当前位置:文档之家› 车载逆变电源_毕业设计

车载逆变电源_毕业设计

车载逆变电源_毕业设计
车载逆变电源_毕业设计

山东科技大学学士学位论文摘要

摘要

车载逆变器就是一种能把汽车上12V直流电转化为220V/50Hz交流电的电子装置,是常用的车用电子用品。在日常生活中逆变器的应用也很广泛,比如笔记本电脑、录像机和一些电动工具等。

本设计主要基于开关电源电路技术等基础知识,采用二次逆变实现逆变器的设计。主要思路是:运用TL494以及SG3525A等芯片,先将12V直流电源升压为320V/50Hz的高频交流电,再经过整流滤波将高频交流电整流为高压直流电,然后采用正弦波脉冲调制法,通过输出脉冲控制开关管的导通。最后经过LC工频滤波及相应的输入输出保护电路后,输出稳定的准正弦波,供负载使用。

本设计具有灵活方便、适用范围广的特点,基本能够满足实践需求。而且本设计采用高频逆变方式,具有噪声降低、反应速度提高以及电路调整灵活的优点。设计符合逆变电源小型化、轻量化、高频化以及高可靠性、低噪声的发展趋势。

关键词:车载逆变器;脉冲调宽;保护电路;TL494 ;SG3525A;

山东科技大学学士学位论文ABSTRACT

ABSTRACT

Car inverter is a kind of vehicle that can be converted to 220V/50Hz 12V DC AC electronic device which is commonly used in automotive electronic products. The inverter applications are very broad in the daily life , such as notebook computer, video recorder and electric tools etc.

This design is mainly based on switch power supply circuit technology basic knowledge, using two inverter realize inverter design. The main idea uses the TL494 and SG3525A etc chip, the first 12 V dc power boost for 320 V/frequency 50 Hz high frequency alternating current, and rectification of high frequency ac filter will rectifier for high voltage dc and then using sine pulse regulation law, through the output pulse control switch tube conduction. Finally after LC industrial frequency filter and the corresponding input/output protection circuits, stable output prospective sine wave, used for load.

The design is flexible and convenient, apply a wide range of features, can basically meet the demand of practice. Besides the design uses the high frequency inverter, with noise reduction, response speed and adjust the advantages of flexible circuit. Finally the design conforms to the power supply miniaturization, lightweight, high frequency and high reliability, low noise trend.

Key words: car invert ;pulse width modulation;circuit protection;TL494; SG3525A ;

山东科技大学学士学位论文目录

目录

1 绪论 (1)

1.1 车载逆变器及其发展 (1)

1.2 逆变电源技术的发展 (2)

1.3 逆变电源的发展趋势 (5)

2 设计总体目标 (7)

2.1 设计要求及系统指标 (7)

2.2 总体方案的选取 (8)

3 整体电路设计 (11)

3.1 逆变电源整体框图 (11)

3.2 脉宽调制技术及其原理 (13)

3.3 正弦波脉宽调制技术 (18)

4 逆变电源主要集成芯片外围电路及其功能简介 (21)

4.1 TL494外围电路及其应用 (21)

4.2 SG3525A外围电路及其应用 (23)

4.3 ICL8038外围电路及其应用 (28)

4.4 IR2110外围电路及其应用.................................31

5 逆变电源单元电路设计 (35)

5.1 DC/DC变换电路 (35)

5.2 DC/AC变换电路 (36)

5.3 输入过压保护电路.......................................38 5.4 输入欠压保护电路.......................................38 5.5 过热保护电路...........................................39

山东科技大学学士学位论文目录

5.6 输出过压保护电路......................................40 5.7 输出过流保护电路.....................................41 致谢词.............................................43 参考文献...........................................44 附录...............................................46 附录一外文翻译..........................................46 附录二逆变电源原理图....................................63

1 绪论

1.1 车载逆变器及其发展

车载逆变电源是将汽车发动机或汽车电瓶上的直流电转换为交流电,供一般电器产品使用,是一种较方便的车用电源转换设备。它是常用的车用汽车电子用品。通过它可以在汽车上使用平时我们用市电才能工作的电器,比如电视机、笔记本电脑、电钻、医疗急救仪器、军用车载设备等,可应用于各个行业领域。按照输出波形来分,车载逆变电源可分为正弦波输出和方波输出两种。前者可提供不间断的高质量交流电,可适应任何负载,但其技术要求及成本高,电路结构比较复杂。后者提供的交流电的质量较差,且带载能力差,不能接“感性负载”。虽有较多的缺点,但是其技术要求低,体积小,电路简单,价格低。

车载逆变电源按输出来分主要分两类,一类是修正正弦波逆变器和纯方波逆变器,另一类是正弦波逆变器。纯方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。同时,其负载能力差,仅为额定负载的40%-60%,不能带感性负载[1]。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容[2],方波逆变器的制作方法采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。

近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。

1.2 逆变电源技术的发展概况

逆变电源出现于电力电子技术飞速发展的20世纪60年代,逆变电源的发展是和电力电子器件的发展联系在一起的,器件的发展带动着逆变电源的发展。最初的逆变电源采用晶闸管(SCR)作为逆变器的开关器件,称为可控硅逆变电源。由于SCR是一种没有自关断能力的器件,因此必须通过增加换流电路来强迫关断SCR,SCR的换流电路限制了逆变电源的进一步发展。随着半导体制造技术和变流技术的发展,自关断的电力电子器件脱颖而出,相继出现了电力晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET)、绝缘栅双极型晶体管(IGBT)等等。自关断器件在逆变器中的应用大大提高了逆变电源的性能。由于自关断器件的使用,使得开关频率得以提高。从而逆变桥输出电压中低次谐波的频率比较高,使输出滤波器的尺寸得以减小,而且对非线性负载的适应性得以提高。最初,对于采用全控型器件的逆变电源在控制上普遍采用带输出电压有效值或平均值反馈的PWM控制技术,其输出电压的稳定是通过输出电压有效值或平均值反馈控制的方法实现的。采用输出电压有效值或平均值反馈控制的方法具有结构简单、容易实现的优点,但存在以下缺点:①对非线性负载的适应性不强;②死区时间的存在将使PWM 波中含有不易滤掉的低次谐波,使输出电压出现波形畸变;③动态特性不好,负载突变时输出电压调整时间长。为了克服单一电压有效值或平均值反馈控制方法的不足,实时反馈控制技术获得应用,它是近十年来发展起来的新型电源控制技术,目前仍在不断地完善和发展之中,实时反馈控制技术的采用使逆变电源的性能有了质的飞跃。实时反馈控制技术多种多样,主要有以下几种:

(1)谐波补偿控制

当逆变电源的负载为整流负载时,由于负载电流中含有大量谐波,谐波电流在逆变电源内阻上的压降致使逆变电源输出电压波形畸变,谐波补偿控

制可以较好地解决这一问题,其是在逆变桥输出PWM波中加入特定的谐波,抵消负载电流中的谐波对输出电压波形的影响,减小输出电压的波形畸变。目前这种方法只能由高速的数字信号处理器来实现。

(2)无差拍控制

1959年,Kalman首次提出了状态变量的无差拍控制理论。1985年,Gokhale在PESC年会上提出将无差拍控制应用于逆变器控制。逆变器的无差拍控制才引起了广泛的重视。无差拍控制是一种基于微机实现的控制方法。这种控制方法根据逆变电源系统的状态方程和输出反馈信号来推算下一个采样周期的开关时间,使输出电压在每个采样点上与给定信号相等。无差拍控制的缺点是算法比较复杂,实现起来不太容易,它对系统模型的准确性要求较高,对负载大小的变化及负载的性质变化比较敏感,当负载大小变化及负载的性质变化时不易获得理想的正弦波输出。

