当前位置:文档之家› 工程物探折射波勘探实验指导书zz

工程物探折射波勘探实验指导书zz

工程物探折射波勘探实验指导书zz
工程物探折射波勘探实验指导书zz

福州大学实验教学大纲编写参考格式

《工程物探》课程实验教学大纲

(非独立设课)

一、课程基本概况:

课程名称(中文):工程物探

(英文):Engineering Geophysics Exploitation

课程代码:00600054

课程类别: C:专业选修

学时学分:课程总学时 40 其中实验(上机)4学时 2.5学分

先修课程:大学信息技术基础、工程地质学基础、构造地质学。

二、课程简介

《工程物探》是勘查技术与工程专业的主干课程,是普通工程物探部分。主要包括地震勘探的理论基础、浅层地震折射波法、浅层地震反射波法、电阻率法等勘探基本理论和方法。使学生重点掌握地震反射波和折射波勘探资料的数据采集、室内资料处理和解释方法,掌握电阻率法和重、磁电法的基本概念,了解其它地球物理勘探的过程和处理、解释方法及提交最终成果的方法。

三、课程实验教学目的与基本要求

目的:

通过实验教学让学生进一步加强折射波法勘探理论的学习,强化学生运用各种勘测资料进行综合分析的能力,培养学生实际勘探的能力和计算机处理资料的技能。

基本要求:

1.设计折射波采集的相遇时距曲线观测系统。

2.选定测量区,采集地震资料。

3.编写实验报告。

四、实验方式与注意事项

实验方式:实验讲解、示范及学生自己动手实验

注意事项:

1.严格按仪器操作规程操作仪器、设备。

2.注意安全。

五、实验课程内容(项目)及学时分配

注:实验类型指:演示、验证、综合、设计;实验要求指:必修、选修。

六、考试(考核)方式和成绩评定办法

1、实验报告:本门课程对实验报告的要求(应包括对报告内容的要求)。

内容:

(1)掌握试验的基本原理和仪器设备的操作。

(2)能够布设合理的观测系统和观测参数。

(3)掌握现场资料采集方法。

(4)能够初步分析地震记录上直达波和折射波。

(5)绘制相遇法时距曲线观测系统图

附加:

(1) t0解释法的计算书

(2)采集的原始记录图

2、考核方式

实验部分给定成绩,占期末考试成绩的20%,以此考察学生的实验成效。

七、教材和主要参考资料

教科书:

1、陈仲候等编,《工程与环境物探教程》,地质出版社

2、黄真萍自编,《工程物探折射波法勘探实验指导书》, 2005,2009修订。

3、王秀明.唐炼等编著,《勘探地球物理方法和原理》,石油部重点教材,石油工业出版社。

执笔人:黄真萍

审核人:

编写时间:2009年11月25日

工程物探折射波法勘探实验指导书

黄真萍编著

福州大学环境与资源学院

目录

第一部分折射波法基本原理和方法 (1)

一、折射波法基本原理 (1)

二、折射波法观测系统 (2)

三、折射波分层解释的

t法 (2)

第二部分折射波法实验说明 (6)

一、资料采集仪器设备和参数 (6)

二、记录仪采集的主要参数指标 (7)

第三部分折射波法实验内容 (9)

一、现场仪器布置 (9)

二、实验仪器的调试-----地震数据采集软件说明 (9)

三、实验步骤 (11)

四、实验数据的整理和编写实验报告 (12)

第一部分 折射波法基本原理和方法

一、 折射波法基本原理

以水平界面的两层介质进行简要的说明,假设地下深度为h ,有一个水平的速度分界面R ,上、下两层的速度分别为V 1和V 2,且V 2>V 1。

如图1—1所示。从激发点O 至地面某一接收点D 的距离为X ,折射波旅行的路程为OK 、KE 、ED 之和,则它的旅行时t 为:

1

21V ED

V KE V OK t +

+=

(1—1) 为了简便起见,先作如下证明:从O ,D 两点分别作界面R 的垂线,则OA =DG =h ,再自A 、G 分别作OK ,ED 的垂线,几何上不难证明∠BAK =∠EGF =i ,因已知2

1

sin V V i =

,所以:

2

1

V V EG EF AK BK =

= (1—2) 即

2

1V AK

V BK = 和 21V EG V EF =

(1—3) 上式说明,波以速度V 1旅行BK (或EF )路程与以速度V 2旅行AK (或EC )路程所需的时间是相等的。将式(1—3)的关系和式(1—1)作等效置换,并经变换后可得:

1

221222122cos 2V V V V h V x

V i h V x t -+=+= (1—4) 这就是水平两层介质的折射波时距曲线方程。它表示时距曲线是一条直线,若令x =0,则可得时距曲线的截距时间t 0(时距曲线延长与t 轴相交处的时间值)

1

22122102cos 2V V V V h V i

h t -== (1—5)

式(1—5)表示出界面深度h 和截距时间t 0之间的关系,当已知V 1和V 2时,可以求出界面的深度h 。

图1-1 水平两层介质折射波时距曲线

二、折射波法观测系统

根据折射波场形成条件和特征,折射波观测系统必须避开盲区,且要把接收部分尽量放到待测地层折射波区范围。当水平层状介质满足折射条件的前提下,固定一个激发点,将排列沿测线由近及远进行时距观测,将得到由浅入深各层介质的地震波信息。在地震记录上可观察到各层介质折射波的动力学特点,从而判别层间干涉、波形置换特征。在时距曲线上将反映出各层介质折射波运动学的空间分布规律及介质的物理力学性质。为了消除表层不均匀及界面起伏的影响,往往采用相遇时距曲线观测系统。

相遇时距曲线观测系统如图2-2所示,同一观测地段分别在两端O

1 和O

2

点激发,

图2-2

此观测系统采集的地震记录,可得两支方向相反的时距相遇曲线S

1和S

2

。AE段折

射, O

1O

2

接收, EA段折射,O

1

O

2

接收。其优点可弥补单一时距曲线的不足,可以从不

同方向反映界面变化。

三、折射波分层解释的

t法

折射波0

t解释法是常用的地震折射波解释方法,它是针相遇时距曲线观测系统采集发展起来的解释方法。

t0法解释的主要原理与方法如下:

t0法又称为t0差数时距曲线法,是解释折射波相遇时距曲线最常用的方法之一。当折射界面的曲率半径比其埋深大得很多的情况下,t0法通常能取得很好的效果,且具有简便快速的优点。

如图1—3所示,设有折射波相遇的时距曲线S1和S2,两者的激发点分别是

O1和O2,

()T t t x +-=21θ (a) (b)

若在剖面上任意取一点D ,则在两条时距曲线中可以分别得到其对应的走时t1和t2,从图中可以得到:

ABD

O t t 11=

ECD

O t t 22= (1—6)

且在O1和O2点,时距曲线S1和S2的走时是相等的,称之为互换时,用T 表示,则有:

2

1CBO BC AB O t t t T ++= (1—7)

当界面的曲率半径远大于其埋深时,图中的△BDC 可以近似地看作为等腰三角形,若自D 点作BC 的垂直平分线DM (DM 即为该点的界面深度h ),于是有:

i V h t t CD BD cos 1== 和 222V tgi h t t BM BC ?== (1—8)

