当前位置:文档之家› 换热器课程设计

换热器课程设计

换热器课程设计
换热器课程设计

成绩

东南大学成贤学院

化工原理课程设计

说明书

设计题目:管壳式换热器的设计

姓名:董佳琦

专业:化学工程与工艺

班级: 11化工2班

学号: 06111201

指导教师:姚刚

设计地点成贤院315

设计时间:2013年09月02日至2013年09月12日完成时间:2013年09月12日

目录

前言 (3)

1.管壳换热器的设计书 (6)

2.设计方案的确定 (6)

2.1.管壳换热器的型式 (6)

2.2.流程的选择 (6)

3.确定流体的定性温度、物性数据并选择列管换热器的型式 (6)

3.1.定性温度 (7)

3.2.物性参数 (7)

4.换热器的工艺计算 (7)

4.1.估算总传热系数 (7)

4.1.1.热流量 (7)

4.1.2平均传热温差 (7)

4.1.3.冷却剂水用量 (8)

4.1.4. 选取K值,估算总传热系数 (8)

4.2估算传热面积 (8)

5.换热器的工艺结构尺寸设计 (8)

6.5.1.管径和管内流速 (8)

5.2.管程数和传热管数 (8)

5.3.传热管排列和分程方法 (8)

5.4.计算平均传热温差 (9)

5.5.壳体内径 (9)

5.6.折流板 (9)

5.7.计算壳程流通面积及流速 (9)

5.8.计算管程流通面积及流速 (10)

6. 换热器核算 (10)

6.1传热系数的校核 (10)

6.1.1.传热面积 (10)

6.1.2.核算总传热系数 (11)

6.1.3.污垢热阻 (11)

6.1.4对流传热系数 (11)

6.1.5壳体对流传热系数 (11)

6.1.6.传热面积 (11)

6.2.换热器内流体的流动阻力 (12)

6.2.1.管程流动阻力 (12)

6.2.2.壳程流动阻力 (12)

7. 换热器的主要结构尺寸和计算结果 (13)

8.在ChemCAD中的结果 (14)

9.附图 (15)

10.总结 (17)

11.参考文献 (17)

前言

换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。

在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。

表2-1 传热器的结构分类

类型特点

间壁式

固定管式

刚性结构用于管壳温差较小的情况(一般≤50℃),管间不能清洗

带膨胀节有一定的温度补偿能力,壳程只能承受低压力

浮头式管内外均能承受高压,可用于高温高压场合

U型管式管内外均能承受高压,管内清洗及检修困难填料函式

外填料函管间容易泄露,不宜处理易挥发、易爆炸及压力较高的介质

内填料函密封性能差,只能用于压差较小的场合

釜式壳体上部有个蒸发空间用于再沸、蒸煮

双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中

套管式能逆流操作,用于传热面积较小的冷却器、冷凝器或预热器螺旋管式

沉浸式用于管内流体的冷却、冷凝或管外流体的加热

喷淋式只用于管内流体的冷却或冷凝板

板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用做回收低温热能

伞板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净

板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触

蓄热式

换热过程分阶段交替进行,适用于从高温炉气中回收热能的场

1.管壳式换热器

管壳式换热器又称列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。管壳式换热器根据结构特点分为以下几种:

(1)固定管板式换热器

固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于50℃且壳方流体较清洁及不易结垢的物料。

带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa的情况。

(2)浮头式换热器

浮头式换热器的管板有一个不与外壳连接,该端被称为浮头,管束连同浮头可以自由伸缩,而与外壳的膨胀无关。浮头式换热器的管束可以拉出,便于清洗和检修,适用于两流体温差较大的各种物料的换热,应用极为普遍,但结构复杂,造价高。

(3)填料涵式换热器

填料涵式换热器管束一端可以自由膨胀,与浮头式换热器相比,结构简单,造价低,但壳程流体有外漏的可能性,因此壳程不能处理易燃,易爆的流体。

2.蛇管式换热器

蛇管式换热器是管式换热器中结构最简单,操作最方便的一种换热设备,通常按照换热方式不同,将蛇管式换热器分为沉浸式和喷淋式两类。

3.套管式换热器

套管式换热器是由两种不同直径的直管套在一起组成同心套管,其内管用U型时管顺次连接,外管与外管互相连接而成,其优点是结构简单,能耐高压,传热面积可根据需要增减,适当地选择管内、外径,可使流体的流速增大,两种流体呈逆流流动,有利于传热。此换热器适用于高温,高压及小流量流体间的换热。

1 平盖

2 平盖管箱(部件)