(3)重复控制

为了消除非线性负载对逆变器输出的影响,在UPS逆变器控制中引入了重复控制技术。Haneyoshi及Kawamura等人首先在PWM逆变器中采用重复控制消除周期性畸变。后来,邹应屿等人进一步完善了逆变器的重复控制理论,给出了一种重复控制器的设计方法,提出了自适应重复控制的理论。重复控制是一种基于内模原理的控制方法,它将一个基波周期的偏差存储起来,用于下一个基波周期的控制,经过几个基波周期的重复可达到很高的控制精度。在这种控制方法中,加到控制对象的输入信号除偏差信号外,还迭加了一个“过去的控制偏差”,这个“过去的控制偏差”是上一个基波周期中的控制偏差,把上一个基波周期的偏差反映到现在和“现在的偏

差以称为重复控制。它的突出特点是稳态特性好,控制鲁棒性强。但重复控制的控制实时性差,动态响应速度慢。因此,重复控制一般都不单独使用来完成逆变器的控制,而是与其它控制方式相结合,共同来提高整个系统的性能。

(4)滑模变结构控制

滑模变结构控制理论起于20世纪50年代,它最显著的特点是对参数变动和外部扰动不敏感,因此非常适用于闭环反馈控制的电能变换器。早期的滑模变结构控制器采用模拟电路实现,广泛应用于电力拖动系统中。20世纪90年代中后期。台湾的邹应屿和香港大学的L.K.Wang等人将离散滑模变结构控制理论应用到UPS逆变器中,获得了良好的控制效果。滑模变结构控制实质上是一种非连续的开关控制方法,它强迫系统的跟踪误差及其导数运行于相平面的一条固定的滑模曲线上,与系统参数变动及外部扰动无关,因此系统有极强的鲁棒性。但是,就波形跟踪质量来说,滑模控制不及重复控制和无差拍控制。

(5)单一的电压瞬时值反馈控制

这种控制方法的基本思想是把输出电压的瞬时反馈值与给定正弦波进

行比较,用瞬时偏差作为控制量,对逆变桥输出PWM波进行动态调节。和传统PWM控制方法相比,由于该方法能对PWM波进行动态调整,故系统的快速性、抗扰性、对非线性负载的适应性、输出电压的波形品质等都比传统PWM控制方法有所提高。这种方法的缺点是系统的稳定性不好,特别是空载时,输出电压容易振荡。系统的稳定性问题限制了电压调节器增益的提高,因而输出电压的波形品质还不是很好。

(6)带电流内环的电压瞬时值反馈控制

带电流内环的电压瞬时值反馈控制方法是在单一的电压瞬时值反馈控

制方法的基础上发展而来的。在这种方法中,不但引入输出电压的瞬时值反馈,还引入滤波电容电流或滤波电感电流的瞬时值反馈。电压环是外环,电流环是内环。电流环具有将滤波电容电流或滤波电感电流改造为可控的电流源的作用,这样控制输入和输出电压之间形成了具有单极点的传递函数,因而系统的稳定性大大提高,克服了单一的电压瞬时值反馈控制系统空载容易振荡的缺点。由于稳定性的提高使得电压调节器增益可以取比较大的值,所

以突加突卸负载时输出电压的动态特性大大提高,抗扰性大大提高,对非线性负载的适应性也大大提高[3]。

1.3 逆变电源的发展趋势

随着电力电子技术的飞速发展和各行各业对逆变器控制性能要求的提高,逆变电源也得到了深入的发展,目前,逆变电源的发展趋势主要集中在以下几个方面:

(1)高频化

提高逆变电源的开关频率,可以有效地减小装置的体积和重量,并可消除变压器和电感的音频噪声,同时改善了输入电压的动态响应能力。此外,为了进一步减小装置的体积和重量,必须去掉笨重的工频隔离变压器,采用高频隔离。高频隔离可以采用两种方式实现:①在整流器与逆变器之间加一级高频隔离的DC—DC变换器;②采用高频链逆变技术。高频化仅限于小容量逆变电源。在大容量逆变电源中,由于工频变压器引起的矛盾相对不如小容量UPS突出,而且大容量的高频逆变器、整流器和高频变压器的制作也分别受到高频开关器件的容量和高频磁性材料的限制。

(2)高性能化

高性能主要指输出电压特性的高性能,它主要体现在以下几个方面:①稳压性能好,空载及负载时输出电压有效值要稳定;②波形质量高,不但要求空载时的波形好,带载时波形也要好,对非线性负载的适应性要强;③突加突减负载时输出电压的瞬态响应特性好;④电压调制量小;⑤输出电压的频率稳定性好;⑥对于三相电源,带不平衡负载时相电压失衡小。输出电压的高性能是用电设备对逆变电源的要求,控制方式的改进是逆变电源达到高性能的主要手段。

(3)并联及模块化

当今逆变电源的发展趋向是大功率化和高可靠性。虽然现在已经能生产

几千千伏安的大型逆变电源,完全可以满足大功率要求的场合,但是,这样整个系统的可靠性完全由单台电源决定,无论如何是不可能达到很高的。为了提高系统的可靠性,就必须实现模块化。模块化意味着用户可以方便地将小容量的模块化电源任意组合,构成一个较大容量的逆变电源。模块化需要解决逆变电源之间的并联问题,逆变电源的并联要比直流电源的并联复杂,它面临着负荷分配、环流补偿、通断控制等多方面的问题。但是,逆变电源的并联运行可以带来以下几个方面的好处:1)可以用来灵活地扩大电源系统的容量;2)可以组成并联冗余系统以提高运行的可靠性;3)具有极高的系统可维修性。当单台电源出现故障时,可以很方便地通过热插拔方式进行更换和维修。

(4)小型化

在逆变电源中,决定整个装置体积和重量的部分是变压器和LC滤波器,变压器可能放在输入部分,也可能放在输出部分,起电压隔离或电压匹配的作用;LC滤波器用于滤除PWM波中的高次谐波,滤波器的尺寸与PWM波的频谱特性有关。要使逆变电源小型化,可以采用的方法有三种:1)提高开关频率,使滤波器小型化;2)采用新的PWM控制方式,优化逆变桥输出PWM波的频谱,使滤波器小型化;3)用高频变压器实现电压的隔离及匹配,替代输入或输出的低频变压器,实现变压器的小型化。

(5)高输入功率因数化

对于交流输入的逆变电源,中间环节直流电源一般由二极管整流获得,其输入电流成尖脉冲状,因此,输入功率因数不高。提高整流侧的输入功率因数不仅可大大提高逆变电源对输入电能的利用率,而且可以克服逆变电源对电网产生谐波污染的缺点。

(6)数字化

逆变电源的数字化并不是简单的指在系统中应用了数字器件,如单片机及FPGA等,而是指整个系统的控制应用数字器件的计算能力和离散控制方法

来完成,随着硬件技术的发展.处理器计算速度的提高,必然促使逆变电源向数字化方向发展。

(7)智能化

一个智能化的逆变电源除了能够完成普通逆变电源的所有功能外,还应具有以下功能:1)对运行中的逆变电源进行监测,随时将采样点的状态信息送入计算机进行处理,一方面获取电源工作时的有关参数,另一方面监视电路中各部分的状态,从中分析电路的各部分工作是否正常;2)在逆变电源发生故障时,根据监测的结果,进行故障诊断,指出故障的部位,给出处理方法;3)自动显示所监测的参数,有异常或发生故障时,可以自动记录有关异常或故障的信息;4)按照技术说明书给出的指标,自动定期地进行自检,并形成自检记录文件;5)能够用程序控制逆变电源的启动和停止,实现无人值守的自动操作;6)具有信息交换功能,可以随时向上位机输入信息,或从上位机获取信息[4]。

