当前位置:文档之家› 二元一次方程组提高练习题

二元一次方程组提高练习题

二元一次方程组提高练习题
二元一次方程组提高练习题

二元一次方程组练习题

(范围:代数: 二元一次方程组)

一、判断

1、???

??-==312y x 是方程组??????

?=-=-9

1032

6

5

23y x y x 的解 …………( ) 2、方程组?

?

?=+-=5231y x x

y 的解是方程3x -2y =13的一个解( )

3、由两个二元一次方程组成方程组一定是二元一次方程组( ) 5、若(a 2-1)x 2

+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( ) 6、若x +y =0,且|x |=2,则y 的值为2 …………( ) 7、方程组??

?=+-=+8

1043y x x

m my mx 有唯一的解,那么m 的值为m ≠-5 …………( )

8、方程组??

???=+=+62

3

131

y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组??

?=+=-3

51

3y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组

?

?

?=+=-351

3y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则3

2

-的值为b a ………(

12、在方程4x -3y =7里,如果用x 的代数式表示y ,则4

37y

x +=

( ) 二、选择:

13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;

(C )三个解; (D )无数多个解;

14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )

(A )5个 (B )6个 (C )7个 (D )8个 15、如果?

?

?=+=-423y x a

y x 的解都是正数,那么a 的取值范围是( )

(A )a <2; (B )34-

>a ; (C )3

4

2<<-a ; (D )3

4

-

16、关于x 、y 的方程组??

?=-=+m

y x m

y x 932的解是方程3x +2y =34的一组解,那么m 的值是

( )

(A )2; (B )-1; (C )1; (D )-2;

17、在下列方程中,只有一个解的是( ) (A )??

?=+=+0331

y x y x

(B )??

?-=+=+2330

y x y x

(C )?

??=-=+4331

y x y x

(D )?

?

?=+=+3331

y x y x

18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )

(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( )

(A )???

??=+=+9114

y

x y x (B )???=+=+75z y y x

(C )?

?

?=-=6231

y x x

(D )?

?

?=-=-1y x xy

y x

20、已知方程组?

?

?-=+=-135

b y ax y x 有无数多个解,则a 、b 的值等于( )

(A )a =-3,b =-14

(B )a =3,b =-7 (C )a =-1,b =9

(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x y

x 3545--的值等于( )

(A )

3

2 (B )

2

3 (C )1 (D )-1

22、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定

23、若|3x +y +5|+|2x -2y -2|=0,则2x 2

-3xy 的值是( )

(A )14 (B )-4 (C )-12 (D )12 24、已知???-==24y x 与?

??-=-=52

y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21

=k ,b =-4 (B )2

1

-=k ,b =4 (C )2

1

=

k ,b =4

(D )2

1

-

=k ,b =-4 三、填空:

25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;

27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若??

?-==11y x 是方程组???-=-=+1242a y x b y ax 的解,则?

??==______________

b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程14

1

=+y ax ,那么a =____________; 31、已知方程组??

?-=+=+m

y x ay x 2643

2有无数多解,则a =______,m =______;

32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;

33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;

34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;

35、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2

+3的值为__________; 四、解方程组

36、???????=-=-13

3

234

3n m n

m ; 37、)(6441125为已知数a a y x a y x ??

?=-=+; 38、???????=++=+1

25

432y x y

x y x ; 39、?????=--+=-++0)1(2)1()1(2x y x x x y y x ; 40、???

????+

+=++=+=+6253)23(22)32(32523233y x y x y

x y x ; 41、???????=-++=-++1213222132y x y x ;

五、解答题:

请写出这个方程组,并求出此方程组的解; 42、使x +4y =|a |成立的x 、y 的值,满足

(2x +y -1)2

+|3///////////................y -x |=0,又|a |+a =0,求a 的值;

43、代数式ax 2

+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;

44、要使下列三个方程组成的方程组有解,求常数a 的值。 2x +3y =6-6a ,3x +7y =6-15a ,4x +4y =9a +9

45、当a 、b 满足什么条件时,方程(2b 2

-18)x =3与方程组?

?

?-=-=-5231

b y x y ax 都无解;

46、a 、b 、c 取什么数值时,x 3

-ax 2

+bx +c 程(x -1)(x -2)(x -3)恒等? 47、m 取什么整数值时,方程组?

??=-=+024

2y x my x 的解:

(1)是正数;

(2)是正整数?并求它的所有正整数解。 48、试求方程组?

?

?-=---=-6|2||

5|7|2|y x y x 的解。

六、列方程(组)解应用题

49、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人?

50、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?

51、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的3

1

,求这两个水桶的容量。

52、有两个比50大的两位数,它们的差是10,大数的10倍与小数的5倍的和的20

1是11的倍数,且也是一个两位数,求原来的这两个两位数。

【参考答案】

一、1、√; 2、√; 3、×; 4、×; 5、×; 6、×; 7、√; 8、√; 9、×;10、×; 11、×; 12、×; 二、13、D ; 14、B ; 15、C ; 16、A ; 17、C ; 18、A ;

19、C ; 20、A ;21、A ; 22、B ; 23、B ; 24、A ;

三、25、47

,8,?