3 接管法兰

4 管箱法兰

5 固定管板

6 壳体法兰

7 防冲板 8 仪表接口 9 加强圈 10 壳体(部件) 11 折流板 12 旁路挡板13 拉杆 14 定距管 15 支持板 16 双头螺柱或螺栓 17 螺母18 外头盖垫片 19 外头盖侧法兰 20 外头盖法兰 21 吊耳22 放气口 23 凸形封头 24 浮头法兰 25 浮头垫片 26 球冠形封头 27 浮动管板28 浮头盖(部件) 29 外头盖(部件) 30 排液口 31 钩圈32 接管 33 活动鞍座(部件) 34 换热管 35 挡管 36 管束(部件) 37 固定鞍座(部件) 38 滑道 39 管箱垫片 40 管箱圆筒(短节) 41 封头管箱(部件) 42 分程隔板

换热器材质的选择

在进行换热器设计时,换热器各种零、部件的材料,应根据设备的操作压力、操作温度。流体的腐蚀性能以及对材料的制造工艺性能等的要求来选取。当然,最后还要考虑材料的经济合理性。一般为了满足设备的操作压力和操作温度,即从设备的强度或刚度的角度来考虑,是比较容易达到的,但材料的耐腐蚀性能,有时往往成为一个复杂的问题。在这方面考虑不周,选材不妥,不仅会影响换热器的使用寿命,而且也大大提高设备的成本。至于材料的制造工艺性能,是与换热器的具体结构有着密切关系。

一般换热器常用的材料,有碳钢和不锈钢。

(1)碳钢

价格低,强度较高,对碱性介质的化学腐蚀比较稳定,很容易被酸腐蚀,在无耐腐蚀性要求的环境中应用是合理的。

(2)不锈钢

奥氏体系不锈钢以1Crl8Ni9Ti为代表,它是标准的18-8奥氏体不锈钢,有稳定的奥氏体组织,具有良好的耐腐蚀性和冷加工性能。正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。我国换热器系列中,固定管板式多采用正三角形排列;浮头式则以正方形错列排列居多,也有正三角形排列。

正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。我国换热器系列中,固定管板式多采正三角形排列;浮头式则以正方形错列排列居多,也有正三角形排列。

1.化工原理课程设计任务书

设计题目:水冷却氯苯换热器的设计

设计任务书:

操作条件:①氯苯:入口温度120℃,出口温度21℃

②冷却介质:河水,入口温度20℃

③允许压强降:不大于100KPa

④每年按330天计,每天24小时连续运作

处理能力:41万吨/年

设备型式:管壳式换热器

设计要求:

1.选定管壳式换热器的种类和工艺流程

2.管壳式换热器的工艺计算和主要的工艺尺寸设计

3.设计结果概要或设计结果一览表

4.设备简图(要求按比例画出主要结构及尺寸)

5.对本设计的评述及有关问题的讨论

2.设计方案的确定

2.1.管壳换热器的型式:

用河水做冷却剂时,出口温度不宜超过40度,选定出口温度为30度。两流体温的变化情况:热流体进口温度120℃,出口温度21℃;冷流体进口温度20℃,出口温度为30℃,该换热器用循环河水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,两侧的温差比较大。而列管式换热器在生产中被广泛利用。它的结构简单、坚固、制造较容易、处理能力大、适应性大、操作弹性较大。尤其在高压、高温和大型装置中使用更为普遍。故因此初步确定选用列管式换热器。

2.2流程的选择:

从两物流的操作压力看,应使氯苯走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,氯苯走壳程。

3. 确定流体的定性温度、物性数据并选择管壳换热器的型式3.1.定性温度

定性温度:可取流体进出口温度的平均值。

氯苯的定性温度为:

水的定性温度为: 2030

252

t +=

=℃ 管程冷却水的定性温度为t=25(°C) 壳程氯苯的定性温度为T=70.5(°C)

3.2.物性参数

根据在定性温度,分别查询壳程和管程流体的有关物性数据。

氯苯 在70.5°C 下的有关物性数据如下: 密度 ρ0=1053 ㎏/ m3

定压比热容 Cp0=1.47 kJ/(kg.k ) 导热系数 λ0=0.118 (W/m.k ) 粘度 η0=0.00045(Pa.s )

循环冷却水在25°C 下的有关物性数据如下: 密度 ρi=995.6 ㎏/ m3

定压比热容 cpi=4.18kJ/(kg.k ) 导热系数

λ

i=0.613 (W/m.k )

粘度 ηi=0.000801(Pa.s )

4.换热器的工艺计算

4.1估算总传热系数

4.1.1热流量(忽略热损失)

6600410000000

1.47(12021)7.5010(/)

2.08510()

33024

Q m ct KJ h w ==??-=?=?? 4.1.2平均传热温差(忽略热损失)

1

21

2

(12090)(2120)19.8(12090)ln ln (2120)t m t t t t ??---?=

==-?