将公式(1—6)中的t1和t2相加, 并且减去(1—7)式,再将(1—8)式代

入后可以得到:

121cos 2V i h T t t ?=-+ (1—9)

式(1—9)便是任意点D 的t0值公式,由此可得D 点的折射界面法线深度h 为:

()i V T t t h cos 2121??-+= (1—10)

令T t t t -+=210和i V K cos 21?=则式(1—10)可以写为:

0t K h ?= (1—11)

因此只要从相遇时距曲线中分别求出各个观测点的t0值和K 值,就可以得出各个点

图1-3 t 0法折射界面示意图

的界面深度h 。从上述的公式可以看出,只要从时距曲线上读取t1,t2和互换时T ,就可以算出各个点的t0值,并可以在图上绘制相应的t0(x)曲线(1—3(b)中所示)。

关于K 值的求取:根据斯奈尔定律可将K 值表达式写成:

2

12211

2cos 2V V V V i V K -??=

?= (1—12)

由公式(1—12)可以看出,只要求得波速V1和V2则很容易得出K 值。其中V1通常可以根据表层的直达波速度来确定,因此关键就是V2值的求取,为此引出参数时距曲线方程:

令 (1—13)

对式(1—13)两边对x 求导,可得:

()()dx dt dx dt x d x d 2

1-=θ (1—14)

式中dx dt 1和dx dt 2

分别为上倾方向时距曲线S1和下倾方向时距曲线S2的斜率(即视速

度V*的倒数)。根据公式:

()1

2cos 2sin V i

h i x t ??+-?=

?上

和 ()11cos 2sin V i h i x t ??++??=下 因为是同样O1~O2内观测段,设上倾方向x 为正,下倾方向x 为负,则:

()1

2cos 2sin 1V i

h i x t O ??+-?=

? 和 ()11cos 2sin 2V i h i x t O ??-+?-

?=

它们分别对x 求导有如下形式:

()11sin V i dx dt ?-= 和 ()1

2sin V i dx dt ?+-

= (1—15)

将(1—15)代入(1—14)式中,经一些变换后可得:

()2

cos 2V dx x d ?θ?= (1—16)

于是可以求得波速V2为:

()x d dx

V θ??

?=cos 22 (1—17)

当折射界面倾角小于15o时,可以近似的写成

()x x

V θ???

≈22 (1—18)

因此只要根据(1—13)式在相遇时距曲线图上构置θ(x)曲线,并求取其斜率的倒

数()x x

θ??,则可以根据(1—13)式得出波速V2,进而代入(1—12)式中求得K 值。

知道了K 值和各个观测点的t0值后,可以根据(1—11)式计算出各个点的界面深度h 。然后,以各观测点为圆心,以其对应的h 为半径画弧,可以得出一系列的圆弧,作这些圆弧的包络线即为折射界面的位置。

或由()T t t x +-=21θ、

21

22

2102V

V V V t h -???=

()()

2arcsin arcsin 2121V V V V i -=

计算h 和i ,

再用公式

()i h

h cos 0=

计算得到真深度h0。

第二部分折射波法实验说明

一、资料采集仪器设备和参数

1.仪器设备

仪器设备主要包括:

振源、检波器、工程检测仪、触发开关、电源、大线等,具体布置见图2-1。SWS-1A型多功能检测仪就是陆地进行折射波勘察的主要仪器设备之一,见图2-2。

图2-1 仪器设备布置

折射波法振源类型:炸药(或雷管),重锤和垫板。

检波器:竖向检波器,其自振频率约为38HZ,所测地震波主频率的20%-25%。一般折射波法的自振频率较高。

触发开关:分为外触发和内触发两种。折射波勘察使用外触发,用安置在震源附近触发传感器或检波器进行触发。

图2-3 SWS多功能检测仪

电源:可用12伏的直流电或12伏60安时的蓄电池。

工程检测仪:不同型号的检测仪其功能不尽相同,但目前来看新型的检测仪都具有如下的基本性能和功能:

性能好坏主要取决于A/D变换器和储存器。A/D 转换器性能要求是转换速率快,分辨率高(数字化输出的位数高)和可靠性高。存储器的主要要求是存储速度快、存储容量大。体积小和耗能小。

功能主要实现:(1)多通道;(2)A/D转换;(3)记录和显示;(4)信号分析功能(软件系统);(5)打印和数据输出系统。

二、记录仪采集的主要参数指标

1.检波道数(N):12道、24道或48 道或更多,主要由有效波传播范围和仪器通道数决定(采集软件参数设置时要小于等于通道数。)。

2.采样间隔(⊿t):由采样定理确定。

3.采样总数(n):由有效波的传播时间和采样间隔决定。

4.采样长度:(N-1)*⊿t

5.数字输出位数: 8bit、16bit或32bit。

6.总存储容量 :道头字+n*N*数字输出位数/8

第三部分折射波法实验内容

一、现场仪器布置

1. 振源和一组检波器布置在一条直线上(纵测线),排列相对较长;

2.采用相遇法观测系统接收;

3.检波器用大线与仪器相接,检波器个数与通道数和大线类型有关,如SZ-24-10。

4.振源激振时通过触发开关控制检测仪开始记录。

二、实验仪器的调试-----地震数据采集软件说明

仪器打开后,进入DOS系统,键入SWS ,进入多功能检测仪采集系统主界面,在系统主界面下,通过[→][ ←]移动光标,选择“地震数据采集”回车,即进入“地震数据采集”界面(见下图)。

地震数据采集

采集文件名:d:\zs\a001.dat

文件名序号步进+1/-1

记录道数24

每道采样数1024

采集时间间隔0.500ms

道步进距(+/-) 5.00m

偏移距(+/-)10.00m

采集滤波off

采集击发、叠加、存盘 0

显示当前记录…

当前记录存盘…

存盘记录回放…

操作方法:

●采集文件名输入

光标在此项按[enter]键,光标停留在第一个字母,输入驱动器、路径和文件名,用[→][←]键移动光标,更改、插入或重新键入文件名,写好后按[enter]键。

●文件名序号步进

该条供用户在记录文件名采用自动登记方式时,确认记录文件名中的数字部分,选用+1是连续自动递增,选用-1是连续自动递减。文件名采用连序自动有利于后处理自动化。

●记录道数

该条供用户确定使用的仪器道数:SWS-1A型仪器的使用道数是可以改变的,一般有12道、24道等选择档,连续按[enter]键则可实现道选设置。

●每道采样数

该条供用户输入折射波采集时的采样点数。本仪器的采样点数最少为512样点,依次为:1024、2048、4096、8192样点,但必须选择2n个。

●采集时间间隔

该条供用户输入地震采集时的采样间隔,即样点率SWS-1A型仪器的采样间隔是与采集的道数有关的参数,最小采样间隔为0.030ms/1道,最大间隔为8ms/24道。中间有:

0.050、0.100、0.200、0.250、0.500、1.00、2.00、4.00、8.00ms,共11个档供用户选择。

●道步进距

该条供用户输入折射波采集时的道间距离,按[enter]键,输入道间距参数,折射波道间距参数一般为5m或10m,按[enter]键.

