 2O 3 3-8%;SiO 212-15%; Bi 2O 3 45-65%;Al 2O 3 1-10%;ZnO 10-30%,软化 温度在400-600℃,其完全无铅的配方的特点,符 合环保要求。通过添加0.08-0.3%的二氧化锰增 加了导体栅线和硅片表面的附着力,正面电极的 剥离强度大,串联电阻大大降低。(51)Int.Cl. (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 2 页 说明书 4 页 附图 1 页

1.一种晶体硅太阳能电池正面用银浆,其特征在于:所述银浆的配方由微米级银粉、玻璃粉、有机载体和添加剂组成,各组分的重量百分比如下: 微米级银粉 75-89%; 玻璃相 2-8%; 有机载体 7-15%; 添加剂 0.08-0.3%。 2.根据权利要求1所述的晶体硅太阳能电池正面用银浆,其特征在于,所述微米级银粉的颗粒为0.5-5μm 。 3.根据权利要求1所述的晶体硅太阳能电池正面用银浆,其特征在于,所述玻璃粉为硼-铋-硅-铝硅酸盐体系,由B 2O 3、SiO 2、Bi 2O 3、Al 2O 3、ZnO 组成,各组分的重量百分比如下: B 2O 3 3-8%; SiO 2 12-15%; Bi 2O 3 45-65%; Al 2O 3 1-10%; ZnO 10-30%。 4.根据权利要求1所述的晶体硅太阳能电池正面用银浆,其特征在于,所述有机载体是由乙基纤维素溶于溶剂中形成的一种粘稠液体,有机载体的黏度用乙基纤维素的质量份数来调节,所述溶剂为松油醇、松节油、丁基卡比醇醋酸酯、邻苯二甲酸二丁酯的任意一种。 5.根据权利要求1所述的晶体硅太阳能电池正面用银浆,其特征在于,所述添加剂为二氧化锰,二氧化锰在银浆中降低接触电阻,增加电极的剥离强度。 6.根据权利要求3所述的晶体硅太阳能电池正面用银浆,其特征在于,所述玻璃粉为无铅玻璃粉。 7.根据权利要求4所述的晶体硅太阳能电池正面用银浆,其特征在于,所述有机载体中乙基纤维素和溶剂的重量比为1∶50-1∶20。 8.一种如权利要求1所述的晶体硅太阳能电池正面用银浆的制备方法, 包括以下步骤: (1)原料的准备: 所述银浆的配方由微米级银粉、玻璃粉、有机载体和添加剂组成,各组分的重量百分比如下: 微米级银粉 75-89%; 玻璃相 2-8%; 有机载体 7-15%; 添加剂 0.08-0.3%; (2)原料的预混合: 将步骤(1)各组分在搅拌器中预混合; (3)反复滚扎: 在三辊轧机上反复滚扎30-40次,即可得到晶体硅太阳能电池正面用银浆。 9.根据权利要求8所述的晶体硅太阳能电池正面用银浆的制备方法,其特征在于,所

太阳能铝浆技术小结

太阳能铝浆技术小结 一、 基本原理 铝背场对电池性能提高理论上来说来自两种可能: 1、消除本体半导体的缺陷,利用AL SI 原子晶格失配产生的应力,使硅片中的重金属杂质和空位扩散到表面而被有效降噪,而增加少数载流子在基体内飘移距离。 2、P+层有效降低电子和空穴在背面的复合速率,确保铝层与基材之间的欧姆接触。 二、 铝浆料一般组成 典型的铝浆是由铝粉,无机黏结剂,添加剂和有机载体组成。 铝粉提供烧结使膜层导电性以及P+扩散源,铝粉有粒径分布,形态,氧化程度,杂质种类和含量均影响膜层欧姆接触,P+层形成(浓度,深度,一致性),表面性质和膜层导电性,烧结变形量,吸杂效果,可靠性等。 无机粘接剂也影响上述每一个因素,而且虽然在浆料中量少,但起关键作用,尤其是对P+层形成质量,吸杂以及变形量,可靠性。 有机载体相关到铝浆与基材的浸润性,烘干铝膜对基材附着力以及铝膜的密度,对烧结过程中铝粉的氧化过程有影响,也影响到上述的每一个方面,只是敏感性比铝粉和玻璃稍差。 添加剂种类,分散剂可控制AL浆流变特性,影响铝粉在烘干膜中的排列分布,浸润剂(如卵磷脂)能降低浆料表面张力,增加与基体接触的面积,负膨胀系数或高熔点无机物可控制变形量,其他助剂可促进扩散,改变烘干膜性质等。三、 铝浆料基本要求 A、 浆料:1、合适的流变特性,易于印刷均匀,与基材料有良好浸润性。 2 、合适的挥发速率和存贮稳定性确保在印刷寿命,一致性。 3、 合适的沉降速率确保工艺性。 4、合适的AL含量和密度确保移印量。 B、 烧结铝膜:1、良好的欧姆接触。 2、 P+层厚度和浓度一致性。 3、表面电阻。 4、表面质量(铝珠,铝苞) 5、对变形量影响(PBO2,过氧化铅)