2 设计总体目标

2.1 设计要求及系统指标

车载逆变器是一种能够将DC/12V 直流电转换为和市电相同的AC/220V 交流电,供一般电器使用,是一种方便的车用电源转换器。通常设备工作空间狭小,环境恶劣,干扰大。因此对电源的设计要求也很高,除了具有良好的电气性能外,还必须具备体积小,重量轻,成本低,可靠性高,抗干扰强等特点。

逆变电源质量的好坏极大地影响着电子设备的可靠性,其转换效率的高低和带负载能力的强弱直接关系着它的应用范围,因而本设计要求输出电压波形为准正弦波,以克服方波逆变器不能带感性负载的特点。

本设计对逆变电源的要求有:

1、输入直流电压12V或24V

2、输出220V50Hz交流电

3、驱动器件:IR2110 隔离光耦:6N136 主功率器件:60N100

4、专用芯片用TL494

5、输出电压波动<5%;

6、输出过流保护值2A

7、额定输出电压:V=220VAC

8、额定输出功率:200W

9、有过压保护和过热保护

2.2 总体方案选择

2.2.1 方案比较

在本逆变电源的设计中,我们的目的是将车载电瓶的12V直流电压逆变为交流220V/50Hz的电压,通过一段时间对资料的收集和分析,现总结出如

下三种方案,分别介绍如下:

方案一:基于工频变压器的逆变电路

本方案设计的逆变电源是通过脉宽调制芯片产生的脉宽调制信号用来驱动半桥逆变电路,产生低压交流信号,再经过工频变压器的升压,转换为所需要的交流电压。电路框图如图2-1:

直流电压脉宽调制

芯片

半桥逆变电路

工频变压

器交流电压图2.1 基于工频变压器的逆变电路框图

方案二:简单推挽逆变电路

本方案设计的逆变器可以作为交流辅助电源。图2-2是本逆变器的电路框图。它是通过在振荡级产生所需要的50Hz的交流信号,再经过推动级的放大,然后把放大后的电压信号送入推挽输出级经过放大、变压器的升压,从而得到所需要的220V/50Hz的交流电压。

直流电压推动级推挽输

出级

振荡级交流电

图2.2 简单推挽逆变电路框图

方案三:车载单相准正弦脉宽调制逆变电路

直流电压直流/

直流

滤波

输出控制电路

驱动电路

交流

电压直流

/

交流

图2.3 车载单相准正弦脉宽调制逆变电路框图

本方案是采用了比较典型的逆变电路的变换方式把直流12V电压变换成220V的交流电压,即第一级采用直流/直流变换,通过脉宽调制和高频变压

器把直流低压升压变成直流高压,再通过第二级直流/交流变换,通过对直流/交流全桥逆变电路各个桥臂MOS管通断的控制,把高压直流逆变为交流电压,然后通过滤波电路,滤出我们所需要的50Hz的频率交流电压,从而完成12V直流电压逆变成220V/50Hz的交流电压。

2.2.2 方案论证

方案1通过脉宽调制芯片把直流低压信号调制成脉宽调制信号,形成脉宽调制波PWM,并用其来驱动半桥逆变变换电路中的功率场效应管,控制电路中开关管的通断,变成交流低压信号,再把交流低压信号经过工频变压器的升压变成220V的交流电压。

方案2首先通过555型集成电路和一些电阻和电容组成的振荡级来选定我们所需要的50Hz的工作频率的信号;再由几个三极管组成的推动级来对50Hz的振荡信号来进行放大,同时再由几只复合管组成推挽放大电路的基极,进一步对其进行放大,以提高对功率输出级的驱动电流;然后由几只三极管和几只二极管、输出级变压器组成推挽输出级,它将推动级送来的激励信号进行放大,并通过变压器将初级电压升高到220V送到输出端。

方案3电路采用了比较典型的两级变换的方式,在第一级直流/直流变换电路中利用了集成脉宽调制电路芯片调制出PWM波,通过PWM波信号来驱动MOS管的通断,把直流信号变换成交流低压信号,再通过高频变压器把交流低压方波信号升压成交流高压方波信号,然后通过整流滤波电路,把交流高压信号变成350V的直流高压;在第二级中,用另一片脉宽调制芯片与一片正弦函数芯片做适当的连接产生SPWM波,用来对直流/交流变换电路中的全桥逆变电路进行脉宽调制,从而把350V直流高压逆变成220V的交流电压,然后通过滤波电路,滤出我们所需要的50Hz的交流信号,就得220V/50Hz 的交流电压;而且在本次整个逆变电路中采用了变压器隔离的方法来保证主、控电路不受彼此的相互影响。

2.2.3方案选择

从上面的三个方案来分析看,方案2的简单推挽逆变电路没有使用脉宽调制技术,电路简单,而且此逆变器输出为50Hz的方波信号,由于波形为方波,可能对电器设备造成干扰,不能满足我们设计所需要的正弦波输出。

方案1的基于工频变压器的逆变电路过于简单,而且经过升压变压器后的交流输出电压没有滤波网络,无法对我们所需要的50Hz的频率进行滤取,电路体积较大等,不能符合我们毕业设计的要求。

方案3相对于1,2两种方案来说,电路设计合理,在电路中采用了中间直流环节的高频变压器式逆变电源系统结构,它由高频逆变,高频变压器升压,整流滤波,高频SPWM逆变和输出滤波,可以满足我们设计所需要的要求,所以方案3是我们这次设计的最佳方案。本次逆变电源的设计包括:

1) 直流/直流变换电路的设计;

2) 直流/交流变换电路的设计

3) 直流/直流变换控制保护电路的设计;

4) 直流/交流变换控制保护电路的设计;

