当前位置:文档之家› 15第15讲 不定积分第二换元法和分部积分法

15第15讲 不定积分第二换元法和分部积分法

15第15讲 不定积分第二换元法和分部积分法
15第15讲 不定积分第二换元法和分部积分法

第十五讲 不定积分第二换元法与分部积分法

一、第二换元法:

例1

解:

第一换元法:

,u

=dx =;原式

=2-去不掉根号;第一换元法实效。

第二换元法:

令3sin ,3cos x t dx tdt ==;原式=29cos tdt ?cos 2199[cos 21]22

t dt tdt dt +==+???

999sin 2arcsin 4223

x t t c c =++=+ 总结:

1、 第一换元法:令()f x u =;

2、 第二换元法:令()x t ?=;

例2

:(0)a >

解:令2tan ,sec x a t dx a tdt ==;原式=2sec sec ln |sec tan |sec a t dt tdt t t c a t

==++??

1ln ||ln |c x c =+=+ 例3

解:令sec ,tan sec x a t dx a t tdt ==;原式=

tan sec sec ln |sec tan |tan a t t dt tdt t t c a t ==++??

1ln |ln |c x c =+=++ 例4:3

3

22(1)x dx x -?

解:令sin ,cos x t dx tdt ==;原式=322322sin sin 1cos cos cos cos cos cos cos t t t tdt d t d t t t t

-=-=-???

2111cos cos cos cos cos d t d t t c t t -=++??

c

二、分部积分法:

[()()]''()()()'()u x v x u x v x u x v x =+两端积分得:

[()()]''()()()'()()

u x v x dx u x v x dx u x v x dx

uv vdu udv udv uv vdu =+=+?

=-???????分部积分公式 例5:

x x x x x x xe dx xde xe e dx xe e c ==-=-+??? 例6: 111sin 2sin 2cos 2[cos 2cos 2]cos 22224x x xdx xd x x x xdx x x c =-=--=-++??? 例7:1

ln ln ln xdx x x x dx x x x c x

=-?=-+?? 例8:22222

1ln ln ()ln ln 22224

x x x x x x xdx xd x dx x c x ==-?=-+??? 例9

:12221arcsin arcsin arcsin (1)(1)arcsin 2xdx x x x x x x d x x x c -=-=+--=??

? 总结:“三指动”,“反对不动”

换元法在不定积分和定积分中的联系与区别

换元法在不定积分和定积分中的联系与区别 1.第一换元法在不定积分和定积分中的联系与区别 1.1不定积分中第一换元法的定理形式 定理1若,且的原函数容易求出,记 , 则 . 证明若,令,于是有 因而 得证。 1.2定积分中第一换元法的定理形式 定理2若连续,在上一阶连续可导,且,在构成的区间上连续,其中,则 . 证明令,由于在构成的区间上连续,记,则 得证。 1.3 第一换元法在不定积分和定积分中的联系与区别 区别:第一换元法在定积分中对未知量给出了定义范围,要求换元函数在该定义域内一阶连续可导即可,对积分要求变弱。

联系:不定积分的实质是求一个函数的原函数组成的集合,部分定积分的计算可以利用不定积分的第一换元法求出简单函数的任意一个原函数,再用原函数在定义域的上下限的函数值取差值。 例1求. 解因为 即有一个原函数,所以 例2 计算积分. 解由于 于是 2.第二换元法在不定积分和定积分中的联系与区别 2.1不定积分中第二换元法的定理形式 定理3设连续,及都连续,的反函数存在且连续,并且 ,(1)则 (2)

证明将(2)式右端求导同时注意到(1)式,得 , 这便证明了(2)式。 2.2定积分中第二换元法的定理形式 定理 4 设在连续,作代换,其中在构成的区间上有连续导数,且,则 证明设是的一个原函数,则是的一个原函数。于是 , 定理得证。 2.3 第二换元法在不定积分和定积分中的联系与区别 区别:由不定积分中第二换元法的证明过程可知,不定积分中第二换元法要求变换的反函数存在且连续,并且。而在定积分的第二换元法则不这样要求,它通过换元法写出关于新变量的被积函数与新变量的积分上下限后可以直接求职,不像不定积分的计算最终需要对变量进行还原。 例3用第二换元法求解 解令,则

