当前位置:文档之家› 船舶专业外文翻译--船舶设计优化

船舶专业外文翻译--船舶设计优化

船舶专业外文翻译--船舶设计优化
船舶专业外文翻译--船舶设计优化

Ship Design Optimization

This contribution is devoted to exploiting the analogy between a modern manufacturing plant and a heterogeneous parallel computer to construct a HPCN decision support tool for ship designers. The application is a HPCN one because of the scale of shipbuilding - a large container vessel is constructed by assembling about 1.5 million atomic components in a production hierarchy. The role of the decision support tool is to rapidly evaluate the manufacturing consequences of design changes. The implementation as a distributed multi-agent application running on top of PVM is described

1 Analogies between Manufacturing and HPCN

There are a number of analogies between the manufacture of complex products such as ships, aircraft and cars and the execution of a parallel program. The manufacture of a ship is carried out according to a production plan which ensures that all the components come together at the right time at the right place. A parallel computer application should ensure that the appropriate data is available on the appropriate processor in a timely fashion.

It is not surprising, therefore, that manufacturing is plagued by indeterminacy exactly as are parallel programs executing on multi-processor hardware. This has caused a number of researchers in production engineering to seek inspiration in other areas where managing complexity and unpredictability is important. A number of new paradigms, such as Holonic Manufacturing and Fractal Factories have emerged [1,2] which contain ideas rather reminiscent of those to be found in the field of Multi- Agent Systems [3, 4].

Manufacturing tasks are analogous to operations carried out on data, within the context of planning, scheduling and control. Also, complex products are assembled at physically distributed workshops or production facilities, so the components must be transported between them. This is analogous to communication of data between processors in a parallel computer, which thus also makes clear the analogy between workshops and processors.

The remainder of this paper reports an attempt to exploit this analogy to build a parallel application for optimizing ship design with regard to manufacturing issues.

2 Shipbuilding at Odense Steel Shipyard

Odense Steel Shipyard is situated in the town of Munkebo on the island of Funen. It is recognized as being one of the most modern and highly automated in the world. It specializes in building VLCC's (supertankers) and very large container ships. The yard was the first in the world to build a double hulled supertanker and is currently building an order of 15 of the largest container ships ever built for the Maersk line. These container ships are about 340 metres long and can carry about 7000 containers at a top speed of 28 knots with a crew of 12.

Odense Steel Shipyard is more like a ship factory than a traditional shipyard. The ship design is broken down into manufacturing modules which are assembled and processed in a number of workshops devoted to, for example, cutting, welding and surface treatment. At any one time, up to 3 identical ships are being built and a new ship is launched about every 100 days.

The yard survives in the very competitive world of shipbuilding by extensive application of information technology and robots, so there are currently about 40 robots at the yard engaged in various production activities. The yard has a commitment to research as well, so that there are about 10 industrial Ph.D. students working there, who are enrolled at various engineering schools in Denmark.

3 Tomorrow's Manufacturing Systems

The penetration of Information Technology into our lives will also have its effect in manufacturing industry. For example, the Internet is expected to become the dominant trading medium for goods. This means that the customer can come into direct digital contact with the manufacturer.

The direct digital contact with customers will enable them to participate in the design process so that they get a product over which they have some influence. The element of unpredictability introduced by taking into account customer desires increases the need for flexibility in the manufacturing process, especially in the light of the tendency towards globalization of production. Intelligent robot systems, such as AMROSE, rely on the digital CAD model as the primary source of information about the work piece and the work cell [5,6].This information is used to construct task performing, collision avoiding trajectories for the robots, which because of the high

precision of the shipbuilding process, can be corrected for small deviations of the actual world from the virtual one using very simple sensor systems. The trajectories are generated by numerically solving the constrained equations of motion for a model of the robot moving in an artificial force field designed to attract the tool centre to the goal and repell it from obstacles, such as the work piece and parts of itself. Finally, there are limits to what one can get a robot to do, so the actual manufacturing will be performed as a collaboration between human and mechatronic agents.

Most industrial products, such as the windmill housing component shown in Fig. 1, are designed electronically in a variety of CAD systems.

Fig. 1.Showing the CAD model for the housing of a windmill. The model, made using Bentley Microstation, includes both the work-piece and task-curve geometries.

4 Today's Manufacturing Systems

The above scenario should be compared to today's realities enforced by traditional production engineering philosophy based on the ideas of mass production introduced about 100 years ago by Henry Ford. A typical production line has the same structure as a serial computer program, so that the whole process is driven by production requirements. This rigidity is reflected on the types of top-down planning and control systems used in manufacturing industry, which are badly suited to both complexity and unpredictability.

In fact, the manufacturing environment has always been characterized by unpredictability. Today's manufacturing systems are based on idealized models where unpredictability is not taken into account but handled using complex and expensive logistics and buffering systems.

Manufacturers are also becoming aware that one of the results of the top-down serial approach is an alienation of human workers. For example, some of the car manufacturers have experimented with having teams of human workers responsible for a particular car rather than performing repetitive operations in a production line. This model in fact better reflects the concurrency of the manufacturing process than the assembly line.

5 A Decision Support Tool for Ship Design Optimization

Large ships are, together with aircraft, some of the most complex things ever built. A container ship consists of about 1.5 million atomic components which are assembled in a hierarchy of increasingly complex components. Thus any support tool for the manufacturing process can be expected to be a large HPCN application.

Ships are designed with both functionality and ease of construction in mind, as well as issues such as economy, safety, insurance issues, maintenance and even decommissioning. Once a functional design is in place, a stepwise decomposition of the overall design into a hierarchy of manufacturing components is performed. The manufacturing process then starts with the individual basic building blocks such as steel plates and pipes. These building blocks are put together into ever more complex structures and finally assembled in the dock to form the finished ship.

Thus a very useful thing to know as soon as possible after design time are the manufacturing consequences of design decisions. This includes issues such as whether the intermediate structures can actually be built by the available production facilities, the implications on the use of material and whether or not the production can be efficiently scheduled [7].

Fig.2. shows schematically how a redesign decision at a point in time during construction implies future costs, only some of which are known at the time. Thus a decision support tool is required to give better estimates of the implied costs as early as possible in the process.

Simulation, both of the feasibility of the manufacturing tasks and the efficiency

with which these tasks can be performed using the available equipment, is a very compute-intense application of simulation and optimization. In the next section, we describe how a decision support tool can be designed and implemented as a parallel application by modeling the main actors in the process as agents.

Fig.2. Economic consequences of design decisions. A design decision implies a future commitment of economic resources which is only partially known at design time.

6 Multi-Agent Systems

The notion of a software agent, a sort of autonomous, dynamic generalization of an object (in the sense of Object Orientation) is probably unfamiliar to the typical HPCN reader in the area of scientific computation. An agent possesses its own beliefs, desires and intentions and is able to reason about and act on its perception of other agents and the environment.