●偏移距

该条供用户输入地震采集时的偏移距离。偏移距离的定义为炮点(激发点)至第一道检波器的距离,炮点(激发点)在第一道检波器上,偏移距离为0m,“+/-”号的规定是炮点(激发点)在排列的小道号端以外,偏移距离为“+”,炮点(激发点)在排列内,或大道号端以外,偏移距离为“-”号。

●采集滤波

该条供用户采集地震记录时是否采用滤波设计。SWS-1A型仪器的滤波器档设计为全通(off)、低通(LP=20Hz)、高通1(HP1=70Hz)、高通2(HP2=150Hz)等四个档。

●采集击发、叠加、存盘

该条供用户进行现场采集击发、叠加、存盘。

●显示当前记录

该条供用户显示所采集的地震记录。

●当前记录存盘

存盘时具有文件名保护措施,当用户确认可以覆盖时,键入“Y”,按[enter]键,存储完成;当用户需要保留该文件时,键入“N”,按[enter]键,重新键入文件名存储。该设计可以确保野外存盘操作的安全性。

●存盘记录回放

进入该功能后,将欲回放的地震记录文件名,按照存储路径。文件名及扩展名的格式键入,回放记录显示在屏幕上。该设计可以方便野外进行地震记录的对比。对及时发现异常帮助工作都是有益的。

三、实验步骤

1.利用实测场地或邻区现有地质资料建立初始模型,估算折射波勘察场地的直达波和折射波在地面接收时激发点到接收点的距离和出现初至的时间范围,以及估算折射波盲区。

2.利用上述估算的结果并结合现有的一些勘测资料(如邻区进行了折射波勘测,也可参考。),设计折射波观测系统类型、观测参数及直达波和折射波接收范围内检波器的布置数量。(以相遇时距观测系统为例。参数包括:偏移距X1、道数N、道间距△X,)3.在勘察场地进行折射波测试。

(1)布置地震测线。测量确定测线起点和终点位置,布设测线标志,确定激发点和接收点标志。(最好在各激发点打木桩,在木桩上写上测线号、激发点号,并且和观测系统图对应起来;如果是炸药震源,在激发位置首先钻好炮孔,炮孔深度按设计要求。)(2)按测线起点方向,将检测仪器放在适当的位置,并寻找激发点和相应的接收点。在激发点选择合适的震源类型,并在激发点附近布置触发的传感器或检波器,将其与仪器连接,用于仪器记录时触发;在接收点排列方向上布置大线和检波器,并将大线与仪器连接;仪器系统通电后启动采集软件,按观测系统布设的参数设置各采集参数。

(3)检查激发、接收和仪器是否正常,还要注意周边是否有人为震动源,各部分正常,且无强烈的震动源后,提醒周边人员注意,保持相对静止,如果是炸药震源让他们尽快撤离危险地带或采取防护措施。保证安全无误后,仪器操作员发出指令震源激振,仪器接收地震记录。并检查地震记录的质量。接收记录满足要求,可以保存;如不正常,

及时查明原因,重新采集。

四、实验数据整理和编写实验报告

1.实验数据整理步骤

(1)从仪器中把采集的地震记录数据导出,存入具有相关处理软件的微型处理机,显示、选择质量好的可用于解释的资料,并打印。

(2)在地震记录上解释直达波和折射波,人工读或利用地震波显示软件拾取直达波和折射波的距离和初至时间。

(3)绘制相遇法时距曲线观测系统图。

(4)利用t0解释法获得地质剖面图。

2.编写实验报告

包括内容:

(1)试验的基本原理和仪器设备情况。

(2)观测系统设计。

(3)现场资料采集情况描述。(主要是实际采集的观测参数和采集记录的数量及质量。)

(4)地震记录上直达波和折射波的分析。

(5)绘制相遇法时距曲线观测系统和t0解释法的地质剖面图。

附加:

(3) t0解释法的计算书

(4)采集的原始记录图

高密度电阻率法实验报告

工程物探实验报告 实验一:高密度电阻率法勘探 班级: _________________________ 姓名: _________________________ 学号: _________________________ 贵州理工学院资源与环境工程学院 2016年11月

1实验目的 了解电阻率法(高密度电阻率法)的方法原理、野外工作布置及装置形式;掌握高密度 电阻率法数据的采集、处理和解释,熟练操作高密度电阻率法软件。 2高密度电阻率法原理 高密度电阻率法属于直流电阻率法的范畴,它是在常规电法勘探基础上发展起来的一 种勘探方法,仍然是以岩土体的电性差异为基础,研究在施加电场的作用下,地下传导电 流的变化分布规律。相对于传统电法而言,高密度电阻率法其特点是信息量大。利用程控 电极转换器,由微机控制选择供电电极和测量电极,实现了高效率的数据采集,可以快速 采集到大量原始数 据。具有观测精度高、数据采集量大、地质信息丰富、生产效率高等特 点。一次布极可以完成 纵、横向二维勘探过程,既能反映地下某一深度沿水平方向岩土体 的电性变化,同时又能提供 地层岩性沿纵向的电性变化情况,具备电剖面法和电测深法两 种方法的综合探测能力。 该观测系统包括数据的采集和资料处理两部分,现场测量时,只需将全部电极设置在 一定间隔的 测点上,测点密度远较常规电阻率法大,一般从 1m~10m 。然后用多芯电缆将 其连接到程控式多路电 极转换开关上,电极转换开关是一种由单片机控制的电极自动换接 装置,它可以根据需要自动进行电 极装置形式、极距及测点的转换。测量信号 由电极转换 开关送入微机工程电测仪, 并将测量结果依次存入随 机存储器。将数据回放 送 入微机,便可按给定程序 对数据进行处理。高密度电 阻率法现场工作时是在 预先选定的测线和测点 上,同时布置几十乃至上 百个电极,然后用多芯电缆 将它们连 接到特制的电极转换装置,电极转换装置将这些电极组合成指定的电极装置和 电极距,进而用自动电测仪,快速完成多种电极装置和多电极距在观测剖面的多个测点上 的电阻率法观测。再配上相应的数据处理、成图和解释软件,便可及时完成给定的地质勘 | 説据处返邮分 説孫輕野汨分

工程力学实验指导书(建环)

工程力学实验指导书(建环、给排水、包装工程) 2016年 9月

目录 实验一金属材料的拉伸实验 (2) 实验二金属材料的压缩实验 (5) 实验三弯曲正应力电测实验 (8)

实验一金属材料的拉伸实验 一、实验目的和要求 1、 观察低碳钢和铸铁在拉伸过程中的力与变形的关系。 2、测定低碳钢拉伸时的屈服极限s σ;强度极限b σ,伸长率δ和截面收缩率φ 3、测定铸铁的强度极限b σ。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。 5、了解CMT 微机控制电子万能实验机的构造原理和使用方法。 二、实验装置和原理 实验仪器设备: CMT 微机控制电子万能实验机、游标卡尺、拉伸试件。 试件制备: 实验采用的圆截面短比例试件按国家标准(GB/T 228-2002)制成,如图1-1所示。这样可以避免因试件尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。图中:d 0为试件直径,L 0为试件的标距,并且短比例试件要求L 0=5d 0。 图1-1 实验原理: 试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。 试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如图1—2,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。 低碳钢试件的拉伸曲线(图1—2a)分为四个阶段―弹性、屈服、强化、颈缩四个阶段。 铸铁试件的拉伸曲线(图1—2b)比较简单,既没有明显的直线段,也没有屈服阶段,变形很小时试件就突然断裂,断口与横截面重合,断口形貌粗糙。抗拉强度σb 较低,无明显塑性变形。与电子万能实验机联机的微型电子计算机自动给出低碳钢试件的屈服载荷Fs 。、最大载荷Fb 和铸铁试件的最大载荷Fb 。

