当前位置:文档之家› 2014 太阳能行业研究报告

2014 太阳能行业研究报告

2014 太阳能行业研究报告
2014 太阳能行业研究报告

目录

一.概述 (2)

1.1太阳能的特点 (2)

1.2 太阳能的技术原理 (4)

1.2.1光伏的技术原理 (4)

1.2.2 光热的技术原理 (4)

二.太阳能的应用 (5)

三.太阳能产业链 (13)

3.1 光伏产业 (13)

3.2 光热产业 (13)

3.3 光伏发电和光热发电的比较 (16)

四.市场分析 (18)

4.1 光热发电国际市场 (18)

4.2 光热发电国内市场 (21)

五.总结 (22)

5.1 太阳能是未来能源发展的趋势 (22)

5.2 中国正在取代美国成为清洁能源的投资中心 (25)

5.3 掌握核心技术是未来中国太阳能发展的关键 (26)

六.投资建议 (28)

6.1 太阳能行业的特点导致需要大规模持续投资 (28)

6.2 光伏发展尽管开始复苏,但仍然受自身因素制约 (29)

6.3 目前光热技术实现应用在于替代部分燃煤、燃气锅炉 (30)

6.4 宝能在太阳能行业的投资 (31)

七.附件......................................................................................................... 错误!未定义书签。

一.概述

太阳能(Solar Energy),一般是指太阳光的辐射能量,在现代一般用作发电或者为热水器提供能源。自地球形成以来,生物就主要以太阳提供的热和光生存,而自古人类也懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展。太阳能的利用有被动式利用(光热转换)和光电转换(光伏)两种方式,太阳能发电是一种新兴的可再生能源。广义上的太阳能也包括地球上的风能、化学能、水能等。

作为21世纪最清洁的能源之一, 太阳能在人们生活、工作中起到广泛的作用,越来越受到人们的青睐。人们对太阳能的利用,其中最有经济价值的就是将太阳能转换为电能。太阳能发电能够降低发电的成本,攻克传统的发电方式:火电和水电长期以来存在的难以克服的弱点和缺点。并且在促进环保事业发展的同时降低对化石能源的消耗,缓解能源危机。所以,太阳能的投资前景毋庸臵疑。

1.1太阳能的特点

优点

1.普遍:太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或

岛屿,都处处皆有,可直接开发和利用,便于采集,且无须开采和运输。

2.无害:开发利用太阳能不会污染环境,它是最清洁能源之一,在环境污

染越来越严重的今天,这一点是极其宝贵的。

3.巨大:根据统计,全球目前每年的能源总消耗量,只相当于太阳24小

时照射在地球上的能量。每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,其总量属现今世界上可以开发的最大能源。

4.长久:根据太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而

地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。

缺点

1.分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。

平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1,000W左右;若按全年日夜平均,则只有200W左右。而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。

2.不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限

制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但蓄能也是太阳能利用中较为薄弱的环节之一。

3.效率低和成本高:太阳能利用的发展水平,有些方面在理论上是可行的,

技术上也是成熟的。但有的太阳能利用装臵,因为效率偏低,成本较高,

总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,

太阳能利用的进一步发展,主要受到经济性的制约。

1.2 太阳能的技术原理

1.2.1光伏的技术原理

光伏板组件是一种暴露在阳光下便会产生直流电的发电装臵,由几乎全部以半导体物料(例如硅)制成的固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表以及计算机提供能源,较复杂的光伏系统可为房屋提供照明以及交通信号灯和监控系统,并入电网供电。光伏板组件可以制成不同形状,而组件又可连接,以产生更多电能。天台及建筑物表面均可使用光伏板组件,甚至被用作窗户、天窗或遮蔽装臵的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

1.2.2 光热的技术原理

现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。海上太阳能项目新型船舶由它们反射的阳光都自动聚集到甲板中心的中央,加热锅炉里的水,产生高温高压蒸汽,推动发动机,从而产生电力。

二.太阳能的应用

太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。

太阳能的应用目前主要分为一下几个方面:

2.1 光伏发电

光伏技术是利用半导体的光电效应直接将太阳能转化为电能的一种技术。目前光伏技术已历经三代:晶硅电池、薄膜电池和聚光光伏电池。技术的发展来源于人们希望提高对光能的吸收效率、提高光能电能的转换效率、同时控制成本的要求。所以三代电池有着不同的技术特点:

●晶硅电池:由于硅是最理想的太阳能电池材料,具有良好的光电转换效率,

所以,人们首先想到了单一的以硅板作为介质接受太阳光并将其转换成电能。

但由于硅的开采和提炼成本居高不下,所以成本高是这种电池的主要弊端。

●薄膜电池:顾名思义就是将一层薄膜制备成太阳能电池,因为其主要以铜铟

镓硒或碲化镉作为硅的替代品进行光电反应,所以其制造成本较晶硅电池要低廉许多,但其效率也要明显低于晶硅电池,并且稳定性差。

●聚光电池:根本思想是利用旋转抛物面作为反射镜将太阳光汇聚到一交点上,

并在这一点上安装一晶硅电池,从而增加光能转换率。与大面积铺设硅板不同,聚光电池只需在焦点处安装一小面积晶硅电池,从而大大降低了成本。

缺点是在这种情况下晶硅电池的温度极易升高从而降低光电转换率。

三代光伏技术转化效率比较

2.1.1光伏技术的主要弊端在于:前段污染和光伏生产的高耗能

值得注意的是,光伏技术从创始之初就有前端单晶硅、多晶硅等生产的高污染性,为了生产相应可以发电的太阳能光伏板,需要消耗大量水、能源和自然资源,不仅对空气存在巨大粉尘和二氧化硫污染,也对地下水、居民用水造成一定的重金属污染,因此太阳能光伏尽管相对光热在地域上有更广泛应用,但其前段污染是不可忽视的弊端。

2.1.2光伏技术的应用领域有限

光伏技术由于是在阳光的作用下,半导体直接发电,因此发电量直接受到太阳光多少的影响,大规模的光伏电站也因此无法24小时运转,同时由于电能的储存目前在全世界都是为解决的难题,因此储能也成了制约光伏发电技术推广的巨大瓶颈。

无法解决储能问题的光伏电站,只能作为调峰电站间歇性发电,对于需要保持常年稳定载荷的电网来说,不稳定的间歇性发电不仅对电网会造成巨大损伤,严重的还会造成电网负载不稳定而跳闸;同时也无法真正满足电网用户的需要,