A multi-agent system is a collection of agents which try to cooperate to solve some problem, typically in the areas of control and optimization. A good example is the process of learning to drive a car in traffic. Each driver is an autonomous agent which observes and reasons about the intentions of other drivers. Agents are in fact a very useful tool for modeling a wide range of dynamical processes in the real world,

such as the motion of protein molecules [8] or multi-link robots [9]. For other applications, see [4].

One of the interesting properties of multi-agent systems is the way global behavior of the system emerges from the individual interactions of the agents [10]. The notion of emergence can be thought of as generalizing the concept of evolution in dynamical systems.

Examples of agents present in the system are the assembly network generator agent which encapsulates knowledge about shipbuilding production methods for planning assembly sequences, the robot motion verification agent, which is a simulator capable of generating collision-free trajectories for robots carrying out their tasks, the quantity surveyor agent which possesses knowledge about various costs involved in the manufacturing process and the scheduling agent which designs a schedule for performing the manufacturing tasks using the production resources available.

7 Parallel Implementation

The decision support tool which implements all these agents is a piece of Object- Oriented software targeted at a multi-processor system, in this case, a network of Silicon Graphics workstations in the Design Department at Odense Steel Shipyard. Rather than hand-code all the communication between agents and meta-code for load balancing the parallel application, abstract interaction mechanisms were developed. These mechanisms are based on a task distribution agent being present on each processor. The society of task distribution agents is responsible for all aspects of communication and migration of tasks in the system.

The overall agent system runs on top of PVM and achieves good speedup and load balancing. To give some idea of the size of the shipbuilding application, it takes 7 hours to evaluate a single design on 25 SGI workstations.

From:Applied Parallel Computing Large Scale Scientific and Industrial Problems Lecture Notes in Computer Science, 1998, Volume 1541/1998, 476-482, DOI: 10.1007/BFb0095371 .

中文翻译:

船舶设计优化

这一贡献致力于开拓类比现代先进制造工厂和一个异构并行计算机,构建了一种HPCN 决策支援工具给船舶设计师。这个应用程序是一个HPCN的一个原因是造船的规模——一个巨大的集装箱船通过装配了大约150万原子部件在生产的过程中。该决策支持工具的作用是迅速的评估修改设计导致的制造后果。这个应用程序可描述为一个实现在PVM上运行的分布式多智能体。

1.制造业与HPCN的相似性

制造复杂的产品有许多相似之处,如船舶、飞机、汽车和执行并行程式。制造了一艘船按照生产计划展开的,必须保证所有的部件在适当的时间、适当的地点结合在一起。类似的计算机应用应确保合适的数据可在适当的处理器下运行。

这并不奇怪,因此,制造业的困扰是不确定性的和在多处理器硬件下执行的并行程序完全不一样。这已经引起了一部分研究人员在生产工程中在管理复杂性和不可预测性的重要领域寻求灵感的地方。很多新范例,如Holonic制造系统和分形工厂出现[1,2]包含着思想,而让人回忆起了多-代理领域系统[3、4]。

生产任务,就像是在执行操作数据,在其职权范围内策划、调度和控制。同时,复杂的产品都聚集在身体上的分布式讨论会或生产设施,所以组件类必须被流放分给他们。这好比通信之间的数据在一个平行处理器的计算机上,它也明确了车间和处理器之间的相似性。

本文的其余部分的报告,企图利用这个理论,建立一个并行应用程序优化船舶设计对于生产中出现的问题。

2.欧登塞钢船厂的造船

欧登塞钢船厂位于Munkebo镇Funen岛上。它被公认为是世界上其中一个最现代化的,高度自动化的船厂。

它专门建设超大型油轮(超级油轮)和超大型集装箱船。公司厂区世界上第一个建造双壳超级油轮,目前正在为马士基航运公司建造的船舶15份订单是有史以来建造的最大的集

装箱。这些集装箱船约340米长,在28节的最高速度下可以携带12名船员与约7000箱集装箱。

欧登塞钢船厂相比传统船厂建造更像是一个船厂。这艘船设计可以把制造模块分解为组装和加工,在许多车间投入生产,例如,切割、焊接和表面处理。不管什么时候,都有3个相同的船只在建, 约每100天建成一艘新船。

这个公司能在世界上竞争非常激烈的船舶业生存,是因为广泛的应用信息技术和机械,目前有40台机器在这个公司从事各种生产活动。公司里的研究任务,约有十个工业博士学生组成;他们来自丹麦不同的注册工科院校。

3.未来的制造系统

信息科技渗透到我们生活中也将影响制造业。例如,互联网有望在商品交易中占主导地位。这意味着客户可以直接用数字与制造商联系。

直接与客户接触数字将使他们能够参与在设计过程中,使他们得到了他们的产品有一定的影响。考虑到顾客的需求增加了灵活性,在生产过程中是不可预测的元素,尤其是在生产全球化的趋势下。智能机器人系统,如AMROSE,数字化CAD模型上信息的主要来源是工件和工作单元[5,6]。这些信息提供机械用来构建任务的执行,避免轨迹碰撞,由于造船工艺精度高,可以进行修正的偏差小,实际的世界使用一个虚拟的非常简单的传感器系统。求解约束的运动微分方程所产生的数值的运动轨迹模型,机器的移动,在人为设计引起刀心达到目标和疏去除障碍,如工件的一块或者本身的一部分。最后,有限制哪些是可以得到一个机器人做了,所以实际制造将履行的人类与机电合作代理。最后,机器能做的是有局限性的,所以实际的制造业将通过人与机电一体化合作完成。

大多数工业产品,如在图1所示风房组成部分,在各种CAD系统下电子化设计。

图.1 显示了一个风车房CAD模型。该模型,用本特利MicroStation制作,包括工件和任务曲线几何结构。

4.当今的制造系统

与上述情况相比,今天现实执行的大规模生产是根据传统的生产工程哲学观念100年前从亨利福特引进。一个典型的生产线作为一个序列电脑程序具有相同的结构,使整个生产过程是由需求驱动。这种刚性反映在自上而下的规划和控制系统用于制造业,这两个都是很适合用于复杂性和不可预测性。

事实上,生产环境一直具有不可预测性。今天的制造系统是建立在理想化模型上的,它具有没有考虑到的不可预知性,但是处理使用了复杂、昂贵的物流和缓冲系统。

制造商也开始意识到,对自上而下的串行方法是人工异化的结果之一。例如,汽车制造商已经试验了对一些特定汽车进行人工团队负责而不是在生产线上重复操作。这种模型反映了并行的生产过程比流水线生产更好。

5.一个船舶设计优化决策支持工具

大型的船只,以及飞机,历来是建造的最复杂的。集装箱船由约150万原子构件组装成一个个原来越复杂的层次结构组成的。因此,任何制造过程的支持工具,可以预期将成为一个大型的HPCN的应用。

船舶设计要同时考虑功能和施工方便,诸如经济,安全,保险问题,维修,甚至拆卸的问题。一旦功能设计到位,逐步分解整体设计成制造组件的层次结构进行制造。制造过程,开始个人的基本构建模块,如钢板和钢管。这些构建块组合成更加复杂的结构,最后在船坞组装成成品船。