-?﹣℃

12021

70.52

T +=

=℃

4.1. 3冷却水用量

6

7.5010179426(/)4.18(3020)

T m p Q q kg h C i t ?===???-

4.1.4估算总传热系数

选取K 值=489W/(㎡.℃)

4. 2 估算传热面积

由Q=KA △tm 得

22085000

224.4148919

Q S m K t '=

=='??估 5.换热器的工艺结构尺寸设计

5.1管径和管内流速

选用mm 5.225?φ的碳钢管,管内流速取 1.0/m s μ=。

5.2管程数和传热管数

依据传热管内径流速确定单程传热管数:

2

2179426

3600999.71600.7850.02 1.04

v

s i q N d u π?==≈??根 按单程管计算,所需的传热管的管长度为:

0224.41

17.9()3.140.025160

s

S L m d N π=

=

≈??估

由上面的计算结果可知,按单程管设计的话,传热管过长,应该采用多管程结构。现取传热管长l=9m ,则该换热器管程数为:

17.929

p L N l =

=≈ 传热管数量为: 1602320(N =?=根)

5.3传热管排列和分程方法

采用组合排列方法,即每程内均按正三角形排列,隔板两侧采用正方形排列。取管心距

025.1d t =,则

t=1.25×25≈32mm

横过管束中心线的管数: 1.132019.6820()c n ==≈根

5.4.计算平均传热温差

计算逆流平均温差

211120200.112020t t P T t --=

==--122112021

9.93020

T T R t t --===-- 由R 和P 查“查化工原理课程设计指导图2-6(a)”得0.95ε??= 因两流体的平均温差为:0.9519.819m t m t t ???=??=?=℃

5.5.壳体内径

壳体是一个圆筒形的容器,壳壁上焊有接管,供壳程流体进入和排出之用。 采用多管程结构,取管的利用率η=0.7,则壳体的内径为:

1.05/ 1.050.032320/0.70.65D t N m ==??=η 圆整可取D=700mm 。

5.6.折流板

安装折流板的目的是为了加大壳程流体的湍流速度,使湍流速度加剧,提高壳程流体的

对流传热系数。在壳程管束中,一般都装有横向折流板,用以流体横向穿过管束,增加流体速度,以增强传热,同时用以支撑管束、防止管束震动和管子弯曲的作用。弓形折流板简单,性能优良,在实际中最常用。本次设计采用弓型折流板。 ①圆缺高度

采用弓形折流板,取弓形折流板圆缺高度为壳体内径的35%,则圆缺高度为: h=0.35×0.7=0.25m , ②折流板间距

折流板间距B=0.21D ,则: B=0.21×0.7=0.15mm , ③折流板数

折流板数 9

-1-1590.15

B N =

==传热管长(块)折流板间距

5.7.计算壳程流通面积及流速

壳程流通截面积:

20.025(1)0.150.7(1)0.0230.032

o o d s BD m t =-

=?-= 壳程流体流速极其雷诺数分别为:

3600

o w

u s ρ

=?

51767.68/(36001053)

0.6/0.023m s ?==

0e c

0.0270.61053

379080.00045

c

eo u d R ρμ??=

=

=

5.8.计算管程流速

管内柴油流速: 1/i u m s =

雷诺数: 3

1995.60.02

248590.80110

i i

ei u d R ρμ

-??=

=

=? 6.换热器核算

6.1传热系数的校核

6.1.1.壳体对流传热系数0α

对圆缺形折流板,可用Kern 公式:

14

.003/155

.00

0)(

Pr Re 36

.0w

e

d μμλα= 当量直径:

222200

4()

4(0.0320.025)

440.027()0.025

t d de m d π

π

ππ-

-?=

=

=?

0e 0c

0.0270.61053

379080.00045

c

e u d R ρμ??=

=

=

普朗特准数:0

33

31.47100.4510Pr 5.60.118

p C μλ-???=== 粘度校正:14

.00)(

w

μμ≈1,则

0.551/30.14

0000.36

Re Pr (

)o e

w

d λμαμ= 0.551/320.118

0.3637908 5.61

0.027

921.55(/w m =?