不定积分分部积分法教案

第三节 分部积分法 教学内容:分部积分法 教学目的:理解分部积分法的思想方法,能针对不同类型函数之积的被积函数,正确选取v u ',,熟练掌握分部积分法的步骤。 教学重点:分部积分法及其应用 教学难点:在分部积分法中,恰当选取v u ',。 教学学时:1学时 教学进程: 我们知道,求不定积分是求微分的逆运算.导数公式→不定积分公式;复合函数的求导公式→换元积分公式;乘积求导公式→分部积分公式(不同类型函数乘积的积分)。 1引入 用我们已经掌握的方法求不定积分??xdx x cos 分析:①被积函数为两函数的乘积不是基本的积分公式。 ②凑微法失效。x x cos ? ③第二类换元积分法 解:不妨设 t x t x arccos cos ==则 原方程dt t t t ?--??211 arccos 更为复杂 所以凑微法和第二换元积分法都失效。 反之考虑,两函数乘积的积分不会,但两函数乘积的求导我们会,比如:(假设v u ,为两个具有连续导数的函数) 已知: '')'(uv v u v u +=? 对上式两边积分得:??+=+dx uv vdx u C uv '' 移项得: ??-=vdx u uv dx uv '' 观察上式发现被积函数也是两函数乘积的形式,注意:?dx uv '中v '为导数形式。 故,我们可以尝试来解一下上面的积分。 C x x x xdx x x x dx x x xdx x ++=-==↓????cos sin sin 'sin ')(sin cos 形式一样 先要化的和要求积分的

通过上面的方法,我们顺利的解决两函数乘积的积分。其实上面的公式正是这一节课要讲述的“分部积分法”。 2 公式 设函数)(x u u =和)(x v v =都具有连续的导数,则有分部积分公式: ??-=vdx u uv dx uv ''(或??-=vdu uv udv ) 3 例题讲解 例1.计算不定积分dx xe x ?. 解 设 x u = ,x e v =',则1='u ,x e v =(*), 于是 x x x x xe dx xde xe e dx ==-???x x xe e C =-+. 注意: (1)(*)处没有加C ,这是因为我们取了最简单的情况0=C 。 (2)若设x e u =,xdx dv =,则 dx e x e x dx xe x x x ??-=222 121, 积分dx e x x ?2比积分?dx xe x 要复杂,没有达到预期目的.由此可见,选择v u ',非常关键,一般要考虑下列两点: (1)v 要易求; (2)积分?'vdx u 要比积分?'dx v u 易计算. 练习:求?xdx x sin 例2.计算不定积分?xdx ln 分析:此为一个函数的积分,当然不能使用凑微法、换元法积分,可是不满足两函数乘积,能否用分部积分公式呢?其实只需要将被积函数看作x ln 1?即可。 解:设x u ln =,1='v ,则x u 1= ',x v =, 于是 C x x x dx x x x x xdx xdx +-=?-==???ln 1ln ln ln 注意:学习数学重要的是记忆、理解公式,更重要的是灵活应用。

分部积分法教案

分部积分法 教学目的:使学生理解分部积分法,掌握分部积分法的一般步骤及其应用。 重点:分部积分法及其应用 难点:在分部积分法中,要恰当的选取U和v 教学方法:讲练法 0回顾 上几节课我们学习了不定积分的求法,要求我们①熟记基本初等函数积分公式表②熟练、一换元积分法(凑微法)③熟练、灵活的运用第二换元积分法。 凑微法:实质是在被积函数中凑出中间变量的微分; f(x)dx f [ (x)] '(x)dx f[ (x)]d[ (x)] 令u (x) f (u)du F(u) C F[ (x)] C 第二换元积分法:关键是通过适当的变量替换x (t),使得难求的积分易求 f (x)dx 令x (t) f[ (t)]'⑴dt f[ (t)]d (t) F[ (t)] C F(x) C 1引入 用我们已经掌握的方法求不定积分x cosxdx 分析:①被积函数为两函数的乘积不是基本的积分公式。 ②凑微法失效。x cosx ③第 — 1类换兀积分法 解:不妨设cosx t则x arccost 原方程t arccost 1-dt 更为复杂 -1 t 所以凑微法和第二换元积分法都失效。 反之考虑,两函数乘积的积分不会,但两函数乘积的求导我们会,比如:(假设u、已知: (u v)' u'v uv' 灵活的运用第v为两个函数)