在设计时间后尽快知道设计制造决定的结果非常有用的。这包括诸如是否中间结构是否可以由现有的生产设施建造,在材料运用方面是否有影响和是否可有效地安排生产等问题[7]。

图2示意图显示了在一个时间点上重新设计施工的决定预期花费的费用,其中只有一些是已知的。因此,一个决策支持工具,在生产过程中必须给隐含成本提供更好的估算。

用现有的生产设备能否完成生产,仿真生产任务的可行性和效率,是一个计算非常密集型的应用模拟与优化。在下一节中,我们描述了一个决策支持工具,可以设计和用一个

并行程序去建模,通过模拟在这个过程中的主要角色程序。

已知的成本

未知的成本

总成本

图 2 设计决策的经济影响。一个设计决定隐含着未来承担的经济支出,它是设计过程中的一部分。

6.多智能体系统

一个软件代理,自主的,一个对象(在面向对象的意义上)的概念是动态的一种推广,可能不熟悉的典型HPCN在科学计算领域的读者。代理人拥有自己的信念,愿望和意图,并能采取行动的原因和其有关的其他代理和环境的看法。

多智能体系统是一个试图协调解决一些问题,尤其是地区的控制和优化的代理集合。一个很好的例子就是在交通中学习开车的过程开车。每个司机都是独立的代理来观察和感受其他司机的意图。代理在现实世界中其实是一种很有用为动力学过程建模的工具, 如蛋白质的分子运动[8]多连杆机器人[9]。对于其它应用,见[4]。

对于多智能体系统的有趣的特性之一是该系统的全球化的出现是因为个体的相互作用

[10]。这个概念的出现可以被看作是动力系统概念的进化。

关于系统中目前的代理,封装了有关造船生产装配序列规划方法的知识,验证代理机器人的运动,这是一个能生成无碰撞轨迹的模拟器提供给机器人执行任务,工料测量师代理它拥有关于在制造过程中涉及的各项费用知识和日程安排代理即设计用于执行任务使用的生产制造资源的时间表。

7.并行实施

决策支持工具,实现了所有这些代理是一种在多处理器系统有针对性的面向对象软件的在这种情况下,在欧登塞钢船厂有一个硅谷制图工作站的网络。不是所有的手写通信代码在代理和源代码之间为负载平衡的并行应用程序,抽象的互动机制被开发。这些机制是基于对被代理人的任务分配在每个处理器中。该协会任务分配机构在系统中负责各方面通讯和任务迁移。

代理系统的整体运行于PVM的顶级,取得了良好的加速比和负载平衡。为了融入一些尺度造船应用的新想法,在25 SGI工作站花费了7个小时计算一个单一的设计。

本科毕业设计文献综述范例(1)

###大学 本科毕业设计(论文)文献综述 课题名称: 学院(系): 年级专业: 学生姓名: 指导教师: 完成日期:

燕山大学本科生毕业设计(论文) 一、课题国内外现状 中厚板轧机是用于轧制中厚度钢板的轧钢设备。在国民经济的各个部门中广泛的采用中板。它主要用于制造交通运输工具(如汽车、拖拉机、传播、铁路车辆及航空机械等)、钢机构件(如各种贮存容器、锅炉、桥梁及其他工业结构件)、焊管及一般机械制品等[1~3]。 1 世界中厚板轧机的发展概况 19世纪五十年代,美国用采用二辊可逆式轧机生产中板。轧机前后设置传动滚道,用机械化操作实现来回轧制,而且辊身长度已增加到2m以上,轧机是靠蒸汽机传动的。1864年美国创建了世界上第一套三辊劳特式中板轧机,当时盛行一时,推广于世界。1918年卢肯斯钢铁公司科茨维尔厂为了满足军舰用板的需求,建成了一套5230mm四辊式轧机,这是世界上第一套5m以上的轧机。1907年美国钢铁公司南厂为了轧边,首次创建了万能式厚板轧机,于1931年又建成了世界上第一套连续式中厚板轧机。欧洲国家中厚板生产也是较早的。1910年,捷克斯洛伐克投产了一套4500mm二辊式厚板轧机。1940年,德国建成了一套5000mm四辊式厚板轧机。1937年,英国投产了一套3810mm中厚板轧机。1939年,法国建成了一套4700mm 四辊式厚板轧机。这些轧机都是用于生产机器和兵器用的钢板,多数是为了二次世界大战备战的需要。1941年日本投产了一套5280mm四辊式厚板轧机,主要用于满足海军用板的需要。20世纪50年代,掌握了中厚板生产的计算机控制。20世纪80年代,由于中厚板的使用部门萧条,许多主要产钢国家的中厚板产量都有所下降,西欧国家、日本和美国关闭了一批中厚板轧机(宽度一般在3、4米以下)。国外除了大的厚板轧机以外,其他大型的轧机已很少再建。1984年底,法国东北方钢铁联营敦刻尔克厂在4300mm轧机后面增加一架5000mm宽厚板轧机,增加了产量,且扩大了品种。1984年底,苏联伊尔诺斯克厂新建了一套5000mm宽厚板轧机,年产量达100万t。1985年初,德国迪林冶金公司迪林根厂将4320mm轧机换成4800mm 轧机,并在前面增加一架特宽得5500mm轧机。1985年12月日本钢管公司福山厂新型制造了一套4700mmHCW型轧机,替换下原有得轧机,更有效地控制板形,以提高钢板的质量。 - 2 -

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

12000DWT近海成品油船主尺度确定

1船舶主要特点 (2) 1.1船型、航区及用途 (2) 1.2船级 (2) 1.3航速、续航力及自持力 (2) 1.4设备 (2) 1.5乘客编制及配置 (2) 1.6 要求完成的设计内容 (2) 2船舶主要要素确定 (3) 2.1排水量初步估算 (3) (3) 2.1.1选取载重量系数 DW 2.1.2排水量△初步估算 (4) 2.2初步拟定主尺度及方形系数 (4) 2.2.1主尺度比法 (4) 2.2.2统计法 (4) 2.3初选主机 (5) 2.4空船重量估算 (5) 2.4.1钢料重量估算 (5) 2.4.2 舾装重量估算 (5) 2.4.3 机电设备的重量估算 (5) 2.5重力与浮力平衡 (6) 2.5.1诺曼系数法修改主尺度 (6) 2.5.2重新计算校核 (6) 2.6载货量Wc计算 (6) 2.7稳性校核 (7) 2.8航速校核 (8) 2.8.1估算总推进系数 (9) 2.8.2估算设计船的有效功率 (10) 2.8.3绘制有效功率曲线(EHP-V曲线) (11) 2.8.4航速校核 (11) 2.9舱容校核 (12) 2.9.1双层底高度及双层壳宽度计算 (12) V (12) 2.9.2本船所能提供的总容积 D V (12) 2.9.3货油舱能提供的容积 tk 2.9.4压载水舱(即双层壳之间)能提供的容积: (12) V (13) 2.9.5货油所需容积 cn V (13) 2.9.6压载水舱所需容积 bn 2.9.7校核 (13) 2.9.8小结 (13) 参考文献 (14)