???=?℃)

6.1.2.对流传热系数i α

普朗特准数:33

4.17100.80110Pr

5.450.613

p i C μλ-???===

则管程对流传热系数为:

0.80.30.023

Re Pr i i i i

d λ

α= 0.80.4

20.613

0.023(24859) 5.450.02

4561/(W m =?

??=?℃)

6.1.3.污垢热阻

022

0.000210(/)0.000176(/)

si s R m w R m w =?=?(内侧)℃(外侧)℃

6.1.4.计算总传热系数计K

以表面为基准计算总传热系数计K ,由下式可得:

i i i si m so d d

d d R d bd R K αλα00001

1

++++=

1

0.0250.0250.00250.0251

0.0002100.00017645610.020.02500.0225921.55

=

?++++

??

2

537.8(/w m =?℃)

6.1.5.核算总传热系数

537.8 1.10489

K K ==计估 6.1.6.传热面积

6

20 2.08510204.05537.819

m Q S m K t ?==≈??计

该换换热器的实际传热面积:

20 3.140.025*******.08m P S d LN π==???=

该换热器的面积裕度为: 00226.08204.05

10.8%204.05

P S S H S --=

== 传热面积裕度合适,该换热器能够完成生产任务。

壳程流动阻力在允许的范围内。

6.2换热器内流体的流动阻力

6.2.1.管程流动阻力

s p s r i t F N N p p p )(?+?=?

1=s N , 2=Np , 2

2

u d l p i i

i ρλ=? 由Re=24859,传热管对粗糙度0.01m ,查莫狄图得041.0=i λ,流速u=0.60m/s,

3/6.995m kg =ρ,所以:

Pa p i 41.91842

6.995102.09041.02=???

=?

Pa u p r 14932

16.9953232

2

=??==?ρ

Pa p 7.298964.12)149341.9184(1=??+=?

10887.52Pa 小于50K Pa

所以:管程流体阻力在允许范围之内。

6.2.2.壳程流动阻力

s s r i t F N p p p )(''

?+?=? (其中Fs=1.15,Ns=1)

Pa

p P u D h N p Pa

p f u d s

m u m d D A N n u N n f N F p p p B e c B c B c S

S 6.9835115.1)4.343478.51175(a

4.343472)2

5.3(8.511752

6.010********.05.045

.0379080.5Re 0.5379081045.010536.0027.0Re /6.0023

.010********

.5176703.0)025.0207.0(15.0)n (h 59

2068.193201.12)1(F p 0.5F )(02

0'

22

'

1228

.0228.0003

00020020

01

'

2'10=?+=∑?=-=?=?????=?=?===???===??=

=?-?=-==≈==+=?=?+?=∑?---ρυρρ‘管子按正三角形排列

98351.6Pa 小于50K Pa 所以:壳程流体阻力在允许范围之内

7. 换热器的主要结构尺寸和计算结果:

参数 管程 壳程

流率(/kg

h )

179426

51767.68

进(出)温度/

o

c

20/30 120/21

压力/Mpa

<0.1

<0.1 物性

定性温度/

o

c

25

70.5

密度3)

(/kg m 995.6 1053

定压比热容/[/(.)]o kJ

kg c

4.18 1.47

黏度/pa.s

0.8013

10-?

0.453

10

-?

热导率//(.)w m k

0.613

0.118

普朗特数

5.45 5.6

设备结构参数

型式 浮头式 壳程数 1 壳体内径/mm 700

台数 1 管径/mm

25 2.5φ?

管心距/mm

32

管长/mm 9000 管子排列 正三角形 管数目/根 320 折流板数/个 59 传热面积/2

m

226.08

折流板间距/mm

150

管程数

2 材质

碳钢

主要计算结果 管程 壳程 流速(m/s)

1

0.6 表面传热系数/2[/(.)]o

w m c

4561

37908

污垢热阻/2[./)]o

m

c w

0.213

10

-?

0.1763

10-?

阻力 /kpa 29.90

98.35

热流量/w 2085000 传热温差/

o

c

19

传热系数/2[/(.)]o

w m

c

537.8

裕度/%

10.8

8.在ChemCAD 中的结果

SUMMARY REPORT --------------

General Data: Heat Transfer Data:

Exch Class/Type R/AEL Effective Transfer Area 219.02 Shell I.D. 0.70 Area Required 380.44 Shell in Series/Parallel 1/1 COR LMTD 13.57 Number of Tubes 320 U (Calc/Service) 428.70/744.66 Tube Length 9.00 Heat Calc 4585.74 Tube O.D./I.D. 0.0250/0.0200 Heat Spec 7965.53 Excess % -42.43