因此光伏发电和风力发电都被电网系统称为“垃圾电”。

2.2 光热发电

光热发电是利用聚光和集热装臵先将光能转化为热能,再将热能转化为电能的太阳能利用技术。其核心部件就是聚光器和集热器。原理是利用聚光器加热集热管,从而使里面的传导液(水、合成油、熔融盐等)升温并汽化,利用蒸汽机发电原理推动涡轮机发电。目前主要有四种光热发电技术:槽式、菲涅尔式、塔式和碟式。

槽式系统:技术成熟度和商业化验证程度最高的

槽式太阳能热发电系统的核心是槽式聚光集热器,由聚光镜和集热管两

部分组成。其中,聚光镜做成抛物柱面状,根据光学原理,照射在上面

的太阳光会反射到一条直线(焦线)上,这样,在这条直线的位臵上安

装一长直的集热器,可达到收集光热的作用。集热管分为内外两层,内

层为吸热管,通常为金属材质,用来吸收聚光镜反射的阳光;外层为玻

璃套管,套管和吸热管间抽成真空,防止吸收到的热耗散到空气中。吸

热管内含合成油、熔盐等物质的导热液,被加热到一定温度(槽式中工作介质温度大约为400°C)后汽化,然后蒸汽会推动涡轮转动,从而起到发电的目的。

●菲涅尔系统:简化了的槽式系统

菲涅尔系统其实就是用一组平板镜来取代槽式系统里的抛物面型的曲面镜聚焦。通过调整控制平面镜的倾斜角度,将阳光反射到集热管中,实现聚焦加热。为了简化系统,一般采用水/水蒸气作为吸热介质(油和熔盐介质在技术上也是可行的)。相比于抛物面式的曲面镜,平面反射镜制造难度低,因此大大降低了初始投资成本,但聚焦精度比槽式差。目前菲涅尔还在示范阶段,没有商业化运行的电站。

●塔式系统:效率较高,且能储热

塔式系统利用多面定日镜跟踪太阳光,将阳光反射并集中到接收塔的顶部的吸热器。吸热器中的工作介质的温度在500°C-1000°C。相对于槽式系统,由于省掉了管道传输系统,热损失小,系统效率高,也更便于存储热量。塔式的工作介质可用空气、水或者水蒸气、以及熔盐。商业化初期的电站为了降低技术风险,多用水、水蒸气作为工作介质。熔盐应该为大型商业化塔式系统的选择。

碟式系统:转换效率最高,但成本下降尚需时日

和其它太阳能集热发电系统不同,碟式系统是由发动机实现由热能到机械能的转化,而不是汽轮机。利用旋转抛物面反射镜,将入射阳光聚集

在焦点上,放臵在焦点处的太阳能接收器收集热能,加热工质,从而驱动斯特林发电机组发电。这种系统规模较小,高效、模块化,可以灵活单独使用或者集成使用。单机功率在5-50kw,但聚焦温度可达750°C-800°C,光电转化率高,可达29%,主要缺点是单位投资高。

三种主要光热技术主要参数比较

注释:年容量因子: 实际年发电量与系统全年满负荷运行的年发电量之百分比;

峰值效率: 系统最高转换效率;

年净效率: 年发电量( 扣除系统本身消耗电量) 与全年接收太阳能量之百分比;

2.2.1 光热的利用瓶颈主要在于集热效率和储能技术

不同于光伏技术,太阳能光热技术由于是一种集热技术,因此其收集的能源以热能的形式更容易保存,而制约目前光热发展的主要瓶颈就是集热效率,即单位面积下,太阳能集热装臵对太阳光热收集的效率,目前国际先进水平的热收集率已经可以达到单位面积70%,这一技术的发展也给了太阳能光热新的发展契机。

我国由于在太阳能光热领域起步较晚,因此绝大多数太阳能光热的核心技术都掌

握在美国、以色列、德国和日本等发达国家,因此在太阳能光热的应用方面增加了巨大的成本导致目前国内大型光热项目仍处在技术论证阶段。

2.3 光热替代传统锅炉的太阳能热利用

由于太阳能光热技术和储热技术近几年的快速发展,使太阳能光热有了取代传统蒸汽锅炉的可能性。这一技术主要是替代传统产生高温蒸汽(200-600摄氏度)的燃煤或燃气锅炉,通过收集太阳能热产生出同等质量的蒸汽。

2009年全球领先的太阳能技术和设备供应商以色列BrightSource公司与雪佛龙签订了热能供应协议,并在同年开始建设全世界第一个太阳能集热应用于油田稠油热采蒸汽的应用项目,2011年项目投产并至今平稳运行。这一项目的投产也标志着太阳能集热利用进入了商业化的时代。

三.太阳能产业链

3.1 光伏产业

3.2 光热产业

光热发电产业链主要包含集成的系统开发商、汽轮机、集热器、反光/聚光器、热媒材料、储能材料及电力模组等,均有一定的产业化门槛。另外需要用到钢材、混凝土、玻璃等原材料作为支撑架构、衬底等。

由于光热发电产业的生态环境一直是一个小众化的市场,有限的电站项目数量,集成的系统开发商数量也因此比较少,因此集热器、反光镜等主要组件多被少数企业垄断下来,汽轮机、电控装臵则依旧由传统大厂把持,新进业者在缺少新产品资金研发支持或类似产品线的情况下,很难打入产业供应链。

主要光热设备市场集中度

集热器制造工艺相对复杂,主要难点在于中高温集热、真空化、镀膜以及涂层,提高光谱吸收、降低红外辐射,目前主要由Schott 及Solel 所垄断。。未来发展趋于表面积逐步增大、耐高温、甚至有承受高压蒸汽的能力;改进吸热材料,以提升工作温度,虽然会带来集热器材料等方面成本的增加,但同时能够大幅的提高转换效率,有效降低了各项成本的平摊。

反光/聚光器领域,主要难点在于玻璃一次成型、曲面的设计以及表面镀膜。

热媒需要耐高温、低沸点、良好的导热性、满足低成本大规模生产的条件,从而提高系统转换效率,降低热交换成本及使用成本。目前技术成熟的有机油类、融盐,未来有望引入纳米技术及其他无机物种类。

储能主要有融盐、相变、石墨、氨、氢化镁等多种方式,融盐储能可与融盐热媒结合使用,且已有成功的项目验证。

3.3 光伏发电和光热发电的比较

目前光热发电电站的投资成本略高于大型商业化光伏电站,不含储能的系统约光热电站投资在3.5-8.5 美金/W(电站规模越大,投资成本越低),储能设施的成本约2.5 美金/W。光热电站对自然条件的要求很苛刻,但由于存在独特的优势,能够吸引电力公司的投资。

光热与光伏发电优劣势比较

对一个电力企业来讲,在规划未来各类发电技术的投资组合时,选择的内在因素有多种,除了投资成本、发电成本以外,技术成熟性、电力品质、并网及输电成本、碳排放强度等也是重要的考虑指标。光热发电系统的主要优势如下:容量因子高,同样条件下,光热发电的容量因子,即有效发电时间要多于PV,因此能进一步摊薄发电成本。