1船舶主要特点 1.1船型、航区及用途 本船为钢质、具有连续甲板、首楼和尾上层建筑、球鼻艏线型、倾斜艏、混合骨架全电焊结构、双底、单桨、单舵、艉机型、单柴油机驱动的散货(成品油)船、航区为近海航区。 1.2船级 本船按“CCS”有关规定设计 1.3航速、续航力及自持力 本船试航速不低于10.5kn;续航力3000n mile; 1.4设备 锚、系泊、舵、工作、救生、消防及航行信号等设备根据规范要求及实际需要配置1.5乘客编制及配置 乘员人数按需要及调查后自定,室内设施按舱室设备规范配置 1.6 要求完成的设计内容 1)确定主尺度及主要要素 2)进行总布置设计、绘制总布置草图 3)编写设计报告书

本科毕业设计方案外文翻译范本

I / 11 本科毕业设计外文翻译 <2018届) 论文题目基于WEB 的J2EE 的信息系统的方法研究 作者姓名[单击此处输入姓名] 指导教师[单击此处输入姓名] 学科(专业 > 所在学院计算机科学与技术学院 提交日期[时间 ]

基于WEB的J2EE的信息系统的方法研究 摘要:本文介绍基于工程的Java开发框架背后的概念,并介绍它如何用于IT 工程开发。因为有许多相同设计和开发工作在不同的方式下重复,而且并不总是符合最佳实践,所以许多开发框架建立了。我们已经定义了共同关注的问题和应用模式,代表有效解决办法的工具。开发框架提供:<1)从用户界面到数据集成的应用程序开发堆栈;<2)一个架构,基本环境及他们的相关技术,这些技术用来使用其他一些框架。架构定义了一个开发方法,其目的是协助客户开发工程。 关键词:J2EE 框架WEB开发 一、引言 软件工具包用来进行复杂的空间动态系统的非线性分析越来越多地使用基于Web的网络平台,以实现他们的用户界面,科学分析,分布仿真结果和科学家之间的信息交流。对于许多应用系统基于Web访问的非线性分析模拟软件成为一个重要组成部分。网络硬件和软件方面的密集技术变革[1]提供了比过去更多的自由选择机会[2]。因此,WEB平台的合理选择和发展对整个地区的非线性分析及其众多的应用程序具有越来越重要的意义。现阶段的WEB发展的特点是出现了大量的开源框架。框架将Web开发提到一个更高的水平,使基本功能的重复使用成为可能和从而提高了开发的生产力。 在某些情况下,开源框架没有提供常见问题的一个解决方案。出于这个原因,开发在开源框架的基础上建立自己的工程发展框架。本文旨在描述是一个基于Java的框架,该框架利用了开源框架并有助于开发基于Web的应用。通过分析现有的开源框架,本文提出了新的架构,基本环境及他们用来提高和利用其他一些框架的相关技术。架构定义了自己开发方法,其目的是协助客户开发和事例工程。 应用程序设计应该关注在工程中的重复利用。即使有独特的功能要求,也

基于多学科优化的船舶结构设计研究

基于多学科优化的船舶结构设计研究 发表时间:2017-09-21T14:15:44.680Z 来源:《防护工程》2017年第12期作者:叶帆[导读] 满足其实际设计要求,建立健全相关管理机制,合理解决其中存在的设计问题,提高优化设计工作效果。 武汉船舶设计研究院有限公司湖北省武汉市 430000 摘要:在船舶结构设计的过程中,设计者需要积极应用多学科优化设计方式,建立专门的框架体系,在继承有限元建模与分析软件优化技术的支持之下,科学开展船舶设计工作,逐渐提高设计质量与可靠性,增强其工作成效。 关键词:多学科;船舶结构;优化设计 在船舶设计的过程中,设计人员应用多学科优化设计方式,可以有效提高设计工作质量,建立科学的计算结构,对其进行校核处理,应用专门的软件设计技术,明确约束条件,提高结构的耐波性与操控性,满足其实际设计要求,建立健全相关管理机制,合理解决其中存在的设计问题,提高优化设计工作效果。 一、优化设计模型的构建措施 在建立优化设计模型期间,需要对船舱区域结构进行重点分析,主要因为其占有整个船体重量的70%左右,决定着船舶的造价与费用,因此,需要对其进行全面的处理,提高结构设计的优化型,做好区域结构设计工作。 第一,设计模型范围。对于模型范围而言,需要根据船舱实际情况,对其货仓进行划分处理,利用先进的定位技术,明确船舱的各类区域。一方面,需要建设完善的有限元模型,按照工作要求,对其进行优化处理。另一方面,需要建设有效分析区域模型,根据传承的设计要求,对其设计质量进行控制。且在结构优化设计期间,需要对燃油舱与淡水舱等重量进行检验,通过多点约束的方式,对其进行等效划分处理,全面调节空船重量与实体船舱重量之间的关系,及时发现其中存在的差值问题,采取有效措施对其进行改革,以此增强设计成效。 第二,边界条件的明确。设计者需要科学明确边界条件,按照国家《钢制海船入级规范》等条例,对船舱模型进行独立点约束,明确独立点的位置,对其横剖面与轴高速进行分析,提高前后端面约束处理工作质量。 第三,荷载调节措施。为了做好简化设计工作,需要对于船舱的装载情况进行分析,及时发现危险荷载中存在的问题,例如:静水荷载、波浪荷载等,科学计算船舱压力数据信息,以此提高优化设计工作效果。 二、舱段优化设计模型 在结构优化设计的过程中,需要对舱段优化设计模型进行全面分析,在严格控制的情况下,提高设计质量。 第一,设计变量的分析。在多学科优化设计期间,需要利用多个学科对船舶主尺度进行全面的分析,明确结构优化设计要求,在获取相关确定值之后,科学开展设计工作。首先,对于船体而言,可以利用高级强度钢对其进行建造处理,例如:AH32强度钢材料,对于货仓区域而言,需要对其纵向构件进行处理,利用AH36级强度的钢材料开展制作工作,提高优化设计工作质量,增强其工作效果[1]。其次,在有限元软件的限制之下,板单元的应力数据信息分析工作受到广泛重视,需要相关设计者对其设计参数进行全面的处理,在参数改变的情况下,提高系统设计质量。最后,需要对各类板单元的厚度进行控制,根据实际设计情况,对设计方案进行简化处理,在减少计算时间的基础上,提高设计工作效率与质量,满足其实际发展需求。同时,需要规范计算方式,选择离散设计变量开展优化设计工作,提高工作成效。 第二,边界条件的明确。设计者需要科学明确边界条件,按照国家《钢制海船入级规范》等条例,对船舱模型进行独立点约束,明确独立点的位置,对其横剖面与轴高速进行分析,提高前后端面约束处理工作质量。 第三,荷载调节措施。为了做好简化设计工作,需要对于船舱的装载情况进行分析,及时发现危险荷载中存在的问题,例如:静水荷载、波浪荷载等,科学计算船舱压力数据信息,以此提高优化设计工作效果。 二、舱段优化设计模型 在结构优化设计的过程中,需要对舱段优化设计模型进行全面分析,在严格控制的情况下,提高设计质量。 第一,设计变量的分析。在多学科优化设计期间,需要利用多个学科对船舶主尺度进行全面的分析,明确结构优化设计要求,在获取相关确定值之后,科学开展设计工作。首先,对于船体而言,可以利用高级强度钢对其进行建造处理,例如:AH32强度钢材料,对于货仓区域而言,需要对其纵向构件进行处理,利用AH36级强度的钢材料开展制作工作,提高优化设计工作质量,增强其工作效果[1]。其次,在有限元软件的限制之下,板单元的应力数据信息分析工作受到广泛重视,需要相关设计者对其设计参数进行全面的处理,在参数改变的情况下,提高系统设计质量。最后,需要对各类板单元的厚度进行控制,根据实际设计情况,对设计方案进行简化处理,在减少计算时间的基础上,提高设计工作效率与质量,满足其实际发展需求。同时,需要规范计算方式,选择离散设计变量开展优化设计工作,提高工作成效。 第二,约束条件分析。对于约束条件而言,需要参考屈服应力数据信息,对其进行全面的处理,满足相关工作要求。在此期间,需要根据国家规范,对其强度进行计算,如果将刚才的屈服应力条件作为约束条件,就要对其最小值进行计算,获取合理的优化设计成果。同时,在货仓区域优化设计期间,由于材料等级存在差异,系数也会有所不同,因此,在实际设计期间,需要制定针对性的约束条件设计方案,提高优化设计工作的合理性与有效性[2]。 第三,目标函数的分析。对于目标函数而言,在实际分析期间,需要科学设定重量值,对其进行最小化的优化处理,将表达式设置为: ×X2....X6]7 minFX 三、多学科优化船舶结构设计实现措施 (一)工作流程分析 第一,做好准备工作。首先,需要利用相关软件,建立有限元的模型,明确相关材料与各类属性,对荷载问题进行全面的分析与处理。其次,需要对属性进行分析,在强度检验的情况下,生成文件。再次,需要利用计算方式,对文件中的各类数据信息进行全面的计算,以此提高优化设计质量。最后,需要计算质量与应力报告,对各类模型进行分析[3]。