Tube Pattern TRI30 Foul(S/T) 1.761E-004/1.761E-004 Tube Pitch 0.03 Del P(S/T) 13.49/50.69 Number of Tube Passes 2 SS Film Coeff 697.13 Number of Baffles 57 SS CS Vel 0.35

Baffle Spacing 0.15 TW Resist 0.000056 Baffle Cut % 21 TS Film Coeff 2801.03 Baffle Type SSEG TS Vel 517.89

Thermodynamics:

K: UNIFAC

H: Latent Heat

D: Library

Number of Components: 2

Calculation Mode: Rating

Engineering Units:

Temperature C

Flow/Hour (kg/h)/h

Pressure kPa

Enthalpy MJ

Diameter/Area m/m2

Length/Velocity m/(m/sec)

Film W/m2-K

Fouling m2-K/W

9.附图

10.总结

课程设计不同于平时的作业,在设计过程中需要我们自己做出决策,即自己确定方案,选择工艺参数和条件,查取资料,进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选择最理想的方案和最合理的设计。所以这对培养我们独立工作的能力有很大帮助。在“列管换热器的工艺设计和选用”的设计过程中,感觉到理论和实践能力都有一定的提升。主要有以下几点:(1)查找资料,选用公式和收集数据的能力。设计任务数给出后,有许多数据需要由我们自己取收集,有些物性参数要查去或估算,计算公式也要求我们自己选择,这就要求我们运用各方面的知识,通过详细全面的考虑才能选定。(2)准确、迅速地进行工程计算的能力。设计计算是一个反复试算的过程,计算工作量大,这就要求我们需要有准确迅速的能力。(3)综合分析问题的能力。课程设计不仅要求计算正确,还要求从各方面考虑各种因素,分析设计方案的可行性、合理性、从总体上得到最佳结果。

11.参考文献

[1]夏清、贾绍义,《化工原理上册》,天津大学出版社,2012.1

[2] 贾绍义、柴诚敬,《化工单元操作》课程设计,天津大学出版社,2011.9

[3]任晓光,《化工原理课程设计指导》,化学工业出版社,2009.1

[4]申迎华、郝晓刚,《化工原理课程设计》,化学工业出版社,2009.5

课程设计换热器-煤油汇总

《化工过程设备设计Ⅰ(一)》 说明书 设计题目:换热器的设计 专业: 班级: 学号: 姓名: 指导教师: 设计日期: 设计单位:青海大学化工学院化学工程系

目录 前言 (4) 任务书 (5) 目的与要求 (6) 一、工艺设计方案 (8) 二、确定物性数据 (9) 三、估算传热面积 (9) 四、工艺结构尺寸 (10) 五、换热器核算 (12) 六、设计结果概要一览表 (17) 七、参考文献 (19)

前言 化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。 化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。围绕以某一典型单元设备(如板式塔、填料塔、干燥器、蒸发器、冷却器等)的设计为中心,训练学生非定型设备的设计和定型设备的选型能力。设计时数为3周,其基本内容为: (1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。 (2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。 (3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。 (4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。 (5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。 (6)设计说明书的编写。设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

列管式换热器课程设计

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

换热器课程设计

课程实训任务书 课程石油装备设计综合实训 题目炼油厂柴油换热器的选用和设计 主要内容: 1.液化气工艺概述; 2.换热器的工艺计算; 3.换热器的结构设计; 4.换热器的强度校核; 5.换热器的结果汇总。 设计条件: 炼油厂用原油将柴油从1750C冷却至1300C,柴油流量为12500kg/h;原油初温为700C,经换热后升温到1100C。换热器的热损失可忽略。操作压力为60KPa 管、壳程阻力压降均不大于30KPa。污垢热阻均取0.0003Pa s。 主要参考资料: [1] GB150-2011,压力容器[S] . [2]郑津洋,董其伍,桑芝富.过程设备设计[M] .北京:化学工业出版社,2010. [3]JB 4731-2005,钢制卧式容器[S] . [4]JB4712-2007,容器支座[S]. [5] JB 4715-1992,固定管板式换热器型式与基本参数[S]. 完成期限2013年3月24日 指导教师 专业负责人 2013年2月25日