太阳能电池各电性能参数-草稿

太阳能电池各电性能参数的本质及工艺意义 武宇涛 电性能参数主要有:V oc,Isc,Rs,Rsh,FF,Eff,Irev1,… 电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。 从可控性难易角度来说,V oc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。 当然我们最关心的是效率Eff。而Eff则是以上所有参数的综合表现。 太阳能电池的理论基础建立在以下几个经典公式之上: Voc=(KT/q)×ln(Isc/Io+1) Voc=(KT/q)×ln(N aNd/ni2) 1 2 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 3 4 Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5

图-1太阳能电池的I-V曲线 图-2太阳能电池等效电路 从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。 为了更好地说明各参数间的联系,这里先录用几组数据如下:表-1

线别Uoc Isc FF Rs Rsh EFF Irev>6>16%Isc>8.2Voc>620FF>78 P156(71)0.6188.2177.20.00381816.11%0.17%78.73%56.2%33.1% 1.3% P156(62)0.6168.2176.60.00413315.92%0.53%56.06%55.2%18.1%0.4% E-CELL(LY)0.6277.2978.10.00312914.68% 1.23%40.03%20.3%69.8%65.8% 以上P156均系LDK片源。 1,Voc 由于光生电子-空穴对在内建场的作用下分别被收集到耗尽层的两端,从而形成电势。所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。 由上面公式1所反映,Voc主要与电池片的参杂浓度(Nd)相关。对于宽△Eg的电池材料,相对会有比较高的Voc;但△Eg过高,又会导致光吸收效率的迅速下降(主要是长波段响应降低),使Isc是降低,所以需要找到一个最佳掺杂深度值。另一方面,高参杂又会引入更多的复合中心,使复合电流增加,同样也降低了Voc。所以在没有引起复合电流增加或者其增量比较小的前提下,参杂浓度的提高对Voc总是有益的。 在上表所示的三种成品电池片中,P156的片子与E-CELL 片子Voc有着显著的不同,这显然是由于冶金级硅的杂质浓度过大导致的。而对于62栅线和71栅线的电池片,由于其总体参杂浓度并没有显著的改变,所以其开压并没有显著差别。从上表还可以看出,E-CELL电池的Isc已经比比另两者有显著降低,我们可以认为对于P156的正常多晶硅电池片其Voc在620mv左右达到了峰值。另外通过对高Voc电池片(如E-CELL)进行QE扫

太阳能电池概述

太阳能转换效率研究回顾分析与未来展望 导读: 我国太阳能光电化学转换的研究以实现低价高效利用太阳能为目标,二十年来在不同材料体系中研究了上百种材料,大大促进了光电转换材料特别是多晶、薄膜半导体及新一代纳米结构半导体和有机/半导体复合材料的发展。 引言 进入二十世纪以来,人类的工业文明得以迅猛发展,由此引发的能源危机和环境污染成为急待解决的严重问题,利用和转换太阳能是解决世界范围内的能源危机和环境问题的一条重要途径。世界上第一个认识到光电化学转换太阳能为电能可能实现的是Becquere1,他在1839年发现涂布了卤化银颗粒的金属电极在电解液中产生了光电流,以后Brattain、Garrett 及Gerisher等人先后提出和建立了一系列有关光电化学能量转换的基本概念和理论,开辟了光电化学研究的新领域。1972年Honda和Fujishima应用n-TiO2电极成功的进行太阳能光分解水制氢,使人们认识到光电化学转换太阳能为电能和化学能的应用前景。从此,以利用太阳能为背景的光电化学转换成为一个非常活跃的科学研究前沿。光电化学太阳电池的一个突出的特点是材料制备工艺简单,即使应用多晶半导体也可期望获得有较高的能量转换效率,可大大降低成本,增加大规模应用的可能性,因此光电能量的直接转换成为最引人注目的一个重要研究方面。 我国自1978年进行光电化学能量转换方面的研究,其进展情况可大致分为三个阶段:七十年代后期,为寻找廉价光电化学转换太阳能的方法和途径广泛地进行了各种半导体电极/电解液体系的光电化学转换研究;八十年代中期,随着人工化学模拟光合作用研究的深入,有机光敏染料体系的光电能量转换很快兴起并得到很大发展;九十年代以来,由于新材料的诞生和迅速发展,新型纳米结构半导体和有机/纳米半导体复合材料成为光电化学能量转换研究的主要对象和内容。 1常规和非常规半导体电极的光电化学太阳电池 用于光电化学太阳电池中半导体电极研究的材料包括有:Si、Ⅱ-Ⅵ族化合物CdX(X=S、Se、Te)、Ⅲ-Ⅴ族化合物(GaAs、InP)、二硫族层状化合物(MoS2、FeS2)、三元化合物(CuInSe2、CuInS2、AgInSe2)及氧化物半导体(TiO2、ZnO、Fe2O3)等,其中窄禁带半导体(Eg≤2.0eV)可获得较高的光电转换效率,但存在光腐蚀现象,宽禁带半导体(Eg≥3.0eV)有良好的稳定性,但对太阳能的吸收率低。因此大量的研究工作都是围绕提高光电效率和稳定性进行的。 同固体太阳电池一样,Si在光电化学电池研究中也是一个重点对象。Si是较理想的光电极材料,但在电解质水溶液中容易光腐蚀,其表面生成SiOX绝缘层使光电流急骤衰减。因此,克服光腐蚀是Si光电化学电池研究的主要内容。在n-Si电极表面化学沉积Au,形成Au 与Si 表面渗合层,可减少光腐蚀;用电沉积法将聚丁基紫精修饰于p-Si电极表面,也使光腐蚀明显下降。n型和P型外延硅(n/n+-Si、p/n+-Si)电极由于电荷分离效率高,其光电流较大。通过表面修饰几个纳米厚的金属层(Pt、Ni、Au、Cu、Co),进一步提高光稳定性,可以获得光电性能优越的光电化学电池。其中以真空蒸镀或溅射方法在外延硅表面修饰Pt 或Ni以及Pt/Ni(Ni/Pt)复合层的效果较好,如Pt/n/n+-Si和Pt/p/n+-Si电极在KBr-Br2电解液中光电转换效率分别达到12.2%和13.6%,用MOCVD方法在p/p+-Si电极表面覆盖TiO2薄膜形成异质结结构,不仅提高了光稳定性能,而且在一定电压下光电流增大了10倍。用同样的方法覆盖α- Fe2O3,和ZnO薄膜也得到了类似的结果。用LB膜技术在n-Si电极表面修饰排列有序的Pt团簇(平均直径为4nm),其开路电压达到了0.685V。金属和金属氧化膜的表面修饰加速了光生空穴的界面转移,从而有效抑制了电极自身光腐蚀,同时也提高了光电性能。 Ⅱ-Ⅵ族化合物半导体CdX(X=S、Se、Te)是光电化学研究较为普遍的光电极材料,其