毕业设计文献综述范文

四川理工学院毕业设计(文献综述)红外遥控电动玩具车的设计 学生:程非 学号:10021020402 专业:电子信息工程 班级:2010.4 指导教师:王秀碧 四川理工学院自动化与电子信息学院 二○一四年三月

1前言 1.1 研究方向 随着科技的发展,越来越多的现代化电器走进了普通老百姓的家庭,而这些家用电器大都由红外遥控器操控,过多不同遥控器的混合使用带来了诸多不便。因此,设计一种智能化的学习型遥控器,学习各种家用电器的遥控编码,实现用一个遥控器控制所有家电,已成为迫切需求。首先对红外遥控接收及发射原理进行分析,通过对红外编码理论的学习,设计以MSP430单片机为核心的智能遥控器。其各个模块设计如下:红外遥控信号接收,红外接收器把接收到的红外信号经光电二极管转化成电信号,再对电信号进行解调,恢复为带有一定功能指令码的脉冲编码;接着是红外编码学习,利用单片机的输入捕捉功能捕捉载波的跳变沿,并通过定时器计时记下载波的周期和红外信号的波形特征,进行实时编码;存储电路设计,采用I2C总线的串行E2PROM(24C256)作为片外存储器,其存储容量为8192个字节,能够满足所需要的存取需求;最后是红外发射电路的设计,当从存储模块中获取某红外编码指令后,提取红外信号的波形特征信息并进行波形还原;将其调制到38KHZ的载波信号上,通过三极管放大电路驱动红外发光二极管发射红外信号,达到红外控制的目的。目前,国外进口的万能遥控器价格比较昂贵,还不能真正走进普通老百姓的家中。本文在总结和分析国外设计的基础上,设计一款以MSP430单片机为核心的智能型遥控器,通过对电视机和空调的遥控编码进行学习,能够达到预期的目的,具有一定的现实意义。 1.2 发展历史 红外遥控由来已久,但是进入90年代,这一技术又有新的发张,应用范围更加广泛。红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点,被诸多电子设备特别是家用电器广泛采用,并越来越多的应用到计算机系统中。 60年代初,一些发达国家开始研究民用产品的遥控技术,单由于受当时技术条件限制,遥控技术发展很缓慢,70年代末,随着大规模集成电路和计算机技术的发展,遥控技术得到快速发展。在遥控方式上大体经理了从有线到无限的超声波,从振动子到红外线,再到使用总线的微机红外遥控这样几个阶段。无论采用何种方式,准确无误传输新信号,最终达到满意的控制效果是非常重要的。最初的无线遥控装置采用的是电磁波传输信号,由于电磁波容易产生干扰,也易受干扰,因此逐渐采用超声波和红外线媒介来传输信号。与红外线相比,超声传感器频带窄,所能携带的信息量少扰而引起误动作。较为理想的是光控方式,逐渐采用红外线的遥控方式取代了超声波遥控方式,出现了红外线多功能遥控器,成为当今时代的主流。 1.3 当前现状 红外线在频谱上居于可见光之外,所以抗干扰性强,具有光波的直线传播特性,不易产生相互间的干扰,是很好的信息传输媒体。信息可以直接对红外光进行调制传输,例如,信息直接调制红外光的强弱进行传输,也可以用红外线产生一定频率的载波,再用信息对载波进调制,接收端再去掉载波,取到信息。从信

