当前位置:文档之家› 基于PLC的自动轧钢机控制

基于PLC的自动轧钢机控制

基于PLC的自动轧钢机控制
基于PLC的自动轧钢机控制

本科生毕业设计说明书(毕业论文)

题目:基于PLC的自动轧钢机控制

学生姓名:

学号:

专业:电气工程及其自动化

班级:09电气1班

指导教师:

基于PLC的自动轧钢机控制

摘要

随着社会的不断进步,钢材成为为社会建设的重要材料,其生产技术也发生了很大的变化。从原来的很多工人操作单轧机生产转变成了现在的钢材连轧生产线。

本文简单阐述了轧钢自动化的发展和现状及轧钢机的组成和分类,讲诉了轧钢原理和生产工艺流程,介绍了PLC的基本组成、特点以及工作原理,以及对基于西门子S7-200系列PLC控制的自动轧钢机系统进行了较为细致的设计,通过主回路,控制回路以及I/O分配的设计对PLC控制轧钢机的过程有了进一步认识,并对所用的设备进行了详细的选型,而且对该控制系统进行了软件编程。

关键词:可编程控制器;自动轧钢机;控制系统

PLC-Based Control of Automatic Rolling Machine

Abstract

As society progresses, the steel became important materials of the social construction,production technology has undergone great changes.Many workers operate from the original single-mill production transformed into steel rolling production line now.

This paper briefly describes the development and current status rolling automation,complaint about the principles and rolling production process. Describes the basic components of PLC, characteristics and working principle. Through the main circuit, control circuit and I / O assignment design of the PLC control rolling mill process has been further understanding, the equipment used and a detailed selection, and the control system software programming.

Keywords: PLC; automatic rolling mill; control system

目录

摘要.............................................................................................................................I Abstract ......................................................................................................................... II 第一章轧钢机.. (1)

1.1 自动轧钢机的目的及实际意义 (1)

1.2 轧钢自动化发展的历史和现状 (1)

1.3 轧钢机的定义及组成 (3)

1.3.1 定义 (3)

1.3.2 轧机的组成 (3)

1.4 轧钢机的分类 (3)

1.5 轧钢原理及工艺流程 (4)

1.5.1 轧钢原理 (4)

1.5.2 轧钢系统工艺流程 (4)

1.6 轧钢工艺的发展前景 (5)

第二章可编程控制器 (8)

2.1 PLC的由来和定义 (8)

2.1.1 PLC的由来 (8)

2.1.2 PLC的定义 (8)

2.2 可编程序控制器的发展历程及问题和解决对策 (8)

2.2.1 可编程序控制器的发展历程 (8)

2.2.2 我国可编程序控制器发展中的问题及对策 (10)

2.3 可编程控制器的基本构成 (11)

2.3.1 可编程控制器的硬件组成 (11)

2.3.2 可编程控制器的软件组成 (13)

2.4 可编程控制器的工作原理 (14)

2.4.1 PLC的扫描工作方式 (14)

2.4.2 PLC的工作过程 (14)

2.4.3 PLC对输入、输出的处理规则 (16)

2.5 可编程控制器系统与继电接触器系统工作原理的差别 (16)

2.6 西门子S7-200系列可编程控制器 (18)

2.6.1 S7—200系列的PLC的硬件资源 (18)

2.6.2 S7—200的扩展模块 (18)

第三章编程软件 (25)

3.1 STEP基本介绍 (25)

3.2 STEP7基本功能及组成 (25)

3.2.1 基本功能 (25)

3.2.2 界面组成 (25)

3.3 编辑器简介 (26)

第四章设计选型 (27)

4.1 电动机的选型 (27)

4.1.1 轧钢机主传动电机的选择 (27)

4.1.2 辊道电机的选择 (27)

4.1.3 压下电机的选择 (27)

4.1.4 冷却泵的选择 (27)

4.2 低压控制电器的选型 (28)

4.2.1 控制按钮的选择 (28)

4.2.2 刀开关的选择 (28)

4.2.3 接触器的选择 (29)

4.2.4 熔断器的选择 (30)

4.2.5 热继电器的选择 (31)

4.2.6 中间继电器的选择 (32)

4.3 变频器选型 (33)

4.3.1 MM440变频器 (33)

4.3.2 MM440变频器的特点 (34)

4.3.3 MM440变频器方框图和功能表 (35)

4.3.4 MM440参数设定 (37)

4.4 电抗器的选择 (38)

第五章总体设计 (40)

5.1 主回路设计 (40)

5.2 控制回路设计 (41)

5.3 CPU226原理图及I/O分配表 (42)

5.3.1 I/O地址分配表 (42)

5.3.2 CPU226接线原理图 (42)

5.4 程序 (44)

小结 (50)

参考文献 (51)

附录A (52)

致谢 (53)

第一章轧钢机

1.1 自动轧钢机的目的及实际意义

随着生产技术的不断发展,钢铁产品的应用也日益扩大,世界钢材料消耗量约占全部金属的95%以上,钢铁作为一种结构—功能材料具有不可替代的主导作用。轧钢机是实现钢铁轧制的设备。现代钢铁联合企业由炼铁、炼钢和轧钢三个主要生产系统所组成。轧钢生产属于技术含量最高的工序,用轧制方法生产钢材,具有生产率高,品种多,生产过程连续性强,易于实现高速化、大型化、连续化和自动化等优点,其中约90%的钢材都是通过轧制方法所生产的。自动轧钢机具有一机多能的特点,可在开坯的同时轧制小型的线材;减少了工人的劳动强度和力度,从而提高工作效率。

1.2 轧钢自动化发展的历史和现状

据说14世纪欧洲就有轧机,但也有记载称在1480年,意大利人达·芬奇设计出了轧机的草图。在1553年法国人布律列尔轧制出了金和银板材,用以制造钱币。接着,英国于1766年设计出了串行式小型轧机,到了19世纪中叶,第一台可逆式板材轧机在英国投产。1848年德国发明了万能式轧机,1853年美国也开始使用三辊式轧机,并采用蒸汽机传动的升降台实现了机械化生产。紧接着美国出现了劳特式轧机并于1859年制造了第一台连轧机]1[。

近十年来国内轧钢企业的规模和技术水平提升的很快,对于轧钢设备和生产过程自动化的控制也成为轧钢生产的主流。以前,整个轧钢电气控制系统是以传动控制为核心,用大量的继电器及逻辑组合来实现轧钢过程。到了20世纪60年代,计算机开始用于冷轧自动厚度控制,采用计算机的直接数字控制的模型优化控制也得到广泛应用。从此,计算机便成为了整个轧钢控制系统的核心,传动控制器作为其输出装置,检测仪表作为其输入装置,这就标志着现代轧钢自动化系统的开始。随着生产技术的发展,钢铁产品的应用也日益扩大,据统计,世界钢材料消耗量占全部金属的95%以上,因为钢铁作为结构—功能材料具有不可替代的主导作用。钢铁行业自动化技术经过多年的探索和发展,水平

显著提高,有的技术已经领先国外,有的也已达到了国际先进水平,特别是有的已经具有了自主知识产权,并形成了产品在行业内也已经进行推广应用。早期的自动控制系统是依靠简单的继电-接触器来实现的,其优点是:结构简单、价格低廉、抗干扰能力强,可以实现集中控制和远距离控制,但也有缺点;因为采用固定接线,所有通用性和灵活性差;又采用了触点的开关动作,工作频率较低,触点容易损坏,可靠性也差。随着自动轧钢机的出现,继电接触器控制逐渐被取代,自动轧钢机生产也已经向大型化、高速化、精密化、连续化方向发展。轧钢生产对自动化装备的要求要比其他生产工序高,自动化系统装备的水平对产品的质量影响也很大。因此,轧钢系统中所采用的自动化设备和系统比较多,各级自动化控制程度也比较高,是现代钢铁产业自动化技术应用最多的地方。轧钢生产属于技术含量特别高的工序,用轧制方法来生产钢材,具有生产效率高,产品种类多,生产过程连续性强,易于实现高速化、连续化和自动化,大约90%的钢材都是用轧制方法生产的]2][1[。

随着低价微型计算机的诞生,轧钢自动化开始快速的发展,特别是PLC和DCS的出现,使轧钢自动化系统得到迅速的发展和普及。我国大钢厂从70年代已经选用先进的连轧机,连轧机采用了一整套先进的自动化控制系统,全线生产过程和操作监控均有计算机来控制实施,轧件在连轧机上可以同时轧制,这大大提高了生产效率和生产质量。

随着我国轧制加工业的发展,我国轧制设备也经历了一个自主开发—引进—学习借鉴—国产化的一个往复循环过程。经过20多年的探索和创新,在90年代,轧钢自动化系统的开发主要是控制轧件的开发,硬件和系统是以进口的PLC为主。全国各钢铁公司大量引进现代化轧钢生产线、冷轧机、热轧机、棒材连轧、高速线材、型钢和钢管轧机等等。到了21世纪,我国轧钢自动化系统和技术开始高速发展和大规模推广应用。近年来,我国轧制加工设备市场出现了多样化的要求,正在逐步向高精化、宽幅化、高速化以及高技术和连续轧制的方向发展。目前,我国轧钢自动化系统和技术也已得到了广泛应用,据统计,重点钢铁企业轧钢自动化系统中基础自动化系统普及率约为99.67%,过程控制级普及率为68.76%。在轧钢自动化工程技术方面,我们已全面接近和大部分已达到国际先进水平,正在走向世界市场]3[。

1.3 轧钢机的定义及组成

1.3.1 定义

狭义定义:轧制钢材的机械设备。它使轧件在旋转的轧辊间产生塑性变形,轧出所需的断面形状和尺寸的钢材。即主要设备—主机列。

广义定义:用于轧制钢材生产工艺全部所需的主要设备和辅助设备的成套机组。包括轧制、翻钢、运输、冷却、剪切等设备。

1.3.2 轧机的组成

轧钢机主要包括工作机座及其传动装置和主电动机等。直接使轧件产生塑性变形的设备称为主要设备。它包括由轧辊、轴承、轧辊调整装置、导卫装置及机架等组成的工作机座;主联轴器、减速器、齿轮机座、万向或梅花接轴等组成的传动装置。

