当前位置:文档之家› 立体几何(空间几何体的结构特征)

立体几何(空间几何体的结构特征)

立体几何(空间几何体的结构特征)
立体几何(空间几何体的结构特征)

立体几何

第一讲:空间几何体的结构特征一.基础知识

1.多面体的结构特征

2.旋转体的结构特征

3.三视图与直观图

直观图

斜二测画法:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中x ′轴、y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.

(2)原图形中平行于坐标轴的线段在直观图中仍平行于坐标轴,平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段在直观图中长度为原来的一半.

二.经典案例

案例一:直观图画法(斜二测画法) ①如图,直观图所表示的平面图形是( )

A .正三角形

B .锐角三角形

C .钝角三角形

D .直角三角形

解析 由直观图中,A ′C ′∥y ′轴,B ′C ′∥x ′轴,还原后AC ∥y 轴,BC ∥x 轴.

所以△ABC 是直角三角形.故选D.

②已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,

则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.

解析 如图所示,作出等腰梯形ABCD 的直观图.

因为OE =(2)2

-1=1,所以O ′E ′=12,E ′F =2

4,

则直观图A ′B ′C ′D ′的面积S ′=1+32×24=2

2.

案例二:三视图的识别

① (2018·全国Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,

则咬合时带卯眼的木构件的俯视图可以是()

解析由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.

②(2019·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱A1B1的中点,用过点A,C,E的平面截正

方体,则位于截面以下部分的几何体的侧视图为()

解析如图所示,取B1C1的中点F,连接EF,AC,AE,CF,则EF∥AC,平面ACFE即为平面ACE截正方体所得的截面,据此可得位于截面以下部分的几何体的侧视图如选项A所示.

③(2018·济南模拟)如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各

个面上的正投影可能是()

A.①②B.①④C.②③D.②④

解析P点在上下底面投影落在AC或A1C1上,所以△P AC在上底面或下底面的投影为①,

在前、后面以及左、右面的投影为④.

④在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),

(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()

A.①和②

B.③和①

C.④和③

D.④和②

解析在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④,俯视图为②,D正确.

案例三:三视图中的几何体识别

①某四棱锥的三视图如图所示,在此四棱锥的侧面中,

直角三角形的个数为()

A.1

B.2

C.3

D.4

解析在正方体中作出该几何体的直观图,记为四棱锥P-ABCD,

如图,由图可知在此四棱锥的侧面中,

直角三角形的个数为3,分别是△P AD,△PCD,△P AB.

②(2019·西安模拟)某几何体的三视图如图所示,那么这个几何体是()

A.三棱锥

B.四棱锥

C.四棱台

D.三棱台

③(2019·广州调研)某几何体的正视图和俯视图如图所示,在下列图形中,可能是该几何体侧视图的图

形是________(写出所有可能的序号).

解析如图a三棱锥C-ABD,正视图与俯视图符合题意,侧视图为①;

如图b四棱锥P-ABCD,正视图与俯视图符合题意,侧视图为②;

如图c三棱锥P-BCD,正视图与俯视图符合题意,侧视图为③.

案例四:三视图中的几何体的应用

①某几何体的三视图如图所示,则该几何体中最长棱的长度为()

A.3 3 B.2 6 C.21 D.25

解析由三视图得,该几何体为四棱锥P-ABCD,如图所示.

侧面P AB⊥底面ABCD,底面ABCD为矩形,过点P作PE⊥AB,垂足为点E,

则AE=1,BE=2,AD=2,PE=4,

则该几何体中最长的棱为PC=42+22+22=26,

故选B.

②某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯

视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()

A.10

B.12

C.14

D.16

解析 由三视图可画出几何体的直观图,该多面体中只有两个相同的梯形的面,

由于S 梯形=1

2×(2+4)×2=6,所以这些梯形的面积之和为S 全梯=6×2=12.

③如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为

A.8+3π

B.8+4π

C.8+5π

D.8+6π

解析 由题图可知,该几何体为半圆柱挖去半球体后的几何体,

其表面积为2×π2×4+π+2×4-π+4π

2=8+6π.