3 整体电路设计

3.1 逆变电源整体框图

该设计电路的整体方框图如图3.1。该电路由12V 直流输入以及输入过

压保护电路、输入欠压保护电路、电源过热保护电路、输出过压保护电路、

输出过流保护电路、逆变电路I 、320V/50KHz 整流滤波、逆变电路II 、滤波

电路等组成。逆变电路Ⅰ又包括频率产生电路、直流变换电路(DC/DC)将12V

直流转换成320V 直流、交流变换电路(DC/AC)将320V 直流变换为220V 交流。

其中输入过压、欠压保护电路、输出过压、过流保护电路、过热保护电路构

成整个电路的保护电路。一旦输入电压出现过大或者过小时,保护电路立即

启动,然后停止逆变电路I 的工作。过热保护电路是当电路工作温度过高时,

启动保护使逆变电路I 停止工作。输出过压保护电路和输出过流保护电路与

逆变电路II 构成反馈回路,一旦电路输出异常则停止逆变电路II 的工作。

图3.1 整机原理方框图 逆变电路I 原理如图3.2所示。此电路的主要功能是将12V 直流电转换

为320V/50KHz 的交流电。该部分电路主要是用一块TL494芯片,通过输出

50K 的脉冲来控制开关管的交替导通,进而产生50K 的高频交流电。此高频

交流电通过开关变压器升压为320V/50K 的高频交流电。 逆变整流滤12V/D 逆变输出过流输出过压

输入过压、

过热保护 输入

欠压

输出

图3.2 逆变I 电路原理方框图 逆变电路Ⅱ的框图如图3.3所示。此电路的主要功能是将320V 交流电

转换为220V/50Hz 的交流电。

图3.3 逆变II 电路原理方框图

电路工作原理:在逆变电路II 中320V/50HZ 的高压交流电经过整流桥的

整流滤波整流成为320V 的高压直流电。该高压加在由四个场效应管结成的

全桥电路两端,场效应管的导通或截止由栅极的状态控制。为了使逆变电源

输出准正弦波,本设计采用正弦波脉冲调制(SPWM ),脉冲波的产生主要由

脉冲调宽芯片SG3525A 来完成。根据芯片SG3525A 的使用原理,先由集成函

数发生芯片ICL8038产生50HZ 的正弦波信号,该正弦波分两路输出。因为

SG3525A 内部的锯齿波幅度位于1V 至3.3V 之间,因而产生的正弦波一路经

相应的处理后将其幅值调整至1V 至3V 之间,然后输入以SG3525A ,在芯片

320V/50

K 整流滤波 全桥电路 LC 滤波

50Hz 正

弦波 电

路 驱动芯片IR2110 脉冲调宽芯 片 220V/50H z

50KHz 推

挽 电 路

12V/DC 推挽电路 变压器 320V/50K

内部通过与锯齿波比较产生高频的正弦波调宽脉冲。锯齿波的频率由芯片外接的震荡电阻和震荡电容决定,通常设置为几十千赫兹。而另一路正弦波则经过处理转化为50HZ的方波作为基准信号,该基准信号与SG3525A产生的高频正弦波调宽脉冲输入与门芯片,最后将与门的输出信号输入两片场效应管专用驱动芯片IR2110,再由IR2110输出高频的调宽脉冲以控制四个场效应管的交替导通,输出的电压在经过LC工频滤波后便可输出稳定的准正弦波供负载使用[5]。

3.2 脉宽调制技术及其原理

3.2.1 PWM控制的基本原理

在采样控制理论中有这样一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上,其效果相同。冲量即指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形基本相同。如果把各输出波形用傅立叶变换分析,则其低频段非常接近,仅在高频段略有差异。如图3.1 a、b、c所示的三个窄脉冲形状不同,其中3.1 a为矩形脉冲,图3.1 b为三角形脉冲,3.1 c为正弦半波脉冲,但他们的面积都等于1,那么,当它们分别加在具有惯性的同一环节上时,其输出响应基本相同。当窄脉冲变为3.1 d 的单位脉冲函数 (t)时,环节的响应即为该环节的脉冲过度函数。

图3.4 形状不同而冲量相同的各种窄脉冲

PWM波形:如图3.2a的正弦半波分成N等份,就可以把正弦半波看成是

由N个劈刺相连的脉冲序列所组成的波形。这些脉冲宽度相等,都等于 /N,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积相等,就得到图3.2b所示的脉冲序列。这就是PWM波形。可以看出,各脉冲的幅值相等,而宽度是按正弦规律变化的。根据面积等效原理,PWM波形和正弦半波是等效的。同样对于正弦波的负半周,也可以用同样的方法得到PWM波形[6]。

SPWM波形:脉冲宽度按正弦规律变化而和正弦波等效的PWM波形,称为SPWM(Sinusoidal PWM)波形。

图3.5 用PWM波代替正弦半波

3.2.2 PWM逆变电路

PWM逆变电路可以分成电压型和电流型两种,但目前的实际应用的PWM 逆变电路几乎都是电压型电路,下面我们主要分析电压型PWM逆变电路的控制方法。

计算法:根据PWM控制的基本原理,如果给出了逆变电路的正弦波输出频率、幅值和半个周期内的脉冲数,PWM波形中各脉冲的宽度间隔就可以准确的计算出来。按照计算结果控制电路中各开关器件的通断,就可以得到所需要的PWM波形。这种方法称之为计算法。

调制法:即把希望输出的波形作为调制信号,把接受调制的信号作为载

波,通过信号波的调制得到所期望的PWM 波形。通常采用等腰三角波和锯齿

波作为载波,其中等腰三角波应用最多。当调制信号波为正弦波时,所得到

的就是SPWM 波形。

在实际中应用的主要是调制法,下面结合一些具体的电路对这种方法作

进一步说明。

图3.4是采用IGBT 作为开关器件的单相桥式电压型逆变电路。设负载

为阻感负载,工作时V1和V2的通断状态互补,V3和V4的通断状态也互补。

具体的控制规律如下:在输出电压0u 的正半周,让V1保持通态,V2保持断

态,V3和V4交替通断。由于负载电流比电压滞后,因此在电压正半周,电

流有一段区间为正,一段区间为负。在负载电流为正的区,V1和V4导通时,

负载电压0u 等于支流电压d U ;V4关断时,负载电流通过V1和VD3续流,

0u =0。在负载电流为负的区间,仍为V1和V4导通时,因0i 为负,故0i 实际上从VD1

和VD4流过,仍有0u =d U ;V4关断,0i 从V3和VD1续流,0u =0。这样,0u 总

可以得到d U 和零两种电平。同样,在0u 的负半周,让V2保持通态,V1保持

断态,V3和V4交替通断,负载电压0u 可以得到-d U 和零两种电平。

车载逆变电源设计文献综述

《车载逆变电源设计》文献综述 车载逆变电源是将汽车发动机或汽车电瓶上的直流电转换为交流电,供一般电器产品使用,是一种较方便的车用电源转换设备。它是常用的车用汽车电子用品,通过它可以在汽车上使用平时我们用市电才能工作的电器。比如电视机、笔记本电脑、电钻、医疗急救仪器、军用车载设备等,可应用于各个行业领域。以正弦波输出的车载逆变电源可提供不间断的高质量交流电,可适应任何领域,但其技术要求高,电路结构比较复杂。 一、研究意义 笔者认为,研究车载逆变电源有以下意义: 第一,研究车载逆变电源可以广泛用于日常生活、计算机、邮电通信、电力系统和航空航天等领域,它的开发和应用在我们的生活中起着至关重要的作用。 第二,中国进入WTO之后,国内市场私人交通工具越来越多,所以车载逆变器电源作为在移动中使用的直流变交流的转换器,给人们的生活带来很多的方便,是一种常备的车用汽车电子装备用品。 第三,车载逆变器是一种能够将12V直流电转换为市电相同的220V交流电,供一般电器使用,是一种很方便的车用电源转换器,它在国内外很受欢迎。 第四,正弦波车载逆变电源的发展和应用在节约能源及环境保护方面都具 有深远的意义。 二、资料来源和范围 (一)图书馆馆藏图书 在图书馆馆藏图书M类中搜索到以下相关资料:王兆安,黄俊主编《电力电子技术》;金海明主编《电力电子技术》;邓嘉主编《机电工程》;曹保国主编《电气自动化》等书籍。 (二)期刊数据库检索 主要利用CNKI数据库(china national knowledge infrastructure)。数据库访问地址为:https://www.doczj.com/doc/ac4487734.html,。 在使用上述数据库搜索的过程中,笔者选择中国学术期刊数据库,在“摘要” 字段中,以“车载逆变电源”为关键词进行检索,文章结果显示有71篇相关论文,对笔者有直接参考价值的有:袁义生著《一种高效逆变电源及绿色工作模式的研究》、曹保国著《小功率车载逆变电源的设计》、朱保华著《对车载逆