??==14y x ; 26、2; 27、4125+=y x ;

28、a =3,b =1;

29、??

?==2

b a ???==11b a ?

??==02

b a 30、

2

1

; 31、3,-4 32、1; 33、20; 34、a 为大于或等于3的奇数;

35、4:3,7:9

36、0;

四、37、???==204162n m ; 38、??

?

??==22a y a

x ; 39、??

?-==13y x ; 40、?

?

?==11

y x ; 41、???==11y x ; 42、???

??

==225y x ; 43、??

???===168z y x ; 44、?????===397z y x ;

45、?????-=-==212z y x ; 46、??

?

??===202112z y x ;

五、47、???-=-=+2941358y x y x ,???

????

==2317

92

107y x ;

48、a =-1 49、11x 2

-30x +19;

50、3

1

=

a ; 51、2

3

=

a ,

b =±3 52、a =6, b =11,

c =-6;

53、(1)m 是大于-4的整数,(2)m =-3,-2,0,???==48y x ,???==24y x ,?

??==12

y x ; 54、??

?=-=91y x 或???==9

5

y x ;

六、55、A 、B 距离为450千米,原计划行驶9.5小时;

56、设女生x 人,男生y 人,???????=?-++=-++68

2)4(2

34042

3

y x y x ???==)(32)(21人人y x

[七年级数学]代数式的值 练习题

能力达标测试 [时间60分钟满分100分]一、选择题(每小题4分,共20分) 1.当a=1 2 ,b= 1 3 ,c= 1 6 时,代数式(a-b)(a-c)(b-c)的值是() A.1 9 B. 1 36 C. 1 54 D. 1 108 2.已知a,b互为相反数,c、d互为倒数,则代数式2(a+b)-3cd的值为()A.2 B.-1 C.-3 D.0 3.当x=3时,代数式px2+qx+1的值为2002,则当x=-3时,代数式px2+qx+1的值为()A.2000 B.-2002 C.-2000 D.2001 4.关于代数式21 3 a a - + 的值,下列说法错误的是() A.当a=1 2 时,其值为0 B.当a=-3时,其值不存在 C.当a≠-3时,其值存在 D.当a=5时,其值为5 5.某人以每小时3千米的速度登山,下山时以每小时6千米的速度返回原地,则来回的平均速度为() A.4千米/小时 B.4.5千米/小时 C.5千米/小时 D.5.5千米/小时 二、填空题(每空4分,共24分) 1.当a=2,b=1,c=-3时,代数式 2 c b a b - + 的值为___________。 2.若x=4时,代数式x2-2x+a的值为0,则a的值为________。 3.当a= 1 1 2 时, 2 2 1 1 a a a a ++ -+ =____________。 4.如图3-3所示,四边形ABCD和EBGF都是 正方形,则阴影部分面积为_______cm2 5.如果某船行驶第1千米的运费是25元,以后 每增加1千米,运费增加5元,现在某人租船 要行驶s千米(s为整数,s≥1),所需运费表 示为_________,当s=6千米时,运费为________________。 三、综合应用(每小题10分,共30分) 1.已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值。 2.已知x y =2, x z =4,z=1,求代数式 x y z x y z ++ -+ 的值。

二元一次方程组培优竞赛测试题1

精品文档 ax?3y?9?a yx,的值为(、若关于的方程组无解,则)5?2x1?y??二元一次方程组测试题?66930. D C.. B A. x?2y?3z?0?: : 得分姓名x:yy,z:zx,是(都不为0,由方程组可得6、若)?0z?2x?3y?4? 1:2:11:(?2):1(?1):2:11:2:(?1) C .DA..B.分)30一.选择题(每小题3分,共2016 ?x?y?12,()ab+1|=0+|2a1、若﹣,则(b﹣)= ?的解的个数为(7 .方程组).?6?x?y20152015?﹣5 5 D..1 .1 A.﹣B C?(A)1 (B)2(C) 3 (D)4 ,下列做法正确的是(2、利用加减消元法解方程组) 8、某商店出售某种商品每件可获利m元,利润为20%,若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利B ,可以将要消去.A y①×5+②×2 .要消去m元,则提价后的利润率为(5①×3+②×,可以将(﹣))x A. 25% B. 20% C. 16% D. 12.5% ,可以将要消去.C y①×5+②×3 )+②×25①×,可以将xD.要消去(﹣53+cx-5当x= --2时的值是7,那么当x= 2时该式的值是(ax9、如果代数式6540、为推进课改,王老师把班级里3名学生分成若干小组,每小组只能是人或人,则有几种+bx) A. 7 B. -12 C. --17 D. 8 )分组方案(10.3 .B4 .A C 、一对夫妇现在年龄的和是其子女年龄和的61 .D2 倍,他们两年前年龄和是其子女两年前年龄和的10倍,他们、如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,46年后的年龄和是其子其女6年后年龄和的3倍。问这对夫妇共多少个子女? ( ) 其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度A. 2 B. 3 C.4 D.5 公尺,则乙的长公尺.若乙的长度最长且甲、乙的长度相差2为y公尺,乙、丙的长度相差x 度为多少公尺?() 请将选择题答案填入下表