辅助设备是指主机列以外的各种设备,它用于完成一系列辅助工序。辅助设备种类很多,机械化程度越高,它占的比重越大。

1.4 轧钢机的分类

按结构分类:根据轧辊在机座中的布置方式分

1二辊式轧机该种轧机结构比较简单,工作可靠,由直流电动机来驱动,用于二辊可逆式初轧机,可将钢锭往复轧制成各种矩形坯。二辊可逆式轧机也可以用于轧制轨梁和中厚板。

2复二辊式轧机此轧机作用与三辊式基本相似,轧辊调整、孔型配置较方便,用于横列式中小型轧机。

3三辊式轧机其在同一机座上轧件可以两向轧制,轧机无需反转,由一台交流电动机经过减速器和齿轮座来驱动数台三辊式轧机,可实现轧件往复多道次轧制。它用于开坯和型钢的生产,具有设备简单、投资少的特点。轨梁轧机及大型轧机可以用直流电动机驱动,在生产中必要时可调速,来改善轧制条件。

4 特殊轧机它是根据不同产品设计的专用轧机,例如:钢球轧机、周断面

三辊斜轧机、轮箍轧机、车轮轧机等。

此外还有很多种轧机,在此就不一一列举。

1.5 轧钢原理及工艺流程

1.5.1 轧钢原理

轧钢就是用轧机对钢坯进行压力加工,把炼钢厂送过来的铸坯,先进入加热炉,达到一定的温度后出来经过初轧钢设备反复轧制后进入精轧钢机。轧钢属于金属压力加工,在热轧生产线上,轧坯加热变软,被辊道送人轧钢设备,最后轧成用户所要求的尺寸。轧机主要由几组轧辊构成,轧辊是一对转动方向相反的辊子,两个辊子之间形成一定形状的缝或孔,钢坯通过轧辊就能成为一定形状的钢材。

1.5.2 轧钢系统工艺流程

M5 M1

图1.1 模拟示意图

圆钢的轧制工艺流程:

原料(方坯有280mm*380mm、280mm*325mm、319*410;圆坯有φ350mm、φ300mm、φ270mm、φ210mm,φ110mm)——加热(加热炉)——开坯机轧制(得到进入连轧机需要的尺寸)——横移(通过拉钢机实现)——连轧(有3架轧机成一字排列,出来后就是需要得到的成品尺寸)——成品——横移——锯切——冷床——描号——搜集——打捆——过磅——入库(打标牌、贴标

签)——码垛——发车.

1.6 轧钢工艺的发展前景

目前,我国轧钢生产的钢材品种有很多,主要有薄钢板、钢带、无缝钢管、焊接钢管、铁道用钢、普通大中小型材、优质型材、冷弯型钢、线材、特厚钢板、中厚钢板等。轧钢生产的产品如果按钢材断面形状分,可分为:钢管、钢板和型钢。其中型钢是一种应用范围比较广泛的钢材,我国型钢产量约占钢材总产量的25%~30%。型钢按用途又可分为:普通型钢和专用型钢;若从断面形状分为异型断面型钢和简单断面型钢;从生产方式的角度来分,有焊接型钢、弯曲型钢和轧制型钢。板材和带材也是广泛应用的钢材,我国的板带材产量占钢材总产量的45%~55%。板带钢按应用领域分,有建筑板、船板、桥板、汽车板、电工钢板、机械用板等;按照轧制温度的不同分为热轧板带和冷轧板带;按钢板按厚度分为:中厚板、薄板和箔材。钢管的主要用途有建筑用管和石油管道等,我国钢管产量占钢材总产量的10%~15%,钢管的规格由外形尺寸及壁厚标称来决定。钢管从制造角度分为无缝钢管、螺旋钢管与直缝钢管、冷轧钢管等;若按断面形状又分为圆形管、异型钢管和变断面钢管。随着轧钢工艺技术的不断发展,钢材的生产范围将不断扩大,产品品种也会不断增多。近年来我国有许多有价值的钢板产量大幅度增长,其中冷轧硅钢片2003年已达89.6万吨,镀锡板在2002年也已经达到110万吨,管线钢、石油管、耐火钢板、冷轧不锈钢板产量也达到55万吨]5][4[。

随着我国钢铁工业结构调整步伐的加快,国际钢铁市场也竞争激烈,加上对世界环境要求,轧钢技术装备及技术轧制趋向高质量、高精度、短流程以及智能环保的方向发展。这些进步主要体现在生产工艺流程上,由于钢铁工业的高速发展也日益受到资源短缺和环境保护要求逐渐严格等多方面的制约,发展循环经济也就成为钢铁企业走可持续发展的必由之路。同时随着工业用户自身的自动化水平的提高,它们对钢材生产工艺流程优化和钢材质量要求越来越高。展望未来, 轧钢工艺和技术的发展主要体现在以下几方面:

1.轧制过程柔性化

板带热连轧生产中的压力调宽技术和板形控制技术的应用, 实现了板宽的

自由规程轧制。棒、线材生产的粗、中轧平辊轧辊技术的应用, 也实现了部分规格产品的自由轧制。冷弯和焊管机也可实现自由规格生产。这些新技术使轧制过程变的柔性化。

2.铸轧一体化

利用轧辊来进行钢材生产因为其过程连续、高效、可控而且便于计算机控制等,在今后相当长一段时间内,以辊轧为特点的连续轧钢技术仍将是钢铁工业钢材成型的主流技术但轧钢前后工序的衔接技术必将有长足的进步。在20世纪,由于连铸的应用和发展,已经逐步淘汰了初轧工序。而用连铸技术所生产的薄带钢直接进行冷轧,又使连铸与热轧工序合二为一。铸轧的一体化,将使轧制工艺流程更加紧凑。同时,低能耗、低成本的铸轧一体化,也是棒、线、型材生产发展的方向。

3.轧制过程清洁化

在热轧的过程中,钢的氧化不仅要消耗钢材与能源,同时也会带来环境的污染,并给深加工带来困难。因此,低氧化燃烧技术和低成本氢的应用都成为无氧化加热钢坯的基本技术。其中酸洗除鳞是冷轧在生产中的最大污染源, 新开发的无酸清洁型(AFC)除鳞技术, 可以使带钢表面全无氧化物,光滑并具有金属光泽。无氧化(或低氧化)和无酸除鳞(氧化铁皮)这两项被称为绿色工艺的新技术, 将使轧制过程清洁化。

4.高新技术的应用

20 世纪轧钢技术取得了重大进步的主要原因是信息技术的应用。其中板形自动控制, 自由规程轧制, 高精度、多参数在线综合测试等高新技术的应用使轧钢生产达到了全新水平。轧机的控制已开始由计算机模型控制转向了人工智能控制, 并且随着信息技术的发展, 将实现生产过程的最优化,降低成本。

5.钢材的延伸加工

在轧钢的生产过程中, 除应不断挖掘钢材的性能外, 还要不断的扩大对多种钢材的延伸加工,。如开发自润滑钢板来用于各种冲压件的生产;减少冲压厂润滑油的污染;开发建筑带肋钢筋焊网等, 把钢材材料的生产和服务延伸到各个钢材使用部门。随着工业的发展和轧钢技术的进步, 轧钢工艺的装备水平和自动控制水平不断提高, 老式轧机也不断被各种新型轧机所取代。按照我国走

新型工业化道路的要求, 轧钢技术发展的重点也转移到可持续发展上, 在保证满足环保要求的条件下, 达到钢材生产的高质量和低成本。

6实现无头轧制

在棒线材生产上也应该广泛推广高技术集成的半无头、无头轧制工艺技术,从而缩短工艺流程,实现真正意义上的轧钢一火成材,或零火成材,最大限度地节约能源和降低生产成本。无头轧制技术是轧钢技术最为理想的工艺形式,代表着当今轧钢的最高技术水平。无头轧制技术与传统轧制方法相比具有以下几个优点:(1)轧材全长以恒定速度轧制,减少甩尾和迭轧,降低了事故率,提高了轧制过程的稳定性,大大提高了轧机产能和设备利用率;(2)轧制过程中张力恒定,使轧材断面波动减少;轧材质量均匀一致,具有优良的工艺性能、表面质量和外形尺寸公差;(3)成品长度不受限制,可根据交货要求任意剪切长度,轧材成材率显著提高;(4)轧件咬人次数减少,对轧辊的冲击降低,有利于轧辊以及易损件寿命的提高,总体降低生产成本]4[。

第二章可编程控制器

2.1 PLC的由来和定义

2.1.1 PLC的由来

在PLC问世之前,工业控制领域中是继电器控制占主导地位。因为继电器控制系统有着十分明显的缺点:体积大、耗电多、可靠性差、运行速度慢、适应性差,尤其当生产工艺发生变化时,就必须重新设计,重新安装,造成时间和资金的严重浪费。为了改变这一现状,1968年美国最大的汽车制造商通用汽车公司(GM),为了适应汽车型号不断更新的需求,以在竞争激烈的汽车制造商中占优势,提出要研制一种新型的工业控制装置来取代继电器控制装置。1969年美国数字设备公司(DEC)研制出了世界上第一台PLC,并再生产中得到应用。从此,可编程序控制器这一新的控制技术迅速发展起来,而且,在工业发达国家发展很快。

2.1.2 PLC的定义

在PLC的发展过程中,美国电气制造商协会(NEMA)经过四年的调查工作,于1980年首先将其正式命名为PC(Programmable Controller)作了如下定义:“可编程序控制器是一种数字式的电子装置,它使用可编程序的储存器来存储指令。并实现逻辑运算、顺序控制、计数、计时和算术运算等功能,用来对各种机械或生产过程进行控制。

定义强调了可编程序控制器应直接应用于工业环境,它必须具有很强的抗干扰能力、广泛的适应能力和应用范围,这是区别于一般微机控制系统的一个重要特征。

2.2 可编程序控制器的发展历程及问题和解决对策

2.2.1 可编程序控制器的发展历程

可编程序控制器在20世纪60 年代出现,当时的可编程序控制器功能很简

单,只有简单的逻辑、定时、计数等功能;用于可编程序控制器的集成电路的硬件还没有投入大规模工业化生产,CPU 只以分立元件组成;存储器的存储容量也有限;用户指令只有二三十条,而且还没有成型的编程语言,机型单一。所以一台可编程序控制器也最多能替代200~300 个继电器组成的控制系统,但在体积方面,与现在的可编程序控制器相比却很大。