电动车用辅助逆变器的设计方案与实现

电动车用辅助逆变器的设计与实现 摘要: 电动汽车的运行与普通汽车有许多不同, 需要设计安装大量专用辅助设备, 且要求辅助设备结构简单、运行稳定、运行成本低。文章描述了电动车用辅助逆变器的特殊应用环境和工作要求, 提出一种设计思路, 并分别从硬件结构和软件流程两方面介绍系统的构成。关键词: 逆变器SA 4828 芯片脉宽调制CAN 总线 1 引言 目前各种类型的电动汽车发展日新月异, 车辆主动力单元采用的电机和驱动方式各有特色, 但在车用辅助电机的选择上却观点一致, 即充分利用电动车直流母线电压高(通常为300~600 V ) 的特点, 利用辅助逆变器将直流变成三相交流电驱动交流异步电机, 为车上的刹车气泵、液压助力泵、空调压缩机等设备提供动力。在大型电动车上, 驱动这些设备的电机功率在3~10 kW 之间, 采用交流电机可以比同等直流电机成本更低、体积更小、重量更轻, 而且运行噪音小、维护量大大降低。电动车的发展在国外已经进入实际应用阶段, 而国内仍处于开发样车阶段, 多数研发单位只是将通用变频器进行简单改装后作为辅助逆变电源投入使用。这样不仅成本较高, 不能完全适应电动车的实际运行需要, 也不具备CAN 总线通讯能力, 无法参与整车系统的数据通讯。新公布的国家“863 计划”关于电动车发展规划中已经明确规定: 新申报的电动车开发项目必须采用基于CAN 总线的整车通讯控制系统。因此辅助逆变器在提供三相交流电源功能的同时, 系统必须具有CAN 总线通讯接口, 以便参与整车系统的控制。电动车用辅助逆变器的设计必须充分考虑产品的运行环境和负载特点, 简化系统硬件结构, 确保设备运行稳定。从直流输入来看, 电动车动力电池电压有一定的波动范围, 在电量充足时每个电池单体的电压可以达到 1. 45 V 或更高, 随着使用过程中能量的不断输出, 电压会逐渐降低, 达到 1. 2 V 甚至更低。由280 节单体串联成的电池组, 其母线电压通常会在400~330 V 之间浮动, 变化率高达21. 2%。因此逆变器必须能够适应较宽范围内的电压浮动。同时, 作为电源设备, 这种辅助逆变器不仅可以驱动各种三相交流电机, 还可以作为车上的工频电源, 为更多的车载设备服务。因此, 设计开发一种专用的电动车用辅助逆变器, 不仅可适应电动车直流母线电压浮动大的特点, 还可以参与整车控制, 提高系统运行效率、节约能源。 2 系统整体构成设计 完成辅助逆变器的设计必须从其输入?输出要求出发, 做到结构清晰、功能明确。在系统结构上可以将电动车用辅助逆变器按功能分为4 个部分, 如图 1 所示。

毕业论文DCAC逆变器的设计

1 绪论 (1) 1.1 DC/AC逆变器的基本概念 (2) 1.2 逆变器的分类和用途 (3) 1.2.1 逆变器的基本分类 (3) 1.2.2 逆变器的用途 (4) 1.3 DC/AC逆变器的发展背景和发展方向 (4) 1.3.1 DC/AC逆变器的发展背景 (4) 1.3.2 DC/AC逆变器的发展方向 (5) 2 逆变器的主电路研究 (6) 2.1逆变系统基本工作原理 (6) 2.2 SPWM波的生成原理及控制方法分析 (6) 2.2.1 PWM控制的理论基础 (7) 2.2.2 PWM逆变电路及其控制方法 (8) 2.3 逆变器的主电路分析 (10) 2.3.1 低频环节逆变技术逆变器 (10) 2.3.2 高频环节逆变技术 (13) 3 小功率光伏并网系统的逆变器设计 (15) 3.1光伏发电的发展现状及前景 (15) 3.1.1 国外光伏发电现状及前景 (15) 3.1.2 国内光伏发电现状及前景 (16) 3.2 并网逆变器的拓扑 (16) 3.2.1低频环节并网逆变 (17) 3.2.2 高频环节并网逆变 (18) 3.2.3非隔离型并网逆变 (18) 3.3 小功率光伏并网逆变器的设计 (19) 3.3.1 小功率光伏并网逆变器的工作原理 (19) 3.3.2系统控制方案 (20) 3.3.3 TMS320F240软件控制流程 (25) 3.3.4系统保护 (26) 4 光伏并网逆变器的控制策略研究 (28) 4.1 输出控制方式 (28) 4.2 输出电压控制策略 (28) 4.3 输出电流控制策略 (29) 4.4 控制策略的选择和参考电流的确定 (30) 5总结 (32) 1 绪论

车载逆变器设计毕业设计

摘要 车载逆变器就是一种能把汽车上12V直流电转化为220V/50Hz 交流电的电子装置,是常用的车用电子用品。在日常生活中逆变器的应用也很广泛,比如笔记本电脑、录像机和一些电动工具等。 本文重点对车载逆变器进行研究。将逆变器分为逆变电路,控制系统和滤波电路三个主要部分。 逆变桥采用三相全桥逆变电路,为了简化整个逆变主电路的设计,逆变电路采用了将IGBT单元;驱动电路;保护电路等结合在一起的IPM。控制系统由控制调节器,矫正环节和时间比例控制及脉冲形成环节构成。 本设计具有灵活方便、适用范围广的特点,基本能够满足实践需求。而且本设计采用高频逆变方式,具有噪声降低、反应速度提高以及电路调整灵活的优点。设计符合逆变电源小型化、轻量化、高频化以及高可靠性、低噪声的发展趋势。 关键词:车载逆变器脉冲调宽保护电路正弦波SG3525A

Abstract 12V DC car inverter can the car into 220V/50Hz AC electronic devices, commonly used in car electronic equipment. Inverter application in daily life is very broad, such as laptop computers, video recorders, and some electric tools. The design of the inverter can be divided into three main parts: the power stage circuit,control system and filtering circuit. Control system consists of PWM generating circuit,compensative circuit,and control regulator. This design has a flexible, applicable to a wide range of features, and can basically meet the practice needs. And the design of high frequency inverter with noise reduction, response speed and the circuit to adjust the flexible advantages. Designed to meet the development trend of miniaturization of the power inverter, lightweight, high-frequency and high reliability, low noise. Keywords:car inverter pulse, width modulated, protection, circuit sine wave, SG3525A

低成本车载逆变电源设计

低成本车载逆变电源设计 电源是电子设备的动力部分,是一种通用性很强的电子产品。它在各个行业及日常生活中得到了广泛的应用,其质量的好坏极大地影响着电子设备的可靠性,其转换效率的高低和带负载能力的强弱直接关系着它的应用范围。方波逆变是一种低成本,极为简单的变换方式,它适用于各种整流负载,但是对于变压器的负载的适应不是很好,有较大的噪声。 本文依据逆变电源的基本原理,利用对现有资料的分析推导,提出了一种方波逆变器的制作方法并加以调试。 1 系统基本原理 本逆变电源输入端为蓄电池(+12V,容量90A·h),输出端为工频方波电压(50Hz,310V)。其结构框图如图1所示。 图1 方波逆变器的结构框图 目前,构成DC/AC逆变的新技术很多,但是考虑到具体的使用条件和成本以及可靠性,本电源仍然采用典型的二级变换,即DC/DC变换和DC/AC逆变。首先由DC/DC变换将DC 12V电压逆变为高频方波,经高频升压变压器升压,再整流滤波得到一个稳定的约320V直流电压;然后再由DC/AC变换以方波逆变的方式,将稳定的直流电压逆变成有效值稍大于220V的方波电压;再经LC工频滤波得到有效值为220V 的50Hz交流电压,以驱动负载。 2 DC/DC变换 由于变压器原边电压比较低,为了提高变压器的利用率,降低成本,DC/DC变换如图2所示,采用推挽式电路,原边中心抽头接蓄电池,两端用开关管控制,交替工作,可以提高转换效率。而推挽式电路用的开关器件少,双端工作的变压器的体积比较小,可提高占空比,增大输出功率。

