当前位置:文档之家› 高考物理经典题型专题辅导2

高考物理经典题型专题辅导2

高考物理经典题型专题辅导2
高考物理经典题型专题辅导2

力与运动

思想方法提炼

一、对力的几点认识

1.关于力的概念.力是物体对物体的相互作用.这一定义体现了力的物质性和相互性.力是矢量.

2.力的效果

(1)力的静力学效应:力能使物体发生形变.

(2)力的动力学效应:

a.瞬时效应:使物体产生加速度F=ma

b.时间积累效应:产生冲量I=Ft,使物体的动量发生变化Ft=△p

c.空间积累效应:做功W=Fs,使物体的动能发生变化△E k=W

3.物体受力分析的基本方法

(1)确定研究对象(隔离体、整体).

(2)按照次序画受力图,先主动力、后被动力,先场力、后接触力.

(3)只分析性质力,不分析效果力,合力与分力不能同时分析.

(4)结合物体的运动状态:是静止还是运动,是直线运动还是曲线运动.如物体做曲线运动时,在某点所受合外力的方向一定指向轨迹弧线内侧的某个方向.

二、中学物理中常见的几种力

三、力和运动的关系

1.F=0时,加速度a =0.静止或匀速直线运动

F=恒量:F与v在一条直线上——匀变速直线运动

F与v不在一条直线上——曲线运动(如平抛运动)

2.特殊力:F大小恒定,方向与v始终垂直——匀速圆周运动

F=-kx——简谐振动

四、基本理论与应用

解题常用的理论主要有:力的合成与分解、牛顿运动定律、匀变速直线运动规律、平抛运动的规律、圆周运动的规律等.力与运动的关系研究的是宏观低速下物体的运动,如各种交通运输工具、天体的运行、带电物体在电磁场中的运动等都属于其研究范畴,是中学物理的重要内容,是高考的重点和热点,在高考试题中所占的比重非常大.选择题、填空题、计

算题等各种类型的试题都有,且常与电场、磁场、动量守恒、功能部分等知识相结合. 感悟 · 渗透 · 应用

一、力与运动的关系

力与运动关系的习题通常分为两大类:一类是已知物体的受力情况,求解其运动情况;另一类是已知物体的运动情况,求解物体所受的未知力或与力有关的未知量.在这两类问题中,加速度a 都起着桥梁的作用.而对物体进行正确的受力分析和运动状态及运动过程分析是解决这类问题的突破口和关键.

【例1】如图所示,质量M=10kg 的木楔 静止于粗糙水平地面上,木楔与地面间的

动摩擦因数μ=0.2,在木楔的倾角为θ=30°

的斜面上,有一质量m=1.0kg 的物块由静止

开始沿斜面下滑,当滑行路程s=1.4m 时, 其速度v=1.4m/s.在这个过程中木楔处于静止状态.求地面对木楔的摩擦力的大小和方向(取

g=10m/s 2). 【解析】由于木楔没有动,不能用公式

f=μN 计算木楔受到的摩擦力,题中所给出动摩擦因数的已知条件是多余的。首先要判断物块沿斜面向下做匀加速直线运动,由运动学公式v

2t -v 20=2as 可得其加速度a=v 2/2s=0.7m/s 2,由于a < gsin θ=5m/s 2,可知物块受摩擦力作用, 物块和木楔的受力如图所示:

对物块,由牛顿第二定律得: mgsin θ-f 1=ma f 1=4.3N

mgcos θ-N 1=0 N 1= N

对木楔,设地面对木楔的摩擦力如图

所示,由平衡条件:

f=N ′1sin θ-f ′1cos θ=0.61N

f 的结果为正值,说明所设的方向与图设方向相同.

【解题回顾】物理习题的解答,重在对物理规律的理解和运用,忌生拉硬套公式.对两个或两个以上的物体,理解物体间相互作用的规律,正确选取并转移研究对象,是解题的基本能力要求.本题也可以用整体法求解:对物块沿斜向下的加速度分解为水平方向acos θ和竖直方向asin θ,其水平方向上的加速度是木楔对木块作用力的水平分量产生的,根据力的相互作用规律,物块对木楔的水平方向的作用力也是macos θ,再根据木楔静止的现象,由平衡条件,得地面对木楔的摩擦力一定是macos θ=0.61N.

【例2】如图所示,一高度为h =0.2m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5m/s 的速度在平面上向右运动。求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10m/s 2)。某同学对此题的解法为:小球沿斜面运动,则,sin 2

1sin 20t g t v h ?+=θθ由此可求得落地的时间t 。 问:你同意上述解法吗?若同意,求出所需的时

间;若不同意,则说明理由并求出你认为正确的结果。

【解析】不同意。小球应在A 点离开平面做平抛运动,

而不是沿斜面下滑。正确做法为:落地点与A 点的水平距离)(110

2.025200m g h v t v s =??=== ①

35

斜面底宽 )(35.032.0m hctg l =?==θ ② l s >

小球离开A 点后不会落到斜面,因此落地时间即为平抛运动时间。

∴ )(2.010

2.022s g h t =?== ③ 二、临界状态的求解

临界状态的问题经常和最大值、最小值联系在一起,它需要在给定的物理情境中求解某些物理量的上限或下限,有时它与数学上的极值问题相类似.但有些问题只能从物理概念、规律的约束来求解,研究处理这类问题的关键是:(1)要能分析出临界状态的由来.(2)要能抓住处于临界状态时物体的受力、运动状态的特征.