初中数学_二元一次方程组测试题

二元一次方程组测试题 一、选择题: 1.下列方程中,是二元一次方程的是() A.3x-2y=4z B.6xy+9=0 C.1 x+4y=6 D.4x= 2 4 y- 2.下列方程组中,是二元一次方程组的是() A. 2 2 8 423119 (23754624) x y x y a b x B C D x y b c y x x y += +=-=?? = ?? ????+=-==-=???? 3.二元一次方程5a-11b=21 () A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是() A. 3333 ... 2422 x x x x B C D y y y y ==-==-???? ????===-=-???? 5.若│x-2│+(3y+2)2=0,则的值是() A.-1 B.-2 C.-3 D.3 2 6.方程组 43 235 x y k x y -= ? ? += ?的解与x与y的值相等,则k等于() 7.下列各式,属于二元一次方程的个数有() ①xy+2x-y=7;②4x+1=x-y;③1 x+y=5;④x=y;⑤x2-y2=2 ⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x A.1 B.2 C.3 D.4 8.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,?则下面所列的方程组中符合题意的有() A. 246246216246 ... 22222222 x y x y x y x y B C D y x x y y x y x +=+=+=+= ???? ????=-=+=+=+???? 二.填空题:

代数式化简求值专项训练及答案

代数式化简求值专项训练 1.先化简,再求值: (1))1)(2(2)3(3)2)(1(-+++---x x x x x x ,其中31= x . (2) (a +b )(a -b )+(a +b )2-a (2a +b ),其中a = 23,b =-112。 (3)22(3)(3)(5)(5)a b a b a b a b -++-+-,其中2a =-,1b =-. 2.已知312= -y x ,2=xy ,求 43342y x y x -的值。 3.若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值 4.已知22==+ab b a ,,求 32232 121ab b a b a ++的值.

5.已知x 2+x -1=0,求x 3+2x 2+3的值. 6.已知:222450a b a b ++-+=,求2243a b +-的值. 7.已知等腰△ABC 的两边长,a b 满足:22 2448160a ab b a -+-+=,求△ABC 的周长? 8.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值. 9、已知x 、y 都是正整数,且3722+=y x ,求x 、y 的值。 10、若182++ax x 能分解成两个因式的积,求整数a 的值?

代数式典型例题30题参考答案: 1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个. 故选C 2.解:题中的代数式有:﹣x+1,π+3,共3个. 故选C. 3.解:①1x分数不能为假分数; ②2?3数与数相乘不能用“?”; ③20%x,书写正确; ④a﹣b÷c不能出现除号; ⑤,书写正确; ⑥x﹣5,书写正确, 不符合代数式书写要求的有①②④共3个. 故选:C 4.解:“负x的平方”记作(﹣x)2; “x的3倍”记作3x; “y与的积”记作y. 故选B 5.解:A、x是代数式,0也是代数式,故选项错误; B、表示a与b的积的代数式为ab,故选项错误; C、正确; D、意义是:a与b的和除y的商,故选项错误. 故选C 6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元 7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2; (2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格. 故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2; (2)这件商品打八折后的价格 8.解:根据题意得此三位数=2×100+x=200+x 9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=. 故答案为:. 11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则 未读完的页数是n 12.解:(1)∵a﹣b=3, ∴3a﹣3b=3,

精品-二元一次方程组单元测试题及答案

二元一次方程组单元测试题及答案 一、选择题(每题3分,共24分) 1、表示二元一次方程组的是( ) A 、???=+=+;5,3x z y x B 、???==+;4,52y y x C 、???==+;2,3xy y x D 、???+=-+=222,11x y x x y x 2、方程组? ??=-=+.134,723y x y x 的解是( ) A 、???=-=;3,1y x B 、???-==;1,3y x C 、???-=-=;1,3y x D 、???-=-=. 3,1y x 3、设???=+=. 04,3z y y x ()0≠y 则=z x ( ) A 、12 B 、121- C 、12- D 、.121 4、设方程组()???=--=-.433,1by x a by ax 的解是???-==. 1,1y x 那么b a ,的值分别为( ) A 、;3,2- B 、;2,3- C 、;3,2- D 、.2,3- 5、方程82=+y x 的正整数解的个数是( ) A 、4 B 、3 C 、2 D 、1 6、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时, =y ( )。 A 、23 B 、-13 C 、-5 D 、13 7、关于关于y x 、的方程组?? ?-=+-=-5m 212y 3x 4m 113y 2x 的解也是二元一次方程2073=++m y x 的解,则m 的值是( ) A 、0 B 、1 C 、2 D 、 21 8、方程组???=-=-8 2352y x y x ,消去y 后得到的方程是( ) A 、01043=--x x B 、8543=+-x x C 、8)25(23=--x x D 、81043=+-x x