光热系统的电力输出比光伏更加平稳,而且能实现较低成本的储能,提高电网安全,降低了并网及电力传输的成本。

光热系统由于使用汽轮机发电,原理与火电站及天然气发电相近,因此可以

与之组成联合发电系统。可在大型CSP 系统中引入燃气发电作为必要时辅助,由于燃气发电具有启停迅速的特点,属于输出弹性较高的电源,所以是用于调峰、支撑可再生能源发电的优良选择。

利用光热发电余热可进行制冷、海水淡化或污水净化等其他应用。

光热发电的主要劣势就是初始投资过大,约占度电成本的80%,其余20%为运营、管理以及保险成本。一座装有7.5 小时储热的50MW槽式光热发电项目,总投资约为3.64 亿美元。3.64 亿投资按照20-25 年摊销,每年设备摊销成本0.145 亿~0.182 亿,按照50MW光热项目年发电量2.16 亿度计算,初始投资折合度电成本6.7~8.4 美分/度。

不过,根据Estela、AT Kearney、GTM 等多家机构预测结果,未来光热度电成本将有40%以上的下降空间,光热发电成本将以每年3%-4%的速度下

降。到2025 年,三种主要光热发电方式的度电成本都将下降到8.0 美分以下。

上图中,从上往下:

Trough(wet, nostorage)——槽式无储能光热发电

PV:Multi,fixed——多晶硅光伏发电

Power Tower(dry,no storage)——塔式无储能光热发电

PV:CdTe,fixed——碲化镉薄膜光伏发电

PV:Mono——单晶硅光伏发电

High CPV——高倍聚光光伏发电

四.市场分析

4.1 光热发电国际市场

与光伏发电相比,太阳能热发电仅能够有效利用总太阳辐射中的直接辐射,且土地平整度等方面有着更高的要求。因此全世界适宜太阳能热发电应用的地

理位臵相对光伏而言,有一定的限制,仅美国部分州、西班牙、南非、澳大利亚、MENA 地区(中东及北非),南美的秘鲁、智利部分地区,中国、印度部分地区满足要求,但总体的面积仍然是非常巨大的。

建设50MW 太阳热发电站的所需环境条件:

太阳法向直接辐射(DNI)≥2000 kWh/m2

供水:1百万立方米/年(水冷),25万立方米/年(风冷)

占地面积1.5*1.5 ~ 3 km(平坦)

电网接入110/220KV,距离≤10 km

道路条件良好(满足运输玻璃易碎物品)

辅助燃料(最好是天然气)

全球太阳直接辐射资源(DNI)分布情况

美国市场:

2009 年美国一系列激励政策也促使其光热市场重新启动。目前美国有467MW 新的太阳能热电站处于建设阶段,规划中的太阳能热电站总规模近

10GW,其中有6.7GW 项目已签署购电协议(PPA),仅需进一步解决行政、土地审批或融资问题。近期及未来几年的美国太阳能热发电市场,除大部分位于加州以外,还有亚利桑那州及内华达州,均处在美国的西南部。

欧洲市场

欧洲的DNI 资源相对匮乏,仅西班牙及土耳其两地资源比较集中。因此目前只有西班牙市场具备一定的规模;德国、法国有少量示范性安装;土耳其依靠其自然条件,计划2011 年开始规模化发展太阳能热发电电站。规划中的电站,主要市场也在西班牙,法国、意大利有少量项目。

2009 年西班牙可再生能源FiT政策激励促使其光热发电三年来发展迅速,累积装机约582MW,在建项目超过600MW,规划及建设阶段的项目累计达到4.4GW。

MENA及其他

北非及中东地区拥有全球最好的DNI 资源及广阔的沙漠(沙漠太阳能热发电电站已有超过25年的可靠运行经验),适宜发展太阳能热发电电站。目前摩洛哥、以色列、苏丹、约旦、阿联酋、阿尔及利亚及埃及等国,均有大小不一的中短期市场规划,累积达到1.4GW。尤其对北非国家来讲,可持续的太阳能热发电市场不仅能够产生电力效益,并可附带发展海水淡化产业、带动低端太阳能热发电产业链的本地化投资,产生就业机会。其他地区,如澳大利亚、南非、印度等国累加有近700MW 的中长期太阳能热发电市场发展规划。

小结:目前全球已建成CSP 电站约1.1GW,主要分布于西班牙、美国及北非中东地区。处于5-10 年内规划与建设阶段的项目总数约18GW,主要市场包括西班牙、美国、MENA、中国、澳大利亚以及印度。

两步热还原法制备太阳能级硅

SiC还原SiO2制备纯硅试验研究 摘要:通过SiC还原SiO2制备纯硅实验研究,采用X 射线衍射分析、荧光分析和化学分析方法及拉曼分析,得到在电流为200A左右温度约为2200℃时采用SiC:SiO2=1:3.5时,SiO2能被彻底还原。这为两步法制备纯硅提供了依据,为由碳热直接还原SiO2制备高纯硅提供了新的思路。 关键词:二氧化硅碳化硅热还原制备纯硅 硅材料既是人类进步的基石,又是社会现代化的物质基础与先导。硅是最重要的半导体材料,其用量占全部半导体材料的90%以上,硅有许多得天独厚的特点:如硅资源丰富,无匮乏之虞;硅中杂质的分凝系数对物理提纯非常有利,可以获得接近本征的纯度;硅工艺非常成熟,已形成一个颇具规模的大工业等特点。硅的物理化学性质及以上特点决定硅有着丰富的用途例如整流器、晶体三极管、集成电路、探测器、传感器、太阳能电池等光敏元件;金属陶瓷;光导纤维等。 以二氧化硅制备纯硅的方法很多,主要包括热还原法和熔盐电解法等,而热还原法多用碳作为还原剂,而在本研究中以碳化硅为还原剂制备纯硅;该方法是一种新的制备纯硅的工艺。有其独特的优势,可以为制备二氧化硅还原制备太阳能级纯硅 实验设备实验原料及研究方法 实验原料 利用PW2040X射线荧光光谱仪对原料硅和二氧化硅进行定性半定量分析,分析结果如下表所示: 二氧化硅矿石主要化学成分(wt%) Si O Gr 由上表数据经过计算得可能有少量的单质硅单质硅(1.3042)SiO2纯度达到98.6296% ,没有一般硅石里含有的Fe、Al、Ga等杂质,而杂质Gr的含量相对较高。