结构优化设计是在满足规范要求

结构优化设计是在满足规范要求、保证结构安全和建筑产品品质的前提下,通过合理的结构布置、科学的计算论证、适度的构造措施,充分发挥材料性能、合理节约造价的设计方法。结构优化设计在当前竞争日益激烈的建筑设计市场成为大势所趋。如何在满足建筑功能的前提下,保证结构安全并控制含钢量成为摆在结构设计工程师面前的现实课题。本文总结了以往的设计经验,参考了相关文献,给出了结构优化设计的步骤和一些具体措施,供设计人员参考。 1结构优化设计的步骤 笔者认为,结构优化设计的合理步骤应该是:①在方案阶段,通过与建筑专业的充分沟通,对建筑的平面布置、立面造型、柱网布置等提出合理的建议和要求,使结构的高度、复杂程度、不规则程度均控制在合理范围内,避免抗震审查,为降低含钢量争取主动权;②在初步设计阶段,通过对结构体系、结构布置、建筑材料、设计参数、基础型式等内容的多方案技术经济性比较,选出最优方案,整体控制含钢量;③在具体计算过程中,通过精确的荷载计算、细致的模型调整,使结构达到最优受力状态,进一步降低用钢量;④在施工图阶段通过精细的配筋设计抠出多余钢筋,彻底降低含钢量。 在进行多方案的技术经济性比较时,应综合考虑材料费、模板费、基坑开挖降水支护费用、措施费、施工难易、工期长短等因素,与甲方协商后择优选用。 2结构体系与布置优化 结构体系和布置对造价影响很大,应予重视。 1)应根据建筑布置、高度和使用功能要求选择经济合理的结构体系。比如,异形柱框架比普通框架用钢量大,在可能的情况下尽量采用前者;短肢剪力墙比普通剪力墙含钢量高,在可能的情况下尽量采用后者。 2)应选择比较规则的平面方案和立面方案。尽量避免平面凸凹不规则或楼板开大洞,控制平面长宽比,合理设缝,使结构刚度中心与质量中心尽量靠近。竖向应避免有过大的外挑或内收,同时注意限制薄弱层、跃层、转换层等不利因素,使侧向刚度和水平承载力沿高度尽量均匀平缓变化。 3)应选择合理、均匀的柱网尺寸,使板、梁、柱、墙的受力合理,从而降低构件的用钢量。柱网大则楼盖用钢量大,柱网小则柱子用钢量增大,应根据建筑实际情况和经验合理布置。例如,住宅中小开间结构中墙柱的作用不能得到充分发挥,过多的墙柱还会导致较大的地震作用,可考虑采用大开间结构体系,既节约造价,又便于建筑灵活布置。 4)应选择经济合理的楼盖体系。楼盖质量大,层数多,占整体造价比重高,对楼盖的类型、构件的尺寸、数量、间距等应进行对比分析,选择最优的方案。一般住宅宜采用现浇梁板楼盖,预应力楼盖的预应力钢筋容易被二次装修破坏,井字梁楼盖影响室内美观,均不推荐。办公楼等大空间结构宜采用十字梁、井字梁、预应力梁板方案。双向板比单向板经济,应多做双向板。板的厚度,双向板宜控制在短跨的1/35,单向板宜控制在短跨的1/30,此时板易满足强度和变形要求,经济性好。 5)剪力墙结构的优化空间很大,应下大力气优化。剪力墙的布置宜规则、均匀、对称,以控制结构扭转变形。在满足规范和计算的前提下应尽量减少墙的数量,限制墙肢长度,控制连梁刚度,剪力墙能落地的就全部落地不做框支转换层,平面能布置成大开问的尽量布置成大开间,墙体的厚度满足构造要求和轴压比的要求即可。连梁刚度太大时可通过梁中开水平缝变成双梁、增大跨高比等措施降低连梁刚度。尽量少用短肢剪力墙,限制“一”字墙,少做转换。 6)降低含钢量的小技巧:①楼电梯间不宣布置在房屋端部或转角处。因其空间刚度较小,设在端部对抗扭不利,设在转角处应力集中。②框架结构层刚度较弱时,加大柱尺寸或梁高都可显著增大层刚度,而提高混凝土强度效果不明显。③柱的截面尺寸,多层宜2层~3层

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

24000DWT成品油船方案设计

24000DWT成品油船方案设计 The General Design Of a 24000 DWT Product Oil Tanker 学院(系):船舶工程学院 专业:船舶与海洋工程 学生姓名: 学号: 指导教师: 评阅教师: 完成日期:年月日

24000DWT成品油船方案设计 摘要 本次毕业设计的具体任务为24000DWT成品油船的方案设计,该船航行于我国近海区域。 在设计过程中着眼于确保船舶的适用性,保证其能够较好地完成设计任务书中规定的使用任务。本次设计涉及多个方面,大体上来说,可以分为下面六个部分: 1、主要要素确定 根据设计任务书的要求,初步确定设计船的主尺度、船型系数和排水量等主要要素,并对其稳性、航速、容积等进行校核,最终确定设计船的主尺度。 2、型线设计 采用“1-C p”法改造母型船水下部分型线,水线以上部分自行设计,考虑型深、布置等方面的要求,同时注意与水下部分型线的配合,最终得到设计船的型线图。 3、总布置设计 按照规范要求并参考12000DWT母型船进行总布置设计,区划船主体和上层建筑,布置舱室设备。 4、静力学及完整稳性计算 对设计船的装载情况、浮态、初稳性、完整稳性等进行计算,并绘制静水力曲线、舱容要素曲线、稳性横截曲线、静稳性曲线和动稳性曲线等,以确定设计船满足设计任务书和规范的要求。 5、快速性计算及螺旋桨设计 δ图谱设计螺旋桨的直径和其它参数。保证船、机、桨三者的配合,以提高设计船的整体性能。 6、船体结构设计 参考母型船,按照按照CCS《国内航行海船建造规范(2006)》的规定,对设计船进行货舱区的结构设计,选取构件,并校核总纵强度,以保证结构设计合理。最后绘制典型横剖面图。 关键词:成品油船;主尺度;型线;总布置;稳性;螺旋桨

本科毕业设计外文翻译

Section 3 Design philosophy, design method and earth pressures 3.1 Design philosophy 3.1.1 General The design of earth retaining structures requires consideration of the interaction between the ground and the structure. It requires the performance of two sets of calculations: 1)a set of equilibrium calculations to determine the overall proportions and the geometry of the structure necessary to achieve equilibrium under the relevant earth pressures and forces; 2)structural design calculations to determine the size and properties of thestructural sections necessary to resist the bending moments and shear forces determined from the equilibrium calculations. Both sets of calculations are carried out for specific design situations (see 3.2.2) in accordance with the principles of limit state design. The selected design situations should be sufficiently Severe and varied so as to encompass all reasonable conditions which can be foreseen during the period of construction and the life of the retaining wall. 3.1.2 Limit state design This code of practice adopts the philosophy of limit state design. This philosophy does not impose upon the designer any special requirements as to the manner in which the safety and stability of the retaining wall may be achieved, whether by overall factors of safety, or partial factors of safety, or by other measures. Limit states (see 1.3.13) are classified into: a) ultimate limit states (see 3.1.3); b) serviceability limit states (see 3.1.4). Typical ultimate limit states are depicted in figure 3. Rupture states which are reached before collapse occurs are, for simplicity, also classified and