对上式两边积分得:uv u'vdx uv'dx 观察上式发现被积函数也是两函数乘积的形式,注意:uv'dx中v'为导数形式。 故,我们可以尝试来解一下上面的积分。 x cosxdx 先要化的和要求积分的形式一样 x(sin x)'dx xsi nx x'si nxdx xsinx cosx C 真是:山重水复疑无路,柳暗花明又一村。通过上面的方法,我们顺利的解决两函数乘积的积分。其实上面的公式正是这一节课要讲述的“分部积分法”。 2公式 2.1定理设函数u u(x)和v v(x)及都具有连续的导数,则有分部积分公式: uv'dx uv u'vdx (或udv uv vdu) 说明:①两函数的积分等于将其中一个放在d里后,里外相乘减去换位的积分。 ②内外积减去换位“积”。 ③步骤:a放d中,b、套公式。 2.2例1求不定积分x sinxdx 解:x sin xdx x sin xdx xd(cos x)①放d中 xcosx cos xdx②套公式 xcosx sin x C 3 U、V的选取问题 例2求不定积分e x xdx 解:e x xdx x 1 2、 e d(-x ) 2 1 2 x 1 2. x x e x de 2 2 1 2 x 1 x 2 , x e e x dx 2 2 移项得: uv'dx uv u'vdx

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础,要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是常见不定积分的解法。不定积分的解法不像微分运算时有一定的法则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

不定积分分部积分法教案

第三节 第四节 第五节 分部积分法 教学内容:分部积分法 教学目的:理解分部积分法的思想方法,能针对不同类型函数之积的被积函数,正确选取 v u ',,熟练掌握分部积分法的步骤。 教学重点:分部积分法及其应用 教学难点:在分部积分法中,恰当选取v u ',。 教学学时:1学时 教学进程: 我们知道,求不定积分是求微分的逆运算.导数公式→不定积分公式;复合函数的求导公式→换元积分公式;乘积求导公式→分部积分公式(不同类型函数乘积的积分)。 1引入 用我们已经掌握的方法求不定积分? ?xdx x cos 分析:①被积函数为两函数的乘积不是基本的积分公式。 ②凑微法失效。x x cos ? ③第二类换元积分法 解:不妨设 t x t x arccos cos ==则 原方程dt t t t ? --? ?2 11arccos 更为复杂 所以凑微法和第二换元积分法都失效。 反之考虑,两函数乘积的积分不会,但两函数乘积的求导我们会,比如:(假设v u ,为两个具有连续导数的函数) 已知: '')'(uv v u v u +=? 对上式两边积分得:?? +=+dx uv vdx u C uv '' 移项得: ??-=vdx u uv dx uv ''

观察上式发现被积函数也是两函数乘积的形式,注意:? dx uv '中v '为导数形式。 故,我们可以尝试来解一下上面的积分。 C x x x xdx x x x dx x x xdx x ++=-== ↓????cos sin sin 'sin ')(sin cos 形式一样 先要化的和要求积分的 通过上面的方法,我们顺利的解决两函数乘积的积分。其实上面的公式正是这一节课要讲述的“分部积分法”。 2 公式 设函数)(x u u =和)(x v v =都具有连续的导数,则有分部积分公式: ??-=vdx u uv dx uv ''(或??-=vdu uv udv ) 3 例题讲解 例1.计算不定积分dx xe x ? . 解 设 x u = ,x e v =',则1='u ,x e v =(*), 于是 x x x x xe dx xde xe e dx ==-??? x x xe e C =-+. 注意: (1)(*)处没有加C ,这是因为我们取了最简单的情况0=C 。 (2)若设x e u =,xdx dv =,则 dx e x e x dx xe x x x ??-=222 121, 积分dx e x x ? 2比积分? dx xe x 要复杂,没有达到预期目的.由此可见,选择v u ',非常关键,一般要考虑下列两点: (1)v 要易求; (2)积分?'vdx u 要比积分? 'dx v u 易计算. 练习:求? xdx x sin