动力系统测试实验指导书

微小型飞行器动力系统综合测试实验 航空科学与工程学院航空创新实践基地 一、实验目的 1.掌握微小型飞行器动力系统拉力、扭矩、功率、耗油率、电流和转速等参数的测量方法,掌握螺旋桨拉力、扭矩和需用功率等参数随转速的变化关系; 2.掌握内燃机输出功率和耗油率等参数随螺旋桨参数及转速的变化关系,掌握电动机电流等参数随螺旋桨参数及转速的变化关系; 3.熟悉螺旋桨关键参数对螺旋桨性能的影响,熟悉发动机和螺旋桨的匹配关系; 4.了解微型涡轮喷气发动机推力等参数的测试。 5.制定动力系统综合测试试验大纲。 二、实验内容 1.测试同一螺旋桨的拉力、扭矩、需用功率随转速的变化趋势。 2.测试内燃发动机和螺旋桨的匹配特性。 3.测试电动机电流、功率随螺旋桨参数和转速的变化趋势。 注:2、3项试验选做一项。 三、实验仪器、设备 1.微小型飞行器动力系统综合测试平台 2.待测发动机、螺旋桨,燃油,及相关辅助设备 3.电动机测试仪(或电压表、电流表) 微小型飞行器动力系统综合测试平台如下图所示: 该测试系统主要由①台架主体、②油门伺服系统、③测试系统、④显示系统几部分组成。台架主体用以安装待测动力系统,采用摇床式结构。油门伺服系统用以精确控制发动机油门,由步进电机、控制器、驱动器组成。测试系统能自动采集数据、自动处理数据、自动生成试验报告,可以进行转速、推力(拉力)、扭矩、耗油率等参数的测量。显示系统由各传感器对应的二次仪表及伺服系统控制器组成,可以直观地读数,同时可以供计算机进行数据采集和处理。

微小型飞行器动力系统综合测试平台 四、实验原理 将发动机稳固安装在摇床式发动机试车台上,使用力学、光学、电学等传感器对动力系统的拉力、扭矩、转速、耗油率、电流等参数进行测量,并通过计算机进行数据采集和处理。 五、实验步骤 1.选择合适的转接件,将待测发动机稳固地安装在试车台上。 2.将待测螺旋桨稳固地安装在待测发动机上。 3.连接好拉力传感器、扭矩传感器、转速传感器、耗油率传感器(可选)、伺服舵机(可选)的连线,如果进行电动机的测试还需要连接好专用测试仪或电压表和电流表。 4.连接好测试总线与计算机之间的接头。 5.插好各传感器数据采集二次仪表的插头并通电,将各仪表的数据清零。 6.启动测试软件,并进行有关参数的设置。 7.人员撤离螺旋桨旋转平面,启动发动机,确保发动机能在高低速情况下均能稳定工作。 8.开始数据采集,将发动机的转速从低速逐渐调至高速。反复测量三遍。 9.更换新的螺旋桨,并仔细检查螺旋桨和发动机是否连接可靠,重复第8

《控制系统CAD》实验指导书

《控制系统CAD及仿真》实验指导书 自动化学院 自动化系

实验一SIMULINK 基础与应用 一、 实验目的 1、熟悉并掌握Simulink 系统的界面、菜单、工具栏按钮的操作方法; 2、掌握查找Simulink 系统功能模块的分类及其用途,熟悉Simulink 系统功能模块的操作方法; 3、掌握Simulink 常用模块的内部参数设置与修改的操作方法; 4、掌握建立子系统和封装子系统的方法。 二、 实验内容: 1. 单位负反馈系统的开环传递函数为: 1000 ()(0.11)(0.0011) G s s s s = ++ 应用Simulink 仿真系统的阶跃响应曲线。 2.PID 控制器在工程应用中的数学模型为: 1 ()(1)()d p i d T s U s K E s T s T s N =+ + 其中采用了一阶环节来近似纯微分动作,为保证有良好的微分近似效果,一般选10N ≥。试建立PID 控制器的Simulink 模型并建立子系统。 三、 预习要求: 利用所学知识,编写实验程序,并写在预习报告上。

实验二 控制系统分析 一、 实验目的 1、掌握如何使用Matlab 进行系统的时域分析 2、掌握如何使用Matlab 进行系统的频域分析 3、掌握如何使用Matlab 进行系统的根轨迹分析 4、掌握如何使用Matlab 进行系统的稳定性分析 5、掌握如何使用Matlab 进行系统的能观测性、能控性分析 二、 实验内容: 1、时域分析 (1)根据下面传递函数模型:绘制其单位阶跃响应曲线并在图上读标注出峰值,求出系统 的性能指标。 8 106) 65(5)(2 32+++++=s s s s s s G (2)已知两个线性定常连续系统的传递函数分别为1G (s)和2G (s),绘制它们的单位脉冲响 应曲线。 4 5104 2)(2 321+++++=s s s s s s G , 27223)(22+++=s s s s G (3)已知线性定常系统的状态空间模型和初始条件,绘制其零输入响应曲线。 ?? ??????????--=????? ???? ???212107814.07814.05572.0x x x x []?? ????=214493 .69691.1x x y ??? ???=01)0(x 2、频域分析 设线性定常连续系统的传递函数分别为1G (s)、2G (s)和3G (s),将它们的Bode 图绘制在一张图中。 151)(1+= s s G ,4 53.0)(22++=s s s G ,16.0)(3 +=s s G 3、根轨迹分析 根据下面负反馈系统的开环传递函数,绘制系统根轨迹,并分析系统稳定 的K 值范围。 ) 2)(1()()(++= s s s K s H s G

工程力学实验指导书.

第一章绪论 §1.1 工程力学实验的内容 实验是进行科学研究的重要方法,科学史上许多重大发明是依靠科学实验而得到的,许多新理论的建立也要靠实验来验证。例如材料力学中应力应变的线性关系就是虎克于1668年到1678年间作了一系列的弹簧实验之后建立起来的。不仅如此,实验对材料力学有着更重要的一面。因为材料力学的理论是建立在将真实材料理想化,实际构件典型化,公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。在解决工程设计的强度,刚度等问题时,首先要知道材料的力学性能和表达力学性能的材料常数。这些常数只有靠材料试验测试才能得到。有时实际工程中构件的几何形状和载荷都十分复杂,构件中的应力单纯靠计算难以得到正确的数据,这种情况下必须借助于实验应力分析的手段才能解决。因此,材料力学实验是学习材料力学课程不可缺少的重要环节。材料力学实验包括以下三个方面的内容: 1.测定材料的力学性能材料的力学性能是指在力或能的作用下,材料在变形、强 度等方面表现出的一些特性,如弹性极限、屈服极限(屈服强度)、强度极限、弹性模量、疲劳极限、冲击韧性等。这些强度指标或参数都是构件强度、刚度和稳定性计算的依据,而它们一般要通过实验来测定。此外,材料的力学性能测定又是检验材质、评定材料热处理工艺、焊接工艺的重要手段。随着材料科学的发展,各种新型合金材料、合成材料不断涌现,力学性能的测定,是研究每一中新型材料的重要任务。 2.验证理论公式的正确性材料力学的一些理论是以某些假设为基础的,例如杆件 的弯曲理论就以平面假设为基础。用实验验证这些理论的正确性和适用范围,有助于加深对理论的认识和理解。至于新建立的理论和公式,用实验来验证更是必不可少的。实验是验证、修正和发展理论的必要手段。 3.实验应力分析某些情况下,例如因构件几何形状不规则,受力复杂或精确的边 界条件难以确定等,应力分析计算难于获得准确结果。这时,用诸如电测、光弹性等实验应力分析方法直接测定构件的应力,便成为有效的方法。对经过较大简化后得出的理论计算或数值计算,其结果的可靠性更有赖于实验应力分析的验证。§1.2 材料力学试验的标准、方法和要求 材料的强度指标如屈服极限、强度极限、持久极限等,虽是材料的固有属性,但往往与试样的形状、尺寸、表面加工精度、加载速度、周围环境(温度、介质)等有关。为使实验结果能相互比较,国家标准对试样的取材、形状、尺寸、加工精度、试验手段和方法以及数据处理都作了统一规定。