数控机床主轴结构的改进和优化设计

数控机床主轴结构的改进和优化设计 严鹤飞 (天水星火机床有限责任公司技术中心 甘肃 天水 741024) 摘 要: 掌握机床主轴的关键部件,安装方式,轴承的调制环节以及材料、操作维护等,并且各种原因中又包含着多种影响因素互相交叉,因此必须对每个影响因素作具体分析。而对于优化设计理论的基本思想及其求解方法,将其应用于机床主轴的结构设计,建立了机床主轴结构优化设计的数学模型,并用内点惩罚函数法求解模型,得到了整体最优的结构设计方案,使机床主轴在满足各种约束要求条件下,刚度最好,材料最省。 关键词:机床主轴;轴承;调整;优化设计;数学模型 在数控机床中,主轴是最关键的部件,对机床起着至关重要的作用,主轴结构的设计首先考虑的是其需实现的功能,当然加工及装配的工艺性也是考虑的因素。 1. 数控机床主轴结构改进: 目前机床主轴设计普遍采用的结构如图1所示。图中主轴1支承在轴承4、5、8上,轴承的轴向定位通过主轴上的三个压块紧锁螺母3、7、9来实现。主轴系统的精度取决于主轴及相关零件的加工精度、轴承的精度等级和主轴的装配质量。在图1中主轴双列圆锥滚子轴承4的内锥孔与主轴1:12外锥配合的好坏将直接影响株洲的工作精度,一般要求其配合接触面积大于75%,为了达到这一要求,除了在购买轴承时注意品牌和等级外,通常在设计时对主轴的要求较高,两端的同轴度为0.005mm,对其相关零件,如螺母3、7、9和隔套6的端面对主轴轴线的跳动要求也较高,其跳动值一般要求在0.008mm以内。对一般压块螺母的加工是很难保证这么高的精度的,因而经常出现主轴精度在装配时超差,最终不得不反复调整圆螺母的松紧,而勉强达到要求,但这样的结果往往是轴承偏紧,精度稳定性差,安装位置不精确,游隙不均匀,造成工作时温升较高,噪音大,震动厉害,影响工件的加工质量和轴承的寿命。但对于重型数控机床用圆锥滚子轴承其承载负荷大,运转平稳,精度调整好时,其对机床的精度保持性较好,可对与轻型及高速机床就不十分有力了。 图1 通用机床主轴结构图 1— 主轴;2—法兰盘;3—圆螺母;4—双列圆柱滚子轴承;5—球轴承 6— 调整垫;7—圆螺母;8—双列圆柱滚子轴承;9-螺母

毕业设计外文翻译

毕业设计(论文) 外文翻译 题目西安市水源工程中的 水电站设计 专业水利水电工程 班级 学生 指导教师 2016年

研究钢弧形闸门的动态稳定性 牛志国 河海大学水利水电工程学院,中国南京,邮编210098 nzg_197901@https://www.doczj.com/doc/ad2627742.html,,niuzhiguo@https://www.doczj.com/doc/ad2627742.html, 李同春 河海大学水利水电工程学院,中国南京,邮编210098 ltchhu@https://www.doczj.com/doc/ad2627742.html, 摘要 由于钢弧形闸门的结构特征和弹力,调查对参数共振的弧形闸门的臂一直是研究领域的热点话题弧形弧形闸门的动力稳定性。在这个论文中,简化空间框架作为分析模型,根据弹性体薄壁结构的扰动方程和梁单元模型和薄壁结构的梁单元模型,动态不稳定区域的弧形闸门可以通过有限元的方法,应用有限元的方法计算动态不稳定性的主要区域的弧形弧形闸门工作。此外,结合物理和数值模型,对识别新方法的参数共振钢弧形闸门提出了调查,本文不仅是重要的改进弧形闸门的参数振动的计算方法,但也为进一步研究弧形弧形闸门结构的动态稳定性打下了坚实的基础。 简介 低举升力,没有门槽,好流型,和操作方便等优点,使钢弧形闸门已经广泛应用于水工建筑物。弧形闸门的结构特点是液压完全作用于弧形闸门,通过门叶和主大梁,所以弧形闸门臂是主要的组件确保弧形闸门安全操作。如果周期性轴向载荷作用于手臂,手臂的不稳定是在一定条件下可能发生。调查指出:在弧形闸门的20次事故中,除了极特殊的破坏情况下,弧形闸门的破坏的原因是弧形闸门臂的不稳定;此外,明显的动态作用下发生破坏。例如:张山闸,位于中国的江苏省,包括36个弧形闸门。当一个弧形闸门打开放水时,门被破坏了,而其他弧形闸门则关闭,受到静态静水压力仍然是一样的,很明显,一个动态的加载是造成的弧形闸门破坏一个主要因素。因此弧形闸门臂的动态不稳定是造成弧形闸门(特别是低水头的弧形闸门)破坏的主要原是毫无疑问。

游轮营销方案设计

黄金游轮营销方案设计 SWOT分析 竞争优势(strength): 容量大: 新一代豪华型游轮,现有7艘,总载客量约3640人,是长江上最大的游轮公司。 品质高: 由两江假日酒店管理公司专业人士负责,所以品质完全能够得到保障。 外观新: 并且游轮除黄金一号,其余七艘均是2013年首航,整体外观和内饰都新。 营销独立: 1400.平时价格 总统游轮1600- 1900.世纪游轮1800- 3000.xx 1800.长维1600-1950皇家游轮 4800.) 竞争劣势(weakness) 竞争对手多: 在豪华游轮上,目前黄金游轮竞争对手有世纪游轮、龙腾游轮、总统游轮、世纪游轮、美维游轮、皇家游轮、长维游轮。世纪游轮拥有相同黄金游轮数量,共有7艘。

定价单一: 均统一定价为2200元,虽然让消费者选择简单化,但未实现差异化营销。机会(opportunity) 国外市场增长快: 包括东南亚市场,日韩市场,并准备开发欧美市场。目前国外市场游客数量占总市场20%以上,并保持30%速度增长。(数据未确实) 国内旅游业前景良好: 三峡夔门作为人民币10元背景,在中国各旅游产品极具代表性,在国内旅游业增长的大环境下,国内市场的持续开发必将赢得更多的客户。 威胁(threat) 作为长江游轮行业生命周期来看,正处于成熟期,其特征为市场成熟,竞争对手多,利润增长稳定。我认为目前黄金游轮最大的竞争对手是世纪游轮,世纪游轮立足游轮行业12年,拥有7艘轮船,2011年上市,通过IPO募集资金,投入新船有2艘。客户群体与黄金游轮完全一致。 根据世纪游轮2013年财务报表,我们不难看出一些问题。 2013年半年度归属于母公司所有者的净利润为 99.21万元,较上年同期减 88.76%;营业收入为 1.45亿元,较上年同期增 3.33%;基本每股收益为 0.02元,较上年同期减 86.67%。每股收益 0.02元,同比下降

毕业设计外文翻译-中文版

本科生毕业设计(论文)外文科技文献译文 译文题目(外文题目)学院(系)Socket网络编程的设计与实现A Design and Implementation of Active Network Socket Programming 机械与能源工程学院 专学业 号 机械设计制造及其自动化 071895 学生姓名李杰林 日期2012年5月27日指导教师签名日期

摘要:编程节点和活跃网络的概念将可编程性引入到通信网络中,并且代码和数据可以在发送过程中进行修改。最近,多个研究小组已经设计和实现了自己的设计平台。每个设计都有其自己的优点和缺点,但是在不同平台之间都存在着互操作性问题。因此,我们引入一个类似网络socket编程的概念。我们建立一组针对应用程序进行编程的简单接口,这组被称为活跃网络Socket编程(ANSP)的接口,将在所有执行环境下工作。因此,ANSP 提供一个类似于“一次性编写,无限制运行”的开放编程模型,它可以工作在所有的可执行环境下。它解决了活跃网络中的异构性,当应用程序需要访问异构网络内的所有地区,在临界点部署特殊服务或监视整个网络的性能时显得相当重要。我们的方案是在现有的环境中,所有应用程序可以很容易地安装上一个薄薄的透明层而不是引入一个新的平台。 关键词:活跃网络;应用程序编程接口;活跃网络socket编程