使用BT-2001型激光粒度仪对试验原料二氧化硅进行粒度分析,检测结果如下图所示,由图可得二氧化硅的粒度分布区间时2um~342um,中位径为92.23um。 实验设备及过程 本实验在钨极电弧真空熔炼炉中进行,该设备如图所示该装置由杭州大华仪器公司和中国科学院材料物理重点实验室联合研制,由真空机组、真空室、电弧枪、熔炼电源、铜坩埚、水冷设备及测量系统等组成。主要技术指标1、电极直径: 5mm;电极长度: 80mm;2、样品:ISSP-AMF1型:一次熔炼7个样品,每孔熔炼总量:5~20g;ISSP-AMF2型、ISSP-AMF3型:一次熔炼6个样品,每孔熔炼总量:30~50g;3、极限真空度:ISSP-AMF1、ISSP-AMF2型:2×10-3Pa;4、ISSP-AMF2、ISSP-AMF3型含一个吸铸工位及两个孔径的浇铸模具;5、供电电源:ISSP-AMF1型:单相AC220V,50Hz;额定工作电流: 160A;ISSP-AMF2、ISSP-AMF3型:三相AC380V,50Hz;最大熔炼电流:500A。

(整理)大物实验太阳能电池.

实验62 太阳能电池特性研究 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 【实验目的】 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量 【实验原理】 太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。 P 型半导体中有相当数量的空穴,几乎没有自由 电子。N 型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正 电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。 负载电阻为零时测得的最大电流I SC 称为短路电流。 负载断开时测得的最大电压V OC 称为开路电压。 太阳能电池的输出功率为输出电压与输 出电流的乘积。同样的电池及光照条件,负载电 阻大小不一样时,输出的功率是不一样的。若以 输出电压为横坐标,输出功率为纵坐标,绘出的 P-V 曲线如图2点划线所示。 输出电压与输出电流的最大乘积值称为最大 输出功率P max 。 填充因子F.F 定义为: sc oc I V P F F ?=?max (1) 空间电荷区 图1 半导体P-N 结示意图 I V

太阳能光伏电池新技术一览

太阳能光伏电池新技术一览 不管是何种太阳能电池的研发与创新,提高太阳能电池转换效率、降低太阳能光伏电池生产成本是所有电池生产企业及研发机构关注的核心问题。 现阶段,太阳能光伏电池行业传来不少新型电池成功研发的喜讯,既有工艺技术上的变革、也有制造材料上的创新。真可谓是百花齐放、百舸争流。受中国电池网(https://www.doczj.com/doc/a84151445.html,)授权,下面给大家总结下新的太阳能光伏电池研发成果,让感兴趣的朋友们能更深入的了解到现今的太阳能光伏电池技术的发展。 1.喷墨打印技术降低铜铟镓硒太阳能光伏电池 传统的太阳能光伏电池生产技术通常非常耗时,并且需要使用昂贵的真空系统和有毒的化学物质。使用气象沉积沉淀化合物,如铜铟镓硒(CIGS),会损失大量昂贵的材料。俄勒冈州立大学的工程师首次研发出一种通过喷墨打印技术制造铜铟镓硒太阳能光伏电池的方法。这个方法可以减少90%原材料损耗,大幅降低了使用昂贵化合物生产太阳能光伏电池的成本。 研究者发明了一种墨,能够将黄铜矿打印在基片上,打印出的成品能量转化效率为5%。虽然,这个转化效率还无法满足商用,但研究者表示他们在接下来的研究中有望将转换率提高到12%。 工程师们正在研究其他更为便宜、可用于喷墨技术的化合物。他们称,如果这些材料能够降低足够的成本,直接在屋面材料上安装太阳能电池将成为可能。 2.单晶多晶混合太阳能光伏电池 中国太阳能电池生产商尚德电力(SuntechPower)研发出新型混合太阳能光伏电池,可以有效降低太阳能光伏发电成本10%到20%。这种电池由70%的单晶硅和30%的多晶硅构成。单晶多晶混合硅片的造价成本只是传统单晶硅硅片的一半。由于硅片只占太阳能总体成本的一部分,所以从整体上来看,有助于降低太阳能发电成本10%-20%。 尚德电力首席技术官StuartWenham表示,将很快实现该产品的规模化生产。 3.全光谱太阳能光伏电池 近日报道,加拿大科学家表示,他们研发出了一款新式的全光谱太阳能光伏电池,其不但可以吸收太阳发出的可见光,也可以吸收不可见光,从理论上讲,转化效率可高达42%,超过现有普通太阳能光伏电池31%的理论转化率。研究发表在最新一期的《自然·光子学》杂志上。 此款基于胶体量子点(CQD)的高效串接太阳能光伏电池由加拿大首席纳米技术科学家、多伦多大学电子与计算机工程系教授泰德·萨金特领导的科研团队研制而成。论文主要作者王希华(音译)表示,该太阳能光伏电池由两个吸光层组成:一层被调制用于捕捉太阳发出的可见光;而另外一层则可以捕捉太阳发出的不可见光。 萨金特希望,在5年内,将这款新的分级重组层太阳能光伏电池整合入建筑材料、手机和汽车零件中。 4.量子阱太阳能光伏电池 在西雅图举行的第37届IEEE光伏专家会议上,MagnoliaSolar的首席技术官RogerE.Welser博士做了有关InGaAs量子阱太阳能光伏电池的报告,MagnoliaSolar刷新了该类太阳能光伏电池的电压记录。 “通过把窄带隙量子阱嵌入宽带隙材料中,量子阱结构太阳能光伏电池吸收光谱更宽,同时吸收高能光子的能量损失更小。”MagnoliaSolar的董事长兼首席执行官AshokK.Sood博士表示,”单结量子阱太阳能光伏电池在非聚光条件下的理论转化效率高达45%。” 5.可挠式非晶硅太阳能光伏电池 日本媒体近日报导,TDK已研发出一款可挠式太阳能电池,藉由光学设计的改良,该款太阳能光伏电池在屋外阳光下的转换率已自现行的4.5%提升至7%的水准,TDK并计画于今(2011)年夏天透过甲府工厂量产该款太阳能光伏电池。据报导,该款太阳能电池为采用薄膜基板的非晶硅(amorphoussilicon)太阳能光伏电池。

太阳能光伏电池检验测试结果与分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 近代光学创新实验 实验名称:太阳能光伏电池测试与分析院系: 专业: 姓名: 学号: 指导教师: 实验时间: 哈尔滨工业大学

一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能 电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