【例3】如图所示,在相互垂直的匀强电场、磁场 中,有一个倾角为θ且足够长的光滑绝缘斜面.磁感应强

度为B ,方向水平向外,电场强度的方向竖直向上.有

一质量为m ,带电量为+q 的小球静止在斜面顶端,这

时小球对斜面的压力恰好为0.若迅速把电场方向改为

竖直向下时,小球能在斜面上连续滑行多远?所用

时间是多少?

【解析】开始电场方向向上时小球受重力和电场力两个 力作用,mg=qE ,得电场强度E=mg/q.

当电场方向向下,小球在斜面上运动时小球受力

如图,在离开斜面之前小球垂直于斜面方向的加速度

为0.

mgcos θ+qEcos θ=Bqv+N ,

即2mgcos θ=Bqv+N

随v 的变大小球对斜面的压力N 在变小,当增大到某个值时压力为0,超过这个值后,小球将离开斜面做曲线运动.

沿斜面方向小球受到的合力

F=mgsin θ+qEsin θ=2mgsin θ为恒力,所以小球在离开斜面前做匀加速直线运动a=F/m=2gsin θ.

其临界条件是2mgcos θ=Bqv ,

得即将离开斜面时的速度v=2mgcos θ/Bq.

由运动学公式v 2=2as ,

得到在斜面上滑行的距离为s=m 2gcos 2θ/(B 2q 2sin θ)

再根据v=at 得运动时间:t=v/a=mctan θ/Bq.

【解题回顾】本题的关键有三点:(1)正确理解各种力的特点,如匀强电场中电场力是恒力,洛伦兹力随速度而变化,弹力是被动力等.(2)分析出小球离开斜面时临界状态,求出临界点的速度.(3)掌握运动和力的关系,判断出小球在离开斜面前做初速度为0的匀加速直线运动.下滑距离的求解也可以用动能定理求解,以加强对各种力的理解.

【例4】如图所示,一平直的传送带以v=2m/s 的速度匀速运行,传送带把A 处的工件运送到B 处.A 、B 相距L=10m.从A 处把工件无初速度地放到传送带上,经过时间t=6s 传送到B 处,欲用最短的 时间把工件从A 处传送到B 处,

求传送带的运行速度至少多大?

【解析】A 物体无初速度放上传送带以后,物体将在摩擦力作用下做匀加速运动,因为L/t >v/2,这表明物体从A 到B 先做匀加速运动后做匀速运动.

设物体做匀加速运动的加速度为a ,加速的时间为t 1,相对地面通过的位移为s ,则有v=at 1,s=at 21/2,s+v(t-t 1)=L.

数值代入得a=1m/s 2

要使工件从A 到B 的时间最短,须使物体始终做匀加速运动,至B 点时速度为运送时间最短所对应的皮带运行的最小速度.

由v 2=2aL ,v= 【解题回顾】对力与运动关系的习题,正确判断物体的运动过程至关重要.工件在皮带上的运动可能是一直做匀加速运动、也可能是先匀加速运动后做匀速运动,关键是要判断这一临界点是否会出现.在求皮带运行速度的最小值时,也可以用数学方法求解:设皮带的速度为v ,物体加速的时间为t 1

,匀速的时间为t 2,则L=(v/2)t 1+vt 2,而t 1=v/a.t 2=t-t 1,得t=L/v+v/2a.由于L/v 与v/2a 的积为常数,当两者相等时其积为最大值,得v= 时t 有

最小值.由此看出,求物理极值,可以用数学方法也可以采用物理方法.但一般而言,用物理

方法比较简明.

三、在生产、生活中的运用.

高考制度的改革,不仅是考试形式的变化,更是高考内容的全面革新,其根本的核心是不仅要让学生掌握知识本身,更要让学生知道这些知识能解决哪些实际问题,因而新的高考试题十分强调对知识的实际应用的考查.

【例5】两个人要将质量M=1000kg 的小车沿

一小型铁轨推上长L=5m ,高h=1m 的斜坡

顶端,如图所示.已知车在任何情况下所受

的摩擦阻力恒为车重的0.12倍,两人能发挥的 最大推力各为800N.在不允许使用别的工具的

情况下,两人能否将车刚好推到坡顶?如果能,应如何办?(g 取10m/s 2 )

【解析】由于推车沿斜坡向上运动时,车所受“阻力”大于两个人的推力之和.

即f 1=Mgh/L+μMg=3.2×103N >F=1600N

所以不能从静止开始直接沿斜面将小车推到坡顶.

但因小车在水平面所受阻力小于两人的推力之和,即f 2=μMg=1200N <1600N

故可先在水平面上加速推一段距离后再上斜坡.小车在水平面的加速度为

a 1=(F-f 2)/M=0.4m/s 2

在斜坡上做匀减速运动,加速度为

a 2=(F-f 1)/M=-1.6m/s 2

设小车在水平面上运行的位移为s 到达斜面底端的速度为v.

由运动学公式2a 1s=v 2=-2a 2L

解得s=20m.即两人先在水平面上推20m 后,再推上斜坡,则刚好能把小车推到坡顶.