进入到70 年代,随着中小规模集成电路的生产,可编程序控制器技术得到了很大的发展。这时的可编程序控制器除了逻辑运算外,还增加了数值运算、计算机接口和模拟量控制等;软件开发也有了自诊断程序,程序存储开始使用EPROM ;可靠性进一步提高,结构上开始有了模块式和整体式的区分,整机功能已经从专用向通用过渡。

70 年代后期到80 年代初期,微处理器技术日益成熟,单片微处理器、半导体存储器开始进入工业化生产,大规模集成电路开始大量应用。可编程序控制器开始向多处理器方向发展,这样使得可编程序控制器的功能和处理速度大大增强,并具有了通信和远程I/O 的能力,增加了多种特殊功能,比如浮点运算、查表、列表等,自诊断和容错技术也迅速发展起来。

80 年代后期到90 年代中期,随着计算机和网络技术的普及,以及超大规模集成电路、门阵列和专用集成电路的迅速发展,可编程序控制器的CPU 已经发展成为由16 位或32 位微处理器构成,处理速度变得更快,而且引入了高速计数、中断、PID 、运动控制等功能。使得可编程序控制器几乎能够满足工业生产的各个领域,此时的可编程序控制器已完全取代了传统的逻辑控制装置,以小型机为核心的DDC (直接数字控制)控制装置和模拟量仪表控制装置。由于联网能力的增强,既可与上位计算机联网,也可下挂FLEX I/O 或远程I/O ,从而可以组成分布式的控制系统(DCS )。此时的梯型图语言和语句表语言也完全成熟,基本上标准化,SFC (顺序功能图)语言开始普及,专用的编程器也被个人计算机和相应编程软件替代,人机界面装置渐渐完善,已能进行对整个工厂的监控和管理,并发展了冗余技术,大大增强了可靠性。

进入到21 世纪,可编程序控制器仍保持着旺盛的发展势头,并不断扩大其应用领域。目前的可编程序控制器主要优两个发展方向:一是综合化控制系统方向,它已经突破了原有的可编程序控制器的概念,并将工厂生产过程控制

与信息管理系统密切结合起来,可向上为MES 和ERP 系统准备技术基础,这种趋势会使得举步维艰的ERP 系统拥有坚实的技术基础,从而带来工业控制的一场变革,实现真正意义上的电子信息化工厂;二是微型可编程序控制器异军突起,体积就如手掌大小,但功能可覆盖单体设备以及整个车间的控制功能,并且具备联网功能,这种微型化的可编程序控制器使得控制系统可将触角延伸到工厂的各个角落。随着世界经济一体化进程的加快,在技术发展的同时,发达国家更加注重了对可编程序控制器的知识产权的保护,国际大型可编程序控制器制造商纷纷加入了可编程序控制器的国际标准化组织,他们利用许多技术标准建立了符合他们经济利益的技术保护壁垒]7][6][5[。

2.2.2 我国可编程序控制器发展中的问题及对策

目前我国的可编程序控制器发展主要面临三大问题。一是技术层面上的,在国际可编程序控制器迅速发展的形势下,我国还没有具有自主的知识产权,也没有能够参与国际竞争的可编程序控制器产品,原因主要在于我国的整个基础工业都还有一定的差距,如芯片制造、模具加工等方面限制了我们的发展。二是竞争层面上的,实际上也是一个经济竞争的问题。现在95% 的国内市场是由外国的可编程序控制器产品所占领,大、中型可编程序控制器中,几乎全部是由国外几大公司所垄断,随着我国使用可编程序控制器领域的扩大,市场也越来越大,然而国外几家大公司几乎每年都会推出新的产品针对市场,一旦使用了新的产品后,他们就会逐渐的提高产品的市场价格。如果没有我国自己的自主知识产权的产品,我们在经济竞争中就只能处于被动。三是市场秩序层面上的,随着改革开放的不断深入,特别是在加入WTO 后,我国巨大的市场份额极大的吸引了国外的大公司,他们开拓市场的方法大多都是采用大范围建立代理销售渠道,这样每个公司的分销商和系统集成商都会有数十家,甚至上百家,这就造成了我国的分销商、系统集成商之间的激烈竞争,而这些无序的竞争便为国际大公司分而治之、获取稳定的高额利润创造了条件。

那么面对这些问题,我国的可编程序控制器的发展应该采取什么措施呢?(1) 面对如此大的市场,我国应该集中资金和技术力量,尽快研制出具有属于我国自己的自主知识产权的可编程序控制器的系列产品,就像以前的家电行业

一样。(2)发挥我国科学技术人员在可编程序控制器应用技术的优势,从而扩大可编程序控制器的应用领域。特别是在我国加入WTO 后,中国成为了“世界制造工厂”的过程正在加速,我国在努力将可编程序控制器应用在国民经济中的同时,还要凭借技术和劳动力优势,将可编程序控制器投资到外商企业中进行应用,并逐步进入国际可编程序控制器的应用市场,让我国的应用技术形成真正的增值服务,从而带动我国相关成套设备和软件产业的发展。(3) 在扩大可编程序控制器应用的同时,要在软件集成化上下功夫。针对不同的工业生产过程,形成具有我国特点的系统集成软件、人机界面软件和系统应用软件,在一些我国领先的工业行业中制造出具有核心技术的系统应用软件。真正形成具有国际标准的、可进行复制的模块化软件。

采取上述策略后,我国就能在可编程序控制器的应用上率先实现突破,融入全球一体化经济之中,形成具有自主知识产权的软件产业,进而研制、开发、生产出具有自主知识产权,能够参与国际竞争的可编程序控制器产品]8[。

2.3 可编程控制器的基本构成

2.3.1 可编程控制器的硬件组成

PLC种类繁多,但从广义上讲,PLC也属于一种计算机系统,只不过它比计算机具有更强的与工业相连接的I/O接口,更适应于工业环境,但它的实际组成和一般的计算机系统基本相同,由硬件和软件两部分。PLC的硬件结构框图如图2-1所示。

(1)中央处理器(CPU)

与一般计算机一样,CPU是PLC的核心,它包括微处理器和控制接口电路,起着总指挥的作用。微处理器用来实现逻辑运算、数字运算,协调控制系统内部各部分的工作。控制接口电路是微处理器与主机内部其他单元进行联系的部件,它主要有数据缓冲、单元选择、信号匹配、中断管理等功能。微处理器通过控制接口电路来实现与各个内部单元之间的可靠的信息交换和最佳的时序配合。CPU主要的任务有:控制从编程器键入的用户程序和数据的连接与储存;用扫描的方式通过I/O部件接受现场的状态和数据,并存入输入映像存储器或数据存储器中;诊断PLC内部电气的工作故障和编程中的语法错误等;PLC进入运行状态后,从存储器逐条读取用户指令,经过命令解释后按指令规定的任务进行数据传送,逻辑或算术运算等。

(2)存储器

PLC内部存储器包括有两类;一类是系统程序存储器,另一类是用户程序存储器。

系统存储器主要用来存放系统管理程序、用户指令和标准程序模块与系统调用管理程序并固化在PROM或EPROM中,用户不可访问和修改。系统程序相当于个人计算机的操作系统,它关系到PLC的性能。

用户存储器又包括用户程序存储器(程序区)和功能存储器(数据区)俩部分。用户存储器用来存放用户针对具体控制任务用规定的PLC编程语言编写的各种用户程序。用户功能存储器是用来存放用户程序中使用的ON/OFF状态、数值数据等,它构成PLC的各种内部器件,也称“软原件”。

PLC存储器按类型可分为三种:

①只读存储器(ROM):具有非易失性,只允许读不允许写,用来保存命令解释、逻辑运算、系统诊断、功能子程序调用管理、通信以及各种参数的设定等功能的程序,提供PLC运行的平台。

②随机存取存储器(RAM):具有易失性,可读可写,工作效率高,用来保存用户根据控制要求编制的应用程序以及运行过程中经常变化、存取的一些数据。

③电可擦除可编程只读存储器(E2PRAM):具有非易失性,可读可写,用来保存用户程序和需永久保存的数据,以满足掉电重新运行的需要。

(3)输入/输出接口

输入/输出接口是PLC的CPU与用户现场设备相互连接的接口。输入接口用来接收和采集两种类型的输入信号,将开关按钮,传感器等输入信号经过输入单元接口电路转换成CPU能接收和处理的低电压信号,送给中央处理器进行运算。输出接口电路是将CPU送出的弱电流控制信号转换成现场需用的强电流信号输出以驱动被控设备。

为了滤除信号的噪声和便于PLC内部对信号的处理,输入单元来源滤波、电平转换、信号锁存电路;输出单元也有输出锁存器、显示、电平转换、功率放大电路。

(4)电源单元

PLC配有开关或稳压电源,用来对PLC的内部电路供电。电源单元包括掉电保护电路和后背电池电源,以保持RAM在外部电源断电后存储的内容部丢失。PLC的电源一般采用开关电源,其特点是输入电压范围宽、体积小、重量轻、效率高、抗干扰性能好。PLC通常使用AC220V或DC24V工作电源,小型PLC的电源往往和CPU单元合为一体,大中型PLC都有专用电源部件驱动PLC负载的直流电源一般由用户提供。

(5)外部设备

PLC的外部设备有四大类,可以实现编程控制,以及存储用户程序和打印数据等。因此,PLC的外部分为编程设备,监控设备,存储设备和输入/输出设备。编程设备是PLC的重要尾部设备,主要是指编程器,用来生成用户程序,并用它来进行编程,检查,修改和监视用户程序的执行情况,一般分为手持式(简易)编程器和图形编程器两类。监控设备中,小的有数据监视器,用来监视数据,大的有图形监视器,用来监视画面。存储设备用于永久性地存储用户数据,使用户程序不丢失。输入/输出设备用于接收信号或输出信号,便于与PLC 进行人机对话。输入设备有条码读入器,输入模拟量和电位器等。输出设备有打印机、显示器。