不定积分解题方法及技巧总结

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法 教学目的:掌握定积分换元积分法与分部积分法 难 点:定积分换元条件的掌握 重 点:换元积分法与分部积分法 由牛顿-莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数.在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的. 1.定积分换元法 定理 假设 (1) 函数)(x f 在区间],[b a 上连续; (2) 函数)(t x ?=在区间],[βα上有连续且不变号的导数; (3) 当t 在],[βα变化时,)(t x ?=的值在],[b a 上变化,且b a ==)(,)(β?α?, 则有 []dt t t f dx x f b a ?? '=β α ??)()()(. (1) 本定理证明从略.在应用时必须注意变换)(t x ?=应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分. 例1 计算? -2 1 1 dx x x . 解 令t x =-1,则tdt dx t x 2,12=+=.当1=x 时,0=t ;当2=x 时, 1=t .于是 ??? ?? ? ??+-=?+=-1021022 1 1112211dt t tdt t t dx x x ??? ? ?-=-=412)a r c t a n (210 πt t . 例2 计算? -a dx x a 0 22)0(>a .

解 令t a x sin =,则t d t a dx cos =.当0=x 时,0=t ;当a x =时,2 π = t .故 ? -a dx x a 0 22dt t a t a ??=20 cos cos π dt t a )2cos 1(2 20 2 += ? π 20 2 2s i n 212π ??????+= t t a 4 2 a π= . 显然,这个定积分的值就是圆222a y x =+在第一象限那部分的面积(图5-8). 例3 计算?20 5sin cos π xdx x . 解法一 令x t cos =,则xdx dt sin -=. 当0=x 时,1=t ;当2 π =x 时,0=t ,于是 6 1 6 1 sin cos 01 6 50120 5= -=-=?? t dt t xdx x π . 解法二 也可以不明显地写出新变量t ,这样定积分的上、下限也不要改变. 即 x d x x d x x c o s c o s s i n c o s 20 5 20 5 ?? -=π π 61610cos 61206 =??? ? ?--=-=π x . 此例看出:定积分换元公式主要适用于第二类换元法,利用凑微分法换元 不需要变换上、下限. 例4 计算dx x ?-π sin 1. 解 dx x ? -π sin 1?-=π02 c o s 2s i n dx x x 注去绝对值时注意符号.

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

三、不定积分的几何意义 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k (为非零常数)

不定积分换元法例题

【不定积分的第一类换元法】 已知 ()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????= =? ?? 【凑微分】 ()()f u du F u C = =+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ? 的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????= =??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==? ??()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。 __________________________________________________________________________________________ 【第一换元法例题】 1、9 9 9 9 (57)(57)(5711(57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?= +?++? ? ? ? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2x x x d C x C =?=+=+? 【注】111 (ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --= ===? ???? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+?

不定积分第一类换元法

不定积分第一类换元法(凑微分法)
一、 方法简介
设 f (x) 具有原函数 F(u) ,即 F'(u) f (u) , f (u)du F(u) C ,如果U 是
中间变量, u (x) ,且设(x) 可微,那么根据复合函数微分法,有
dF[(x)] f [(x)]'(x)dx 从而根据不定积分的定义得
则有定理:
f [(x)]'(x)dx F[(x)] C [ f (u)du]u(x) .
设 f (u) 具有原函数, u (x) 可导,则有换元公式
f [(x)]'(x)dx [ f (u)du]u(x)
由此定理可见,虽然
f
[ ( x)] ' ( x)dx
是一个整体的记号,但如用导数记号
dy dx
中的 dx 及 dy 可看作微分,被积表达式中的 dx 也可当做变量 x 的微分来对待,从
而微分等式'(x)dx du 可以方便地应用到被积表达式中。 几大类常见的凑微分形式:
○1
f
(ax
b)dx
1 a
f
(ax
b)d (ax
b)
(a 0) ;
○2 f (sin x) cosxdx f (sin x)d sin x , f (cosx)sin xdx f (cosx)d cosx ,
f
(tan x)
dx cos2
x
f
(tan x)d
tan
x,
f
(c ot x)
dx sin 2
x
f
(c ot x)d
cot x ;
○3
f
(ln
x)
1 x
dx
f
(ln
x)d
ln
x,
f
(ex )exdx
f
(ex )dex

○ 4
f (xn )xn1dx 1 f (xn )dxn (n 0) , n
f
(1) x
dx x2
f (1)d(1) xx

f(
x)
dx x
2
f
(
x )d (
x);
○5 f (arcsin x)
dx 1 x2
f (arcsin x)d arcsin x ;