运筹学与系统工程上机实验指导书_实验五

运筹学和系统工程上机实验指导书 机电学院工业工程专业 2013-2014(1)学期 上机实验五:使用Lingo 求解动态规划和排队论问题 一、 实验目的 在熟练编写和运行Lingo 程序的基础上,使用Lingo 进行求解动态规划和排队论等深层次优化问题的练习。 二、 实验要求 1、根据本指导书学习Lingo 对典型动态规划问题进行建模和求解。 2、根据本指导书学习排队论相关函数的具体使用方法,对典型的随机服务系统问题进行建模和求解。 3、独立完成相关使用题目的分析、建模和使用Lingo 软件的求解过程。 三、 相关知识 1、动态规划问题模型及典型使用 动态规划(Dynamic Programming )是将一个大型、复杂的问题转换为若干阶段的子问题,从而将动态的多阶段问题简化为静态的单阶段决策问题,一般需要采用递归算法进行求解。动态规划问题的一般模型为: {}1111()max(min)(,)(),1,,2,1 ()0 k k k k k k k n n f S V S u f S k n n f S ++++=+=-= 动态规划的典型使用包括:最短路径问题、动态生产计划问题、资源配置问题、背包问题、旅行商问题、随机性采购问题、设备更新问题等。按照决策变量取值的不同,也可以分为连接型动态规划和离散型动态规划问题。无论是连续问题还是离散问题,动态规划解决问题的前提条件是:可将问题划分为k 个阶段(k=1,2,…,n ),并能构建多阶段模型(最优指标函数Vk,n ,状态Sk 、决策uk 、状态转移方程Tk )。 2、随机服务系统相关Lingo 函数 随机服务系统由输入过程(反映顾客总体的特征)、排队规则(反映队伍特征)及服务机构(反映服务台的特征)所组成,对随机服务系统的描述如图1所示,可用符号M/M/1表示泊松输入、负指数服务、一个服务台组成的随机服务系统。

PLC控制系统实验指导书(三菱)(精)

电气与可编程控制器实验指导书 实验课是整个教学过程的—个重要环节.实验是培养学生独立工作能力,使用所学理解决实际问题、巩固基本理论并获得实践技能的重要手段。 一 LC控制系统实验的目的和任务实验目的 1.进行实验基本技能的训练。 2.巩固、加深并扩大所学的基本理论知识,培养解决实际问题的能。 3.培养实事求是、严肃认真,细致踏实的科学作风和良好的实验习惯。为将来从事生产和科学实验打下必要的基础。 4.直观察常用电器的结构。了解其规格和用途,学会正确选择电器的方法。 5.掌握继电器、接触器控制线路的基本环节。 6.初步掌握可编程序控制器的使用方法及程序编制与调试方法。 应以严肃认真的精神,实事求是的态度。踏实细致的作风对待实验课,并在实验课中注意培养自己的独立工作能力和创新精神 二实验方法 做一个实验大致可分为三个阶段,即实验前的准备;进行实验;实验后的数据处理、分及写出实验报告。 1.实验前的准备 实验前应认真阅读实验指导书。明确实验目的、要求、内容、步骤,并复习有关理论知识,在实验前要能记住有关线路和实验步骤。 进入实验室后,不要急于联接线路,应先检查实验所用的电器、仪表、设备是否良好,了解各种电器的结构、工作原理、型号规格,熟悉仪器设备的技术性能和使用

方法,并合理选用仪表及其量程。发现实验设备有故障时,应立即请指导教师检查处理,以保证实验顺利进行。 2. 联接实验电路 接线前合理安排电器、仪表的位置,通常以便于操作和观测读数为原则。各电器相互间距离应适当,以联线整齐美观并便于检查为准。主令控制电器应安装在便于操作的位置。联接导线的截面积应按回路电流大小合理选用,其长度要适当。每个联接点联接线不得多余两根。电器接点上垫片为“瓦片式”时,联接导线只需要去掉绝缘层,导体部分直接插入即可,当垫片为圆形时,导体部分需要顺时针方向打圆圈,然后将螺钉拧紧,下允许有松脱或接触不良的情况,以免通电后产生火花或断路现象。联接导线裸露部分不宜过长。以免相邻两相间造成短路,产生不必要的故障。 联接电路完成后,应全面检查,认为无误后,请指导老师检查后,方可通电实验。 在接线中,要掌握一般的控制规律,例如先串联后并联;先主电路后控制电路;先控制接点,后保护接点,最后接控制线圈等。 3.观察与记录 观察实验中各种现象或记录实验数据是整个实验过程中最主要的步骤,必须认真对待。 进行特性实验时,应注意仪表极性及量程。检测数据时,在特性曲线弯曲部分应多选几个点,而在线性部分时则可少取几个点。 进行控制电路实验时。应有目的地操作主令电器,观察电器的动作情况。进一理解电路工作原理。若出现不正常现象时,应立即断开电源,检查分析,排除故障后继续实验。 注意:运用万用表检查线路故障时,一般在断电情况下,采用电阻档检测故障点;在通电情况下,检测故障点时,应用电压档测量(注意电压性质和量程;此外,还要注意

物探报告模版

物探报告模版 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

龙水南路云锦路、茶陵路瞿溪路 工程物探成果报告 2015年7月 龙水南路云锦路、茶陵路瞿溪路 工程物探成果报告 项目负责: 报告编写: 报告审核: 报告提交日期:2015年7月 一、工程概况 项目名称:龙水南路云锦路、茶陵路瞿溪路移动非开挖工程 探测目的:龙水南路云锦路、茶陵路瞿溪路管线情况 探测范围:施工单位指定探测范围 提交日期:2015年7月 二、方法技术及仪器 1、根据探测目的,采用电磁法原理,通过对地下发射频率为33KHz、8KHz的交变电磁场,地下金属管线因感应而产生二次场,并在管线内形成感应电流,通过跟踪测量金属管线内电流变化,就能确定地下金属管线的平面位置,对二次场场强进行数据处理与分析,得到地下管线的埋置深度;非金属管线采用地质雷达探测方法进行探测。

在工作区内采用盲探方法,通过扫描发现管线线索,然后进行追踪,确定管线的平面位置,根据发现管线的平面位置,通过二次场场强分析确定管线的埋置深度,最后在数字化地形图上标明管线的位置和埋深。 2、使用美国Ditch Witch 950R数字式精密地下管线探测仪。 三、探测成果 经过现场实地探测,管线分布如下: 龙水南路南侧电力排管一根 龙水南路北侧电信排管一根 龙水南路南侧燃气管一根 龙水南路南北两侧各有上水排管一根 龙水南路北侧信息顶管一道 四、说明 1、根据《城市地下管线探测技术规程》(CJJ61-94),各个管线的水平位置限差±(5+)cm,埋深限差为±(5+)cm,其中h为地下管线的中心埋深(cm):使用时要考虑管线探测误差。 2、地下管线有可能是上下两根重叠或左右两根距离很近,探测时只能探明一根;个别的特殊管线有可能仪器不能识别,因此在施工时应特别小心。

非常经典的工程力学实验指导书+题.