图2 DC/DC变换结构图 双端工作的方波逆变变压器的铁心面积乘积公式为 AeAc=Po(1+η)/(ηDKjfKeKcBm)(1) 式中:Ae(m2)为铁心横截面积; Ac(m2)为铁心的窗口面积; Po为变压器的输出功率; η为转换效率; δ为占空比; K是波形系数; j(A/m2)为导线的平均电流密度; f为逆变频率; Ke为铁心截面的有效系数; Kc为铁心的窗口利用系数; Bm为最大磁通量。 变压器原边的开关管S1和S2各采用IRF32055只并联,之所以并联,主要是因为在逆变电源接入负载时,变压器原边的电流相对较大,并联可以分流,可有效地减少开关管的功耗,不至于造成损坏。 PWM控制电路芯片SG3524,是一种电压型开关电源集成控制器,具有输出限流,开关频率可调,误差放大,脉宽调制比较器和关断电路,其产生PWM方波所需的外围线路很简单。当脚11与脚14并联使用时,输出脉冲的占空比为0~95%,脉冲频率等于振荡器频率的1/2。当脚10(关断端)加高电平时,可实现对输出脉冲的封锁,与外电路适当连接,则可以实现欠压、过流保护功能。利用SG3524内部自带的运算放大器调节其输出的驱动波形的占空比D,使D》50%,然后经过CD4011反向后,得到对管的驱动波形的D《50%,这样可以保证两组开关管驱动时,有共同的死区时间。

逆变器毕业设计成果

毕业设计成果(产品、作品、方案) 设计题目: 智能逆变器的设计与制作 二级学院航空电子电气工程学院 专业航空电子信息技术 班级航电1303班 学号 201300023036 姓名唐震 指导老师宋烨 二Ο一五年十二月二十日

诚信声明 本人郑重声明:所呈交的毕业设计,是本人在指导老师的指导下,独立进行研究所取得的成果。尽我所知,除设计中特别加以标注的地方外,设计中不包含其他人已经发表或撰写过的研究成果。本人完全意识到本声明的法律结果由本人承担。 毕业设计作者签名:指导教师签名: 年月日年月日

目录 摘要 (3) 1. 设计任务和设计思路 (4) 1.1 设计意义 (4) 1.2 设计要求 (4) 1.3 设计思路 (4) 1.4 方案选择 (4) 2. 硬件原理及其电路设计 (6) 2.1 CC-PWM变换器的基本原理 (6) 2.2 CC-PWM逆变器的数学模型 (7) 2.3 CC-PWM逆变器的主要控制方法 (9) 2.3.1 滞环电流控制方法 (9) 2.3.2 线性电流控制方法 (9) 2.3.3预测电流控制方法 (10) 2.4 改进型CC-PWM滞环电流控制器设计 (11) 2.4.1 正弦环宽滞环电流控制方案 (11) 2.5 模糊变环宽滞电流控制方案 (11) 2.6 模糊自整定PI控制器设计 (12) 2.6.1 控制方案 (12) 2.6.2 控制器设计 (13) 2.7 基于神经网络的模糊推理自整定PI控制器设计 (13) 2.7.1 控制方案 (14) 2.7.2 控制器设计 (14) 3.电路的制作 (15) 3.1 元器件的选择 (15) 3.1.1 GTR电力晶体管 (15) 3.1.2 MOSFET (15) 3.1.3 通态电阻 (15) 3.1.4 热阻 (16) 3.1.5 输入电容 (16) 3.1.6栅极驱动电压 (16) 3.2 元器件的焊接 (16) 3.2.1 焊接要点 (16) 3.2.2 注意事项 (17) 3.3 电路调试 (17) 3.3.1 检测各个参数点 (17) 3.4成品展示 (18) 设计总结 (19) 参考文献 (20)

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

最常见的车载逆变器电路原理图

最常见的车载逆变器电路原理图见图1。车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 令狐采学

车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路 VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V /50Hz交流电供各种便携

式电器使用。 图1中IC1、IC2采用了TL494CN(或 KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。 TL494芯片的内部电路

车载逆变电源系统的研究外文翻译

变频器保护和实时监控系统 [摘要] 在现代,人们已经设计和建造出了关于保护和监控直流/交流转换器的系统,该系统是由一个快速反应的硬件保护单元、负载保护装置和自动检测故障发生的逆变器,同时附上一个计算关键操作步骤参数的微控制单元所组成。 文章并不是研究控制装置发生故障的情况。由硬件结构和模拟传感器组成的控制单元是一个不仅低成本而且稳定可靠的控制单元。 实验结果表明,该实时系统能确保变频器正常运行并且还能监控故障的发生,任何由交流电机驱动的逆变电源都能用此装置来增加系统稳定性,此装置还可用于可再生能源系统中,等等。 一、简介 DC/AC电源逆变器在今天主要用于不间断的供电系统中,例如:感应热量和再生能源系统。其功能是通过改变电压的幅值和频率将输入进来的直流电压转变成工作需要的交流电压。 这种逆变器的参数规格有输入、输出电压的范围,输出电压频率范围和最大的输出功率。所以这种逆变器在大小操作系统中运用很广泛。 1. 逆变器一般要求工作在比较严格的环境内,因为经过此种逆变器而输出的的电压、电流会供给对参数变化非常敏感又昂贵的设备。 2. 由于变频器经常在恶劣环境下被运用,所以其本身具有自我保护的功能。 例如:应用在可再生能源和其他案例中关于温度和湿度的敏感变化。变频器都能在一定的承受范围内正常工作。 3. 随时记录下逆变器的运行过程中的数据变化,假如设备出现故障,此设备都能

将故障原因告知使用者。 考虑到对于逆变器的保护,设计师们通常采用特殊的保护装置和控制电路。运用最为广泛的保护方式是过电流保护,但是这种方式不是经常都有效,因为保险丝的动作时间太长,动作反应相对缓慢,有时难以起到预想的效果,因此是需要格外配备保护设备的继电器、限流电感。 滤波器具有抑制直流电源和瞬间负载的电压、电流变化引起的高次谐波的能力,同时它的缺点是会增加逆变器的功率损耗,和设备的成本、重量。电源逆变器有内在的过流保护功能,能适当设计成与直流电感连接来构成过载保护的条件。 电压源逆变器(逆变器)包括一个滤波器的输出阶段,因此有一个输出短路条件的限制,这个限制称为输出滤波电感的电流上升率。 在前面的情况下,在高电感的情况下会导致逆变器损耗增加。如果上述任何数量的超过预定的限制,将会产生一个由直流电源供应的驱动电机关闭的信号,将会影响到直流电源的输出。 在电机驱动应用中,变频器通常只用作过载保护或者作为一种使用侵入电流传感技术来起作用,用它来测量直流电流或负载电流或特殊电机控制算法技术。 然而,上述方法的实施都是在没有充分检测所有可能发生故障的情况下执行的,例如:一种直流环节中关于电容短路的电路。如下图所示:

逆变电源 毕业设计 2008

系:电气与信息工程系 专业:电气工程及其自动化班级: 0404 学号: 学生姓名: 导师姓名: 完成日期: 2008年月日

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

湖南工程学院 毕业设计(论文)任务书 设计(论文)题目:15kV A逆变电源设计 姓名陈欣宁系电气系专业_电气工程及其自动化班级学号 指导老师职称讲师教研室主任 一、基本任务及要求: 主要设计内容如下: 1、理解逆变电源的工作原理,确定系统主电路: 包括主电路结构的选择,逆变功率器件的选择,参数计算 2、确定系统驱动电路 3、设计系统的控制电路(包括保护电路、触发电路等) 4、提交毕业设计论文和图纸 参数如下: 直流侧输入电压:750V 输出交流电压:380/220V 输出频率:50HZ 容量:15kVA 进度安排及完成时间 1、2月26日至3月15日:查阅资料;写开题报告;确定总体方案。 2、3月16日至3月29日:毕业实习、撰写实习报告。 3、3月30日至4月15日:确定系统主电路 4、4月16日至4月26日:确定系统驱动电路 5、4月27日至6月2日:设计系统的控制电路 6、6月3日至6月12日撰写毕业设计论文。 7、6月13日至6月14日:指导老师评阅、电子文档上传FTP。 8、6月15日至6月18日:毕业设计答辩。