【解题回顾】本题的设问,只有经过深入思考,通过对物理情境的变换才能得以解决.由此可知,对联系实际问题应根据生活经验进行具体分析.不能机械地套用某种类型.这样才能切实有效地提高解题能力.另外,本题属半开放型试题,即没有提供具体的方法,需要同学自己想出办法,如果题中没有沿铁轨这一条件限制,还可以提出其他一些办法,如在斜面上沿斜线推等.

【例6】蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为 60kg 的运动员,从离水平网面 3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面 5.0m 高处。已知运动员与网接触的时间为 1.2s 。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g =10m/s 2)

s

m aL /522=

s m aL /522=

【解析】将运动员看作质量为 m 的质点,从 h 1 高处下落,刚接触网时速度的大小

112v gh = (向下)

弹跳后到达的高度为 h 2,刚离网时速度的大小

222v gh = (向上)

速度的改变量

12v v v ?=+ (向上)

以 a 表示加速度,△t 表示接触时间,则

v a t ?=?

接触过程中运动员受到向上的弹力 F 和向下的重力 mg 。由牛顿第二定律,

F mg ma -=

由以上五式解得,

21

22gh gh F mg m t +=+?

代入数值得

31.510F =? N

四、曲线运动.

当物体受到的合力的方向与速度的方向不在一条直线上时,物体就要做曲线运动.中学物理能解决的曲线运动的习题主要有两种情形:一种是平抛运动,一种是圆周运动.平抛运动的问题重点是掌握力及运动的合成与分解.圆周运动的问题重点是向心力的来源和运动的规律.

【例7】在光滑水平面上有一质量m=1.0×10-3kg ,

电量q=1.0×10-10C 的带正电小球,静止在O 点,

以O 点为原点,在该水平面内建立直角坐标系Oxy ,

如图所示. 现突然加一沿x 轴正方向、场强大小

为E=2.0×106V/m 的匀强电场,使小球开始运动,

经过1.0s ,所加电场突然变为沿y 轴正方向,场强大小

仍为E=2.0×106V/m 的匀强电场,再经过1.0s 所加电场又突然变为另一个匀强电场.使小球在此电场作用下经1.0s 速度变为0.求速度为0时小球的位置.

【解析】由牛顿定律可知小球在水平面上的加速度

a=qE/m=0.20m/s 2.

当场强沿x 轴正方向时,经1.0s 小球的速度大小为v x =at=0.20×1.0=0.20m/s (方向沿x 轴方向)

小球沿x 轴方向移动的距离为△x 1=at 2/2=0.10m.

在第2s 内,电场方向y 轴正方向,x 方向不再受力,

所以第2s 内小球在x 方向做匀速运动,在y 方向做初速度为0的匀加速直线运动(类似平抛运动)

沿y 方向的距离:△y=at 2/2=0.10m.

沿x 方向的距离:△x 2=v x t=0.2×1.0=0.20m.

第2s 未在y 方向分速度为:

v y =at=0.20×1.0=0.20m/s

由上可知,此时小球运动方向与x 轴成45°角,要使小球速度变为0,则在第3s 内所加电场方向必须与此方向相反,即指向第三象限,与x 轴成225°角.

在第3s 内,设在电场作用下小球加速度的x 分量和y 方向分量分别为a x 、a y ,则

a x =v x /t=0.2m/s 2,

a y =v y/t=0.20m/s 2;

在第3s 未,小球到达的位置坐标为

x 3=△x 1+△x 2+v x t-a x t 2/2=0.40m ,

y 3=△y+v y t-a y t 2/2=0.20m.

【解题回顾】学好物理要有一定的空间想像力,要分析、想像物体的运动状态和运动轨迹.作图可以化抽象为具体,提高解题成功率.本题小球的运动情景如图.

【例8】如图所示,有一质量为m 的小球P 与

穿过光滑水平板上小孔O 的轻绳相连,用手拉着 绳子另一端,使小球在水平板上绕O 点做半径

为a 、角速度为ω的匀速圆周运动.

求:(1)此时绳上的拉力有多大?

(2)若将绳子从此状态迅速放松,后又拉直,

使小球绕O 做半径为b 的匀速圆周运动.从放松到拉直这段过程经历了多长时间?

(3)小球做半径为b 的匀速圆周运动时,绳子上的拉力又是多大?

【解析】(1)绳子上的拉力提供小球做匀速圆周运动的向心力,故有:F=m ω2a

(2)松手后绳子上的拉力消失,小球将从松手时的位置沿圆周的切线方向,在光滑的水平面上做匀速直线运动.当绳在水平板上长为b 时,绳又被拉紧.在这段匀速直线运动的过程中小球运动的距离为

s= , 如图所示

故t=s/v= (3)将刚拉紧绳时的速度分解为沿绳子的分量

和垂直于绳子的分量.在绳被拉紧的短暂过程中,

球损失了沿绳的分速度,

保留着垂直于绳的分速度做匀速圆周运动.被保留的速度的大小为: v 1=va/b=ωa 2/b.

所以绳子后来的拉力为:

F ′=mv 21/b=m ω2a 4/b 3.

【解题回顾】此题难在第3问,注意物体运动过程中的突变点,理解公式F=mv 2/R 中的v 是垂直于半径、沿切线方向的速度.