2.3.2 可编程控制器的软件组成

PLC的硬件系统和软件系统时相辅相成的,它们共同构成PLC的系统,缺

一不可。没有软件的PLC系统成为裸机系统,是没有什么用途的;反之,没有硬件系统,软件系统也就无立足之地。PLC的软件系统指PLC所使用的各种程序的集合,它包括系统程序和用户程序。

系统程序包括监控程序、编译程序、标准程序及系统调用等组成。而用户程序是可编程序控制器使用者编制的针对控制问题的程序。

2.4 可编程控制器的工作原理

2.4.1 PLC的扫描工作方式

PLC的控制作用是通过用户程序来实现的,因此PLC是一种存储程序控制器。PLC系统正常工作时要完成的任务有:(1)计算机内部各个工作单元的调度,监控。(2)计算机与外部设备的通讯。(3)用户程序所要完成的工作。这些工作都是分时完成的,这样分时完成的过程被称为CPU对程序的扫描。为了连续地完成PLC所承担的工作,系统必须周而复始地依一定的顺序完成这一系列的工作。故把这种工作方式叫做循环扫描工作方式。

2.4.2 PLC的工作过程

PLC的工作过程与CPU的操作方式有关。CPU有两个操作方式:STOP和RUN。在扫描周期内,STOP方式与RUN方式的主要差别在于:RUN方式下执行用户程序,而在STOP方式下部执行用户程序。对每个程序,CPU从第一条指令开始执行,按指令序号做周期性的循环扫描,一个扫描周期主要可分为三个阶段进行,即输入采样阶段,程序执行阶段和输出刷新阶段,如图2-2所示的三个阶段。

(1)输入采样阶段

每次扫描周期的开始,PLC先扫描所有输入端口,读取各输入状态并存入内存中各对应的输入映像寄存器中。此时,输入映像寄存器被刷新,关闭输入端口,转入下一步的工作过程,机程序执行阶段。在程序执行期间即使外部输入信号状态发生变化,输入映像寄存器的内容也不会改变,这些变化只有等到下一个扫描周期的输入采样阶段才会被读入。

轧机厚度自动控制系统设计

轧机厚度自动控制系统设计 摘要:随着社会经济的发展,对板带产品的质量和精度要求越来越高。厚度精度就是板带产品的重要质量指标之一。本文针对轧机AGC技术的现状,以及轧机厚差产生的原因进行了分析。在此基础上,对轧机AGC进行分析,以APC为主要研究对象,选用PLC作为系统的控制器,将位移传感器测得的位移量经A/D转换送给PLC来控制步进电机,从而控制阀,通过轧制力来改变辊缝厚度实现轧机厚度控制。 1 引言 轧机又称轧钢机,轧钢机就是在旋转的轧辊之间对钢件进行轧制的机械,轧钢机一般包括主要设备(主机)和辅助设备(辅机)两大部分。轧钢机按轧辊的数目分为二辊,三辊式,四辊式和多辊式,轧钢机通常简称为轧机。 板带厚度精度是板带材的两大质量指标之一,板带厚度控制是板带轧制领域里的两大关键技术之一。带钢纵向厚度不均是影响产品质量的一大障碍,因此,轧机的一项重要课题就是带钢厚度的自动控制。厚度自动控制系统是通过测厚仪或传感器对带材实际轧出厚度连续进行测量,并根据实测值与给定值比较后的偏差信号,借助于控制回路或计算机的功能程序,改变压下装置、张力或轧制速度,把带材出口厚度控制在允许的偏差范围内。实现厚度自动控制的系统称为“AGC"。 我国近年来从发达国家引进的一些大型的现代化的板带轧机,其关键技术是高精度的板带厚度控制和板形控制。板带厚度精度关系到

金属的节约、构件的重量以及强度等使用性能,为了获得高精度的产品厚度,AGC系统必须具有高精度的压下调节系统及控制系统的支持。 而对于轧机来说产生厚差的原因大致可分为三大类: (1)轧机方面的原因:轧辊热膨胀和磨损、轧辊弯曲、轧辊偏心和支撑辊轴承油膜厚度等都会产生厚度波动。它们都是在液压阀位置不变的情况下,使实际辊缝发生变化,从而导致轧出的带钢厚度产生波动。 (2)轧件方面的原因:厚度偏差会直接受到坯料尺寸变化的影响。它包括来料宽度不均和来料厚度不均的影响。 (3)轧制工艺方面的原因:轧制时前后张力的变化、轧制速度的变化等。 2 系统总体设计 厚度自动控制AGC (Automatic Gauge Control)是指钢板轧机在轧制过程中通过动态微调使钢板纵向厚度均匀的一种控制手段。厚度自动控制系统是通过测厚仪或传感器对带材实际轧出厚度连续进行测量,并根据实测值与给定值比较后的偏差信号,借助于控制回路或计算机的功能程序,改变压下装置、张力或轧制速度,把带材出口厚度控制在允许的偏差范围内。 AGC系统一般包括有: 1)压下位置闭环:为了轧出给定厚度的轧件,首先必须在轧件进入辊缝之前,准确地设定空载辊缝。其次,在轧制过程中,为了使轧后的轧件厚度均匀一致,还必须随着轧制条件的变化及时的调整空

PLC的轧钢机控制系统设计

封面

作者:PanHongliang 仅供个人学习

江西理工大学 本科毕业设计(论文)任务书电气工程与自动化学院电气专业级(届)班学号学生 专题题目(若无专题则不填):PLC软件设计 原始依据(包括设计(论文)的工作基础、研究条件、应用环境、工作目的等): 工作基础: 目前,我国基于PLC轧钢机系统已经不同程度得到了推广应用。 PLC轧钢机控制技术的发展主要经历了三个阶段:继电器控制阶段,微机控制阶段,现场总线控制阶段。现阶段轧钢机控制系统设计使用可编程控制器(PLC),其功能特点是变化灵活,编程简单,故障少,噪音低,维修保养方便,节能省工,抗干扰能力强。除此之外PLC还有其他强大功能,它可以进行逻辑控制、运动控制、通信等操作;并具有稳定性高、可移植性强等优点,因此受到广大电气工程控制技术人员的青睐。 研究条件及应用环境: 本课题是基于PLC的控制系统的研究课题。工业自动化是国家经济发展的基础,用于实现自动化控制设备主要集中为单片机和PLC。单片机由于控制能力有限、编程复杂等缺点,现在正逐步退出控制舞台。PLC则因为其功能强大、编程简单等优点,得到迅速发展及运用。PLC的功能强大,可以进行逻辑控制、运动控制、通信等操作;并具有稳定性高、可移植性强等优点,因此,PLC是工业控制领域中不可或缺的一部分。 工作目的: 轧钢机如控制和使用得当,不仅能提高效率,节约成本,还可大大延

长使用寿命。对轧钢机控制系统的性能和要求进行分析研究设计了一套低成本高性能的控制方案,可最大限度发挥轧钢机加工潜力,提高可靠性,降低运行成本,对提高机械设备的自动化程度,缩短与国际同类产品的差距,都有着重要的意义。 主要内容和要求:(包括设计(研究)内容、主要指标与技术参数,并根据课题性质对学生提出具体要求): 1)当整个机器系统的电源打开时,电机M1和M2旋转,以待传送工 件。 2)工件通过轨道从右边输送进入轧制系统。 3)感应器S1感应到有工件输送来时,输出高电位,驱动上轧辊按预定 下压一定的距离,实现轧制厚度的调节,同时电机M3开始逆时针旋转,并带动复位挡板也逆时针转动,感应器S1复位。 4)随着轧制的进行,工件不断地向左移动。当感应器S2感应到有工件 移动过来时,说明工件的要求轧制长度已经完成,此时感应器S2输出高电位,驱动控制电机M3的电磁阀作用,使电机M3顺时针转动。 5)在电机M3顺时针转动下,挡板顺时针转动,推动工进向右移动。 当工件移动到感应器S1感应到时,S1有输出高电位,使电机M3逆时针转动,同时驱动上轧辊调节好第二个下压量,进入第二次压 制的过程。 6)再次重复上述的工作,直到上轧辊完成3次下压量的作用,工件才 加工完毕。 7)系统延时等待加工完毕的工件退出轨道,此时即可进入下一个工件 的加工过程。

《板带轧机系统自动控制》 - 燕山大学教务在线

《板带轧机系统自动控制》 建设规划(2011-2016) 1、课程概况 我校轧钢专业人才培养以服务于全国钢铁工业为中心,目标是培养具有扎实专业知识、具备工艺技术、科学研究、组织管理能力、能够解决冶金工程领域实际问题的应用及应用研究型高级工程技术人才。 我校机械设计及理论学科(含轧钢专业)为国家级优秀重点学科,其轧钢实验中心为河北省重点实验室。本学科具有近50年的本科办学经验,20多年的硕士、博士研究生的培养经验,教学与科研紧密结合地方经济发展需求,具有钢铁冶金方向特色优势,在国内占有重要地位。 建国初期,我校在当时隶属于哈尔滨工业大学时就引进了多名前苏联专家开始轧钢专业的建设。作为轧钢专业的基础课,随之开设了以板厚板形自动控制为主要内容的板带轧机系统自动控制课程,至今已有近50年历史。自1958年建校以后,开始由自主培养的教师承担此课程的教学任务。 我校轧机研究所在板形板厚控制研究方向具有较高的研究水平,在国内具有重大影响,为本课程的教学奠定了良好的基础。近五年,本科研方向上承担了多项国家自然科学基金和河北省自然科学基金课题,以及20余项企业合作技术课题,取得了较大成果。 本课程组共有教师8人,平均年龄37岁。学历结构:博士6人(75%),硕士2人(25%)。职称结构:教授3人(37.5%),副教授1人(12.5%),讲师2人(25%),实验师2人(25%)。年龄结构:平均年龄37岁。40岁以上2人(25%),30岁以上6人(75%)。讲课教师6人(75%),实践教师2人(25%)。 课程负责人刘宏民老师,博士,教授,博士生导师,于1982年毕业于东北重型机械学院(燕山大学前身),1988年3月在东北重型机械学院获得博士学位。研究方向:板带轧机设计及板形控制技术。获国家科技进步二等奖1项,省部级一等奖6项,省部级二等奖3项,发表论文100余篇,出版专著2部。全国“五一”劳动奖章获得者,国家百千万人才工程人选,河北省省管优秀专家,燕赵学者。 2、存在的主要问题 (1)教学内容