浅谈太阳能电池的发展与应用

浅谈太阳能电池的基本原理与应用 摘要:人类面临着有限常规能源和环境破坏严重的双重压力。特别是煤、石油、天然气等不可再生能源的逐渐枯竭,能源问题已经成为制约社会经济发展的重大问题,研究新能源的开发利用已是当务之急。太阳能作为一种清洁、高效、取用不尽的能源已有尽半个世纪的发展历程。并成为当前各国争相开发利用的一种新能源。太阳能光伏发电的最核心的器件是太阳能电池,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。为全面的了解太阳能电池的相关知识,本文通过查阅大量资料与新闻信息,综述太阳能电池的发展历程与当前应用情况。重点研究太阳能电池的工作原理,基本结构,主要类型,发展现状及趋势。 关键词:太阳能电池;基本原理;材料; 晶体硅;薄膜太阳能电池;转换效率 引言:由于人类对可再生能源的不断需求。促使人们致力于开发新型能源。太阳在40min内照射带地球表面的能量可供全球目前能源消费的速度使用1年。合理的利用好太阳能将是人类解决能源问题的长期发展战略,是其中最受瞩目的研究热点之一。在太阳能的有效利用中, 太阳能的光电利用是近些年来发展最快、最具活力的研究领域. 太阳能电池的研制和开发日益得到重视. 太阳能电池是利用光电材料吸收光能后发生的光电子转移反应而进行工作的. 根据所用材料的不同, 太阳能电池主要可分为四种类型: ( 1) 硅太阳能电池; ( 2) 多元化合物薄膜太阳能电池; ( 3) 有机物太阳能电池; ( 4) 纳米晶太阳能电池.太阳能电池以硅材料为主的主要原因是其对电池材料的要求: ( 1) 半导体材料的禁带宽度不能太宽; ( 2) 要有较高的光电转换效率; ( 3) 材料本身对环境不造成污染; ( 4) 材料便于工业化生产且材料性能稳定. 随着新材料的不断开发和相关技术的发展, 以其他材料为基础的太阳能电池也愈来愈显示出诱人的前景. 本文简要地综述了太阳能电池的原理、种类及其研究现状, 并讨论了太阳能电池的发展趋势. 1 基本原理 太阳能(Solar Energy),一般是指太阳光的辐射能量。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。 1.1 半导体的简单介绍 半导体材料指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,这种材料在某个温度范围内随温度升高而增加电荷载流子的浓度,电阻率下降。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。 1.1.1关于半导体的基本概念 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 载流子:运载电荷的粒子称为载流子,包括电子与空穴。 杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。 P型半导体:在纯净的硅晶体中掺入三

太阳能电池板标准测试方法

太阳能电池板标准测试方法 (2011-03-14 21:30:56) 转载 标签: 杂谈 太阳能电池板标准测试方法 (模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢?

答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般 白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上.环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来转换电能的,照度越强功率值越大 太阳能电池和电池板测试解决方案 已有 158 次阅读2011-6-25 11:51|个人分类:光伏文档|关键词:解决方案太阳能电池电池板 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方案大体又有两种: 一是全套专用的系统, 二是利用现有标准化仪器及软件进行系统集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,如用于太空或在地面上,测量精度、速度和参数的重要性会有不同,但有一些在任何测试环境都必

太阳能电池板标准测试方法

太阳能电池板标准测试方法(模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻 值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢? 答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上. 环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来 转换电能的,照度越强功率值越大 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方 案大体又有两种:一是全套专用的系统,二是利用现有标准化仪器及软件进行系统 集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统 中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,

太阳能级硅材料

太阳能级硅材料 什么是太阳能级硅材料 太阳能级硅材料是纯度为6个9以上的高纯硅材料,即纯度为99.9999%以上的硅材料。 太阳能级硅如何制造 在半导体工业上主要有Siemens和流化床FBR(FludizedBedRactor)来制备高纯多晶硅材料,Siemens采用高纯SiHCl3作为原料,而FBR是采用SiH4为原料。对于太阳能级多晶硅,在过去的80年代里,包括BayerAG,Siemens和Wacker等公司在内花费了相当大的努力开发太阳能级多晶硅,但是由于产量和纯度不能满足高效太阳电池的需要,与传统的电池生产技术相比并没有降低电池组件的成本,从而未能实现工业化。 目前,有以下太阳能级多晶硅的制备工艺将

会在未来的几年有所突破。WackerChemie 公司采用高纯SiHCl3和流化床过程来制备粒状高纯多晶硅。2003试验的产量为200吨/年,到2006年可达到年产600吨,其目标是每公斤多晶硅价格低于25美元/公斤,这种太阳能级多晶硅只用来供给光伏产业,由于纯度的原因,不能够应用与半导体工业。Tokuyama也采用SiHCl3为原料,并采用高温、高速沉积过程将多晶硅沉积到衬底上,预计将在2006年计划生产;德国的SolarWorldandDegussa联合宣布采用SiH4热分解方法,在加热的硅圆柱体上得到太阳能级多晶硅;挪威的REC和美国的ASiMi将SiH4和Siemens方法制备高纯多晶硅的工艺改进,来制备太阳级多晶硅,产量预计2000吨/年;此外,日本的KawasakiSteel公司通过将冶金级硅提纯来制备太阳级硅,目前还处在试验工厂阶段,进行大规模生产的主要因素是多晶硅的纯度和材料的生产成本价格;美国的CrystalSystems采用热交换炉法提纯冶金级硅,将冶金级硅的难以提纯的B、P杂质