解二元一次方程组计算题

解二元一次方程组计算题1. 3x+y=34 2x+9y=81 2..3..4. 9x+4y=35 8x+3y=30 5..6. 7. 7x+2y=52 7x+4y=62 .8.9. 10. 4x+6y=54 9x+2y=87 11..12. 13. 2x+y=7 2x+5y=19 14..15. 16. x+2y=21 3x+5y=56 17..18.. 19. 5x+7y=52 5x+2y=22 20..21. 22. 5x+5y=65 7x+7y=203 23..24.. 25. 8x+4y=56 x+4y=21 26. 27. 28. 5x+7y=41 5x+8y=44 29..30. 31. 7x+5y=54 3x+4y=38 32.33.. x+8y=15

34. 4x+y=29 35. .. 36 37. 3x+6y=24 9x+5y=46 38.39. 40. 9x+2y=62 4x+3y=36 41..42. 15. 9x+4y=46 7x+4y=42 44.45. 46. 9x+7y=135 3x+8y=51 4x+7y=95 48. x+6y=27 47. 4x+y=41 9x+3y=99 49. 9x+2y=38 2x+3y=73x-2y=7 50. 51. 3x+6y=18 3x+y=72x-3y=3 .. 52. 5x+5y=45 53. 8x+2y=28 x+6y=14 3x+3y=27 54. 7x+9y=69 7x+8y=62 55. 7x+4y=67 5x+3y=8 57. 6x-7y=5 x+2y=4 56. 3x+5y=8 2x+8y=26 58. 5x+4y=52 4x-3y=18 60. x-2y=5 59. x+3y=-5 7x+6y=74 2x-y=8 61. 7x+y=9 62. 3x-2y=5 63. 3x-5y=2 4x+6y=16 7x-4y=112x-y=3 64. 6x+6y=48 y-3x=2 66. 10x-8y=14 6x+3y=42 65. x-2y=6x+y=5 55.8x+2y=16 9x-3y=123x-5y=2 7x+y=11 68. 2x+y=6 69. 2x-y=3 70. 4x+9y=77 8x+6y=94 71. 4x+7y=3 x+y=0 72. 3x+y=10 7x-y=20 73. 44x+10y=27 x+y=1 74. 8x-y=0

二元一次方程组试题及标准答案

二元一次方程组试题及答案

————————————————————————————————作者:————————————————————————————————日期: 2

第八章二元一次方程组单元知识检测题 (时间:90分钟满分:100分) 一、选择题(每小题3分,共24分) 1.方程2x-1 y =0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是() A.1个B.2个C.3个D.4个 2.二元一次方程组 323 25 x y x y -= ? ? += ? 的解是() A. 32 17 ... 23 01 22 x x x x B C D y y y y = ?? == = ?? ?? ????==- = ?? ?? = ?? 3.关于x,y的二元一次方程组 5 9 x y k x y k += ? ? -= ? 的解也是二元一次方程2x+3y=6的解,则k的值是(? ) A.k=-3 4 B.k= 3 4 C.k= 4 3 D.k=- 4 3 4.如果方程组 1 x y ax by c += ? ? += ? 有唯一的一组解,那么a,b,c的值应当满足() A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是() A.1个B.2个C.3个D.4个 6.已知x,y满足方程组 4 5 x m y m += ? ? -= ? ,则无论m取何值,x,y恒有关系式是() A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=9 7.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为() A. 1122 ... 2211 x x x x B C D y y y y ==-==-???? ????==-=-=-???? 8.若 2,1 17 x ax by y bx by =-+= ?? ?? =+= ?? 是方程组的解,则(a+b)·(a-b)的值为() A.-35 3 B. 35 3 C.-16 D.16 二、填空题(每小题3分,共24分) 9.若2x2a-5b+y a-3b=0是二元一次方程,则a=______,b=______. 10.若 1 2 a b = ? ? =- ? 是关于a,b的二元一次方程ax+ay-b=7的一个解,则代数式x2+2xy+y2-1?的值是 _________. 11.写出一个解为 1 2 x y =- ? ? = ? 的二元一次方程组__________. 3