轧钢机电气控制系统设计

信电学院 课程设计说明书(2014/2015学年第二学期) 课程名称:可编程控制器课程设计 题目:轧钢机电气控制系统设计 专业班级: 学生姓名: 学号: 指导老师: 设计周数: 设计成绩: 2015年7月9日

目录 1、课程设计目的 (2) 2、课程设计内容 (2) 2.1可编程控制器概述 (2) 2.2课程设计正文 (2) 2.3轧钢机电气控制模版 (3) 2.3.1轧钢机简介 (3) 2.3.2热金属探测仪 (3) 2.3.3液压系统 (4) 2.3.4电机正反转 (4) 2.4 设备选择 (4) 2.5 系统的I/O口配置 (5) 2.6梯形图程序设计 (5) 2.7程序流程图 (9) 3、课程设计总结 (10) 4、参考文献 (11)

1、课程设计目的 本次课程设计的主要任务如下: 1)了解普通轧钢机的结构和工作过程。 2)弄清有哪些信号需要检测,写明各路检测信号到PLC的输入通道,包括传感器的原理、连接方法、信号种类、信号调理电路、引入PLC的接线以及PLC中的编址。 3)弄清有哪些执行机构,写明从PLC到各执行机构的各输出通道,包括各执行机构的种类和工作机理,驱动电路的构成,PLC输出信号的种类和地址。 4)绘制出轧钢机电控系统的电路原理图,编制I/O地址分配表。 5)编制PLC的程序,结合实验室设备完成系统调试,在实验室手动仿真模型上仿真轧钢机工作过程的控制。 2、课程设计内容 2.1可编程控制器概述 可编程控制器是一种数字运算操作的电子装置,专为在工业环境下应用而设计。它采用可编程库的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式或模拟式的输入和输出控制各种类型的机械或生产过程。可编程控制器及其有关的外围设备都应按易于与工业控制系统连成一个整体,易于扩充其功能的原则设计。可编程控制器简称PLC,是以微处理器为基础,综合了计算机技术、自动控制技术和通讯技术而发展起来的一种新型、通用的自动控制装置。 2.2课程设计正文 (1)按下启动按钮,上下两轧辊电机(主拖动电机,M1)起动运转,轧制方向为从右向左轧制。左右侧轧道电机(M2和M3)启动逆时针运转,向左输送。(2)设备启动5秒后,PLC检测有无等待的轧件,即S1是否有效。若无轧件则一直等待。S1有效信号到来后,PLC通过某一路开出控制电磁铁动作,打开轧件挡板,让轧件进入轧机的右侧轨道。(3)待轧件完全进入后(设需时4秒),释放电磁铁,关闭轧件挡板。(4)轧件在右侧辊道推动下进入轧辊下轧制,轧辊间有热金属探测仪给出正在轧制的信号,由S2仿真,高电平表示正在轧制。(5)S2由高电平变为低电平表示轧件已经通过轧辊。轧件通过轧辊后PLC控制两侧辊道停止,电磁液压阀Y2动作使左侧辊道翘起。(6)1秒后启动左侧辊道向右输送。这时由安装在上轧辊上方的另一个热金属探测仪给出轧件通过的信号,由另一个手动开关S3仿真。(7)S3由高电平变为低电平表示轧件已经完全回到了轧辊右侧。PLC断开电磁阀Y2电源,并停止左侧辊道运转。(8)1秒钟后左侧辊道放平,启动左右侧辊道电机向左输送,开始下一次轧制。(9)重复(4)-(8)完成第二次轧制,并准备好第三次轧制。(10)三次轧制完成后,即热金属探测仪输出由高电平变为低电平后,左侧辊道继续向左输送3秒钟,把轧件送出轧机。结束该轧件的轧制过程。(11)回到第二步但不需要5秒的延时。(12)按下停止按钮结束工作。

轧机厚度自动控制AGC系统说明

轧机厚度自动控制AGC系统 使 用 说 明 书 中色科技股份有限公司 装备所自动化室 二零零九年八月二十五日

目 录 第一篇 软件使用说明书 第一章 操作软件功能简介 第二章 操作界面区简介 第三章 操作使用说明 第二篇 硬件使用说明书 第一章 接口板、计算机板跨接配置图 第三篇 维护与检修 第一章 系统维护简介及维护注意事项 第二章 工程师站使用说明 第三章 检测程序的使用 第四章 常见故障判定方法 第四篇 泵站触摸屏操作说明 第五篇 常见故障的判定方法 附录: 第一章 目录 第二章 系统内部接线表 第三章 系统外部接线表 第四章 系统接线原理图 第五章 系统接口电路单元图

第一篇 软 件 说 明 书

第一章 操作软件功能简介 .设定系统轧制参数; .选择系统工作方式; .系统调零; .显示时实参数的棒棒图、馅饼图、动态曲线; .显示系统的工作方式、状态和报警。 以下就各功能进行分述: 1、在轧机靠零前操作手需根据轧制工艺,设定每道次的入口厚度、出口厚度和轧制力等参数。也可以在轧制表里事先输入,换道次时按下道次按钮,再按发送即可。 2、操作手根据不同的轧制出口厚度,设定机架控制器和厚度控制器的工作方式,与轧制参数配合以得到较理想的厚差控制效果。 3、在泄油状态下,操作手通过在规定状态下对调零键的操作,最终实现系统的调零或叫靠零,以便厚调系统正常工作。 4、在轧制过程中,以棒棒图、馅饼图和动态曲线显示厚调系统的轧制速度、轧制压力、开卷张力、卷取张力、操作侧油缸位置、传动侧油缸位置、压力差和厚差等实时值。(注意:轧机压靠前操作侧油缸位置、传动侧油缸位置显示为油缸实际移动位置。轧机压靠后操作侧油缸位置、传动侧油缸位置显示的是辊缝值。)

轧钢机PLC控制系统设计

轧钢机P L C控制系统 设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

轧钢机PLC控制系统设计 1 问题分析及解决方案 问题描述 在冶金企业中轧钢机是重要 的组成部分,运用PLC实现对轧 钢机的模拟,如右图。 当起始位置检测到有工件 时,电机M1、M2开始转动M3正 转,同时轧钢机的档位至A档, 将钢板轧成A档厚度,当钢板运 行到左检测位,电磁阀得电动作 将左面滚轴升高,M2停止转动, 电机M3反转将轧钢板送回起始 侧。 此时起始侧再检测到有钢板,轧钢机跳到B档,把钢板轧成B档厚度,电磁阀得电,将滚轴下降,M3正转,M2转动,当左侧检测到钢板时M2停止转动,电磁阀得电将滚轴抬高M3反转,将钢板运到起始侧。 如此循环直到ABC三档全部轧完,钢板达到指定的厚度,轧钢完成。 分析过程 该工作过程分为三个时序,当起始位置第一次检测到信号时,A档轧钢;起始位置第二次检测到信号时,B档轧钢;起始位置第三次检测到信号时,C档轧钢。由于每个档位都要工作一段时间才能切换,可以用两个定时器来实现。 2 PLC选型及硬件配置 PLC选型及硬件配置如图1。 图1

3 分配I/O地址表 I/O地址表如图2。 图2 4 主电路图及PLC外部接线图 主电路图 主电路图如图3。 图3 PLC外部接线图

PLC 外部接线图如图4。 图4 5 控制流程图及梯形图程序 控制流程图 控制流程图如图5。 图5 T 型图程序 开始 起始位置检测 起始位置检测 起始位置检测 左侧位置检测 左侧位置检测 左侧位置 检测 A 档轧钢 B 档轧钢 C 档轧钢 回起始位 回起始位 结束 Y N Y Y Y Y Y N N N N N

冷轧轧机TDC控制系统

目录 冷轧轧机TDC控制系统 一.硬件和组态 二.系统软件 1.处理器功能简介 https://www.doczj.com/doc/a63010402.html,MON FUNCTIONS 通用功能 3.MASTER FUNCTIONS 主令功能: 4.STAND1-STAND5 机架控制系统1-5 冷轧轧机TDC控制系统 一.硬件和组态 TDC工业控制系统西门子公司SIMADYN D的升级换代产品,也是一种多处理器并行远行的控制系统。典型的TDC控制系统的配置是由电源框架、处理器摸板、I/O摸板和通讯摸板搭建构成。 电源框架含21个插槽,最多允许20个处理器同时运行。框架上方的电源可单独拆卸,模板不可带电插拔。 CPU551是TDC控制系统的中央处理器,带有一个4M记忆卡,程序存储在记忆卡内,电源启动时被读入CPU551中执行。可通过在线功能对处理器和存储卡中的程序作同步修改。 SM500是数字量/模拟量输入/输出模板,更换时注意跳线. CP50MO是MPI/PROFIBUS通讯摸板,更换时需要使用COM-PROFIBUS软件对其进行组态的软件下装。 CP5100是工业以态网的通讯摸板,更换时注意插槽跳线。 CP52A0是GDM通讯模板。GDM是不同框架的TDC之间进行数据交换的特有通讯方式,不同框架的TDC通过光缆汇总到GDM内,点对点之间的通讯更加直接,传输速度更快。 TDC控制系统的硬件需要在软件程序中进行组态和编译,然后下装到CPU中。 二.系统软件 包钢薄板厂冷轧轧机区域TDC控制系统按框架分为以下三个功能:

2.1 处理器功能简介 1.COMMON FUNCTIONS 通用功能: 处理器1:SIL: 模拟功能 SDH: 轧制参数管理 IVI: 人机画面 处理器2:MTR: 物料跟踪系统 WDG: 楔形调整功能 处理器3: ADP: 实际值管理2.MASTER FUNCTIONS 主令功能: 处理器1: MRG-GT: 轧机区域速度主令 处理器2: THC-TH: 轧机厚度控制入口区域 处理器3: THC-TX: 轧机厚度控制出口区域 处理器4: SLC: 轧机滑差计算 ITG: 张力计接口 处理器5: LCO-LT: 轧机区域生产线协调3.STAND1-STAND5 机架控制系统1-5 处理器1: CAL: 机架标定 SCO: 通讯接口 MAI: 手动干涉 ITC: 机架间张力控制 处理器2: SDS: 机架压下系统 处理器3: RBS: 机架弯辊系统