目录 第1章液化气工艺及流程图概述 (1) 1.1液化石油气工艺概述 (1) 1.1.1液化石油气的特点 (1) 1.1.2液化石油气的来源 (1) 1.1.3液化石油气的提取 (2) 第2章列管式换热器的选用与工艺设计 (4) 2.1列管式换热器的概述 (4) 2.2 初算换热器的传热面积 (4) 2.3主要工艺及结构基本参数的计算 (6) 2.4管、壳程压强降的校验 (9) 2.5总传热系数的校验 (12) 2.6列出所涉及换热器的结构基本参数 (14) 第3章换热器的结构设计 (15) 3.1 筒体部分计算 (15) 3.2 椭圆封头厚度 (16) 3.3 管板选取 (17) 3.4 法兰选取 (17) 3.5 鞍式支座 (19) 3.6 接管 (19) 第4章换热器的强度校核 (21) 4.1 计算容器重量载荷的支座反力 (21) 4.2 筒体轴向应力验算 (21) 4.3 鞍座处的切向剪应力校核 (23) 4.4 鞍座处筒体周向应力验算 (24) 第5章设计结果汇总 (26) 参考文献 (27)

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

换热器课程设计

目录 一.绪论........................................................ 1. 换热器发展历史……………………………………………………………………………………… 2. 换热器应用方向………………………………………………………………………………………二.化工原理课程设计任务书 三.设计概述 1.换热器的概念及意义…………………………………………………………………………………. 2、管壳式换热器的简介……………………………………………………………………………….四.换热器类型.................................................. 1. 夹套式换热器……………………………………………………………………………………… 2. 喷淋式换热器……………………………………………………………………………………… 3. 套管式换热器…………………………………………………………………………………… 4.管壳式换热器………………………………………………………………………………………… 五、换热器设计和选用........................................... 1.管壳式换热器的设计和选用要考虑的问题…………………………………………… 2.管壳式换热器的给热系数………………………………………………………………

3.流体通过换热器的阻力损失………………………………………………………… 六.换热器设计和计算 1.传热量Q及釜液出口温度T…………………………………………………………………………2.换热器壳程数及流程………………………………………………………………………………. 3.估算传热面积A………………………………………………………………………………….. 4.换热器选型…………………………………………………………………………………………… 5.换热器的核算…………………………………………………………………………………………. 七.经验公式 八.设计评述 九.参考文献 - 1 -

管壳式换热器设计课程设计

河南理工大学课程设计 管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。

设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃ 第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

浮头式换热器课程设计说明书

精品文档 1.方案确定 选择换热器的类型 浮头式换热器:主要特点是可以从壳体中抽出便于清洗管间和管内。管束可以在管内自由伸缩不会产生热应力。 1.1 换热面积的确定 根据《化工设备设计手册》选择传热面积为 400m 2 1.2 换热管数N 的确定 我国管壳式换热器常用碳素钢、低合金钢钢管,其规格为φ19× 2、φ25× 2.5、φ32× 3、φ38 × 3、φ57 × 3.5 等,不锈钢钢管规格为φ19 × 2、φ25 × 2、φ32 × 2、φ38 × 2.5、φ57 × 2.5。 换热管长度规格为1.0、1.5、2.0、2.5、3.0、4.5、6.0、7.5、9.0m 等。换热器换热管长度与公称直径之比,一般在 4~25 之间,常用的为 6~10。管子的材料选择应根 据介质的压力、温度及腐蚀性来确定。 选用32×3mm 的无缝钢管,材质为 0Cr18Ni9,管长为 6000mm n=A/πd 0L 3-5 式 3-5:n —换热管数 A —换热面积m 2 d0—换热管外径mm L —换热管长度mm 故 -3-3 400 n= =6133.1432600010 ??10??根

表1.1 拉杆直径 /mm 表1.2 拉杆数量 换热器公称直径DN/mm 400<d400≤d<700700≤d<900900≤d<2600 44810 拉杆需 10根。 1.3 换热管的排布与连接方式的确定 换热管排列形式如图 3.1 所示。换热管在管板上的排列形式主要有正三角形、正方形和转正三角形、转三角形。正三角形排列形式可以在同样的管板面积上排列最多的管数,故用的最为广泛,但管外不易清洗。为便于管外便于清洗可以采用正方形或转正方形的管束。 换热管中心距要保证管子与管板连接时,管桥有足够的强度和宽度。管间需要清洗时还要留有进行清洗的通道。换热管中心距宜不小于 1.25 倍的换热管的外径。换热管排列形式如图 1.1 所示: 正三角形转角三角形 正方形转角正方形 图 1.1 换热管排列形式

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

化工原理课程设计(换热器的设计)

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列管式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①物性数据的确定 (14) ②总传热系数的计算 (14) ③传热面积的计算 (16) ④工艺结构尺寸的计算 (16) ⑤换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、课程设计的收获及感想 (33) 十、附表及设计过程中主要符号说明 (37) 十一、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。 在换热器中,至少有两种温度不同的流体,一种流体温度较