代数式的值练习题

代数式的值 基础训练 一、填空题: 1、当x =-2时,代数式2x -1的值是 . 2、当 x =5,y =4时,代数式x -2y 的值是 . 3、明明步行的速度是5千米/小时,当他走了t 时的路程为 千米;当他走了2时的路程为 千米. 二、选择题: 4、把a = 121 ,b =2 1 代入(3a -2b )2,正确的结果是( ) A 、(3121-221) 2 B 、(321-2121)2 C 、(3×21-2×21)2 D 、(3×121-2×2 1)2 5、设三角形的底边长为a ,高为h ,面积为S ,若a =2,h =3,则S=( ) A 、3 B 、4 C 、5 D 、6 6、当a =0.25,b =0.5时,代数式a 1-b 2的值是( ) A 、3.75 B 、4.25 C 、0 D 、-21 7、当a =3,b=1时,代数式0.5(a -2b )的值是( ) A 、1 B 、0.5 C 、0 D 、25 8、代数式x 2+2的值( ) A 、大于2 B 、等于2 C 、小于2 D 、大于或等于2 三、解答题: 9、如果用C 表示摄氏温度,T 表示绝对温度,则C 与T 之间的关系是:C=T -273. 分别求出当T=0与T=273时C 的值。 10、如图是一个数值转换机 综合提高 一、填空题: 1、已知x =2,y 是绝对值最小的有理数,则代数式4x 2-2xy +2y 2= . 2、若x+3=5-y,a,b 互为倒数,则代数式2 1(x +y )+5 ab = . 3、一根长10厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量输入 -2 -1 0 1 2 输出

二元一次方程组竞赛题集

二元一次方程组培优专题一 ()()41312223 x y y x y --=--???+=?? 2320235297x y x y y --=??-+?+=?? ()()9185232032m n m m n ?+=????++=?? 7231 x y x y ?+=??-=-?? 若()4360,2700,x y z x y z xyz --=+-=≠求代数式222 222 522310x y z x y z +---的值. 已知关于x y 、的方程组210320mx y x y +=??-=? 有整数解,即x y 、都是整数,m 是正整数,求m 的值. 已知方程组 的解x ,y 满足方程5x-y=3,求k 的值. 解方程组 k 、b 为何值时,方程组?? ? +-=+=2)13(x k y b kx y (1)有惟一一组解;(2)无解;(3)有无穷多组解?

已知关于x ,y 的方程组?? ?=+=+-b y x y x a 5)1(当a ,b 满足什么条件时,方程组有唯一解,无解,有无数解? 已知方程组? ??=+=-b ay x y x 91243有无穷多个解,试求a 、b 的值。 已知关于x、y的二元一次方程(a -1)x +(a +2)y -2a +5=0,当a 每取一个值时,都可得到一个方程,而这些方程有一个公共解,求这个公共解;并证明对于任何a 值,它都能使方程成立。 若方程组???=+=+222111c y b x a c y b x a 的解是???=-=1514y x ,求方程组???=+=+222 111957957c y b x a c y b x a 的解。 已知m 是整数,方程组? ? ?=+=-266634my x y x 有整数解,求m 的值 已知xyz ≠0,且???=-+=--0 720634z y x z y x ,求2222 2275632z y x z y x ++-+的值 若a 、c 、d 是整数,b 是正整数,且满足a+b=c ,b+c=d ,c+d=a ,那么a+b+c+d 的最大值是 ( ) A .-1 B .-5 C .0 D . 1

解二元一次方程组练习题经典

学习好资料欢迎下载 解二元一次方程组练习题 梅州)解方程组2013?.1.( 淄博)解方程组.2.(2013? 邵阳)解方程组:2013?.3.( (4.2013?.遵义)解方程组 2013?.湘西州)解方程组:5.( (6.2013?荆州)用代入消元法解方程组. .?汕头)解方程组2013.7( ?2012.8(湖州)解方程组. 学习好资料欢迎下载

广州)解方程组2012?.9.( 常德)解方程组:?10.(2012 2012?.南京)解方程组(11. 厦门)解方程组:12.(2012?. .2011?永州)解方程组:(13. 14.(2011怀化)解方程组:?. 桂林)解二元一次方程组:.?(15.2013 ?(.162010.南京)解方程组: 学习好资料欢迎下载 丽水)解方程组:(2010?17.

广州)解方程组:.?.18(2010 巴中)解方程组:.? 19.(2009 天津)解方程组:? 20.(2008 宿迁)解方程组:.2008? 21.( 桂林)解二元一次方程组:.(22.2011? ?郴州)解方程组:200723.( .?(24.2007常德)解方程组: 学习好资料欢迎下载 宁德)解方程组:2005?25.(

岳阳)解方程组:?.(2011.26 苏州)解方程组:.27.(2005? ?(2005江西)解方程组:28. 29.(2013自贡模拟)解二元一次方程组:.? 黄冈)解方程组:.?(30.2013 解二元一次方程组练习题学习好资料欢迎下载 参考答案与试题解析

一.解答题(共30小题) 梅州)解方程组.2013? 1.( 考点:解二元一次方程组;解一元一次方程. 专题:计算题;压轴题. 分析:①+②得到方程3x=6,求出x的值,把x的值代入②得出一个关于y的方程,求出方程的解即可. 解答: 解:, ①+②得:3x=6, 解得x=2, 将x=2代入②得:2﹣y=1, 解得:y=1. ∴原方程组的解为. 点评:本题考查了解一元一次方程和解二元一次方程组的应用,关键是把二元一次方程组转化成一元一次方程,题目比较好,难度适中. 2.(2013?淄博)解方程组. 考点:解二元一次方程组. 专题:计算题. 分析:先用加减消元法求出y的值,再用代入消元法求出x的值即可. 解答: 解:, ①﹣2×②得,﹣7y=7,解得y=﹣1; 把y=﹣1代入②得,x+2×(﹣1)=﹣2,解得x=0, 故此方程组的解为:.点评本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键 3.(2013?邵阳)解方程组:.