轧钢机电气控制系统plc设计

科信学院 课程设计说明书(2008 /2009 学年第一学期) 课程名称:可编程序控制器设计任务书 题目:轧钢机电气控制系统设计 专业班级:电气及自动化05-1班 学生姓名:杨晓娜 学号:050062107 指导教师:安宪军 设计周数:2周 设计成绩: 2009年1月9日

目录 一、课程设计的目的 (1) 二、课程设计正文 (1) 三、可编程序控制器概述 (1) 四、轧钢机电气控制模板 (2) 五、编制梯形图 (2) 六.实验程序 (6) 十二、课程设计总结或结论 (7) 十三、参考文献 (8)

一、课程设计目的 了解普通轧钢机的结构和工作过程;弄清有那些信号需要检测;弄清有那些执行机构;绘制出轧钢机电控系统的电路原理图,编制I/0地址分配表;编制PLC的程序,结合实验室设备完成系统调试,在实验室手动仿真模型上仿真轧钢机工作过程的控制。 二、课程设计正文 1.控制要求 (1)按下启动按钮,上下两轧辊电机(主拖动电机,M1)起动运转,轧制方向为从右向左轧制。左右侧轧道电机(M2和M3)启动逆时针运转,向左输送。(2)设备启动5秒后,PLC 检测有无等待的轧件,即S1是否有效。若无轧件则一直等待。S1有效信号到来后,PLC通过某一路开出控制电磁铁动作,打开轧件挡板,让轧件进入轧机的右侧轨道。(3)待轧件完全进入后(设需时4秒),释放电磁铁,关闭轧件挡板。(4)轧件在右侧辊道推动下进入轧辊下轧制,轧辊间有热金属探测仪给出正在轧制的信号,由S2仿真,高电平表示正在轧制。(5)S2由高电平变为低电平表示轧件已经通过轧辊。轧件通过轧辊后PLC控制两侧辊道停止,电磁液压阀Y2动作使左侧辊道翘起。(6)1秒后启动左侧辊道向右输送。这时由安装在上轧辊上方的另一个热金属探测仪给出轧件通过的信号,由另一个手动开关S3仿真。(7)S3由高电平变为低电平表示轧件已经完全回到了轧辊右侧。PLC断开电磁阀Y2电源,并停止左侧辊道运转。(8)1秒钟后左侧辊道放平,启动左右侧辊道电机向左输送,开始下一次轧制。(9)重复(4)-(8)完成第二次轧制,并准备好第三次轧制。(10)三次轧制完成后,即热金属探测仪输出由高电平变为低电平后,左侧辊道继续向左输送3秒钟,把轧件送出轧机。结束该轧件的轧制过程。(11)回到第二步但不需要5秒的延时。(12)按下停止按钮结束工作。 三、可编程序控制器概述 可编程序控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的命令,并通过数字式模拟式的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关设备,都应按易于与工业控制系统联成一个整体,易于扩充功能的原则而设计”。 四、轧钢机电气控制模板

轧钢机PLC控制系统设计

轧钢机PLC控制系统设计 1 问题分析及解决方案 1.1 问题描述 在冶金企业中轧钢机是重要 的组成部分,运用PLC实现对轧钢 机的模拟,如右图。 当起始位置检测到有工件时, 电机M1、M2开始转动M3正转, 同时轧钢机的档位至A档,将钢板 轧成A档厚度,当钢板运行到左检 测位,电磁阀得电动作将左面滚轴 升高,M2停止转动,电机M3反 转将轧钢板送回起始侧。 此时起始侧再检测到有钢板, 轧钢机跳到B档,把钢板轧成B档厚度,电磁阀得电,将滚轴下降,M3正转,M2转动,当左侧检测到钢板时M2停止转动,电磁阀得电将滚轴抬高M3反转,将钢板运到起始侧。 如此循环直到ABC三档全部轧完,钢板达到指定的厚度,轧钢完成。 1.2 分析过程 该工作过程分为三个时序,当起始位置第一次检测到信号时,A档轧钢;起始位置第二次检测到信号时,B档轧钢;起始位置第三次检测到信号时,C档轧钢。由于每个档位都要工作一段时间才能切换,可以用两个定时器来实现。 2 PLC选型及硬件配置 PLC选型及硬件配置如图1。 图1

3 分配I/O地址表 I/O地址表如图2。 图2 4 主电路图及PLC外部接线图 4.1 主电路图 主电路图如图3。 图3

4.2 PLC外部接线图 PLC外部接线图如图4。 图4 5 控制流程图及梯形图程序 5.1 控制流程图 控制流程图如图5。 图5

5.2 T型图程序

6 程序调试 6.1 问题调试 为了解决A、B、C三个档位的时序问题,我选择用三条T型图程序来实现,但输出有重复,导致T型图程序运行正确但仿真出现错误。于是我改变方案,采用了M存储器来代替输出,仿真成功。 6.2 仿真图 A档运行: 传送回初始位: B档运行: C档运行:

轧钢机电气控制系统设计

信息与电气工程学院 课程设计说明书(2013 /2014 学年第 2 学期) 课程名称:《可编程序控制器应用》课程设计题目:轧钢机电气控制系统设计 专业班级:电气工程及其自动化1104班 学生姓名: 学号: 指导教师:刘增环、岑毅南等 设计周数: 2 周 设计成绩: 2014 年7月11 日

自从1969年美国DEC公司研制出世界上第一台可编程逻辑控制器以来,经过三十多年发展与实践,其功能和性能已经有了很大的提高,从当初用于逻辑控制和顺序控制领域扩展到运动和过程控制领域。可编程序控制器简称PLC,它是一个以微处理器为核心的数字运算操作电子系统装置,转为在工业现场应用而设计,PLC的程序编程,不需要专门的计算机编程语言知识,而是采用一套以继电器梯形图为基础的简单指令形式,使用程序编制形象、直观、方便易学,灵活的方便将PLC 运用到生产实践中。 随着生产力和科学技术的不断发展,人们的日常生活和生产活动大量的使用自动化控制,不仅节约了人力资源,而且很大程度上提高了生产效率,又进一步的促进了生产力快速发展,并不断的丰富着人们的生活。 本设计是基于PLC的轧钢机控制系统,利用传感器S1来检测传送带上是否有钢板,若S1有信号,表示有钢板,电机M3、M2启动,信号指示灯Y1亮。S1的信号消失,检测传送带上钢板到位的传感器S2有信号,表示钢板到位,电磁阀动作,指示灯Y2亮,电机M3反转,之后S3有信号时,钢件重复以上过程三次,即轧钢三次后满足要求,完成后,把轧件送出轧机。结束该轧件后重复上述过程进行下个轧件的过程。这种结合完成了工业上轧钢技术的大大进步。

一课程设计任务简介 (3) 1.1 设计题目 (3) 1.2 课程设计的目的 (3) 1.3 设计要求 (3) 二硬件电路设计 (5) 2.1 可编程序控制器概述 (5) 2.2 方案选定 (5) 2.3总体控制系统框架 (5) 2.4硬件系统设计 (5) 2.5 I/O地址分配 (6) 三程序设计 (7) 3.1程序流程图 (7) 3.2操作过程 (8) 3.3实验现象图块 (9) 四课程设计总结 (12) 五参考文献 (13) 附录一梯形图 (14)

板带轧机自动控制

《板带轧机系统自动控制》教案 《板带轧机系统自动控制》教学组 第一讲 1、绪论 介绍自动控制的含义。(3分钟) 用钢铁行业生产录像演示工业生产通过自动控制达到的高度自动化。 1.1 工业控制系统 1.1.1 工业控制中的计算机功能(3分钟) 轧制生产车间控制台录像——工业控制计算机的数据采集功能、数字控制功能、监督功能等。 1.1.2 过程控制系统的基本组成(5分钟) 过程控制基本结构组成简图——讲解过程控制系统的基本组成部分以及各部分的主要功能,重点讲解整个控制过程的逻辑性。 通过彩图指出过程控制技术与计算机技术、控制理论和生产工艺的关联性,以及各学科技术发展的相互促进。 1.1.3 工业控制计算机的历史发展(3分钟) 工业控制技术随着计算机技术和自动控制理论的发展而不断进步。在不同的阶段出现技术程度各不相同的过程控制系统。 1.2 轧制过程自动化 1.2.1 轧制过程控制的历史发展(3分钟) 简要介绍轧制过程控制的发展阶段。 以发展最完善的热带钢连轧控制为例,介绍不断改进的控制工艺对轧制生产效率的促进。 1.2.2 热连轧过程控制的主要功能(5分钟) 以热带钢连轧控制为例,介绍轧制生产控制的主要功能和对应不同生产工艺的针对性。 1.2.3 轧制自动化的发展方向(3分钟) 再次对照过程控制基本结构组成简图介绍轧制自动化发展的方向,并指出对控制系统功能

的拓展和性能的提高是轧钢专业所重点关注的。 1.3 计算机过程控制的基本类型 1.3.1 数据收集系统(3分钟) 以数据收集系统简图介绍数据收集系统的作用和工作流程。 1.3.2 操作指导系统(4分钟) 以操作指导系统简图介绍操作指导系统的功能和工作流程。 介绍轧制生产中广泛用到的专家系统等配套模拟程序。 1.3.3 直接数字控制系统(4分钟) 以直接数字控制系统简图介绍直接数字控制系统的功能和工作流程。 讲解直接数字控制系统的使用特点和性能要求。 1.3.4 计算机监督控制系统(4分钟) 以计算机监督控制系统简图介绍直接数字控制系统的功能和工作流程。 讲解计算机监督控制系统的使用特点。 1.3.5 多极控制系统(3分钟) 介绍计算机监督控制系统的发展和含义,指出计算机在现代工业企业中的调度和管理功能。 1.3.6 分散控制系统(7分钟) 介绍分散控制系统的发展。 讲解分散系统的设计原则——分解和协调。 讲解分散系统的设计方法——分层、分级和分段。 2、带钢热连轧机的过程自动控制 2.1 带钢热连轧机的生产工艺 介绍主要设备和设备布置。(10分钟) 以1700mm带钢热连轧机设备布置图为例,对照生产录像介绍热连轧主要生产工艺。介绍生产规范,介绍轧制计划和轧制单位等管理级控制内容。 2.1.1 加热区(10分钟) 对照生产录像介绍热连轧加热区主要生产工艺,重点讲解加热炉前后各设备行动顺序。