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

列管式换热器设计课程设计说明

化工原理课程设计说明书列管式换热器设计 专业:过程装备与控制工程 学院:机电工程学院

化工原理课程设计任务书 某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=?g 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=?g

目录 1、确定设计方案 ............................................................................................. - 4 - 1.1选择换热器的类型 (4) 1.2流程安排 (4) 2、确定物性数据............................................................................................. - 4 - 3、估算传热面积............................................................................................. - 5 - 3.1热流量 (5) 3.2平均传热温差 (5) 3.3传热面积 (5) 3.4冷却水用量 (5) 4、工艺结构尺寸............................................................................................. - 5 - 4.1管径和管内流速 (5) 4.2管程数和传热管数 (5) 4.3传热温差校平均正及壳程数 (6) 4.4传热管排列和分程方法 (6) 4.5壳体内径 (6) 4.6折流挡板 (7) 4.7其他附件 (7) 4.8接管 (7) 5、换热器核算 ................................................................................................ - 8 - 5.1热流量核算 (8) 5.1.1壳程表面传热系数.......................................................................................... - 8 -5.1.2管内表面传热系数.......................................................................................... - 8 -5.1.3污垢热阻和管壁热阻...................................................................................... - 9 -5.1.4传热系数.......................................................................................................... - 9 -5.1.5传热面积裕度.................................................................................................. - 9 -5.2壁温计算. (9) 5.3换热器内流体的流动阻力 (10) 5.3.1管程流体阻力................................................................................................ - 10 -5.3.2壳程阻力........................................................................................................ - 11 - 5.3.3换热器主要结构尺寸和计算结果................................................................ - 11 - 6、结构设计 .................................................................................................. - 12 - 6.1浮头管板及钩圈法兰结构设计 (12) 6.2管箱法兰和管箱侧壳体法兰设计 (13) 6.3管箱结构设计 (13) 6.4固定端管板结构设计 (14) 6.5外头盖法兰、外头盖侧法兰设计 (14) 6.6外头盖结构设计 (14) 6.7垫片选择 (14)

化工原理课程设计之列管式换热器

化工原理课程设计之列管式换热器 1

设计者:班级生物0902 姓名郑勇廖祥兵 学号 3503 3509 指导教师:陆爱霞 设计成绩:进度说明书图纸总分

日期: -11-19 西南科技大学生命科学与工程学院 目录 1.综述 (3) 1.1换热器较……………………………………………… 2.课程设计任务书…………………………………………………… 4 3.设计计算 (5) 3.1确定设计案………………………………………………… 3. 2 流动空间以及流速的确定………………………………… 5 3.3 确定流体流动及进出口温度…………………………… 3

5 3.4 计算两流体的平均温度差 (8) 3.5计算热负荷和冷却水流量...........................4.换热器主要附件的确定及工艺结构尺寸 (8) 4.1 污垢热阻 (9) 4.2管程数和传热管数 (9) 4.3平均温度校正和壳程数 (10) 4.4换热管排列和分程法 (10) 4.5 折流板和接管 (11) 5.核算总传热系数 (11) 5.1 壳程对流传热系数 (11) 5.2 管程对流传热系数 (12) 5.3 总传热系数 (13) 5.4 设计裕度 (13) 6.核算压强降 (13) 6.1 管程压强降 (13) 6.2 壳程压强降 (14) 7.换热器主要结构尺寸和计算结果 (15) 8.换热器的安装与维修 (16) 6.参考文 4

献 (16) 1.综述 换热器的分类与比较,根据冷、热流体热量交换的原理和方式,换热器基本上可分为三大类即间壁式混合式和蓄热式,其中间壁式 5

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

管壳式换热器课程设计

管壳式换热器课程设计 一、管壳式换热器的介绍 管壳式换热器是目前应用最为广泛的换热设备,它的特点是结构坚固、可靠高、适应性广、易于制造、处理能力大、生产成本低、选用的材料范 围广、换热面的清洗比较方便、高温和高压下亦能应用。但从传热效率、结构的紧凑性以及位换热面积所需金属的消耗量等方面均不如一些新型 高效率紧凑式换热器。管壳式换热器结构组成:管子、封头、壳体、接管、 管板、折流板;如图1-1所示。根据它的结构特点,可分为固定管板式、 浮头式、U形管式、填料函和釜式重沸器五类。 二、换热器的设计 2.1设计参数 参数名称壳程管程 设计压力(MPa) 2.6 1.7 操作压力(MPa) 2.2 1.0/0.9(进口/出口) 设计温度(℃) 250 75