1 导言 1990年,为了在互联网上引入新的网络协议,克拉克和藤农豪斯[1]提出了一种新的设 计框架。自公布这一标志性文件,活跃网络设计框架[2,3,10]已经慢慢在20世纪90 年代末成形。活跃网络允许程序代码和数据可以同时在互联网上提供积极的网络范式,此外,他们可以在传送到目的地的过程中得到执行和修改。ABone作为一个全球性的骨干网络,开 始进行活跃网络实验。除执行平台的不成熟,商业上活跃网络在互联网上的部署也成为主要障碍。例如,一个供应商可能不乐意让网络路由器运行一些可能影响其预期路由性能的未知程序,。因此,作为替代提出了允许活跃网络在互联网上运作的概念,如欧洲研究课题组提出的应用层活跃网络(ALAN)项目[4]。 在ALAN项目中,活跃服务器系统位于网络的不同地址,并且这些应用程序都可以运行在活跃系统的网络应用层上。另一个潜在的方法是网络服务提供商提供更优质的活跃网络服务类。这个服务类应该提供最优质的服务质量(QOS),并允许路由器对计算机的访问。通过这种方法,网络服务提供商可以创建一个新的收入来源。 对活跃网络的研究已取得稳步进展。由于活跃网络在互联网上推出了可编程性,相应 地应建立供应用程序工作的可执行平台。这些操作系统平台执行环境(EES),其中一些已 被创建,例如,活跃信号协议(ASP)[12]和活跃网络传输系统(ANTS)[11]。因此,不 同的应用程序可以实现对活跃网络概念的测试。 在这些EES 环境下,已经开展了一系列验证活跃网络概念的实验,例如,移动网络[5],网页代理[6],多播路由器[7]。活跃网络引进了很多在网络上兼有灵活性和可扩展性的方案。几个研究小组已经提出了各种可通过路由器进行网络计算的可执行环境。他们的成果和现有基础设施的潜在好处正在被评估[8,9]。不幸的是,他们很少关心互操作性问题,活跃网络由多个执行环境组成,例如,在ABone 中存在三个EES,专为一个EES编写的应用程序不能在其他平台上运行。这就出现了一种资源划分为不同运行环境的问题。此外,总是有一些关键的网络应用需要跨环境运行,如信息收集和关键点部署监测网络的服务。 在本文中,被称为活跃网络Socket编程(ANSP)的框架模型,可以在所有EES下运行。它提供了以下主要目标: ??通过单一编程接口编写应用程序。 由于ANSP提供的编程接口,使得EES的设计与ANSP 独立。这使得未来执行环境的发展和提高更加透明。

6船舶中剖面结构优化设计

第六章 船舶中剖面结构优化设计 6.1 概述 船舶结构设计通常是从船中剖面设计开始的。中剖面各部分的结构形式、构件尺寸和它们的连接方法,都集中地反映了船舶的结构概貌。船体中部结构是保证其总纵强度的主要部分,也是船体结构重量的主要部分,因此,进行中剖面结构优化设计是十分有意义的。那么,如何运用最优化方法和计算机技术,在保证船体结构必需的强度和刚度情况下,选择最佳的结构方案,使其重量最轻或成本最低呢?这就是本章所要讨论的问题。 本章首先介绍了适用于船舶结构优化问题的混合离散变量的直接搜索法(MDOD 法),接着应用MDOD 法分别讨论了基于“规范”法和直接计算方法的中剖面结构优化设计,并给出了国内外学者(包括编著者)在船舶结构优化设计方面的一些研究成果。 6.2 离散变量的结构优化设计 结构优化设计大体上可分为三个阶段。第一个阶段是建立数学模型,把一个工程结构的设计问题变成一个数学问题;第二个阶段是选择合理、有效的计算方法;第三个阶段是编制计算机程序,进行设计方案的优化计算和评估。 介绍结构优化设计的教材已有一些[1,2],但由于船舶结构的设计的方法大都是离散的变量, 真正处理起来并不简单。本章将介绍新近发展起来直接处理的混合离散变量优化问题方法[3]。 6.2.1 结构优化的数学模型 混合离散变量优化问题与一般的连续变量优化问题的区别在于,前者的设计变量中既包含有连续变量也有离散变量,而后者只包含连续变量。其数学模型可简单的表达为 min )(X f (6-1) s.t. (X )≤0 j =1,2,3,…,NC g j (6-2) 式中 ub i lb i x x x ≤≤ i =1,2,3,…,NN D T ND D T C D R x x x X X X X ∈==],,,[, ],[21L C T NN N D ND C R x x x X ∈=++],.....,,[21, C D n R R R ×= 其中:x i lb 和x i ub 分别为变量的下界值和上界值,D X 为离散变量的子集合(整型变量可 视为离散变量的特例),C X 为连续变量的子集合。 6.2.2 结构优化的方法

毕业设计外文翻译

毕业设计(论文) 外文文献翻译 题目:A new constructing auxiliary function method for global optimization 学院: 专业名称: 学号: 学生姓名: 指导教师: 2014年2月14日

一个新的辅助函数的构造方法的全局优化 Jiang-She Zhang,Yong-Jun Wang https://www.doczj.com/doc/ad2627742.html,/10.1016/j.mcm.2007.08.007 非线性函数优化问题中具有许多局部极小,在他们的搜索空间中的应用,如工程设计,分子生物学是广泛的,和神经网络训练.虽然现有的传统的方法,如最速下降方法,牛顿法,拟牛顿方法,信赖域方法,共轭梯度法,收敛迅速,可以找到解决方案,为高精度的连续可微函数,这在很大程度上依赖于初始点和最终的全局解的质量很难保证.在全局优化中存在的困难阻碍了许多学科的进一步发展.因此,全局优化通常成为一个具有挑战性的计算任务的研究. 一般来说,设计一个全局优化算法是由两个原因造成的困难:一是如何确定所得到的最小是全球性的(当时全球最小的是事先不知道),和其他的是,如何从中获得一个更好的最小跳.对第一个问题,一个停止规则称为贝叶斯终止条件已被报道.许多最近提出的算法的目标是在处理第二个问题.一般来说,这些方法可以被类?主要分两大类,即:(一)确定的方法,及(ii)的随机方法.随机的方法是基于生物或统计物理学,它跳到当地的最低使用基于概率的方法.这些方法包括遗传算法(GA),模拟退火法(SA)和粒子群优化算法(PSO).虽然这些方法有其用途,它们往往收敛速度慢和寻找更高精度的解决方案是耗费时间.他们更容易实现和解决组合优化问题.然而,确定性方法如填充函数法,盾构法,等,收敛迅速,具有较高的精度,通常可以找到一个解决方案.这些方法往往依赖于修改目标函数的函数“少”或“低”局部极小,比原来的目标函数,并设计算法来减少该?ED功能逃离局部极小更好的发现. 引用确定性算法中,扩散方程法,有效能量的方法,和积分变换方法近似的原始目标函数的粗结构由一组平滑函数的极小的“少”.这些方法通过修改目标函数的原始目标函数的积分.这样的集成是实现太贵,和辅助功能的最终解决必须追溯到

相关主题
文本预览
相关文档 最新文档