太阳能电池材料的研究现状及未来发展

太阳能电池材料的研究现状及未来发展 太阳能是人类取之不尽,用之不竭的可再生能源,它不产生任何环境污染,是清洁能源.太阳光辐射能转化电能是近些年来发展最快,最具活力的研究,人们研制和开发了不同类型的太阳能电池.太阳能电池其独特优势,超过风能、水能、地热能、核能等资源,有望成为未来电力供应主要支柱.制造太阳能电池材料的禁带宽E:应在1.1eV-13W之间,以1.5eV左右为佳,最好采用直接迁移型半导体,较高的光电转换效率(以下简称“效率”),材料性能稳定,对环境不产生污染,易大面积制造和工业化生产. 1954年美国贝尔实验室研制了世界上第一块实用半导体太阳能电池,不久后用于人造卫星.经近半个世纪努力,人们为太阳电池的研究、发展与产业化做出巨大努力.硅太阳电池于1958年首先在航天器上得到应用.在随后10多年里,空间应用不断扩大,工艺不断改进.20世纪70年代初,硅太阳电池开始在地面应用,到70年代末地面用太阳电池产量己经超过空间电池产量,并促使成本不断降低.80年代初,硅太阳电池进入快速发展,开发的电池效率大幅度提高,商业化生产成本进一步降低,应用不断扩大.20世纪80年代中至今,薄膜太阳能电池研究迅速发展,薄膜电池被认为大幅度降低成本的根本出路,成为 今后太阳能电池研究的热点和主流,并逐步向商业化生产过渡. 1.不同材料太阳电池分类及特性简介 太阳能电池按材料可分为品体硅太阳电池、硅基薄膜太阳电池、化合物半导体薄膜太阳电池和光电化学太阳电池等儿大类.开发太阳能电池的两个关键问题就是:提高效率和降低成本. 1晶体硅太阳电池 晶体硅太阳电池是PV(Photovoltaic)市场上的主导产品,优点是技术、工艺最成熟,电池转换效率高,性能稳定,是过去20多年太阳电池研究、开发和生产主体材料.缺点是生产成本高.在硅电池研究中人们探索各种各样的电池结构和技术来改进电池性能,进一步提高效率.如发射极钝化、背面局部扩散、激光刻槽埋栅和双层减反射膜等,高效电池在这些实验和理论基础上发展起来的. 2硅基薄膜太阳电池 多晶硅(ploy-Si)薄膜和非晶硅(a-Si)薄膜太阳电池可以大幅度降低太阳电池价格.多晶硅薄膜电池优点是可在廉价的衬底材料上制备,其成本远低于晶体硅电池,效率相对较高,不久将会在PV市场上占据主导地位.非晶硅是硅和氢(约10%)的一种合金,具有以下优点:它对 厚,材料的需求量大大减少,沉积温度低(约200'C),阳光的吸收系数高,活性层只有1m 可直接沉积在玻璃、不锈钢和塑料膜等廉价的衬底材料上,生产成本低,单片电池面积大,便于工业化大规模生产.缺点是由于非晶硅材料光学禁带宽度为1.7eV,对太阳辐射光谱的长

#什么是太阳能电池量子效率,如何测试

什么是太阳能电池量子效率,如何测试 请教大家,什么是太阳能电池量子效率啊?Quantum efficiency of a solar cell, QE 太阳能电池量子效率和太阳能电池光谱响应,太阳能电池IPCE有什么区别啊?spectral response, IPCE, Incident Photon to Charge Carrier Efficiency 太阳能电池这些特性如何测试啊? 什么是太阳能电池量子效率?如何测试啊?Quantum efficiency of a solar cell, QE 太阳能电池的量子效率是指太阳能电池的电荷载流子数目和照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率和太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的量子效率和光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的量子效率为1。对于能量低于能带隙的光子,太阳能电池的量子效率为0。理想中的太阳能电池的量子效率是一个正方形,也就是说,对于测试的各个波长的太阳能电池量子效率是一个常数。但是,绝大多数太阳能电池的量子效率会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。影响吸收能力的同样的太阳能电池结构,也会影响太阳能电池的量子效率。比如,太阳能电池前表面的变化会影响表面附近产生的载流子。并且,由于短波长的光是在非常接近太阳能电池表面的地方被吸收的,在前表面的相当多的再结合将会影响太阳能电池在该波长附近的太阳能电池量子效率。类似的,长波长的光是被太阳能电池的主体吸收的,并且低扩散深度会影响太阳能电池主体对长波长光的吸收能力,从而降低太阳能电池在该波长附近的太阳能电池量子效率。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池量子效率,有时也被叫做IPCE,也就是太阳能电池光电转换效率(Incident-Photon-to-electron Conversion Efficiency)。 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 测试原理 用强度可调的偏置光照射太阳能电池,模拟其不同的工作状态,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的绝对光谱响应和量子效率。

太阳能级多晶硅

太阳能级多晶硅 能耗高、污染重,让多晶硅生产企业深受诟病。在低碳经济成为世界潮流的时候,我国多晶硅生产企业面临更大压力。 近年来,针对太阳能级多晶硅的质量要求发展起来一种新工艺——冶金法。冶金法制备多晶硅以廉价的工业硅为原料,采用冶金技术提纯而成,工艺路线短,能耗仅为改良西门子法的20%左右,因此被认为是最有可能生产价格低廉的制造太阳能级多晶硅新技术。 为推广和不断完善冶金法生产多晶硅工艺,冶金法太阳能多晶硅产业技术创新战略联盟于2009年9月底在宁夏银川成立。 新规定催生新技术 为了落实国务院关于抑制包括多晶硅在内的部分行业产能过剩和低水平重复建设精神,国家发改委针对国内普遍采用的改良西门子法制备太阳能级多晶硅技术明确了技术门槛:多晶硅项目规模必须大于3000吨/年,占地面积小于6公顷/千吨多晶硅,还原尾气中四氯化硅、氯化氢、氢气回收利用率不低于98.5%、99%、99%;引导、支持多晶硅企业以多种方式实现多晶硅—电厂—化工厂联营,支持节能环保太阳能级多晶硅技术开发,降低生产成本。到2011年前,淘汰综合电耗大于200千瓦时/千克的多晶硅产能。 冶金法太阳能多晶硅产业技术创新战略联盟秘书长、中国产学研合作促进会新材料专业委员会副理事长李义春介绍,当前,我国大多数多晶硅生产企业采用的是西门子法。虽然国外的改良西门子法已经发展成熟,但一直为几家大公司所垄断,对我国进行技术封锁。我国一些小企业采用拼凑的设备和技术生产,能耗和污染得不到有效控制,产品质量和成本均不具备优势。 赛迪公司顾问开发区咨询中心咨询师江华明确表示,我们应集中科技资源,共同研发制定中国多晶硅产业的总体布局、技术路线、工艺方法、环保和综合利用方案等,除获得成熟西门子法生产多晶硅的工艺外,加大力度对流化床法、冶金法等多晶硅生产工艺进行开发研究,并针对不同市场,形成多种工艺技术既相互竞争又各自针对合适目标协调发展的技术格局。 李义春介绍,国内外现有的多晶硅厂绝大部分采用改良西门子法生产多晶硅。用该工艺生产的多晶硅纯度较高,通常能达到9N以上,甚至10N、11N,这样才能保证电子材料的功能。但是该技术存在成本高、能耗高、投资大以及流程复杂的问题。 目前发展迅猛的光伏产业,对多晶硅材料的要求没有那么高,一般纯度达到6N-7N就可以了。“但是没有这样的硅片,企业就把高端的电子用多晶硅材料掺杂,降低品质后,才能用于光伏发电。因此,应该有专门用于光伏发电的硅片生产技术。”李义春说。 基于此,业内开始积极研究适合太阳能级多晶硅的低成本制造技术和方法。 新技术的优势