④(2019·浙江卷)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖

暅原理,利用该原理可以得到柱体的体积公式V

柱体

=Sh ,其中S 是柱体的底面积,h 是柱体的

高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )

A.158

B.162

C.182

D.324

解析 由三视图可知,该柱体是一个直五棱柱,如图,棱柱的高为6,底面可以看 作由两个直角梯形组合而成,

其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3. 则底面面积S =2+62×3+4+6

2×3=27. 因此,该柱体的体积V =27×6=162.

三.练习(课后作业)

1.如图,在一个正方体内放入两个半径不相等的球O1,O2,这两个球外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()

2.我国古代数学家刘徽在学术研究中,不迷信古人,坚持实事求是.他对《九章算术》中“开立圆术”给出的公式产生质疑,为了证实自己的猜测,他引入了一种新的几何体“牟合方盖”:以正方体相邻的两个侧面为底做两次内切圆柱切割,然后剔除外部,剩下的内核部分.如果“牟合方盖”的正视图和侧视图都是圆,则其俯视图的形状为()

3.某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是()

A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分

4..如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.

5.如上右图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()

A.62

B.42

C.6

D.4

6.(2015·全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()

立体几何复习知识点汇总(全)

立体几何知识点汇总(全) 1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段) ⑦b a,是夹在两平行平面间的线段,若 a,的位置关系为相交或平行或异面. a=,则b b ⑧异面直线判定定理:过平面外一点与平 面内一点的直线和平面内不经过该点的直线是

异面直线.(不在任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (直线与直线所成角]90,0[??∈θ)(向量与向量所成角])180,0[οο∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能 叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直. (1). 空间直线与平面位置分三种:相交、平行、在平面内. (2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) (3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线

立体几何初步空间几何体

立体几何初步---空间几何体 1、空间几何体的结构---柱、锥、台、球的结构特征 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱。 不在同一个面上的两个顶点的连线叫做棱柱的对角线 两个互相平行的面叫做棱柱的底 其余各面叫做棱柱的侧面 侧面与底面的公共顶点叫做棱柱的顶点 两个侧面的公共边叫做棱柱的侧棱 两个面的公共边叫做棱柱的棱 棱柱的性质及几何特征: 侧棱都相等,侧面都是平行四边形。 直棱柱的各个侧面都是矩形; 正棱柱的各个侧面都是全等的矩形。 两个底面与平行于底面的平面的截面是全等的多边形。 过不相邻的两条侧棱的截面是平行四边形。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 按侧棱是否和底面垂直分类:斜棱柱,直棱柱。直棱柱又分为正棱柱与其它直棱柱。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。 如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做正棱锥。 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 性质: Ⅰ、正棱锥的性质 (1)各侧棱相等,各侧面都是全等的等腰三角形。 (2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在 底面上的射影也组成一个直角三角形。 (3)顶点在底面正多边形的射影是底面的中心

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

理科数学2010-2019高考真题分类训练专题八立体几何第二十二讲空间几何体的三视图、表面积和体积答案

专题八 立体几何初步 第二十二讲 空间几何体的三视图、表面积和体积 答案部分 2019年 1.解析 该模型为长方体1111ABCD A B C D -,挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,6cm AB BC ==, 14cm AA =, 所以该模型体积为: 1111311 664(46432)314412132(cm )32 ABCD A B C D O EFGH V V ---=??-??-????=-=, 3D 打印所用原料密度因为为30.9g /cm ,不考虑打印损耗, 所以制作该模型所需原料的质量为:1320.9118.8(g)?=. 2.解析 因为长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点, 所以11111120ABCD A B C D V AB BC DD -=??=,所以三棱锥E BCD -的体积: 111332E BCD BCD V S CE BC DC CE -=??=????=V 11 1012 AB BC DD ???=. 3.解析 由题可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得,正四棱锥的高为2. 因为圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,则圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于 1 2 ,由相似比可得圆柱的高为正四棱锥高的一半,为1. 所以该圆柱的体积为2 1124V Sh π?? ==π?= ??? . 4.解析:由PA PB PC ==及ABC △是边长为2的正三角形可知,三棱锥P ABC -为正三棱锥,