《工程力学》实验指导书 主编:2011年11月

目录 实验一拉伸和压缩实验 (3) 实验二梁弯曲正应力实验 (8) 实验三金属材料扭转实验 (12)

实验一 拉伸和压缩实验 拉伸实验 一、实验目的 1.观察与分析低碳钢、灰铸铁在拉伸过程中的力学现象并绘制拉伸图。 2.测定低碳钢的σs 、σb 、δ、ψ 和灰铸铁的σb 。 3.比较低碳钢与灰铸铁的机械性能。 二、实验内容 1.低碳钢拉伸实验 材料的机械性能指标σs 、σb 、δ 和ψ 由常温、静载下的轴向拉伸破坏试验测定。整个试验过程中,力与变形的关系可由拉伸图表示,被测材料试件的拉伸图由试验机自动记录显示。低碳钢的拉伸图比较典型,可分为四个阶段 : 直线阶段OA ——此阶段拉力与变形成正比,所以也称为线弹性变形阶段,A 点对应的载荷为比例极限载荷Fp ; 屈服阶段BC ——曲线常呈锯齿形,此阶段拉力的变化不大,但变形迅速增加,此段内曲线上的最高点称为上屈服点B ,,最低点称为下屈服点B ,因下屈服点B 比较稳定,工程上一般以B 点对应的力值作为屈服载荷Fs ; 强化阶段CD ——此阶段拉力增加变形也继续增加,但它们不再是线性关系,其最高点D 对应的力值为最大载荷Fb ; 颈缩阶段DE ——过了D 点,试件开始出现局部收缩(颈缩),直至试件被拉断。 图1-1为低碳钢拉伸图。 图1-1 图1-2 F

2.灰铸铁拉伸实验 对于灰铸铁,由于拉伸时的塑性变形极小,在变形很小时就达到最大载荷而突然断裂,没有明显的屈服和颈缩现象,其强度极限即为试件断裂时的名义应力。图1-2为铸铁拉伸图。 三、实验仪器、设备 1.600KN 微机屏显式液压万能试验机; 2.游标卡尺。 四、实验原理 1.根据低碳钢拉伸载荷F s 、F b 计算屈服极限σs 和强度极限σb 。 2.根据测得的灰铸铁拉伸最大载荷F b 计算强度极限σb 。 3.根据拉断前后的试件标距长度和横截面面积,计算低碳钢的延伸率δ和截面收缩率ψ。 %100001?-= L L L δ %1000 1 0?-=A A A ψ 五、实验步骤 (一)实验准备 1.打开计算机,双击计算机桌面上的TestExpert 图标,试验软件启动。 2.打开控制系统电源,系统进行自检后自动进入PC-CONTROL 状态。 3.软件联机并启动控制系统: (1)点击“联机”按钮.出现联机窗口,当此窗口消失证明联机成功。 (2)按下启动按钮,控制系统“ON ”灯亮后,软件操作按钮有效。 4.测量并记录试件的尺寸:在刻线长度内的两端和中部测量三个截面的直径d 0,取直径最小者为计算直径,并量取标距长度L 0。 5.调节横梁位置并安装试样。 (二)进行实验 1.设置试验条件。 2.开始试验: (1)按下“试验”按钮,试验机开始按试验程序对试件进行拉伸。仔细观 A F s s =σ0 A F b b =σ4 2 00d A ?= π

福建工程学院《实验指导书(数据库系统原理及应用)》

数据库系统原理 实验指导书 (本科)

目录 实验一数据定义语言 (1) 实验二SQL Sever中的单表查询 (3) 实验三SQL Serve中的连接查询 (4) 实验四SQL Serve的数据更新、视图 (5) 实验五数据控制(完整性与安全性) (7) 实验六语法元素与流程控制 (9) 实验七存储过程与用户自定义函数 (11) 实验八触发器 (12)

实验一数据定义语言 一、实验目的 1.熟悉SQL Server2000/2005查询分析器。 2.掌握SQL语言的DDL语言,在SQL Server2000/2005环境下采用Transact-SQL实现表 的定义、删除与修改,掌握索引的建立与删除方法。 3.掌握SQL Server2000/2005实现完整性的六种约束。 二、实验内容 1.启动SQL Server2000/2005查询分析器,并连接服务器。 2.创建数据库: (请先在D盘下创建DB文件夹) 1)在SQL Server2000中建立一个StuDB数据库: 有一个数据文件:逻辑名为StuData,文件名为“d:\db\S tuDat.mdf”,文件初始大小为5MB,文件的最大大小不受限制,文件的增长率为2MB; 有一个日志文件,逻辑名为StuLog,文件名为“d:\db\StuLog.ldf”,文件初始大小为5MB,文件的最大大小为10MB,文件的增长率为10% 2)刷新管理器查看是否创建成功,右击StuDB查看它的属性。 3.设置StuDB为当前数据库。 4.在StuDB数据库中作如下操作: 设有如下关系表S:S(CLASS,SNO, NAME, SEX, AGE), 其中:CLASS为班号,char(5) ;SNO为座号,char(2);NAME为姓名,char(10),设姓名的取值唯一;SEX为性别,char(2) ;AGE为年龄,int,表中主码为班号+座号。 写出实现下列功能的SQL语句。 (1)创建表S; (2)刷新管理器查看表是否创建成功; (3)右击表S插入3个记录:95031班25号李明,男性,21岁; 95101班10号王丽,女性,20岁; 95031班座号为30,名为郑和的学生记录; (4)将年龄的数据类型改为smallint; (5)向S表添加“入学时间(comedate)”列,其数据类型为日期型(datetime); (6)对表S,按年龄降序建索引(索引名为inxage); (7)删除S表的inxage索引; (8)删除S表; 5.在StuDB数据库中, (1)按照《数据库系统概论》(第四版)P82页的学生-课程数据库创建STUDENT、COURSE 和SC三张表,每一张表都必须有主码约束,合理使用列级完整性约束和表级完整性。 并输入相关数据。 (2)将StuDB数据库分离,在D盘下创建DB文件夹下找到StuDB数据库的两个文件,进行备份,后面的实验要用到这个数据库。 6.(课外)按照《数据库系统概论》(第四版)P74页习题5的SPJ数据库。创建SPJ数据 库,并在其中创建S、P、J和SPJ四张表。每一张表都必须有主码约束,合理使用列级完整性约束和表级完整性。要作好备份以便后面的实验使用该数据库数据。 三、实验要求:

过程控制系统实验指导书解析

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

物探报告

勘查地球物理概论

重力勘探 重力勘探是利用地壳内部各种岩(矿)石间因密度差异而引起的重力场变化来查明地质构造和寻找有用矿产的一种地球物理勘探方法。 重力场 地球上任何物体都要受到重力作用,物体的重量和自由落体运动都是重力作用的表现。 地面上一切物体都要受到两种力的作用,其一是地球的全部质量对物体的引力,其二是 物体在自转的地球上受到的惯性离心力C,重力P就是它 们的矢量和(图2-1-1)。 地球对物体的引力遵从万有引力定律。按照这个 定律,质量分别为m1和m2的两个质点间的引力F,与它们 质量的乘积成正比,与它们之间的距离r的平方成反比, 其模量为: (2-1-1) 式中G为万有引力常数,在SI制(国际单位制)中, G=6.67×10-11m3/(kg?s2)(米3/千克?秒2)。F的方向 沿着两质点的连线,单位为N(牛顿)。 地球对某一质点的引力,就是地球内所有质点对该质点引力的合成。如果知道地球的形状、大小和密度分布,原则上可以通过积分算出这个合力,它的方向近似地指向地心。 (图2-1-1) 重力作用质量为m的质点在自转的地球上要受到惯性离心力C的作用,C的大小与地球自转角速度ω的平方和该质点到自转轴的距离R成正比,其模量为: (2-1-2) C的方向垂直于地球自转轴,并沿着R指向球外。显然,惯性离心力是由赤道向两极逐渐减小的。 事实上,惯性离心力是相当小的,其最大值也仅为平均重力值的三百分之一,因此重力基本上是由地球的引力确定,其方向大致指向地心。 地球周围具有重力作用的空间称为重力场。根据牛顿第二定律,作用于质量为m0的质点上的重力P的模值可表示为 P=m0g 式中g为重力加速度。显然 (2-1-3) 上式左端表示单位质量所受的重力,即重力场强度。由此可见,空间某点的重力场强度,无论在数值或量纲上都等于该点的重力加速度,且二者的方向也一致。为叙述方便,今后如无特殊说明,我们提到的重力即是指重力加速度或重力场强度。 【重力位】从场力做功的观点出发,重力场的特征还可以用重力位来表示,重力场中某点的重力位W等于单位质量的质点由无穷远移至该点时场力所做的功。等重力位面称水准面,

《工程力学》实验指导书

工程力学实验指导书力学与机械学研究所编 天津理工大学机械工程学院

2005.7 学生实验守则 1.学生应按照课程教学计划,准时上实验课,不得迟到早退。 2.实验前认真阅读实验指导书,明确实验目的、步骤、原理,预习有关的理论知识,并接受实验教师的提问和检查。 3.进入实验室必须遵守实验室的规章制度。不得高声喧哗和打闹,不准抽烟、随地吐痰和乱丢杂物。 4.做实验时必须严格遵守仪器设备的操作规程,爱护仪器设备,节约使用材料,服从实验教师指导。未经许可不得动用与本实验无关的仪器设备及其它物品。 5.实验中要细心观察,认真记录各种试验数据。不准敷衍,不准抄袭别组数据,不得擅自离开操作岗位。 6.实验时必须注意安全,防止人身和设备事故的发生。若出现事故,应立即切断电源,及时向指导教师报告,并保护现场,不得自行处理。 7.实验完毕,应主动清理实验现场。经指导教师检查仪器设备、工具、材料和实验记录后方可离开。 8.实验后要认真完成实验报告,包括分析结果、处理数据、绘制曲线及图表。在规定时间内交指导教师批改。 9.在实验过程中,由于不慎造成仪器设备、工具损坏者,应写出损坏情况报告,并接受检查,由领导根据情况进行处理。 10.凡违反操作规程,擅自动用与本实验无关的仪器设备、私自拆卸仪器而造成事故和损失的,肇事者必须写出书面检查,视情节轻重和认识程度,按章程预以赔偿。

目录 引言..................................................(4)实验一金属拉伸实验....................................(5)实验二金属压缩实验.....................................(8)实验三金属(园轴)扭转试验..............................(17)

机电一体化系统实验指导书

机械创新设计与制作综合实验指导书1 机电一体化系统实验 编著者:陈照强宋雪丽王毅 机械工程学院 2007年2月16日

一、机电一体化概念 机电一体化技术又称机械电子技术,是机械技术、电子技术和信息技术有机结合的产物。机电一体化在国外被称为Mechatronics,是日本人在20 世纪70 年代初提出来的,它是用英文Mechanics 的前半部分和Electronics 的后半部分结合在一起构成的一个新词,意思是机械技术和电子技术的有机结合,现已得到包括我国在内的世界各国的承认。我国的工程技术人员习惯上把它译为机电一体化技术。 机械技术是一门古老的学科,它发展到今天经历了一个漫长的历史时期。机械是现代工业的物质基础,国民经济的各个部门都离不开机械。机械种类繁多,功能各异,不论哪一种机械,从诞生以来都经历了使用—改进—再使用—再改进,不断革新和逐步完善的过程。对于某一种形式的机械,一般来说都有一定的局限性,或者说都有一定的适用范围、存在某些固有的缺点,这就迫使人们寻找新的工作原理,发明新型的机械.从而使得具有同一用途的机械具有不同的种类。机械本身的发展也是无止境的,但是这种发展却是缓慢的。各种机械发展到今天.单从机械角度对它们进行改进是越来越不容易了。随着科学技术的发展,一个比较年轻的学科——电子技术正在蓬勃发展,从分立电子元件到集成电路(IC),从集成电路到大规模集成电路和超大规模集成电路,特别是微型计算机的出现,使电子技术与信息技术相结合并向其他学科渗透,把人类带人了一个神化般的世界。信息技术(3C 技术)的主体包括计算机技术、控制技术和通信技术。电子技术与计算机技术同机械技术相互交叉,相互渗透,使古老的机械技术焕发了青春。在原有机械基础上引入电子计算机高性能的控制机能,并实现整体最优化,就使原来的机械产品产生了质的飞跃,变成功能更强、性能更好的新一代的机械产品或系统,这正是机电一体化的意义所在。 机电一体化技术是现代科学技术发展的必然结果。由于大规模集成电路和超大规模集成电路的出现,特别是微型电子计算机的空前发展,促进了机械技术和电子技术相互交叉和相互渗透,并使机械技术和电子技术在系统论、信息论和控制论的基础上有机地结合起来.形成今天的机电一体化技术。可以说电子技术在机电—体化的形成和发展过程中起到了关键性的作用。 二、机电一体化系统的构成 对于一个机电一体化产品或设备,应将它作为一个系统来研究。所谓机电一体化,就是要以系统的整体的思想来考虑复杂机电系统许多综合性的技术问题。例如,—台多关节机器人,就存在着各运动部件之间的力耦合;各运动轴伺服系统的干扰和相互影响;系统动力学与控制规律和运动精度之间的关系;机器人与外围设备的连接;机器人各部分之间的协调运动和机器人防护安全连锁的问题、这些问题即构成了机器人的系统技术问题,必须通过系统工程和系统设计的理论来解决。这里所说的系统是指通过一些元件的有机结合来实现某一特定的功能,而系统工程则是为使系统达到最佳状态而对系统的组成部件、组织结构、信息传递、控制机构等进行分析、设计优化的技术。 系统设计的特点首先是具有综合性,它把系统内部和外部综合起来考虑。要设计一个复杂的系统,首先就要把系统分解成许多分系统,建立各个分系统的数学模型,最后再进行最优设计。系统设计的另一个重要特征是系统的均衡设汁,均衡设计就是要恰当地选择元件,以构成性能优异的系统。如果设计者只注重元件设计而忽视优化组合过程,则即使是经过精心筛选的元件也可能组成性能低劣的系统。机电一体化产品或系统就是通过信息技术将机械技术与电子技术融为一体构成的最佳系统,而不是机械技术和电子技术的简单叠加。机电一体化系统通常由五大要素构成、即动力源、传感器、机械结构、执行元件和电子计算机。机电一体化系统的功能在很大程度上决定于控制系统。控制系统不仅与计算机及其输入输出通道有关,更与所采用的控制技术密切相关。控制技术必须从系统工程的角度出发,探讨那些能够使各功能要素构成最佳组合的柔性技术和一体化技术,有机地和灵活地运用现有的机械技术、电子技术和信息技术,采用系统工程的方法,使整个系统达到最优化,即设计最优化、加工最优化、管理最优化和运行方式最优化。