人教版七年级下册数学二元一次方程组测试题

二元一次方程组练习题100道(卷一) (范围:代数: 二元一次方程组) 一、判断 1、??? ??-==312y x 是方程组?????? ?=-=-9 1032 6 5 23y x y x 的解 …………( ) 2、方程组? ? ?=+-=5231y x x y 的解是方程3x -2y =13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( ) 4、方程组???????=-++=+++2 5323 473 5 23y x y x ,可以转化为???-=--=+27651223y x y x ( ) 5、若(a 2-1)x 2 +(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( ) 6、若x +y =0,且|x |=2,则y 的值为2 …………( ) 7、方程组? ? ?=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组?? ???=+=+62 3 131 y x y x 有无 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组? ? ?=+=-351 3y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组 ?? ?=+=-3 51 3y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则3 2 -的值为b a ………( ) 12、在方程4x -3y =7里,如果用x 的代数式表示y ,则4 37y x += ( ) 二、选择: 13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解; (D )无数多个解; 14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个

二元一次方程组竞赛题集答案解析

二元一次方程组典型例题 【例1】 已知方程组的解x ,y 满足方程5x-y=3,求k 的值. 【思考与分析】 本题有三种解法,前两种为一般解法,后一种为巧解法. (1) 由已知方程组消去k ,得x 与y 的关系式,再与5x-y=3联立组成方程组求出x ,y 的值,最后将x ,y 的值代入方程组中任一方程即可求出k 的值. (2) 把k 当做已知数,解方程组,再根据5x-y=3建立关于k 的方程,便可求出k 的值. (3) 将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k 的值. 把代入①,得,解得 k=-4. 解法二: ①×3-②×2,得 17y=k-22, 解法三: ①+②,得 5x-y=2k+11. 又由5x-y=3,得 2k+11=3,解得 k=-4. 【小结】 解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解 二元一次方程组能力提升讲义 知识提要 1. 二元一次方程组???=+=+222 111c y b x a c y b x a 的解的情况有以下三种: ① 当2 12121c c b b a a ==时,方程组有无数多解。(∵两个方程等效)

② 当2 12121c c b b a a ≠=时,方程组无解。(∵两个方程是矛盾的) ③ 当 2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ??? ????--=--=12212 11212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按 二元一次方程整数解的求法进行。 3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解 含待定系数的不等式或加以讨论。(见例2、3) 例题 例1. 选择一组a,c 值使方程组? ??=+=+c y ax y x 275 1.有无数多解, 2.无解, 3.有唯一的解 【例2】 解方程组 【思考与分析】 本例是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零. 解:由①,得 y=4-mx , ③ 把③代入②,得 2x+5(4-mx )=8, 解得 (2-5m )x=-12,当2-5m =0, 即m =时,方程无解,则原方程组无解. 当2-5m ≠0,即m ≠时,方程解为 将代入③,得 故当m ≠时, 原方程组的解为 例3. a 取什么值时,方程组? ??=+=+3135y x a y x 的解是正数?

二元一次方程组与一元一次不等式组经典应用题

二元一次方程组与一元一次不等式经典应用题 (2007年中考)市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨. (1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案? (2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少? 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得 ?? ?≥-+≥-+12 )8(220 )8(24x x x x 解此不等式组, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案: 方案一,甲种货车2辆,乙种货车6辆 方案二,甲种货车3辆,乙种货车5辆 方案三,甲种货车4辆,乙种货车4辆 (2)方案一所需运费 204062402300=?+?元; 方案二所需运费 210052043300=?+?元; 方案三所需运费 216042404300=?+?元. 所以王灿应选择方案一运费最少,最少运费是2040元. (2007年)某校准备组织290名学生进行野外考察活动,行共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行,乙种汽车每辆最多能载30人和20件行. (1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案; (2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案. 解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆 由题意得:4030(8)290 1020(8)100 x x x x +-?? +-?≥≥

二元一次方程组单元检测试卷(一)及答案

一、选择题(每小题3分,共24分) 1.方程2x-1 y =0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是 () A.1个B.2个C.3个D.4个 2.二元一次方程组 323 25 x y x y -= ? ? += ? 的解是() A. 32 17 ... 23 01 22 x x x x B C D y y y y = ?? == = ?? ?? ????==- = ?? ?? = ?? 3.关于x,y的二元一次方程组 5 9 x y k x y k += ? ? -= ? 的解也是二元一次方程2x+3y=6的解,则k的 值是(? ) A.k=-3 4 B.k= 3 4 C.k= 4 3 D.k=- 4 3 4.如果方程组 1 x y ax by c += ? ? += ? 有唯一的一组解,那么a,b,c的值应当满足() A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是() A.1个B.2个C.3个D.4个 6.已知x,y满足方程组 4 5 x m y m += ? ? -= ? ,则无论m取何值,x,y恒有关系式是() A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=-9 7.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为() A. 1122 ... 2211 x x x x B C D y y y y ==-==-???? ????==-=-=-???? 8.若 2,1 17 x ax by y bx by =-+= ?? ?? =+= ?? 是方程组的解,则(a+b)·(a-b)的值为()? ? ? = + = + 7 1 ay bx by ax

二元一次方程组竞赛题集

二元一次方程组竞赛题 【例1】已知方程组的解x,y满足方程5x-y=3,求k的值. 【例2】某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则付款方式有哪几 种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?