柔性薄膜太阳能电池的研究进展

硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY 柔性薄膜太阳能电池的研究进展 李荣荣1,赵晋津1,司华燕1,边志坚2 马辉东2,丁占来1,3 (1.石家庄铁道大学材料科学与工程学院, 石家庄050043;2.晶龙实业集团有限公司,河北邢台055550; 3.石家庄铁道大学交通工程材料重点实验室,石家庄050043 ) 摘要:本文综述了柔性薄膜太阳能电池的研究现状、发展趋势及其应用前景,分别就柔性衬底材料、硅系薄膜太阳能电池、铜铟镓硒(CIGS)薄膜太阳能电池、铜锌锡硫(CZTS)、染料敏化太阳能电池(DSSCs)、有机太阳能电池和新型纳米材料太阳能电池进行了介绍。卷对卷以及喷墨印刷法等非真空大面积制备柔性薄膜太阳能电池的工艺,为低成本生产此类太阳能电池打开了希望之门,最后对其发展遇到的挑战进行了展望。 关键词:柔性薄膜;太阳能电池;卷对卷印刷;喷墨印刷;柔性衬底 中图分类号:TB34文献标识码:A 文章编号: 网络出版时间:网络出版地址: Development of flexible thin film solar cells LI Rongrong1, ZHAO Jinjin1, SI Huayan1, BIAN Zhijian2, MA Huidong2, DING Zhanlai1,3 (1 School of Materials Science and Engineering, Shijiazhuang Tiedao University, ShiJiaZhuang 050043,China; 2 Jinglong Industry and Commerce Group Co.Ltd. , XingTai 055550, China 3 The Key Laboratory of Transportation Engineering Materials, Shijiazhuang Tiedao University, ShiJiaZhuang 050043, China ) Abstract: Recent development and application of the flexible thin film solar cells were reviewed. The flexible substrate materials, silicon thin film photovoltaics, copper–indium–gallium–selenium(CIGS) chalcogenides thin film solar cells, Cu2ZnSnS4 (CZTS)-based thin film solar cells, dye sensitized solar cells, polymer solar cells and nanomaterial solar cells were introduced, respectively. The roll-to-roll process and the ink-jet printing technology to product the flexible thin film solar cell in non-vacuum route could be promising for a large scale production of these solar cells at low costs. In addition, future studies and challenges of the production of flexible thin film solar cells are also prospected. Key words: flexible thin film; solar cell; roll to roll process; ink-jet printing; flexible substrate 能源与环境问题是人类社会发展必须面对的问题,煤炭、石油、天然气等化石能源在地球上的储量是有限度的,迟早有耗尽的时候。而太阳能是取之不竭用之不尽的。基于半导体光伏效应原理的太阳能电池是太阳能利用的有效方式之一。目前,以玻璃硬性材料为衬底的单晶硅与多晶硅太阳能电池占生产量的绝大多数,但是其本身制造过程的高能耗与高真空条件使其发电成本较高,而且其容易破碎、不可弯曲等特点限制了某些应用场合,光 收稿日期:修订日期: 基金项目:河北省高校重点学科建设项目资助(HBJG2013-4) 第一作者:李荣荣(1988—),女,硕士研究生。 通信作者:丁占来(1964—),男,硕士,教授。 电转化效率也有待进一步提高[1]。薄膜太阳能电池属于新一代太阳能电池,按照衬底的种类可分为硬衬底和柔性衬底两大类。所谓柔性衬底薄膜太阳能电池是指在柔性材料(如不锈钢、聚酯膜等)上制作的薄膜太阳能电池,与晶体硅片太阳能电池和硬衬底(如玻璃)薄膜太阳能电池相比,柔性薄膜太阳能电池具有可弯曲、不易破碎、质量轻、应用广泛等特点,新的无机和有机太阳能材料的研究,新型太阳能电池结构的探索,卷对卷(roll-to-roll)的 Received date:Revised date:. First author:LI Rongrong(1988–), fe male,Master candidate. E-mail:rr20081988@https://www.doczj.com/doc/a84151445.html, Correspondent author:DING Zhanlai(1964–),male,Master,Professor. E-mail: zl ding@https://www.doczj.com/doc/a84151445.html, 印刷生产工艺以及喷墨印刷(Ink-Jet Printing)为柔

太阳能级硅片要求

二极管级3寸单晶片技术参数二极管级4寸单晶片技术参数 1. 外形尺寸 1.1 硅片直径 :76.2 土 0.4mm 1.2 弯曲度: ≤0.035mm 1.3 总厚度变化:≤0.03 mm 1.4 垂直度:片内矩形对角线相等,公差土0.5mm 2. 技术参数 2.1 导电参数 :N 型 2.2 电阻率 :5-6OΩ .cm或按客户要求加工 2.3 少子寿命 : ≥100 μ s 2.4 氧含量: <1.0 ×1018atoms/cm3 2.5 碳含量: <5.0 × 1016atoms/cm3 2.6 晶向 : 〈111〉± 1.50 2.7 位错密度: ≤3000个 /cm3 2.8 厚度:280-305μm 1. 外形尺寸 1.1 硅片直径: 100±0.5mm 1.2 总厚度变化(TTV): 0.005μm 1.3 弯曲度: ≤0.030mm 2.技术参数 2.1 电阻率: 5-60Ω.cm或按客户要求加工 2.2 导电类型: N型 2.3 少子寿命: ≥100μs 2.4 氧含量: <1×1018atoms/ cm3 2.5 碳含量: <5×1016atoms/ cm3 2.6 晶向: (111)±1.5° 太阳能电池用6寸单晶片技术参数太阳能电池用8寸单晶片技术参数 1. 外形尺寸 1. 1 硅片直径: 150±0.4mm 1. 2 硅片宽度: 125±0.4mm 1. 3 硅片厚度: 200/190±20μm 1. 4 总厚度变化(TTV): 0.03mm 1. 5 垂直度: 片内矩形对角线相等,公差±0.5mm 1. 6 弯曲度: ≤0.035mm 2. 技术参数 2.1 电阻率: 0.5-3Ω.cm 2.2 导电类型: P型 2.3 少子寿命: ≥10μs 2.4 氧含量: <1×1018atoms/ cm3 2.5 碳含量: <10×1016atoms/ cm3 2.6 晶向: (100)±2.0° 2.7 位错密度:≤ 1×103个/cm3 1. 外形尺寸 1. 1 硅片直径: 195/200/205± 2.0 mm 1. 2 硅片宽度: 156±0.4mm 1. 3 硅片厚度: 200/190±10μm 1. 4 总厚度变化(TTV): ≤40μm 1. 5 垂直度: 90°±3° 1. 6 弯曲度: ≤0.035mm 2. 技术参数 2.1 电阻率: 0.5-3/3-6Ω.cm 2.2 导电类型: P型 2.3 少子寿命: ≥10μs 2.4 氧含量: <1×1018atoms/ cm3 2.5 碳含量: <10×1016atoms/ cm3 2.6 晶向: (100)±2° 2.7 位错密度: ≤1×103个/cm3