空间几何体的结构特征及表面积与体积

空间几何体的结构特征及表面积与体积 A级——夯基保分练 1.下列说法中正确的是() A.各个面都是三角形的几何体是三棱锥 B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥 D.圆锥的顶点与底面圆周上的任一点的连线都是母线 解析:选D当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,故B错误;由几何图形知,若以正六边形为底面,且侧棱长相等正六棱锥棱长必然要大于底面边长,故C错误.选D. 2.如图是水平放置的某个三角形的直观图,D′是△A′B′C′中 B′C′边的中点且A′D′∥y′轴,A′B′,A′D′,A′C′三条线段 对应原图形中的线段AB,AD,AC,那么() A.最长的是AB,最短的是AC B.最长的是AC,最短的是AB C.最长的是AB,最短的是AD D.最长的是AD,最短的是AC 解析:选C由题中的直观图可知,A′D′∥y′轴,B′C′∥x′轴,根据斜二测画法的规则可知,在原图形中AD∥y轴,BC∥x轴,又因为D′为B′C′的中点,所以△ABC 为等腰三角形,且AD为底边BC上的高,则有AB=AC>AD成立. 3.(2019·吉林调研)已知圆锥的高为3,底面半径长为4.若一球的表面积与此圆锥的侧面积相等,则该球的半径长为() A.5 B. 5 C.9 D.3 解析:选B∵圆锥的底面半径R=4,高h=3,∴圆锥的母线l=5,∴圆锥的侧面积S=πRl=20π.设球的半径为r,则4πr2=20π,∴r= 5.故选B. 4.(2020·山东省实验中学模拟)我国古代《九章算术》里,记载了一个 “商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高 三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示), 下底宽2丈,长3丈,上底宽3丈,长4丈,高3丈.问它的体积是多少? 该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结 1、 多面体(棱柱、棱锥)的结构特征 (1)棱柱: ①定义:有两个面互相平行,其余各面都是 四边形,并且每相邻两个四边形的 公共边都互相平行,由这些面所围 成的几何体叫做棱柱。 棱柱斜棱柱直棱柱正棱柱; 四棱柱平行六面体直平行六面体 长方体正底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是正多边形 侧棱垂直于底面 侧棱不垂直于底面

棱长都相等 四棱柱正方体。 ②性质:Ⅰ、侧面都是平行四边形;Ⅱ、两底面是全等多边形; Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形; Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。 (2)棱锥: ①定义:有一个面是多边形,其余各面是有 一个公共顶点的三角形,由这些面 围成的几何体叫做棱锥; 正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质: Ⅰ、平行于底面的截面和底面相似, 截面的边长和底面的对应边边长的比 等于截得的棱锥的高与原棱锥的高的 比; 它们面积的比等于截得的棱锥的高与 原棱锥的高的平方比;

截得的棱锥的体积与原棱锥的体积的 比等于截得的棱锥的高与原棱锥的高 的立方比; Ⅱ、正棱锥性质:各侧面都是全等的等腰三 角形;通过四个直角三角形POH Rt ?,POB Rt ?, PBH Rt ?,BOH Rt ?实现边,高,斜高间的换算 2、 旋转体(圆柱、圆锥、球)的结构特征 A B C D O H P

(2)性质: ①任意截面是圆面(经过球心的平面,截得 的圆叫大圆,不经 过球心的平面截得 的圆叫 小圆) ②球心和截面圆心的连线垂直于截面,并且 2d 2 =,其中R为球半径,r为截 r- R 面半径,d为球心的到截面的距离。 3、柱体、锥体、球体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。

空间立体几何归纳

空间立体几何归纳一、考点分析 基本图形 1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ”斜棱柱 ①棱柱棱垂直于底面正棱柱★ ---------- 、直棱柱\ 洪他棱柱III ②四棱柱I底面为平行四边形平行六面体I 侧棱垂直于底面I直平行六面体底面为矩形 正四棱柱 长方体底面为正方形侧棱与底面边长相等.正方体