五、图像的运用

【例9】如图所示,一对 平行光滑轨道设置在水平面上,

两轨道间距L=0.20m ,电阻 R=1.0Ω;有一导体杆静止地放

在轨道上,与两轨道垂直,

杆及轨道的电阻皆可忽略不计,

整个装置处于磁感应强度B=0.5T 的匀强磁场中,磁场方向垂直轨道向下,现用一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图所示.求杆的质量m 和加速度a

【解析】物体做匀加速运动的条件是合外力不变.导体杆运动过程中受拉力和安培力两个力作用,因安培力随着速度增加电流变大而变大,所以拉力随着时间而变化.

设杆的质量为m ,加速度为a ,则由运动学公式v=at ,

感应电动势E=BLv ,感应电流I=E/R ,

22a b -a a b ω22-

安培力f=BIL ,

由牛顿第二定律F-f=ma ,

整理得F=ma+B 2L 2at/R ,

在图线上取两点代入后可得a = 10m/s 2 m = 0.1kg. 练习题

如图所示,离子源从某小孔发射出带电量q=1.6×10-10C 的正离子(初速度不计),在加速电压U= 1000V 作用下沿O 1O 2方向进入匀强磁场中.磁场限制在以O 2为圆心半径为R 0=2.64cm 的区域内,磁感强度大小B 为0.10T ,方向垂直纸面向外,正离子沿偏离O 1O 2为60°角的方向从磁场中射出,打在屏上的P 点,计算:

(1)正离子质量m .

(2)正离子通过磁场所需要的时间t .

由图可见

R =R 0·cot30°

由①、②、③式得

=1.67×10-27(kg)

(2)由图所示,离子飞出磁场,偏转60°角,故在磁场中飞

高考物理经典专题:时间与空间

高考物理经典专题:时间与空间 力与运动 思想方法提炼 一、对力的几点认识 1.关于力的概念.力是物体对物体的相互作用.这一定义体现了力的物质性和相互性.力是矢量. 2.力的效果 (1)力的静力学效应:力能使物体发生形变. (2)力的动力学效应: a.瞬时效应:使物体产生加速度F=ma b.时间积累效应:产生冲量I=Ft,使物体的动量发生变化Ft=△p c.空间积累效应:做功W=Fs,使物体的动能发生变化△E k=W 3.物体受力分析的基本方法 (1)确定研究对象(隔离体、整体). (2)按照次序画受力图,先主动力、后被动力,先场力、后接触力. (3)只分析性质力,不分析效果力,合力与分力不能同时分析. (4)结合物体的运动状态:是静止还是运动,是直线运动还是曲线运动.如物体做曲线运动时,在某点所受合外力的方向一定指向轨迹弧线内侧的某个方向. 二、中学物理中常见的几种力 三、力和运动的关系 1.F=0时,加速度a =0.静止或匀速直线运动 F=恒量:F与v在一条直线上——匀变速直线运动 F与v不在一条直线上——曲线运动(如平抛运动) 2.特殊力:F大小恒定,方向与v始终垂直——匀速圆周运动 F=-kx——简谐振动 四、基本理论与应用 解题常用的理论主要有:力的合成与分解、牛顿运动定律、匀变速直线运动规律、平抛运动的规律、圆周运动的规律等.力与运动的关系研究的是宏观低速下物体的运动,如各种交通运输工具、天体的运行、带电物体在电磁场中的运动等都属于其研究范畴,是中学物理的重要内容,是高考的重点和热点,在高考试题中所占的比重非常大.选择题、填空题、计算题等各种类型的试题都有,且常与电场、磁场、动量守恒、功能部分等知识相结合.

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

高考物理超经典力学题集萃

高考物理经典力学计算题集萃 =10m/s沿x1.在光滑的水平面内,一质量m=1kg的质点以速度v 0 轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点 时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人

高考物理三类热点题型的总结

高考物理三类热点题型的总结 1.图象题。可以说人类学会如何表示信息是从图象开始起源的,从图画演变出文字,进而抽象出数学公式。看懂图表、动漫是从幼儿开始的,是生活的基本能力,当然随着学习知识的逐渐深入,又对同学们的读图能力提出了更高的要求。近几年高考图象题的数量逐年增加,图象表示物理问题比文字和公式具有更大的优越性,能形象地描述物理状态、过程和规律,能够把一个问题的多个相关因素同时展现出来,给我们分析问题提供直观、清晰的物理图景,既有助于我们对相关概念、规律的理解和记忆,又有助于我们正确地把握相关物理量之间的定性、定量关系。因此要习惯用图象表示问题,处理数据。物理图象不同于数学图象的是一般两坐标轴表示两个具有实际意义的物理量,首先要看清坐标轴,理解图象表示的是谁随谁的变化,理解正、负、斜率、面积、截距、交点的物理意义,其次把图形转化为实际的物理过程,进而理解图象的意义并解答问题。 2.实验探究题。从近几年高考对实验考查的结果来看,实验的得分率一直很低,但实际上高考物理实验题目的总体难度并不高,考察的实验也都是考纲中明确要求的基本实验,属于考生最不应该失分的题型之一。物理是以实验为基础的学科,首先要树立物理规律来源于实验、来源于生活的理念,实验是第一的,规律是第二的。 实验思想、技能和方法是高考实验考查的三大重点,电学考查仪表读数、实物图连接、电表选取、电路设计、方案的筛选、原理的迁移、数据的处理,可以很好地考查多项实验能力。而探究与实验相结合使二者都具