操作温度(℃) 220/175(进口、出口) 25/45(进口/出口) 流量(Kg/h) 40000 选定 物料(-)石脑油冷却水 程数(个) 1 2 腐蚀余度(mm) 3 - 2.2设计任务 1. 根据传热参数进行换热器的选型和校核 2.对换热器主要受压原件进行结构设计和强度校核,包括筒体、前端封头管箱、外头盖、封头、法兰、管板、支座等。 3.设计装配图和重要的零件图。 2.3热工设计 2.3.1基本参数计算 2.3.1.1估算传热面积 -=220-45=175 -=175-25=150 因为,所以采用对数平均温度差 算术平均温度差:= P= R= 查温差修正系数表得 因此平均有效温差为0.82 放热量 考虑换热器对外界环境的散热损失,则热流体放出的热量将大于冷流体吸收的热量,即:

取热损失系数,则冷流体吸收的热量: 由可的水流量: ==31372.8 这里初估K=340W/(),由稳态传热基本方程得传热面积: =16.55 2.3.1.2由及换热器系列标准,初选型号及主要结构参数 选取管径卧式固定管板式换热器,其参数见上表。从而查《换热器设计手 册》表1-2-7,即下表 公称直径管程数管子根数中心排管管程流通换热面积换热管长 换热管排列规格及排列形式: 换热管外径壁厚:d=50mm 排列形式:正三角形 管间距: =32mm 折流板间距: 2.1.1.3实际换热面积计算 实际换热面积按下式计算 2.2计算总传热系数,校核传热面积 总传热系数的计算 式中:——管外流体传热膜系数,W/(m2·K); ——管内流体传热膜系数,W/(m2·K);

列管式换热器课程设计计算过程的参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下: 设计要求: 1.某工厂的苯车间,需将苯从其正常沸点被冷却到40℃;使用的冷 却剂为冷却水,其进口温度为30℃,出口温度自定。 2.物料(苯)的处理量为1000 吨/日。 3.要求管程、壳程的压力降均小于30 kPa。 1、换热器类型的选择。 列管式换热器 2、管程、壳程流体的安排。 水走管程,苯走壳程,原因有以下几点: 1.苯的温度比较高,水的温度比较低,高温的适合走管程,低温适合走壳程 2.传热系数比较大的适合走壳程,水传热系数比苯大 3.干净的物流宜走壳程。而易产生堵、结垢的物流宜走管程。 3、热负荷及冷却剂的消耗量。 冷却介质的选用及其物性。按已知条件给出,冷却介质为水,根进口温度t1=30℃,冷却水出口温度设计为t2=38℃,因此平均温度下冷却水物性如下: 密度ρ=994kg/m3粘度μ2=0.727Χ10-3Pa.s 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ 密度ρ=880kg/m3粘度μ2=1.15Χ10-3Pa.s 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

管壳式换热器课程设计任务书

河南理工大学管壳式换热器课程设计 姓名:李钦博 学号:311204000210 学院:机械与动力机械学院 专业:热能与动力工程 班级:热动1201 指导老师:王华 河南理工大学机械与动力工程学院能源与动力工程系 2016.3

管壳式换热器课程设计任务书一、设计题目: 设计一台煤油冷却的换热器 二、操作条件: 1、煤油:入口温度140℃,出口温度40℃。 2、冷却介质:循环水,入口温度40℃。 3、允许压强降:不大于100kPa。 三、设备型式: 管壳式换热器 四、处理能力: 14t/h 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。

目录 一.设计概述 (3) 1.1热量传递的概念与意 (3) 1.2换热器的概念及意义 (5) 1.3管壳式换热器的简介 (5) 二.试算并初选换热器规格 (6) 2.1. 流体流动途径的确定 (6) 2.2. 物性参数及其选型 (6) 2.3. 计算热负荷及冷却水流量 (7) 2.4. 计算两流体的平均温度差 (7) 2.5. 初选换热器的规格 (8) 三.工艺计算 (9) 3.1. 核算总传热系数 (9) 3.2. 核算压强降 (11) 3.3经验公式 (12) 四.设计评述 (13) 参考文献 (13)

一.设计概述 1.1热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学士热力学的扩展。 3.传热的基本方式 根据载热介质的不同,热传递有三种基本方式: (1)热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。 (2)热对流(简称对流)流体各部分之间发生相对位移所引起的热传递过程称为热对流。热对流仅发生在流体中,产生原因有二:一是因流体中各处温度不同而引起密度的差别,使流体质点产生相对位移的自然对流;二是因泵或搅拌等外力所致的质点强制运动的强制对流。

相关主题
文本预览
相关文档 最新文档