2.棱锥 棱锥一一有一个面是多边形, 其余各面是有一个公共顶点的三角形, 由这些面所围成的几何 体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心, 这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★②r 二?、R 2 -d 2 (其中,球心到截面的距离为 注:球的有关问题转化为圆的问题解决 d 、球的半径为 R 、截面的半径为r ) ★球与多面体的组合体: 球与正四面体,球与长 方体,球与正方体等的内接与外切 轴 0'1 B A

平行垂直基础知识网络★★★ 平行与垂直关系可互相转化 异面直线所成的角,线面角,二面角的求法★★★ 1求异面直线所成的角 〔三[0 ,90 1: 解题步骤:一找(作):利用平移法找出异面直线所成的角; (1)可固定一条直线平移 另一条与其相交;(2 )可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 证:证明所找(作)的角就是异面直线所成的角(或其补角) 。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角; 2求直线与平面所成的角 v 0 ,90 1:关键找“两足”:垂足与斜足 解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角 (注意三垂线定理的应用) 二证:证明所找(作)的角就是直线与平面所成的角(或其补角) (常需证明线面垂直); 计算:常通过解直角三角形,求出线面角。 3求二面角的平面角 "〔0,二丨 解题步骤:一找: 根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角 (常用定义法,三垂线法,垂面法);三计算: 通过解三角形,求出二面角的平面角。 平行关系 垂直关系 平面几何知识 平面几何知识 * 线线平行 线线垂直 判定推论 ? 线面垂直 ■ ? ----- 面面垂直 1. a | ,b . :? = a 〃 b 2. a 丨 *,a 〃b= b _ :? 3. a |「,,a . - =■ :- // - 4. :? 〃 :, a . := a _ : 5. 】// :, __' : __ ' 判定 判定 线面平行 面面平行 判 义 质

空间几何体的结构特征测试题

第一章空间几何体的结构特征测试题 001 一、选择题: 1.有一个几何体的三视图如下图所示,这个几何体应是一个( A ) A.棱台B.棱锥C.棱柱D 答 案: A 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台. 2.棱长都是1的三棱锥的表面积为(A ) A.B.C.D. 答案:A 因为四个面是全等的正三角形,则S 表面积 =4S 底面积44 =?=. 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( B ) A.25πB.50πC.125πD.都不对 答案:B 长方体的对角线是球的直径, 4.底面是菱形的棱柱,其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( D ) A.130 B.140 C.150 D.160 答案:D 设底面边长是a,底面的两条对角线分别为 12 l l ,,而222222 12 15595 l l =-=- ,, 而222 12 4 l l a +=,即22222 1559548485160 a a S ch -+-====??= ,,. 5.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(D )A.9πB.10π C.11πD.12π 答案:D 解析:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面积为22 411221312 Sππππ =?+??+??=. 002 6.下列几何体各自的三视图中,有且仅有两个视图相同的是(D )主视图左视图俯视图 俯视图正(主)视图侧(左)视图

A .①② B .①③ C .①④ D .②④ 答案:D 解析:从选项看只要判断正方体的三视图都相同就可以选出正确答案. 003 二、填空题 7.若三个球的表面积之比是1︰2︰3 ,则它们的体积之比是1:. 答案:1: 333333123123123:: ::::1::1:r r r V V V r r r ====. 004 8.设某几何体的三视图如下(尺寸的长度单位为m ),则该几何体的体积为 3 m 3. 解析:这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3, 1 2436V =???. 005 9.若某几何体的三视 cm )如图所示,则此几何体的 体积是 18 cm 3. 答案:18 解析:该几何体是由二个长方体组成,下面体积为1339??=,上面的长方体体积为 3319??=,因此其几何体的体积为18. 006 10.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 24 . 答案:24 正方体的体对角线就是球的直径 解析:由 3 43 R π=得R ,2R =,所以2a =,表面积为2624a =. 007 三、解答题: 11.长方体的全面积为11,所有棱长之和之和为24,求长方体的对角线长; 解:设长方体同一顶点出发的三条棱长分别为a 、b 、c ,则 所以,对角线长5)(2)(2222=++-++=++=ca bc ab c b a c b a l .