车载电子逆变器的设计

目录 摘要: (1) 第1章绪论 (3) 1.1逆变器的定义及其应用领域 (3) 1.2逆变技术的发展过程及现状 (4) 1.3 逆变器用功率开关器件 (5) 1.4 逆变器主电路的基本形式及分类 (7) 1.5 本课题研究的目的和任务 (8) 第2章变电源的主电路拓扑结构分析 (9) 2.1 典型主电路拓扑 (9) 2.1.1 推挽逆变主电路 (9) 2.1.2 半桥逆变主电路 (9) 2.1.3 全桥逆变主电路 (10) 2.2 设计指标及要求 (11) 2.3 主电路的研究与设计 (12) 2.3.1 系统的基本原理 (12) 2.3.2 前级升压电路 (12) 2.3.3 输出逆变电路 (15) 第3章控制电路的研究 (17) 3.1 脉宽调制(PWM)技术 (17) 3.2 推挽电路的驱动电路 (17) 3.2.1 KA7500B内部结构 (18) 3.2.2 驱动电路及其他外围电路的研究 (18) 3.3 末级控制输出电路 (21) 3.3.1 驱动信号 (22) 3.3.2 输出欠压、过压和过流保护 (23) 3.3.3 MCS-51外围电路图 (23) 第4章高频变压器的设计 (25) 4.1 磁性原件对电源设计的重要意义 (25) 4.2 应用于开关电源的基本磁学理论 (26) 4.3 推挽变换器中变压器的设计 (29) 4.3.1 变压器工作原理 (29) 4.3.2双极性变压器的计算 (30) 附录 (33) 附录1主程序流程图 (33) 附录2 DC/DC变换电路 (34) 附录3 DC/AC变换电路 (35) 参考文献 (36) 致谢 (37)

2012届车载逆变电源毕业设计

兰州工业高等专科学校 毕业设计说明书(论文) 设计(论文)题目: 车载逆变电源设计 专业: 电气自动化技术 班级: 电自09-1 学号: 200902101107 姓名: 陈琪 指导教师: 王淑红 二〇一一年十二月二十日

摘要 车载逆变器就是一种能把汽车上12V直流电转化为220V/50Hz交流电的电子装置,是常用的车用电子用品。在日常生活中逆变器的应用也很广泛,比如笔记本电脑、录像机和一些电动工具等。 本设计主要基于开关电源电路技术等基础知识,采用二次逆变实现逆变器的设计。主要思路是:运用TL494以及SG3525A等芯片,先将12V直流电源升压为320V/50Hz的高频交流电,再经过整流滤波将高频交流电整流为高压直流电,然后采用正弦波脉冲调制法,通过输出脉冲控制开关管的导通。最后经过LC工频滤波及相应的输入输出保护电路后,输出稳定的准正弦波,供负载使用。 本设计具有灵活方便、适用范围广的特点,基本能够满足实践需求。而且本设计采用高频逆变方式,具有噪声降低、反应速度提高以及电路调整灵活的优点。设计符合逆变电源小型化、轻量化、高频化以及高可靠性、低噪声的发展趋势。 关键词车载逆变器脉冲调宽保护电路正弦波TL494 SG3525A

目录 摘要 (Ⅱ) 1 绪论......................................................... 错误!未定义书签。 1.1 车载逆变器及其发展................................ 错误!未定义书签。 1.2 逆变电源技术的发展概况 (4) 1.3 逆变电源的发展趋势................................ 错误!未定义书签。 2 设计总体目标 (6) 2.1 设计要求及系统指标 (6) 2.2 总体方案的选取 (6) 2.2.1 方案比较 (6) 2.2.2 方案论证 (6) 2.2.3 方案选择.......................................... 错误!未定义书签。 3 整体电路设计 (8) 3.1 逆变电源整体框图 (8) 3.2 脉宽调制技术及其原理 (11) 3.2.1 PWM控制的基本原理 (11) 3.2.2 PWM逆变电路 (12) 3.3 正弦波脉宽调制技术的实现方法 (14) 3.3.1 软件生成法 (15) 3.3.2 硬件调制法 (15) 4 逆变电源元器件特性及各部分电路设计 (17) 4.1 逆变电源主要分立元件及其应用 (17) 4.1.1 场效应管 (17)

车载逆变电源

电力电子技术课程设计 单位:自动化学院 学生姓名:陈建 班级: 0830402 学号: 0435021 指导老师:唐贤伦、罗萍 专业:电气工程与自动化 设计时间: 2007年 7月 重庆邮电大学自动化学院制

目录 一、设计的基本要求 (1) 二、总体方案的确定 (1) 1、总体介绍 (1) 2、经济性好 (2) 三、具体电路设计 (2) 1、系统基本原理 (2) 2、DC/DC变换 (3) 3、DC/AC变换 (5) 4、保护电路设计及调试过程中的一些问题 (7) 5、试验结果及输出波形 (9) 6、功率因素校正 (10) 四、附录 (11) 五、参考文献 (11) 车载逆变电源设计

摘要:本系统是根据无源逆变的实用原理,采用单相全桥逆变电路工作方式,实现把直流电源(12v)转换成交流电源(320V,50HZ),并对负载进行供电。达到的性能要求就是转换出稳定的工频电源,供给给汽车上的一些电器如车灯,音像等使用。 关键字:车载电源逆变保护电路 一、设计的基本要求 在一些交通运载、野外测控、可移动武器装备、工程修理车等设备中都配有不同规格的电源。通常这些设备工作空间狭小,环境恶劣,干扰大。因此对电源的设计要求也很高,除了具有良好的电气性能外,还必须具备体积小、重量轻、成本低、可靠性高、抗干扰强等特点。针对某种移动设备的特定要求,研制了一种简单实用的车载正弦波逆变电源,采用SPWM工作模式,以最简单的硬件配置和最通用的器件构成整个电路。实验证明,该电源具有电路简单、成本低、可靠性高等特点,满足了实际要求。车载逆变器(电源转换器、Power Inverter )是一种能够将DC12V 直流电转换为和市电相同的AC220V 交流电,供一般电器使用,是一种方便的车用电源转换器。车载电源逆变器在国外市场受到普遍欢迎。在国外因汽车的普及率较高,外出工作或外出旅游即可用逆变器连接蓄电池带动电器及各种工具工作。中国进入WTO 后,国内市场私人交通工具越来越多,因此,车载逆变器电源作为在移动中使用的直流变交流的转换器,会给你的生活带来很多的方便,是一种常备的车用汽车电子装具用品。通过点烟器输出的车载逆变器可以是20W 、40W 、80W 、120W 直到150W ,功率规格的。再大一些功率逆变电源200W,300W,400W,500W,600W,700W,800W,1000W,1500W 要通过连接线接到电瓶上。 设计汽车逆变电源,提出了一种低成本的方波逆变电源的基本原理及制作方法;介绍了驱动电路芯片SG3524 和IR2110的使用;设计驱动和保护电路;给出输出电压波形的实验结果。 本文阐述了要求非常高的车载电源的设计及实验过程中的一些特殊问题的解决措施,提出了一些新颖的观点。这些观点对以后的电源设计有一定的借鉴作用。