太阳能电池介绍

太阳能电池简介 一、太阳能电池及发电原理 太阳能电池是利用太阳光和材料相互作用直接产生电能的器件。能产生光伏效应的材料有许多种,如:硅系材料(单晶硅、多晶硅、非晶硅),化合物半导体(砷化镓、硒铟铜)等,它们的发电原理基本相同。 发电原理:太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p 区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。 二、太阳能电池材料发展历程 太阳能电池材料的发展历程可以分为以下三个阶段。 第一代太阳能电池:包括单晶硅太阳电池和多晶硅太阳电池,从1954年单晶硅太阳电池发明开始到现在,硅材料仍然是目前太阳能电池的主要材料,约占整个太阳能电池产量的90%。 第二化太阳能电池:是基于薄膜材料的太阳能电池,薄膜技术所需的材料较晶体硅太阳电池少得多,且易于实现大面积电池的生产,是一种有效降低成本的方法,薄膜电池主要有非晶硅薄膜电池、多晶硅薄膜电池、碲化镉及铜铟硒薄膜电池。 第三代太阳能电池:具有薄膜化、转换效率高、原料

丰富且无毒的特性。目前还在进行概念和简单的试验研究,已经提出的第三代太阳能电池主要有叠层太阳电池、多带隙太阳电池和热载流太阳电池等。 三、太阳能电池主要分类 目前太阳能电池主要包括晶体硅电池和薄膜电池两种,它们各自的特点决定了它们在不同应用中拥有不可替代的地位。晶硅电池依旧是太阳能电池的主流,主要应用于太阳能屋顶电站、商业电站和高土地成本的城市电站,是目前技术最成熟、应用最广泛的太阳能光伏产品,占据世界光伏市场80%以上的份额,未来10年晶体硅太阳能电池所占份额尽管会因薄膜太阳能电池的发展等原因而下降,但其主导地位仍不会根本改变;薄膜电池虽然生产材料价格低廉,但一条先进的25MW生产线制造设备动辄花费近10亿元人民币,几乎20倍于同等规模晶硅电池制造设备的投资,这在一定程度上限制了薄膜电池生产的扩大。如果能够解决转换效率不高、制备薄膜电池所用设备价格昂贵等问题,薄膜电池会有巨大的发展空间。 1、单晶硅太阳能电池 是以高纯的单晶硅棒为原料的太阳能电池,是当前开发得最快的一种太阳能电池。它的构造和生产工艺已定型,产品已广泛用于空间和地面。制造工艺:将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过抛磨、清洗等工序,制成

太阳能级硅中轻质元素(C,N,O)研究进展

第45卷2017年2月 第2期 第112-118页 材料工程 Journal of Materials Engineering Vol.45 Feb.2017 No.2 pp.112-118 太阳能级硅中轻质元素(C,N,O)研究进展Research Progress on Light Elements(C,N,O) in Solar-g rade Silicon 谭毅1,2,秦世强1,2,石爽1,2,姜大川1,2,李鹏廷1,2,李佳艳1,2 (1大连理工大学材料科学与工程学院,辽宁大连116024; 2大连理工大学辽宁省太阳能光伏系统重点实验室,辽宁大连116024)T AN Yi1,2,QIN Shi-q iang1,2,S HI Shuang1,2,JIANG Da-chuan1,2,LI Peng-ting1,2,LI Jia-y an1,2 (1School of M aterials Science and Engineering,Dalian University of Technology,Dalian116024,Liaoning,China;2Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province,Dalian University of Technology,Dalian116024,Liaoning,China) 摘要:C,N,O等轻质元素的存在对太阳能级晶体硅材料的性能有着广泛影响,而硅材料作为太阳能电池的主要原材料,其纯度对电池的电学性能有着决定性作用。本文总结了晶体硅中C,N,O元素的存在形态、分布规律、形成机制及工艺控制等的研究进展,并对未来硅中轻质元素的研究进行了展望,使用各种提纯工艺的优势交叉互补来控制及去除硅中的杂质值得研究及关注,对硅中C,N,O元素的交互作用的深入研究也将会对硅材料质量的提高有着积极作用。 关键词:轻质元素;太阳能级硅;杂质 doi:10.11868/j.issn.1001-4381.2015.000700 中图分类号:T F131文献标识码:A文章编号:1001-4381(2017)02-0112-07 Abstract:T he presence of light elements like C,N,O has wide influence on the properties of solar-g rade silicon.Since silicon is the dominating raw material of solar cells,the purity of crystalline sili-con has significant influence on electrical properties of solar cells.In this paper,the research progress on carbon,nitrogen and oxygen on the presence,distribution,formation mechanism and process con-trol was summarized.An outlook for light elements research in silicon was also proposed,the combi-nation of different purification methods to control and eliminate impurities in silicon is worth paying attention to investigate,and the further research on the behavior of C,N,O in silicon can also im-p rove silicon quality. Keywords:light element;solar-g rade silicon;impurity 晶体硅作为太阳能电池材料目前已占到太阳能电池材料市场的80%以上。太阳能级硅材料的纯度要求为99.9999%(6N)。近年,冶金法作为制备太阳能级硅材料的有效方法之一,以其无污染、低危险系数、低成本的优势得到了广泛研究与发展。在冶金法制备太阳能级硅中,是由纯度为98%的冶金级硅提纯得到的。冶金级硅中的杂质主要分为三类:金属杂质、非金属杂质和轻质元素杂质。晶体硅中的轻质元素如C, N,O,其存在会形成如SiC,Si3N4,SiO2等沉淀,而且会与硅中缺陷、其他杂质相互作用,对电池性能产生诸多不利影响。国内外学者对硅中轻质元素的分布规律、夹杂形成机制、与缺陷的相互作用进行了广泛的研究,本文主要阐述了硅中C,N,O元素的存在形式、分布规律、形成机制以及对晶体硅太阳能电池的影响的研究进展,并介绍了控制轻质元素在硅中分布的各种工艺手段。 1硅中的碳杂质 晶体硅中的碳在硅中处于替代位,由于碳为四价元素,所以在硅中并不会影响载流子浓度,但由于C 原子半径小于硅原子半径,替位碳会使硅晶格收缩,从而引起晶格畸变,进而成为氧沉淀的有效成核中心。而存在于硅铸锭中的SiC属于硬质夹杂,导致在线切割过程中使硅片表面产生脊纹而造成线锯断裂、硅块报废、断线停机等损失。另外,Lotnyk等[1]讨论了微米甚至毫米级SiC纤维的存在会在太阳能电池中产生电阻并联,从而影响其转化效率。Bauer等[2]研究发现 万方数据

相关主题
文本预览
相关文档 最新文档