基于plc的自控轧钢机控制

自动化专业综合设计报告 设计题目:基于plc的自控轧钢机控制所在实验室:plc实验室 指导教师:由枫秋 学生姓名律迪迪 班级文自0921 学号200990519114 成绩评定:

一、概述 1. 基本工作模式:PLC有运行模式和停止模式。 运行模式:分为内部处理、通信操作、输入处理、程序执行、输出处理五个阶段。 停止模式:当处于停止工作模式时,PLC只进行内部处理和通信服务等内容。 2. PLC工作过程 内部处理阶段: 在此阶段,PLC检查CPU模块的硬件是否正常,复位监视定时器,以及完成一些其它内部工作。 通信服务阶段: 在此阶段,PLC与一些智能模块通信、响应编程器键入的命令,更新编程器的显示内容等,当PLC处于停状态时,只进行内容处理和通信操作等内容。 输入处理阶段: 输入处理也叫输入采样。在此阶段顺序读取所有输入端子的通断状态,并将所读取的信息存到输入映象寄存器中,此时,输入映像寄存器被刷新。 程序处理阶段: 按先上后下,先左后右的步序,对梯形图程序进行逐句扫描并根据采样到输入映像寄存器中的结果进行逻辑运算,运算结果再存入有关映像寄存器中。但遇到程序跳转指令,则根据跳转条件是否满足来决定程序的跳转地址。 输出刷新阶段: 程序处理完毕后,将所有输出映象寄存器中各点的状态,转存到输出锁存器中,再通过 输出端驱动外部负载。 在运行模式下,PLC按上述五个阶段进行周而复始的循环工作,称为循环扫描工作方 式。自控轧钢机实验板的输出端Y1为—特殊设计的端子。它的功能是: 开机后Y1旁箭头内的三个发光管均为OFF;Y1第一次接通后,最上面的发光管为ON,表示轧钢机有一个压下量;Y1第二次接通后,最上面和中间的发光二极管为ON,表示轧钢机有两个压下量;Y1第三次接通后,箭头内三个发光二极管都为ON,表示轧钢机有三个压下量;当Y1第四次接通,Y1旁箭头内的三个发光管均为OFF,表示轧机复位;第五次接通回到第一次,如此循环。 二、系统设计 1,系统设计 1根据题目要求i,需要设计三种电路由于大体框架相同,所以外部接线控制基本相同。 S1检测传送带上有无钢板的感应器信号。 S2检测钢板是否到位的感应器信号。 Y1压轮 Y2卸料液压机 M1,m2,m正m反表示传送带电机。

粗轧机厚度自动控制系统的应用

粗轧机厚度自动控制系统的应用 【摘要】粗轧机是设置在热连轧生产线的关键设备,用于将板坯轧制成规定的中间坯。本文介绍了厚度自动控制系统在粗轧机厚度控制中的实际应用,并介绍了相关的经验公式。 【关键词】厚度轧制力辊缝位置控制 1.概述 厚度自动控制系统的控制量主要是压下量,即为了控制轧件厚度,就要控制轧辊位置,轧辊位置控制为厚度自动控制服务,这样自动厚度控制系统就有外环为厚度环、内环为轧辊位置环的串级控制系统,轧辊位置自动控制系统是厚度自动控制系统的执行机构。 本文介绍的1750热轧线粗轧机的辊缝调节是通过调节上辊压下量来实现的,下辊无上抬功能。在粗轧机的传动侧和操作侧各安装有一台压下电机和压下液压缸。粗轧机轧辊位置自动控制系统包括电动位置自动控制系统和液压位置自动控制系统两部分。电动位置自动控制系统进行粗调,液压位置自动控制系统进行精调。粗轧机辊缝调节在空载下进行,在轧制过程中辊缝不进行调节。 2.厚度自动控制(AGC) 2.1厚差产生的原因 厚差分为同板差和异板差。异板差是指在相同工艺、设备参数条件下,同一批材料中的不同轧件(不同块或不同卷)轧出厚度不均。异板差主要原因是来料参数(厚度、宽度、轧机入口温度)发生了变化,但未重新对轧机进行设定,即未做到动态设定。下面讨论的是同板差。 在轧机一定的情况下,轧机弹性刚度系数K为常数,根据轧机弹跳方程:h=f(S,P,K),轧出厚度h与空载辊缝S和轧制力P有关。因此,凡是引起空载辊缝和轧制力变化的因素都是厚差产生的原因。 厚差产生的原因及消除方法如下表。 表1 厚差产生的原因及消除方法 除了以上厚差产生原因外,对于配置了厚度自动控制系统的轧机,轧机的自动设定不准确、控制系统结构和控制参数设计整定不合理、辊缝、轧制力、张力、温度等测量仪表精度低等因素也是产生厚差的原因。 2.2 AGC的种类 按照控制结构的不同,AGC分为前馈AGC、反馈AGC和补偿AGC。前馈AGC又称预控AGC,反馈AGC包括压力AGC、厚度仪AGC、张力AGC、连轧AGC。补偿AGC包括油膜厚度补偿AGC、尾部补偿AGC、轧辊偏心补充AGC。 按照AGC系统使用的操作量的不同,AGC分为压下AGC、张力AGC和速度AGC。压下AGC是靠调整压下即调整辊缝来消除影响轧制压力造成的厚差。压力AGC分为厚度计AGC、动态AGC、绝对值AGC等等。张力AGC是靠调整前后张力来改变轧件塑性刚度系数来控制轧件的厚度的。速度AGC是靠调整轧制速度来控制厚度的。 2.3厚度计AGC 本文介绍的1750热轧线粗轧机厚度自动控制系统采用的是厚度计AGC(或称GM-AGC)。在轧制过程中,68

轧钢机控制系统

成绩: 课程设计报告书 所属课程名称机电传动控制(含PLC) 题目轧钢机控制系统 分院机电学院 专业、班级机械设计制造及其自动化 学号 学生姓名 指导教师

目录 前言 1课程设计任务书 (1) 2总体设计 (2) 2.1控制系统框架 (2) 2.2主线路接线图 (2) 3硬件系统设计 (2) 3.1系统所需的硬件 (2) 3.2系统设计 (3) 3.3 I/O端口接线 (4) 3.4 I/O地址分配 (4) 4程序设计 (5) 4.1总体设计过程,程序流程图 (5) 4.2操作过程 (6) 4.3 PLC梯形图操控程序 (7) 4.4语句表 (10) 4.5实验现象图块 (10) 5程序调试及结果分析 (13) 6总结 (13) 7参考文献 (14)

前言 轧机的主要设备有工作机座和传动装置;工作机座由轧辊、轧辊轴承、机架、轨座、轧辊调整装置、上轧辊平衡装置和换辊装置等组成。轧辊是使金属塑性变形的部件,它包括轧辊轴承、轧机机架、轧机轨座、轧辊调整装置、上轧辊平衡装置等。 中国于 1871 年在福州船政局所属拉铁厂 ( 轧钢厂 ) 开始用轧钢机轧制厚 15mm 以下的铁板, 6 ~ 120mm 的方﹑圆钢。 1890 年汉冶萍公司汉阳铁厂装有蒸汽机拖动的横列双机架 2450mm 二辊中板轧机和蒸汽机拖动的三机架横列二辊式轨梁轧机以及 350/300mm 小型轧机。随着冶金工业的发展,现已有多种类型轧机。 现代轧机发展的趋向是连续化、自动化、专业化,产品质量高,消耗低。 60 年代以来轧机在设计、研究和制造方面取得了很大的进展,使带材冷热轧机、厚板轧机、高速线材轧机、 H 型材轧机和连轧管机组等性能更加完善,并出现了轧制速度高达每秒钟 115m的线材轧机、全连续式带材冷轧机、 5500mm宽厚板轧机和连续式 H 型钢轧机等一系列先进设备。 应用PLC控制达到自动化。PLC即可编程序控制器,英文全称Programmable Controller,简称PLC。它是一个以微处理器为核心的数字运算操作电子系统装置,转为在工业现场应用而设计,采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字式或模拟式的输入/输出接口,控制各种类型的机械或生产过程。PLC的程序编制,不需要专门的计算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制形象、直观、方便易学,调试和简易的用户程序编制工作,就灵活方便地将PLC应用于生产实践之中。 随着生产力和科学技术的不断发展,人们的日常生活和生产活动大量的使用自动化控制,不仅节约了人力资源,而且很大程度的提高了生产效率,又进一步的促进了生产力快速发展,并不断的丰富着人们的生活。

PLC控制实验--自控轧钢机控制

实验十八 自控轧钢机控制 一、实验目的 1.掌握计数器指令的使用及编程 2.掌握自控轧钢机系统的接线、调试、操作 二、实验设备 序号 名称 型号与规格 数量 备注 1 网络型可编程控制器高级实验装置 THORM-D 1 2 实验挂箱 CM30 1 3 实验导线 3号 若干 4 通讯电缆 USB 1 5 计算机 1 自备 三、控制要求 当启动按钮SD 接通,电机M1、M2运行,传送钢板,检测传送带上有无钢板的传感器S1的信号(即开关为ON ),表示有钢板,电机M3正转(MZ 灯亮);S1的信号消失(为OFF ),检测传送带上钢板到位后的传感器S2有信号(为ON ),表示钢板到位,电磁阀动作(YU1灯亮),电机M3反转(MF 灯亮)。Y1给一向下压下量,S2信号消失,S1有信号,电机M3正转……重复上述过程。 Q1.01第一次接通,发光管A 亮,表示有一向下压下量,第二次接通时,A 、B 亮,表示有两个向下压下量,第三次接通时,A 、B 、C 亮,表示有三个向下压下量;在Q1.01第三次接通断开时,电磁阀YU1灯灭,“A 、B 、C ”全灭,“M2”灯亮送走钢板,断开启动开关系统停止工作。 四、端口分配表 序号 CM12 (面板端子) CM30 (面板端子) 说明 备注 1. 00 SD 启动开关 PLC 输入 2. 01 S1 S1检测有无钢板 3. 02 S2 S2检测有无钢板 4. 00 M1 M1电机 PLC 输出 5. 01 M2 M2电机 6. 02 MZ M3电机正转 7. 03 MF M3电机反转 8. 04 A 下压量A 9. 05 B 下压量B 10. 06 C 下压量C 11. 07 YU1 电磁阀 12. 主机输入端COM 、CM30面板+24V 接电源24V 电源正端 13. 主机输出端COM 、CM30面板COM 接电源COM 电源地端 五、操作步骤