计算机过程控制系统(DCS)课程实验指导书(详)

计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验 一、实验目的 1、通过实验熟悉单回路反馈控制系统的组成和工作原理。 2、分析分别用P、PI和PID调节时的过程图形曲线。 3、定性地研究P、PI和PID调节器的参数对系统性能的影响。 二、实验设备 AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。 三、实验原理 图2-15为单回路水箱液位控制系统 单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。 图2-16 P、PI和PID调节的阶跃响应曲线

工程物探

地球物理勘探 一、物探及其分类 二、物探方法简介 三、物探方法的特点: 四、物探方法的应用范围与应用条件 五、物探在工程勘探中的应用

一、物探及其分类 1、地球物理勘探 地球物理勘探,简称物探,是以地下岩体的物理性质的差异为基础,通过探测地表或地下地球物理场,分析其变化规律,来确定被探测地质体在地下赋存的空间范围(大小、形状、埋深等)和物理性质,达到寻找矿产资源或解决水文、工程、环境问题为目的的一类探测方法。 物理性质:岩体的物理性质主要有密度、磁性、电性、弹性、放射性等。主要物性参数密度、磁场强度、磁化率、电阻率、极化率、介电常数、弹性波速、放射性伽马强度等。 地球物理场:物理场可理解为某种可以感知或被仪器测量的物理量的分布。地球物理场是指由地球、太空、人类活动等因素形成的、分布于地球内部和外部近地表的各种物理场。可分为天然地球物理场和人工激发地球物理场两大类。 天然场;天然存在和形成的地球物理场主要有地球的重力场、地磁场、电磁场、大地电流场、大地热流场、核物理场(放射性射线场)等 人工场:由人工激振产生弹性波在地下传播的弹性波场、向地下供电在地下产生的局部电场、向地下发射电磁波激发出的电磁等,发球人工激发的地球物理场。人工场源的优点是场源参数书籍、便于控制、分辨率高、探测效果好,但成本较大。

地球物理场还可分为正常场和异常场。 正常场:是指场的强度、方向等量符合全球或区域范围总体趋势、正常水平的场的分布。 异常场:是由探测对象所引起的局部地球物理场,往往叠加于正常场之上,以正常场为背景的场的局部差异和变化。例如富存在地下的磁铁矿体或磁性岩体产生的异常磁场,叠加在正常磁场之中;铬铁矿的密度比围岩的密度大,盐丘岩体的密度比围岩的密度小,分别引起重力场局部增强或减弱的异常现象。 2、地球物理勘探分类 二、物探方法简介 1、重力勘探 重力勘探是研究地下岩层与其相邻层之间、各类地质体与围岩之间的密度差而引起的重力场的变化(即“重力异常”)来勘探矿产、

工程力学实验指南

工程力学实验指导书 仲恺农业工程学院机电工程系 2008.1

前言 材料力学是研究工程材料力学性能和构件强度、刚度和稳定性计算理论的科学,主要任务是按照安全、适用与经济的原则,为设计各种构件(主要是杆件)提供必要的理论和计算方法以及实验研究方法。 要合理地使用材料,就必须了解材料的力学性能,各种工程材料固有的力学性质要通过相应的试验测得,这是材料力学实验的一个主要任务。 另外,材料力学的理论是以一定的简化和假设为基础。这些假设多来自实验研究,而所建立理论的正确性也必须通过实验的检验,这是材料力学实验的第二个任务。 材料力学实验的第三个任务是通过工程结构模型或直接在现场测定实际结构中的应力和变形,进行实验应力分析,为工程结构的设计和安全评估提供可靠的科学依据。 从以上所述各项任务中,不难看到材料力学实验的重要性,它与材料力学的理论部分共同构成了这门学科的两个缺一不可的环节。 学生在学习并进行材料力学实验时,应注意学习实验原理、试验方法和测试技术,逐步培养科学的工作习惯和独立分析、解决问题的能力,要善于提出问题,勤于思考,勇于创新。这样才能牢固地掌握材料力学课程的基本内容,为将来参加祖国社会主义现代化建设打下坚实的基础。 指导书中将实验内容分为“基本实验”和“选做实验”两个层次,这样既可保证实验教学的基本要求,又可根据不同的需求进行选择,以期在培养学生的综合分析能力和创新能力方面发挥重大作用。 本实验指导书中难免存在缺点和错误之处,请师生们指正,以便今后进一步修改和完善。

基本实验 1 低碳钢和灰口铸铁的拉伸、压缩实验 一、实验目的 1.试样在拉伸或压缩实验过程中,观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。 2.测定该试样所代表材料的P S、P b和ΔL等值。 3.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。 4.学习、掌握电子万能试验机的使用方法及其工作原理。 二、仪器设备和量具 电子万能试验机,引伸计、钢板尺,游标卡尺。 三、低碳钢的拉伸和压缩实验 1.低碳钢的拉伸实验 在拉伸实验前,测定低碳钢试件的直径d和标距L。试件受拉伸过程中,观察屈服(流动)、强化,卸载规律、颈缩、断裂等现象;绘制p——ΔL曲线如图2—1(a)所示;记录试件的屈服抗力P s和最大抗力P b。试件断裂后,测量断口处的最小直径d1和标距间的距离L1。依据测得的实验数据,计算低碳钢材料的强度指标和塑性指标。 7 图1—1 低碳钢拉伸图及压缩图 强度指标:

单回路控制系统实验过程控制实验指导书

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静(动)态水温定值控制实验 实验三 实验项目名称:单容液位定值控制系统 实验项目性质:综合型实验 所属课程名称:过程控制系统 实验计划学时:2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和(原理)要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃

给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 (一)、智能仪表控制 1.按照图3-5连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。 图3-4 中水箱单容液位定值控制系统

相关主题
文本预览
相关文档 最新文档