不定积分解题方法及技巧总结

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x

C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(?? 第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种: acht x t a x t a x a x asht x t a x t a x a x t a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222 也奏效。 ,有时倒代换当被积函数含有::t x c bx ax x t d cx b ax d cx b ax t b ax b ax m n n n n 1 )6()5()4(2=++?=++++=++ (7)当根号内出现单项式或多项式时一般用t 代去根号。 C x x x C t t t tdt t t tdt t x t dx x ++-=++-=--==???sin 2cos 2sin 2cos 2) cos cos (2sin 2sin 但当根号内出现高次幂时可能保留根号,

不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一.不定积分的概念与性质 定义1如果F(x)是区间I上的可导函数,并且对任意的x∈I,有F’(x)=f(x)dx则称F(x)是f(x)在区间I上的一个原函数。 定理1(原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原 函数,即存在可导函数F(x),使得F(x)=f(x)(x∈I) 简单的说就是,连续函数一定有原函数 定理2设F(x)是f(x)在区间I上的一个原函数,则 (1)F(x)+C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2设F(x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数F(x)+C称为f(x)在区间I上的不定积分,记为?f(x)d(x),即?f(x)d(x)=F(x)+C 其中记号?称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分变量,C称为积分常数。 性质1设函数f(x)和g(x)存在原函数,则?[f(x)±g(x)]dx=?f(x)dx±?g(x)dx. 性质2设函数f(x)存在原函数,k为非零常数,则?kf(x)dx=k?f(x)dx. 二.换元积分法的定理 如果不定积分?g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[?(x)] ?’(x). 做变量代换u=?(x),并注意到?‘(x)dx=d?(x),则可将变量x的积分转化成变量u的积 分,于是有?g(x)dx=?f[?(x)] ?’(x)dx=?f(u)du. 如果?f(u)du可以积出,则不定积分?g(x)dx的计算问题就解决了,这就是第一类换 元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。 定理1 设F(u)是f(u)的一个原函数,u=?(x)可导,则有换元公式

不定积分解法汇总

1、 换元积分法 1.1、第一换元法(凑微分法) 令)(x u u =,若已知?+=C x F dx x f )()(,则有[][]C x F dx x x f +='?)()()(??? 其中)(x ?是可微函数,C 是任意常数。 (1)a b ax d a b x d dx )((1 )(+=+=、)0≠,a b 为常数 具体应用为 ? ?++=+)()(1)(b ax d b ax a dx b ax m m =???????+++++?+C b ax a C m b ax a m ln 11)(11 )1()1(-=-≠m m (2))(111b x d a dx x a a ++= +)()1(1 1b ax d a a a ++=+ a (、 b 、a 均为常数,且)1,0-≠≠a a 。 例如:x d dx x x x d dx x dx xdx 21 ), (32,212=== (3))ln (1 ln 1b x a d a x d dx x +==b a ,(为常数,)0≠a (4),0(ln ) (,>= =a a a d dx a de dx e x x x x 且)1≠a ; (5));(sin cos ),(cos sin x d xdx x d xdx =-= (6))cot (csc ),(tan sec 22x d xdx x d xdx -== (7)x sin d dx x 2sin 2= (8) )(arctan 112x d dx x =+)(arcsin 11 2x d dx x =- (9) 2 2 x 1d dx x -1x --=, 22 x 1d dx x 1x +=+

不定积分的例题分析及解法

不定积分的例题分析及解法 这一章的基本概念是原函数、不定积分、主要的积分法是利用基本积分公式,换元积分法和分部积分法。对于第一换元积分法,要求熟练掌握凑微分法和设中间变量)(x u ?=,而第二换元积分法重点要求掌握三角函数代换,分部积分法是通过“部分地”凑微分将?υud 转化成? du υ,这种转化应是朝有利于求积分的方向转化。对于不同的被积函数类型应该有针对性地、灵活地采用有效的积分方法,例如)(x f 为有理函数时,通过多项式除法分解成最简分式来积分,)(x f 为无理函数时,常可用换元积分法。 应该指出的是:积分运算比起微分运算来,不仅技巧性更强,而且业已证明,有许多初等函数是“积不出来”的,就是说这些函数的原函数不能用初等函数来表示,例如 dx x x ?sin ;dx e x ?-2 ;dx x ?ln 1;?-x k dx 22sin 1(其中10<