【例3】解方程组 【例4】某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生? (2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.

【例5】某水果批发市场香蕉的价格如下表: 张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克? 【例6】用如图1中的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒. 现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完? 【思考与分析】我们已经知道已知量有正方形纸板的总数1000,长方形纸板的总数2000,未知量是竖式纸盒的个数和横式纸盒的个数. 而且每个竖式纸盒和横式纸盒都要用一定数量的正方形纸板和长方形纸板做成,如果我们知道这两种纸盒分别要用多少张正方形纸板和长方形纸板,就能建立起如下的等量关系: (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

(完整版)解二元一次方程组基础练习

解二元一次方程组基础练习 肖老师 知识点一:代入消元法解方程组: (1)23321y x x y =-?? +=? (2)?? ?-=-=+4 23 57y x y x (3) 23 3418x y x y ?=? ??+=? (4)56 3640 x y x y +=?? --=? 知识点二:用加减法解方程组: (1)?? ?=+=-13y x y x (2)?? ?=+=-8 3120 34y x y x (3)?? ?=+=-1464534y x y x (4)?? ?=-=+1 235 4y x y x

(5)?? ?=+=+132645y x y x (6)?? ?=+=-17 327 23y x y x 拓展训练: 解下列方程: (1)(先化简)?? ?-=-+=-85)1(21 )2(3y x x y (2)(化简后整体法)?????=+= 18 433 2y x y x (3)(整体法)?? ?=--=--0232560 17154y x y x (4)(先化简)???? ?=-=+2 3432 1332y x y x (5)(化简后整体法)?????=-+= +1 323 241y x x y (6)(整体法)?? ?=+=+241 2123243 2321y x y x

(7)(先化简)?????=+-+=-+-0 42 35 132 423512y x y x (8)(可化简或整体法)?????=+--=++-5 7326 231 732623y x y x y x y x (9)(你懂的) (10)(先化简) (11)(先化简) (12)(整体法) 综合训练: 一.填空题 1.在方程32y x =--中,若2x =,则_____y =.若2y =,则______x =; 2.若方程23x y -=写成用含x 的式子表示y 的形式:_________________;写成用含y 的式子表示x 的形式:___________________________; 3. 已知?? ?==1 2 y x 是方程2x +ay=5的解,则 a= . 4.二元一次方程343x my mx ny -=+=和有一个公共解1 1 x y =??=-?,则

二元一次方程组单元测试卷(含答案)

. . 二元一次方程组单元测试卷 一、选择题(每小题4分,共28分) 1.下列方程中,是二元一次方程的是( B ) A.xy =2 B.103-=x y C.x 2+x =21 D. 31=+y x 2.二元一次方程组???=+=-10 352y x y x 的解是 ( A ) A.???==13y x B.???==27y x C. ???==31y x D.? ??==72y x 3.如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是 ( C ) A .9015 x y x y +=?? =-? B .90152x y x y +=??=-? C .90215x y x y +=??=-? D .290215x x y =??=-? 4.一个两位数,它的十位数字与个位数字的和为6,这样的两位数一共有 ( C ) A .8 B .7 C .6 D .5 5.若2 1y 4x 35x 2y 3)(-++--=0,则x= ( A ) A.-1 B.1 C.2 D.-2 6.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说: (1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设 (1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( D ) A .65,240x y x y =??=-? B .65,240 x y x y =??=+? C .56,240x y x y =??=+? D .56,240 x y x y =??=-? 7.某校七年级(1)班的50名同学郊游时准备去划船,公园管理处有可乘坐3人的船和乘坐5人的 船,班委决定同时租用这两种船,即使每个同学都坐上船,且不剩空位,则租船的方案共有 ( C ) A.5 B.4种 C.3种 D.2种 二、填空题(每小题5分,共25分) 8.若方程2x-ay=4的一组解是? ??==,2y ,0x 那么a= -2 . 9.已知a 、b 互为相反数,并且3a-2b=5,则a 2+b 2 = 2 . 10.已知b kx y +=.如果x = 4时,=y 15;x =7时,y =24,则k = 3 ;b = 3 . 11.已知a-3b=2a+b-15=1,则代数式a 2-4ab+b 2+3的值为_0__.