有了实际意义。每一个实验突出的探究环节不尽相同,关键是从实验原理出发,进行设计和变化。 3.新科技、新技术应用题。这类题多以当今社会热点和高新科技动态为背景,信息量一般较大、题干较长,一般是描述一种装置或某一理论的基本精神,再和中学物理知识连接。表面看来给人一种很复杂的感觉,但抽象出物理模型时就会有一种“现象大、问题小”的转折。要求学生在考场上对新情景新信息完成现场学习,将信息进行有效提炼、加工、建模,与原有知识衔接来解决问题。这类问题不仅对学生的创新能力是一个考查,而且对学生的心理素质也是一个考验。 二、注意构建属于自己的知识网络 对于复习到的每一个专题,应该首先思考这一专题研究解决了什么问题,与社会生活实际有哪些联系和应用,只有将抽象的物理知识与生活相联系时,对知识的理解才能深化、活化。 考生应该按自己的思维方式构建知识网络,找出知识间的关联,学会对知识重组、整合、归类、总结,掌握物理思维方法,将知识结构化,将书读薄。结构化的知识是形成能力的前提,只有经过自己的思维在大脑中重新排列的知识,理解才能深刻。一般来说,一个专题有一个核心的主体,其余的概念为这个主体做铺垫,要以点带面,即以主要知识带动基础知识。

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

高中物理选修3-5经典例题

物理选修3-5动量典型例题 【例1】质量为0.1kg 的小球,以10m /s 的速度水平撞击在竖直放置的厚钢板上,而后以7m /s 的速度被反向弹回,设撞击的时间为0.01s ,并取撞击前钢球速度的方向为正方向,则钢球受到的平均作用力为( ). A .30N B .-30N C .170N D .-170N 【例2】质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短离地的速率为2v ,在碰撞过程中,地面对钢球的冲量的方向和大小为( ). A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 【例3】质量为2m 的物体A ,以一定的速度沿光滑水平面运动,与一静止的物体B 碰撞后粘为一体继续运动,它们共同的速度为碰撞前A 的速度的2/3,则物体B 的质量为( ). A .m B .2m C .3m D . 2 3 m 【例4】一个不稳定的原子核,质量为M ,处于静止状态,当它以速度0v 释 放一个质量为m 的粒子后,则原子核剩余部分的速度为( ). A .0 m v M m - B . m v M - C .0m v M m -- D .0 m v M m - + 【例5】带有光滑圆弧轨道、质量为M 的滑车静止置于光滑水平面上,如图所示.一质量为m 的小球以速度v 0水平冲上滑车,当小球上滑再返回并脱离滑车时,有①小球一定水平向左做 平抛运动 ②小球可能水平向左做平抛运动 ③小球可能做自由落体运动 ④小球一定水平向右做平抛运动 以上说法正确的是( ) A.① B .②③ C.④ D.每种说法都不对 【例6】质量为m 的物体静止在足够大的水平面上,物体与桌面的动摩擦因数为μ,有一水平恒力作用于物体上,并使之加速前进,经1t 秒后去掉此恒力,求物体运动的总时间t . 【例7】将质量为0.10kg 的小球从离地面20m 高处竖直向上抛出,抛出时 的初速度为15m /s ,当小球落地时,求: (1)小球的动量; (2)小球从抛出至落地过程中的动量增量; (3)小球从抛出至落地过程中受到的重力的冲量. 【例8】气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 高的地方,气球下方悬根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这根绳长至少为多少米?(不计人的高度)

高考物理必考热点

2019届高考物理必考热点 物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学。小编准备了高考物理必考热点,希望你喜欢。 《质点的直线运动》 用速度图象解决两物体的追及问题或一个物体的两个运动过程。 题型:选择题。 《相互作用与牛顿定律》 用整体法与隔离法进行受力分析,受力平衡的情况是基本要求,较高要求则是结合牛顿定律、运动学公式分析一个物体的两个运动过程或两个物体的连接体问题。 题型:选择题、计算题。 《曲线运动、机械能、万有引力定律》 (1)对“功和能”的理解与简单应用。 题型:选择题、计算题。 (2)用万有引力定律、圆周运动公式对两个天体围绕中心天体运动的问题分析。 题型:选择题。 《电场、电路》 对常见电场中各点的电场强度、电势、电势能、电容的分析与计算。题型:选择题。 《磁场》

用磁场力与电场力、圆周运动的知识以及几何知识,分析和计算带电粒子在电场、磁场中的运动的问题。 题型:计算题。 《电磁感应、交流电》 (1)用楞次定律判断感应电流方向。 题型:选择题。 (2)有关变压器变压比、变流比、远距离输电的计算。 题型:选择题。 《必考内容实验题》: (1)刻度尺、游标卡尺、螺旋测微器、多用电表的读数。 题型:实验题。 (2)用伏安法测量电阻器、电流表、电压表的电阻。 (3)对照实验原理图连接实验电路。 (4)用计算法和图象法处理数据:用欧姆定律、串并联电路中的电流、电压关系等知识计算电阻,会描点,作出图象,求电动势、内阻。 题型:实验题。 《物理3-3》: (1)用分子动理论分析气体压强、温度,内能,热力学定律,固体、液体的性质。 题型:选择题、填空题。 (2)用气体定律分析和计算。 题型:计算题。