薄膜晶体硅太阳能电池分析比较

薄膜晶体硅太阳能电池分析比较 《中国组件行业投资前景及策略咨询报告》分析:目前在工业上,硅的成本大约占硅太阳能电池生产成本的一半。为减少硅的消耗量,光伏(PV)产业正期待着一些处于研究开发中的选择方案。其中最显然的一种就是转向更薄的硅衬底。现在,用于太阳能电池生产的硅衬底厚度略大于200mm,而衬底厚度略小于100mm的技术正在开发中。为使硅有源层薄至5-20 mm,可以在成本较低的硅衬底上淀积硅有源层,这样制得的电池被称为薄膜。为使其具有工业可行性,主要的挑战是在适于大规模生产的工艺中,怎样找到提高效率和降低成本之间的理想平衡。已经存在几种制造硅有源层的技术1,本文将讨论其中的三种。 薄膜PV基础 第一种技术是制作外延(epitaxial)(图1),从高掺杂的晶体硅片(例如优级冶金硅或废料)开始,然后利用化学气相淀积(CVD)方法来淀积外延层。除成本和可用性等优势以外,这种方法还可以使硅太阳能电池从基于硅片的技术逐渐过渡到薄膜技术。由于具有与传统体硅工艺类似的工艺过程,与其它的薄膜技术相比,这种技术更容易在现有工艺线上实现。 第二种是基于层转移(layer transfer)的技术,它在多孔硅薄膜上外延淀积单晶硅层,从而可以在工艺中的某一点将单晶硅层从衬底上分离下来。这种技术的思路是多次重复利用母衬底,从而使每个太阳能电池的最终硅片成本很低。正在研究中的一种有趣的选择方案是在外延之前就分离出多孔硅薄膜,并尝试无支撑薄膜工艺的可能性。 最后一种是薄膜多晶硅太阳能电池,即将一层厚度只有几微米的晶体硅淀积在便宜的异质衬底上,比如陶瓷(图2)或高温玻璃等。晶粒尺寸在1-100mm之间的多晶硅薄膜是一种很好的选择。我们已经证实,利用非晶硅的铝诱导晶化可以获得高质量的多晶硅太阳能电池。这种工艺可以获得平均晶粒尺寸约为5 mm 的很薄的多晶硅层。接着利用生长速率超过1 mm/min的高温CVD技术,将种子层外延生长成几微米厚的吸收层,衬底为陶瓷氧化铝或玻璃陶瓷。选择热CVD是因为它的生长速率高,而且可以获得高质量的晶体。然而这样的选择却限定了只能使用陶瓷等耐热衬底材料。这项技术还不像其它薄膜技术那样成熟,但已经表现出使成本降低的巨大潜力。

相关主题
文本预览
相关文档 最新文档