多电平逆变器毕业设计论文

南京工程学院 车辆工程系 本科毕业设计(论文) 题目:多电平逆变器设计 专业:自动化(车辆电子电气)班级: K车电气071 学号: 学生姓名: 指导教师:副教授 起迄日期:2011.2.21~2011.6.10 设计地点:车辆工程实验中心

摘要 近年来在运动控制领域多电平中压变频器的开发研究得到了广泛关注,多电平逆变器使得电压型逆变器的大容量化、高性能化成为可能,具有降低开关管耐压值,减小开关管电压应力,改善输出波形质量,提高系统的电压和功率等级等优点,研究和开发多电平逆变器,无论在技术上还是在实际应用上都有十分重要的意义。所以多电平技术由于越来越广泛的应用于高压大功率领域。目前,在高压大功率领域中,二极管箝位型三电平变换器是研究最多,应用最广的一种多电平拓扑结构。[1] 本文主要对二极管箝位型三电平逆变器进行研究,以此拟作为今后进一步研究的基础。 论文首先详细地介绍了三电平逆变器的工作原理,并在此基础上详细分析了其特性,综合比较了多电平逆变电路三种典型拓扑结构的优缺点。 然后,研究了三电平逆变器空间电压矢量调制技术的基本原理,分析了空间电压矢量调制算法相对于其它方法的优点。详细分析了空间电压矢量调制算法,并给出PWM波的计算公式和开关动作次序。对开关矢量的作用顺序作了有利于中点电压控制的优化,使仿真和实现都比较容易。 最后,分析了三电平逆变器直流侧电容电压不平衡问题的产生。介绍了一种实现中点电压平衡的理论。提出了一种基于MATLAB的建模方法,并通过MATLAB/SIMULINK仿真结果验证了该方法的正确性。采用MATLAB/SIMULINK仿真软件对所推导的三电平逆变器SVPWM调制算法进行了仿真分析,证明了该调制算法的正确性。并与两电平SVPWM调制算法的仿真进行了比较,进一步证明了三电平SVPWM调制算法在谐波抑制和减小器件开关损耗方面的优越性。 关键词:多电平逆变器;空间矢量脉宽调制;中点平衡;MATLAB/SIMULINK仿真

车载逆变器原理图详解

2008年05月05日09:15 一市场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。TL494芯片的内部电路如图2所示。 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150 Ω~300Ω范围内任选,适当选大些可提高过热保护电路启动的灵敏度。 热敏电阻Rt安装时要紧贴于MOS功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功能有效。 IC1的15脚的对地电压值U是一个比较重要的参数,图1电路中U≈Vcc×R2÷ (R1+Rt+R2)V,常温下的计算值为U≈6.2V。结合图1、图2可知,正常工作情况下要求IC1的15脚电压应略高于16脚电压(与芯片14脚相连为5V),其常温下6.2V的电压值大小正好满足要求,并略留有一定的余量。 当电路工作异常,MOS功率管VT2或VT4的温升大幅提高,热敏电阻Rt的阻值超过约4kΩ时,IC1内部比较器1的输出将由低电平翻转为高电平,IC1的3脚也随即翻转为高电平状态,致使芯片内部的PWM 比较器、“或”门以及“或非”门的输出均发生翻转,输出级三极管

毕业设计(论文)-12V220V车载逆变电源的设计

陕西航空职业技术学院 毕业设计(论文) 论文题目:12V/220V车载逆变电源制作所属系部:电子工程学院 指导老师:崔保记职称:讲师 学生姓名:高宝强班级、学号: 1235129 专业:航空电子设备维修 2015 年 5 月16 日

陕西航空职业技术学院 毕业设计(论文)任务书 题目: 任务与要求: 时间: 2014 年 10 月 20 日至 2015 年 5 月 20 日 所属系部: 学生姓名:学号: 专业: 指导单位或教研室:电子技术教研室 指导教师:职称:高级讲师 2014年 10 月 20 日

针对传统车载逆变电源存在的缺点, 提出基于ATmega16单片机的数字式车载逆变电源的系统设计方案。该方案以单片机作为正弦脉冲宽度调制(SPWM)的控制器,采用了占空比可调的正弦波脉宽调制波(SPWM) 技术控制定电力MOSFET 的导通与关断,并通过输出电压反馈的闭环软件控制结构,来提供稳压、欠压保护等功能,把汽车蓄电池的12V 直流电转变成220V 纯正弦交流电。本系统硬件电路设计主要由推挽拓扑结构的的DC/DC 升压模块,DC/AC 逆变模块,以及主控制电路和外围接口电路模块组成。控制系统软件则重点阐述逆变器数字控制系统主要环节的设计,给出了软件的总体结构、SPWM波形的实现及软闭环软件控制结构,实现了对逆变器的保护、监测等逻辑控制功能。最后对主电路及控制电路进行了仿真调试,结果表明,所设计的电路及控制策略能够较好地改善输出波形质量,电源直流升压环节波动小, 输出波形畸变率低, 具有较好性能。 关键词ATmega16 PI控制推挽逆变器

一、系统设计方案 (2) 1、设计要求 (2) 2、方案论证与选取 (3) 2.1 SPWM波生成原理及方案选取 (2) 2.2 DC-DC升压电路的分析与选取 (4) 3、系统设计方案 (5) 二、系统硬件设计 (5) 1、系统硬件结构 (5) 2、主电路设计 (5) 2.1 前级升压电路 (5) 2.2 后极逆变电路 (7) 3、控制电路设计 (8) 3.1 前级控制电路 (8) 3.2 后极控制电路 (9) 4、驱动电路设计 (10) 5、保护电路设计 (11) 5.1 输入过压保护电路 (11) 5.2 输入欠压保护电路 (11) 5.3 系统过热保护电路 (12) 5.4 输出过压保护电路 (13) 5.5 输出过流保护电路 (13) 三、系统软件设计 (14) 1、主程序设计 (14) 2、SPWM控制信号的产生 (15) 四、结果分析 (16) 1、主电路仿真 (16) 2、仿真结果与分析 (16) 五、结论 (17) 参考文献 (15)

小功率单相逆变电源毕业设计

德州职业技术学院 毕业设计(论文) (2012届毕业生) 题目小功率单相逆变电源的设计制作 指导教师张洪宝 系部电子与新能源工程技术系 专业应用电子技术 班级09级应用电子技术 学号 200902050124 姓名张艳霞 2011年 9月 19 日至 2011年 11月 18日共 9 周

该设计主要应用电力电子电路技术和开关电源电路技术有关知识。涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片KA7500B的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。 在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。 关键词:过热保护;过压保护;集成电路;振荡频率;脉宽调制

The main application of power electronic circuit design technology and switching power supply circuit technology knowledge. Involves analog integrated circuits, power supply integrated circuits, DC circuit, the switching regulator circuit theory, make full use of the chip KA7500B fixed frequency pulse width modulation circuit and FET (N-channel enhancement mode MOSFET) switching speed, no second breakdown, thermal stability, good benefits and the modular design of the circuit. The inverter main components: DC / DC circuit, input over-voltageprotection circuit, output over-voltage protection circuit, overheat protection circuit, DC / AC conversion circuit, oscillation circuit, full-bridge circuit. In the work of continuous output power of 150W, with a normal light work, output overvoltage protection, input over-voltage protection and thermal overload protection. The power of the relatively low manufacturing cost, practical, and a variety of portable electronic devices can be used as a common power supply. Keywords: thermal protection; over-voltage protection; integrated circuits; oscillation frequency; pulse width modulation

相关主题
文本预览
相关文档 最新文档