高考物理物理学史知识点经典测试题含答案(2)

高考物理物理学史知识点经典测试题含答案(2) 一、选择题 1.下列叙述正确的是() A.开普勒三定律都是在万有引力定律的基础上推导出来的 B.爱伊斯坦根据他对麦克斯韦理论的研究提出光速不变原理,这是狭义相对论的第二个基本假设 C.伽利略猜想自由落体的运动速度与下落时间成正比,并直接用实验进行了验证 D.红光由空气进入水中,波长变长,颜色不变 2.了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。以下符合史实的是( ) A.焦耳发现了电流的磁效应 B.法拉第发现了电磁感应现象,并总结出了电磁感应定律 C.惠更斯总结出了折射定律 D.英国物理学家托马斯杨利用双缝干涉实验首先发现了光的干涉现象 3.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步,关于科学家和他们的贡献,下列说法正确的是() A.古希腊学者亚里士多德认为物体下落的快慢由它们的重量决定,伽利略在他的《两种新科学的对话》中利用逻辑推断,使亚里士多德的理论陷入了困境 B.德国天文学家开普勒对他导师第谷观测的行星数据进行了多年研究,得出了万有引力定律 C.英国物理学家卡文迪许利用“卡文迪许扭秤”首先较准确的测定了静电力常量 D.牛顿首次提出“提出假说,数学推理实验验证,合理外推”的科学推理方法 4.科学发现或发明是社会进步的强大推动力,青年人应当崇尚科学在下列关于科学发现或发明的叙述中,存在错误的是 A.安培提出“分子电流假说”揭示了磁现象的电本质 B.库仑发明了“扭秤”,准确的测量出了带电物体间的静电力 C.奥斯特发现了电流的磁效应,揭示了电与磁的联系 D.法拉第经历了十年的探索,实现了“电生磁”的理想 5.关于物理学家做出的贡献,下列说法正确的是() A.奥斯特发现了电磁感应现象 B.韦伯发现了电流的磁效应,揭示了电现象和磁现象之间的联系 C.洛伦兹发现了磁场对电流的作用规律 D.安培观察到通电螺旋管和条形磁铁的磁场很相似,提出了分子电流假说 6.理想实验有时更能深刻地反映自然规律。伽利略设想了一个理想实验,其中有一个是经验事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来原来释放时的高度。 ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面。 ③如果没有摩擦,小球将上升到原来释放时的高度。 ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面作持续的匀速运动。

2020年高考物理一轮复习 热点题型归纳与变式演练 专题19 电场能的性质(含解析)

专题19 电场能的性质 【专题导航】 目录 热点题型一电势高低、电势能大小的判断 (1) 热点题型二电势差与电场强度的关系 (3) 在匀强电场中由公式U=Ed得出的“一式二结论” (4) U=Ed在非匀强电场中的应用 (7) 热点题型三电场线、等势线(面)及带电粒子的运动轨迹问题 (7) 带电粒子运动轨迹的分析 (8) 等势面的综合应用 (9) 热点题型四静电场的图象问题 (10) v-t图象 (11) φ-x图象 (12) E-x图象 (13) Ep-x图象 (14) 【题型演练】 (15) 【题型归纳】 热点题型一电势高低、电势能大小的判断 1.电势高低的判断

2.电势能大小的判断 3.电场中的功能关系 (1)若只有电场力做功,电势能与动能之和保持不变. (2)若只有电场力和重力做功,电势能、重力势能、动能之和保持不变. (3)除重力、弹簧弹力之外,其他各力对物体做的功等于物体机械能的变化. (4)所有外力对物体所做的功等于物体动能的变化. 【例1】(2019·广东韶关质检)如图所示,虚线表示某电场的等势面,实线表示一带电粒子仅在电场力作用下 运动的径迹.粒子在A 点的加速度为 a A 、动能为 E k A 、电势能为 E p A ;在B 点的加速度 为a B 、动能为 E k B 、 电势能为 E p B .则下列结论正确的是 ( ) A .a A >a B ,E k A >E k B B .a A E p B C .a A a B , E k A E k B ,选项C 正确,B 错误.

高中物理必修1知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

高考物理直线运动解题技巧及经典题型及练习题(含答案)

高考物理直线运动解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试直线运动 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

(完整word版)高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离 L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在 导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于 导轨所在平面的匀强磁场.金属导轨的一端接有电动势 E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒 与金属导轨垂直、且接触良好,导体棒与金属导轨接图14 触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取 10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力 15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω, 金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电 阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且 与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动 至AC的位置时,求(计算结果保留两位有效数字): 图15 (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率. 16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l, 导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上 方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直 平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向 里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框 恰好做匀速运动.重力加速度为g. (1)求cd边刚进入磁场时导线框的速度大小. (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克 服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导 线框克服安培力所做的功. 17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求: (1)交流发电机产生的 电动势最大值;

高考物理经典考题300道(10)