52知识讲解_空间几何体结构及其三视图(提高)

空间几何体结构及其三视图 编稿:孙永钊审稿: 【考纲要求】 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图. (3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式. (4)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 【知识网络】 【考点梳理】 考点一、空间几何体的结构及其三视图和直观图 1、多面体的结构特征 (1)棱柱(以三棱柱为例) 如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与 ΔA1B1C1的关系是全等。 各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C。 (2)棱锥(以四棱锥为例) 如图:一个面是四边形,四个侧面是有一个公共顶点的三 角形。

(3)棱台 棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台。 2、旋转体的结构特征 旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴。 3、空间几何体的三视图 空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图。 4、空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,其规则是: (1)原图形中x轴、y轴、z轴两两垂直,直观图中,x’轴、y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直; (2)原图形中平行于坐标轴的线段,直观图中仍平行。平行于x轴和z轴的线段长度在直观图不变,平行于y轴的线段长度在直观图中减半。 5、平行投影与中心投影 平行投影的投影线互相平行,而中心投影的投影线相交于一点。 要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形。 考点二、空间几何体的表面积和体积 1、旋转体的表面积 名称图形表面积 圆柱S=2πr(r+l) 圆锥S=πr(r+l)

高考立体几何知识点总结(详细)

收集整理:宋氏资料 2016-1-1 2016高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的 面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类 棱柱 四棱柱平行六面体 直平行 六面体长方体 正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c·h+ 2S 底 V 棱柱 = S 底 ·h? 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱

所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 对棱间的距离为 a 2 (正方体的边长) 正四面体的高 a 6(正方体体对角线l 3 2 =) 正四面体的体积为 32a (正方体小三棱锥正方体V V V 3 1 4=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2 1 61= ) 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 A B C D P O H

空间立体几何高考知识点总结与经典题目

空间立体几何 知识点归纳: 1. 空间几何体的类型 (1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。 (2)旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。 如圆柱、圆锥、圆台。 2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。正棱柱:底面多边形是正多边形的直棱柱。 正棱锥:底面是正多边形且所有侧棱相等的棱锥。 正四面体:所有棱都相等的四棱锥。 3. 空间几何体的表面积公式 棱柱、棱锥的表面积:各个面面积之和 _ 2 圆柱的表面积:S =2 rl 2 r2圆锥的表面积:S =理「I ?二r 2 2 圆台的表面积:S =理rl 7 r?二RI ?二R 球的表面积:s= 4 R2 4 ?空间几何体的体积公式 1 柱体的体积:V = S底 h 锥体的体积:v = - S底h 3底 1 ---------- 、, 4 3 台体的体积:V = —( S上?S上S T S下)h 球体的体积:V R 3 '3 5.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 画三视图的原则: 长对正、宽相等、高平齐。即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。 6 .空间中点、直线、平面之间的位置关系 (1) 直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。 (3)平面与平面的位置关系:平行;相交。 7. 空间中点、直线、平面的位置关系的判断 (1)线线平行的判断: ①平行公理:平行于同一直线的两直线平行。 ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相 交,那么这条直线和交线平行。 ③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ④线面垂直的性质定理:垂直于同一平面的两直线平行。 (2)线线垂直的判断: ①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 ②线线垂直的定义:若两直线所成角为,则两直线垂直 ③一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ①线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平 面平行。 ②面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ①线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这 个平面。 ②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ④如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个 (5)面面平行的判断:

(完整版)立体几何体知识点归纳及基础练习.doc

高一数学总复习学案空间几何体 (一)空间几何体的结构特征 ( 1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称 为旋转体的轴。 ( 2)柱,锥,台,球的结构特征 1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱。 1.2 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.1 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 2.2 圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆 锥。 3.1 棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2 圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 4.1 球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图 1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三 视图的原则:长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系x 'o ' y ' 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴 (或在 x 轴上)的线段保持长度不变,平行于y 轴(或在 y 轴上)的线段长度减半。重点记忆:直观图2 面积 = 4 原图形面积 (三 )空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积:各个面面积之和 ②圆柱的表面积④圆台的表面积 S 2 rl 2 r 2 ③圆锥的表面积 S rl r 2 S rl r 2 Rl R2 ⑤球的表面积 S 4 R2 ⑥扇形的面积公式 S扇形n R2 1 lr 360 2 (其中 l 表示弧长,r表示半径) 2、空间几何体的体积 ①柱体的体积V S底h②锥体的体积V 1 S底h 3 1 S上 S下S下 ) h ④球体的体积V 4 3 ③台体的体积V(S上 3 R 3