青岛版-数学-七年级上册-《代数式的值》专题练习

5.3 代数式的值 专题一代数式的值的意义与求值 1. a为有理数.下列说法中正确的是( ) A.(a+1) 2的值是正数B.a2+1的值是正数C.-(a+1)2的值是负数D.-a2+1的值小于1 2. 如果1<x<2,则代数式 21 21 x x x x x x -- -+ -- 的值是( ) A.1 B.-1 C.2 D.3 专题二与代数式的值有关的探究题 3. 已知代数式 253 42 () x ax bx cx x dx ++ + ,当x=1时,值为1,那么该代数式当x=1 -时 的值是() A. 1 B. 1- C. 0 D.2 4. 已知y=ax7+bx5+cx3+dx+e,其中a,b,c,d,e为常数,当x=2时,y =23;当x=-2时,y=-35,那么e的值是() A.6 B.-6 C.12 D.-12 5. QQ是一种流行的中文网络即时通讯软件.注册用户通过累积“活跃天数”就可获得相应的等级,如果用户当天(0:00~24:00)使用QQ在2小时以上(包括2小时),其“活跃天数”累积为1天.一个新用户等级升到1级需要5天的“活跃天数”,这样可以得到1个星星,此后每升1级需要的“活跃天数”都比前一次多2天,每升1级可以得到1个星星,每4个星星可以换成一个月亮,每4个月亮可以换成1个太阳.网名是“未来”的某用户今天刚升到2个月亮1个星星的等级,那么他可以升到1个太阳最少还需经过的天数是多少天?

状元笔记 【知识要点】 1. 代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫代数式的值. 2. 求代数式的值的步骤:一代入,二求值. 【温馨提示(针对易错)】 求代数式的值时,要注意书写格式;代入负数或分数时,要注意适时添加括号. 【方法技巧】 求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.

初一二元一次方程组竞赛题

解 二元一次方程组 1???-=+=-)1(212y x y x 2???-=--=-8 5)1(21 )2(3y x x y 3? ??=-=+6)3(242y x 4?????=--+=-++0)1(2 )1()1(2 x y x x x y y x 5?? ?-=-=-+)()()(2y 39x 47y 3y x 2 6?????-=--=+1 9 3213225y x y x 7?????=-=+3 4313 32n m n m 8???????=-=-133 2343n m n m

9????? =+=-123222n m n m 1011233210 x y x y +?- =???+=? 11???????=-++=-++1213 222132y x y x 12?????=-++=--+16 24)(4)(3y x y x y x y x 1353411 3 4x y x y x y x y +-?-=???+-?+=?? 14???? ?=+---=+--2 1 67101 25y x y x y x y x 1535 7,23 423 2.3 5x y x y ++?+=???--?+=?? 16?????=+-=65 342 5y x y x

17??? ??=-+=+1 323241y x x y 18??? ????+=--=-3 593332y y x y x 1 9???????=-+-=-++1 213 12221 31y x y x 20、 21243y x x x y --+== 解二元一次方程组 1???=+=-17230 5y x y x 2?? ?=+-=-5 33 2y x y x 3???=-+=+-0100730 203y x y x 420328x y x y -=??+=? 5? ??-=-=+92312y x y x 6???=+=+1341632y x y x

解二元一次方程组练习题

第7章 解二元一次方程组复习(1) 初一( )班 学号: 姓名: 月 日 知识点一:二元一次方程的概念 1、 指出下列方程那些是二元一次方程?并说明理由。 (1)3x+y=z+1 ( ) (2) x(y+1)=6 ( ) (3) 2x(3-x)=x 2-3(x 2+y) ( ) 2、下列方程中,是二元一次方程的有( ) ① 1225=-n m ② a z y -=-61147 ③ 312=-+b a ④ mn+m=7 ⑤ x+y=6 A 、1个 B 、2个 C 、3个 D 、4个 3、下列方程中,是二元一次方程组的是 ( ) ① ???=+=-7232z y y x ② ?????-=-=+1241 x y y x ③ ???=-=--51 2)4(3y x x x ④ ?? ?? ?= +=-2132132y x y x A 、①②③ B 、②③ C 、③④ D 、①② 知识点二:用加减法解二元一次方程解方程组: (1)?? ?=+=-13y x y x (2)?? ?=+=-8 3120 34y x y x (3)?? ?=+=-1464534y x y x (4)?? ?=-=+1 235 4y x y x (5)?? ?=+=+132645y x y x (6)?? ?=+=-17 327 23y x y x

知识点三:代入消元法解方程组: (1)23321y x x y =-?? +=? (2)?? ?-=-=+4 23 57y x y x (3) 23 3418x y x y ?=? ??+=? (4)56 3640 x y x y +=?? --=? 综合训练: 一.填空题 1.在方程32y x =--中,若2x =,则_____y =.若2y =,则______x =; 2.若方程23x y -=写成用含x 的式子表示y 的形式:_________________;写成用含y 的式子表示x 的形式:___________________________; 3. 已知?? ?==1 2 y x 是方程2x +ay=5的解,则 a= .

相关主题
文本预览
相关文档 最新文档