一、计算题(解答写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。本题包含55小题,每题?分,共?分) 1.如图所示,在光滑的水平面上,有两个质量都是M 的小车A 和B ,两车间用轻质弹簧相连,它们以共同的速度向右运动,另有一质量为 0M 的粘性物体,从高处自由下落,正好落 至A 车并与之粘合在一起,在此后的过程中,弹簧获得最大弹性势能为E ,试求A 、B 车开始匀速运动的初速度 0v 的大小. 解析:物体 0M 落到车A 上并与之共同前进,设其共同速度为1v , 在水平方向动量守恒,有 100)(v M M M v += 所以 0 01v M M M v += 物体0M 与A 、B 车共同压缩弹簧,最后以共同速度前进,设共同速度为2v ,根据动量守 恒有 200)2(2v M M Mv += 所以 0222v M M M v += 当弹簧被压缩至最大而获得弹性势能为E ,根据能量守恒定律有: ()()202102202121221 Mv v M M v M M E ++=++ 解得 ()()002 0022M M M M MM E v ++= . 2.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一个质量为m 的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的瞬时冲量I ,木块便沿小车向右滑行,在与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端.试求: (1)木块返回到小车左端时小车的动能. (2)弹簧获得的最大弹性势能. 解:(1)选小车和木块为研究对象.由于m 受到冲量I 之后系统水平方向不受外力作用,系统动量守恒.则v m M I )(+=

高考物理三类热点题型的总结

1.图象题。可以说人类学会如何表示信息是从图象开始起源的,从图画演变出文字,进而抽象出数学公式。看懂图表、动漫是从幼儿开始的,是生活的基本能力,当然随着学习知识的逐渐深入,又对同学们的读图能力提出了更高的要求。近几年高考图象题的数量逐年增加,图象表示物理问题比文字和公式具有更大的优越性,能形象地描述物理状态、过程和规律,能够把一个问题的多个相关因素同时展现出来,给我们分析问题提供直观、清晰的物理图景,既有助于我们对相关概念、规律的理解和记忆,又有助于我们正确地把握相关物理量之间的定性、定量关系。因此要习惯用图象表示问题,处理数据。物理图象不同于数学图象的是一般两坐标轴表示两个具有实际意义的物理量,首先要看清坐标轴,理解图象表示的是谁随谁的变化,理解正、负、斜率、面积、截距、交点的物理意义,其次把图形转化为实际的物理过程,进而理解图象的意义并解答问题。 2.实验探究题。从近几年高考对实验考查的结果来看,实验的得分率一直很低,但实际上高考物理实验题目的总体难度并不高,考察的实验也都是考纲中明确要求的基本实验,属于考生最不应该失分的题型之一。物理是以实验为基础的学科,首先要树立物理规律来源于实验、来源于生活的理念,实验是第一的,规律是第二的。 实验思想、技能和方法是高考实验考查的三大重点,电学考查仪表读数、实物图连接、电表选取、电路设计、方案的筛选、原理的迁移、数据的处理,可以很好地考查多项实验能力。而探究与实验相结合使二者都具有了实际意义。每一个实验突出的探究环节不尽相同,关键是从实验原理出发,进行设计和变化。 3.新科技、新技术应用题。这类题多以当今社会热点和高新科技动态为背景,信息量一般较大、题干较长,一般是描述一种装置或某一理论的基本精神,再和中学物理知识连接。表面看来给人一种很复杂的感觉,但抽象出物理模型时就会有一种“现象大、问题小”的转折。要求学生在考场上对新情景新信息完成现场学习,将信息进行有效提炼、加工、建模,与原有知识衔接来解决问题。这类问题不仅对学生的创新能力是一个考查,而且对学生的心理素质也是一个考验。 二、注意构建属于自己的知识网络 对于复习到的每一个专题,应该首先思考这一专题研究解决了什么问题,与社会生活实际有哪些联系和应用,只有将抽象的物理知识与生活相联系时,对知识的理解才能深化、活化。 考生应该按自己的思维方式构建知识网络,找出知识间的关联,学会对知识重组、整合、归类、总结,掌握物理思维方法,将知识结构化,将书读薄。结构化的知识是形成能力的前提,只有经过自己的思维在大脑中重新排列的知识,理解才能深刻。一般来说,一个专题有一个核心的主体,其余的概念为这个主体做铺垫,要以点带面,即以主要知识带动基础知识。 对知识回忆模糊的地方,要回归课本。课本是高考命题之源,是高考复习的根本,不同阶段看课本会有不同层次的收获。当然解题和掌握概念是相辅相成的,没有做过一定数量的习题往往对概念的理解缺乏正反实例,但绝不能把看书和解题的关系颠倒,概念是核心、是基础,概念不变,而题目万变,要立足于教材,夯实基础。

高中物理选修3-3大题知识点及经典例题

高中物理选修3-3大题知识点及经典例题 气体压强的产生与计算 1.产生的原因:由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强。 2.决定因素 (1)宏观上:决定于气体的温度和体积。 (2)微观上:决定于分子的平均动能和分子的密集程度。 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强。 (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强。 (3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等。液体内深h处的总压强p=p0+ρgh,p0为液面上方的压强。 4.加速运动系统中封闭气体压强的求法 选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解。 考向1 液体封闭气体压强的计算 若已知大气压强为p0,在图2-2中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强。 图2-2 [解析]在甲图中,以高为h的液柱为研究对象,由二力平衡知 p甲S=-ρghS+p0S 所以p甲=p0-ρgh 在图乙中,以B液面为研究对象,由平衡方程F上=F下有: p A S+ρghS=p0S p乙=p A=p0-ρgh 在图丙中,仍以B液面为研究对象,有 p A′+ρgh sin 60°=p B′=p0 所以p丙=p A′=p0- 3 2 ρgh 在图丁中,以液面A为研究对象,由二力平衡得p丁S=(p0+ρgh1)S 所以p丁=p0+ρgh1。 [答案]甲:p0-ρgh乙:p0-ρgh丙:p0- 3 2 ρgh1丁:p0+ρgh1 考向2 活塞封闭气体压强的求解 如图2-3中两个汽缸质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