§8.1 空间几何体的结构及其三视图和直观图

§8.1空间几何体的结构及其三视图和直观 图 1.多面体的结构特征 (1)棱柱的上下底面________,侧棱都________且____________,上底面和下底面是 ________的多边形. (2)棱锥的底面是任意多边形,侧面是有一个____________的三角形. (3)棱台可由________________________的平面截棱锥得到,其上下底面的两个多边 形________. 2.旋转体的结构特征 (1)圆柱可以由矩形绕其________________旋转得到. (2)圆锥可以由直角三角形绕其________________________________旋转得到. (3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得 到,也可由______________________的平面截圆锥得到. (4)球可以由半圆或圆绕其________旋转得到. 3.空间几何体的三视图 空间几何体的三视图是用__________得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是____________的,三视图包括____________、__________、________. 4.空间几何体的直观图 画空间几何体的直观图常用________画法,基本步骤是: (1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画

成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=__________. (2)已知图形中平行于x轴、y轴的线段,在直观图中分别平行于____________. (3)已知图形中平行于x轴的线段,在直观图中长度____________,平行于y轴的线段,长度变为______________. (4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度________. [难点正本疑点清源] 1.画空间几何体的三视图的两个步骤 第一步,确定三个视图的形状;第二步,将这三个视图摆放在平面上.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”. 2.三视图与空间几何体中的几何量的关系 空间几何体的数量关系也体现在三视图中,正视图和侧视图的“高平齐”,正视图和俯视图的“长对正”,侧视图和俯视图的“宽相等”.其中,正视图、侧视图的高就是空间几何体的高,正视图、俯视图中的长就是空间几何体的最大长度,侧视图、俯视图中的宽就是空间几何体的最大宽度.要尽量按照这个规则画空间几何体的三视图. 1.利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号) ①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观 图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形. 2.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角) 是________. 3.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号). ①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥; ⑥圆柱. 4.以下命题: ①直角三角形绕一边所在直线旋转得到的旋转体是圆锥; ②夹在圆柱的两个平行截面间的几何体还是圆柱; ③圆锥截去一个小圆锥后剩余部分是圆台; ④棱锥截去一个小棱锥后剩余部分是棱台. 其中正确的命题序号是________.

高中文科数学立体几何知识点总结

γm βα l l α β立体几何知识点整理(文科) 一. 直线和平面的三种位置关 系: 1. 线面平行 α l 符号表示: 2. 线面相交 α A l 符号表示: 3. 线在面内 α l 符号表示: 二. 平行关系: 1. 线线平行: 方法一:用线面平行实 现。 m l m l l ////??? ? ??=??βαβ α 方法二:用面面平行实现。 m l m l ////??? ? ?? =?=?βγαγβα 方法三:用线面垂直实现。 若αα⊥⊥m l ,,则m l //。 方法四:用向量方法: 若向量l 和向量m 共线且l 、m 不重合,则 m l //。 2. 线面平行: 方法一:用线线平行实现。 ααα////l l m m l ??? ? ?? ?? 方 法二:用面面平行实现。 αββα////l l ?? ?? ? 方法三:用平面法向量实现。 若n 为平面α的一个法向量, l n ⊥且α?l ,则α//l 。 3. 面面平行: 方法一:用线线平行实现。 β ααβ//',',' //'//????? ??? ??且相交且相交m l m l m m l l 方法二:用线面平行实现。 βαβαα //,////??? ? ?? ?且相交m l m l m l α n α l m'l'l α βm m β α l l m β α

三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则m l ⊥。 三. 夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 2 22-+=θ (计算结果可能是其补角) 方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): AC AB AC AB ??= θcos (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 A B C αl l β α m l β α m α l θ c b a A B C θn A O θ P αl A O P α