基于PLC的轧钢机控制系统设计

题目:基于PLC的轧钢机控制系统设计 专题题目(若无专题则不填):PLC软件设计 原始依据(包括设计(论文)的工作基础、研究条件、应用环境、工作目的等):工作基础: 目前,我国基于PLC轧钢机系统已经不同程度得到了推广应用。 PLC轧钢机控制技术的发展主要经历了三个阶段:继电器控制阶段,微机控制阶段,现场总线控制阶段。现阶段轧钢机控制系统设计使用可编程控制器(PLC),其功能特点是变化灵活,编程简单,故障少,噪音低,维修保养方便,节能省工,抗干扰能力强。除此之外PLC还有其他强大功能,它可以进行逻辑控制、运动控制、通信等操作;并具有稳定性高、可移植性强等优点,因此受到广大电气工程控制技术人员的青睐。 研究条件及应用环境: 本课题是基于PLC的控制系统的研究课题。工业自动化是国家经济发展的基础,用于实现自动化控制设备主要集中为单片机和PLC。单片机由于控制能力有限、编程复杂等缺点,现在正逐步退出控制舞台。PLC则因为其功能强大、编程简单等优点,得到迅速发展及运用。PLC的功能强大,可以进行逻辑控制、运动控制、通信等操作;并具有稳定性高、可移植性强等优点,因此,PLC是工业控制领域中不可或缺的一部分。 工作目的: 轧钢机如控制和使用得当,不仅能提高效率,节约成本,还可大大延长使用寿命。对轧钢机控制系统的性能和要求进行分析研究设计了一套低成本高性能的控制方案,可最大限度发挥轧钢机加工潜力,提高可靠性,降低运行成本,对提高机械设备的自动化程度,缩短与国际同类产品的差距,都有着重要的意义。 主要内容和要求:(包括设计(研究)内容、主要指标与技术参数,并根据

课题性质对学生提出具体要求): 1)当整个机器系统的电源打开时,电机M1和M2旋转,以待传送工件。 2)工件通过轨道从右边输送进入轧制系统。 3)感应器S1感应到有工件输送来时,输出高电位,驱动上轧辊按预定 下压一定的距离,实现轧制厚度的调节,同时电机M3开始逆时针旋 转,并带动复位挡板也逆时针转动,感应器S1复位。 4)随着轧制的进行,工件不断地向左移动。当感应器S2感应到有工件 移动过来时,说明工件的要求轧制长度已经完成,此时感应器S2输 出高电位,驱动控制电机M3的电磁阀作用,使电机M3顺时针转动。 5)在电机M3顺时针转动下,挡板顺时针转动,推动工进向右移动。当 工件移动到感应器S1感应到时,S1有输出高电位,使电机M3逆时 针转动,同时驱动上轧辊调节好第二个下压量,进入第二次压制的过 程。 6)再次重复上述的工作,直到上轧辊完成3次下压量的作用,工件才加 工完毕。 7)系统延时等待加工完毕的工件退出轨道,此时即可进入下一个工件的 加工过程。

PLC轧钢机课程设计

PLC轧钢机课程设 计

课程设计说明书 课 程 名 称:电气控制设备课程设计 课 程 代 码: 9127028 题 目: 学 生 姓 名: 学 号: 年级/专业/班: 学院(直属系) : 应用技术学院 指 导 教 师 : 徐 全

摘要 本设计阐述了PLC在轧钢机系统中的应用,介绍了轧钢机的PLC控制系统的总体设计方案和过程,列出了具体的硬件、软件设计,包括梯形图,控制流程图及仿真,在分析的基础上指出了PLC的编程方法。本次设计课题是基于PLC的自控轧钢机系统,它在钢铁生产过程中非常重要,对现在的工业发展必不可少。 关键词:PLC 轧钢机

1.PLC概述 (3) 1.1 PLC历史 (4) 1.2 PLC基本结构 (5) 1.3 PLC的工作原理 (6) 1.4 PLC的特点 (7) 1.5 PLC的功能 (8) 2. 轧钢机控制设计 (9) 2.1轧钢机介绍及发展 (9) 2.2 设计任务 (10) 3.系统硬件设计 (12) 3.1 总体设计 (12) 3.2 主电机回路 (13) 3.3 PLC轧钢机I/O分配表 (13) 3.4 PLC轧钢机I/O外部接线图 (14) 4.系统软件设计 (15) 4.1 程序设计的一般方法 (15) 4.1.1 经验设计法 (15)

4.1.2 逻辑设计法 (16) 4.1.3 顺序设计法 (16) 4.2程序设计 (17) 4.1.1 梯型图 (17) 4.4.2控制流程图 (23) 5.系统调试 (25) 6.改进措施 .................................. 错误!未定义书签。 6.1电机调速控制.......................... 错误!未定义书签。 6.1.1.变频调速控制.................... 错误!未定义书签。 6.1.2.张力控制........................ 错误!未定义书签。 6.2 轧钢机检测警报---温度报警............ 错误!未定义书签。7.系统结论 . (31) 8.参考文献 (33) 1.PLC概述 可编程逻辑控制器PLC (Programmable Logic Controller)一种数字运算操作的电子系统,是以微机处理器为基础,综合了计算机技术、半导体集成技术、自动控制技术、数字技术和通信网络技术发展起来的一种通用工业自动控制技术。它采用一类可编程的存储器,用于其内

棒材轧机的自动控制系统

轧钢厂一车间棒材轧机的自动控制系统 轧钢厂一车间棒材生产线是由包头钢铁设计研究院设计。该套年产量60万t的棒材轧机于2003年5月建成投产以后,设备运行基本稳定可靠,单位小时产量已经达到了原设计水平。1主要工艺设备和系统配置 1.1工艺设备概况 该套轧机为连续式,由7台∮550mm(3台)/∮450mm (4台)可逆初轧机、1台切头切尾和事故碎断用的切头飞剪、、4台∮380mm中轧机、1台气钢推动的事故卡断剪、6台∮320㎜平立式精轧机(12H、14H、16H三架水平轧机和13V、15V、17V三架立式轧机组成)、6个活套装置、精轧后辊道、1台成品倍尺飞剪、冷床输入辊道(四段)、裙板拔钢装置、步进式冷床及横移装置、冷床输出辊道、冷剪和成品收集等设备组成,该轧机出口速度最高可达15m/s,可生产∮16~50㎜规格的圆钢和螺纹钢。 1.2系统配置 根据工艺和生产的要求,在轧制线上配备了2套工控微机(在主操作台)和5套plc装置(在主电PLC室)。Plc1 主要用于轧机辅助设备控制(如液压站、辊道、风机等);Plc2主要完成轧制线17台直流电机的速度级联调速控制,6个活套的控制,切头飞剪和冷床的控制;Plc3用于成品倍尺飞剪区域设备的控制(整套引进意大利DANELI公司)、plc4用于精整区所有设备的控制、plc5用于冷剪设备的控制(整套引进意大利DANELI公司)。2套工控微机各含有1个操作键盘、1台监控器CRT和1台主机。2套工控微机都设在主操作台站内,其中,1套工控微机用于轧制表的输入和轧制速度等显示。另1套工控微机用于监控并显示现场设备所处的状态,可记录当前和历史数据,它的CRT显示内容与前1套工控微机的内容基本相同,但是,在主操作室内,各输入参数既可供显示,也能做修改。 2主操作站功能和CRT显示 主操作站内的工控微机有一个人机对话监控系统,主要用于输入各种轧制和控制用参数。轧机监控系统的画面构成和相互调用关系. 本监控系统从轧钢的工艺特点和操作要求出发,包括了轧机系统的所有主要工艺流程、检测参数、设备状态的显示,也集中了轧钢系统的监视和控制得到完全的统一。操作人员可以及时准确地了解系统的当前状态,并方便、迅速、可靠地对设备作出相应的调整,既简化了操作人员的工作,又使系统随时处于监控状态,提高了系统的安全性和可靠性。 在“轧制配置表”画面中,可输入和显示轧制规格、出口机架速度、机架的配置等参数(而成品倍尺长度以及剪机参数则由操作人员在外商提供的OP17操作面板上输入),也可以调用原来存储在计算机中的轧制程序。在“轧制参数表”中,可输入和显示各个机架的工作辊径和延伸率,并显示机架的轧辊圆周线速度。 在“轧机”画面中,可输入和显示飞剪的切头长度、活套的高度、电机转速等。,可保存最新的故障信息。 3级联调速控制和活套起、落套控制 在棒材连轧机中,为保证产品质量,以成品基架-末基架为基准基架,保持其速度不变并作为其基准速度设定,其上游基架速度根据金属秒流量相等原理,自动按比例设定,在轧制过程中来自活套闭环控制的调节量和人工的手动干预调节量,依次按逆轧制方向对其前面上游的各基架的速度作增减,实现级联控制。 在轧制调试初期,或新品种试生产期间,或生产过程中各种因素的影响,会使速度级联关系发生变化,需要进行人工干预,调节机架的速度,使全轧线的运行保持稳定。 从轧件咬入轧辊至速度反馈控制响应之前,由于负荷的突然变化,该机架的电机会产生一个

相关主题
文本预览
相关文档 最新文档