高考物理(热点+题型全突破)专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题(含解析)

专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题一、近地卫星、赤道上物体及同步卫星的运行问题 1.近地卫星、同步卫星、赤道上的物体的比较 ω3=ω自= GM R+h3 a3=ω23(R+h) = GM R+h2 卫星的轨道半径r是指卫星绕天体做匀速圆周运动的半径,与天体半径R的关系为r=R+h(h为卫星距离天体表面的高度),当卫星贴近天体表面运动(h≈0)时,可认为两者相等。 【示例1】 (多选)如图,地球赤道上的山丘e、近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( ) A.v1>v2>v3B.v1<v3<v2 C.a1>a2>a3D.a1<a3<a2 【答案】BD 【解析】由题意可知:山丘与同步卫星角速度、周期相同,由v=ωr,a=ω2r可知v1<v3、a1<a3;对同

步卫星和近地资源卫星来说,满足v = GM r 、a =GM r 2,可知v 3<v 2、a 3<a 2。故选项B 、D 正确。 【示例2】(多选)同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( ) A.a 1a 2=r R B.a 1a 2=r 2 R 2 C.v 1v 2=r R D.v 1v 2= R r 【答案】: AD 【示例3】(2016·四川理综·3)国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2 D.a 1>a 2>a 3 【答案】 D 【解析】 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2 r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mm r 2=ma ,由题目中数据可以得出,r 1a 2>a 3,选项D 正确. 【示例4】.有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有( )

(完整word版)高考物理板块模型典型例题+与答案

1.(8分)如图19所示,长度L = 1.0 m的长木板A静止在水平地面上,A的质量m1 = 1.0 kg,A与水平地面之间的动摩擦因数μ1 = 0.04.在A 的右端有一个小物块B(可视为质点).现猛击A左侧,使A瞬间获得水平向右的速度υ0 = 2.0 m/s.B的质量m2 = 1.0 kg,A与B之间的动摩擦因数μ2 = 0.16.取重力加速度g = 10 m/s2. (1)求B在A上相对A滑行的最远距离; (2)若只改变物理量υ0、μ2中的一个,使B刚好从A上滑下.请求出改变后该物理量的数值(只要求出一个即可). 2、(8分)如图13所示,如图所示,水平地面上一个质量M=4.0kg、长度L=2.0m的木板,在F=8.0N的水平拉力作用下,以v0=2.0m/s的速度向右做匀速直线运动.某时刻将质量m=1.0kg的物块(物块可视为质点)轻放在木板最右端.(g=10m/s2) (1)若物块与木板间无摩擦,求物块离开木板所需的时间;(保留二位有效数字) (2)若物块与木板间有摩擦,且物块与木板间的动摩擦因数和木板与地面间的动摩擦因数相等,求将物块放在木板上后,经过多长时间木板停止运动. B A v0 L 图19

3.(2009春会考)(8分)如图15所示,光滑水平面上有一块木板,质量M = 1.0 kg,长度L = 1.0 m.在木板的最左端有一个小滑块(可视为 质点),质量m = 1.0 kg.小滑块与木板之间的动摩擦因数μ= 0.30.开始时它们都处于静止状态.某时刻起对小滑块施加一个F = 8.0 N水平向右的恒力,此后小滑块将相对木板滑动. (1)求小滑块离开木板时的速度; (2)假设只改变M、m、μ、F中一个物理量的大小,使得小滑块速度总是木板速度的2倍,请你通过计算确定改变后的那个物理量的数值(只要提出一种方案即可). 4.(2009夏)(8分)如图15所示,水平桌面到地面的高度h= 0.8 m. 质量m = 0.2 kg的小物块(可以看作质点)放在桌面A端. 现对小物块施加一个F=0.8 N的水平向右的恒力,小物块从静止开始运动. 当它经过桌面上的B点时撤去力F,一段时间后小物块从桌面上的C端飞出,最后落在水平地面上. 已知AB = BC = 0.5 m,小物块在A、B间运动时与桌面间的动摩擦因数μ1 = 0.2,在B、C间运动时与桌面间的动摩擦因数μ2 = 0.1. (1)求小物块落地点与桌面C端的水平距离; (2)某同学作出了如下判断:若仅改变AB段的长度而保持BC段的长度不变,或仅改变BC段的长度而保持AB段的长度不变,都可以使小物块落地点与桌面C端的水平距离变为原来的2倍. 请你通过计算说明这位同学的判断是否正确. m M F 图15 F h A B C 图15

高考物理经典压轴题集

1(20分) 如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度 03 2 v 向下运动,经历同样过程,最后木块C 图 12

相关主题
文本预览
相关文档 最新文档