高中数学空间几何体知识点总结

高中数学必修2知识点总结01 空间几何体几何学是研究现实世界中物体的形状、大小与位置关系的数学学科,而空间几何体是几何学的重要组成部分,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用。教材要求:从空间几何体的整体观察入手,研究空间几何体的结构特征、三视图和直观图,了解简单几何体的表面积与体积的计算方法。 一、空间几何体的结构特征 课标要求: 1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构; 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧法画出它们的直观图; 3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式; 要点精讲: 1.柱、锥、台、球的结构特征 由若干个平面多边形围成的几何体称之为多面体。围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。 (1)柱 棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱…… 注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:

立体几何之空间夹角

第26练“空间角”攻略 [题型分析·高考展望]空间角包括异面直线所成得角,线面角以及二面角,在高考中频繁出现,也就是高考立体几何题目中得难点所在.掌握好本节内容,首先要理解这些角得概念,其次要弄清这些角得范围,最后再求解这些角.在未来得高考中,空间角将就是高考考查得重点,借助向量求空间角,将就是解决这类题目得主要方法. 体验高考 1.(2015·浙江)如图,已知△ABC,D就是AB得中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′—CD—B得平面角为α,则() A.∠A′DB≤α B.∠A′DB≥α C.∠A′CB≤α D.∠A′CB≥α 2.(2016·课标全国乙)平面α过正方体ABCD—A1B1C1D1得顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角得正弦值为() A、B、\f(2) 2 C、 3 3D、 3.(2016·课标全国丙)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC得中点. (1)证明MN∥平面PAB; (2)求直线AN与平面PMN所成角得正弦值. 高考必会题型 题型一异面直线所成得角 例1在棱长为a得正方体ABCD-A1B1C1D1中,求异面直线BA1与AC所成得角. 变式训练1(2015·浙江)如图,三棱锥A—BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别就是AD,BC得中点,则异面直线AN,CM所成得角得余弦值就是________. 题型二直线与平面所成得角 例2 如图,已知四棱锥P-ABCD得底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH就是四棱锥得高,E为AD得中点.(1)证明:PE⊥BC; (2)若∠APB=∠ADB=60°,求直线P A与平面PEH所成角得正弦值. 变式训练2 如图,平面ABDE⊥平面ABC,△ABC就是等腰直角三角形,AB=BC=4,四边形ABDE就是直角梯形,BD∥AE,BD⊥BA,BD=错误!AE=2,点O、M分别为CE、AB得中点. (1)求证:OD∥平面ABC;(2)求直线CD与平面ODM所成角得正弦值;

空间立体几何知识点

必修二空间几何体 一、空间几何体结构 1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。 2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。(图如下) 底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱柱。侧面:棱柱中除底面的各个面. 侧棱:相邻侧面的公共边叫做棱柱的侧棱。 顶点:侧面与底面的公共顶点叫做棱柱的顶点。 棱柱的表示:用表示底面的各顶点的字母表示。如:棱柱ABCDEF-A’B’C’D’E’F’ 3.棱锥的结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥. (图如下) 底面:棱锥中的多边形面叫做棱锥的底面或底。 侧面:有公共顶点的各个三角形面叫做棱锥的侧面 顶点:各个侧面的公共顶点叫做棱锥的顶点。 侧棱:相邻侧面的公共边叫做棱锥的侧棱。 棱锥可以表示为:棱锥S-ABCD 底面是三角形,四边形,五边形----的棱锥分别叫三棱锥,四棱锥,五棱锥--- 4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱的轴:旋转轴叫做圆柱的轴。 圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。 圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。 圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱用表示它的轴的字母表示.如:圆柱O’O 注:棱柱与圆柱统称为柱体 5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。 轴:作为旋转轴的直角边叫做圆锥的轴。 底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。 侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。 顶点:作为旋转轴的直角边与斜边的交点 母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。 圆锥可以用它的轴来表示。如:圆锥SO 注:棱锥与圆锥统称为锥体 6.棱台和圆台的结构特征 (1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台. 下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。 侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。 顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

相关主题
文本预览
相关文档 最新文档