当前位置:文档之家› 烟气脱硫系统控制策略

烟气脱硫系统控制策略

烟气脱硫系统控制策略
烟气脱硫系统控制策略

第29卷第6期水利电力机械

Vo.l 29 N o .6 2007年6月WATER CONSERVANCY &ELECTRI C POW ER MACH I NERY Jun .2007

 

烟气脱硫系统控制策略

C ontrol strategy of flue gas desulfurization syste m 陈志强,傅钧,刘卫华,刘晓玲

CHEN Zh i -qiang ,FU Jun ,LI U W e i -hua ,LI U X iao -ling

(山东电力工程咨询院,山东济南 250013)

(Shandong E lectric Powe r Eng i neering C onsu lting Instit ute ,Ji nan 250013,China )

摘 要:结合火力发电厂烟气脱硫工程设计,论述了石灰石-石膏湿法烟气脱硫工艺中烟气系统、增压风机系统、吸收塔系统及工艺水系统等系统的控制策略。关键词:脱硫控制系统;FGD ;吸收塔

中图分类号:TK 411+.51 文献标识码:A 文章编号:1006-6446(2007)06-0009-03

Ab stract :B ased on the desi gn of desulfuriza tion i n t her m al powe r plant ,t his pape r i ntroduce s stra tegy control of t he fl ue gas syste m ,boo ste r fan s y st em ,coo li ng to w er syste m s and service w a t e r syste m e t c of t he li m est one -gypsu m fl ue gas desulfuriza tion m ethod .

K ey w ords :desu lf u rizati on con tro l sy ste m ;FGD ;cooli ng t ow er

收稿日期:2007-04-12

作者简介:陈志强(1978-),男,山东平度人,山东电力工程咨询院工程师,主要从事火电厂控制系统方面的设计工作。

0 引言

目前,国内烟气脱硫主要采用石灰石-石膏湿法烟气脱硫技术,并采用传统的单回路喷淋塔工艺,将含有氧化空气管道的浆池直接布置在吸收塔底部,并在塔内上部设置喷淋层,该工艺技术经广泛应用证明是十分成熟可靠的。

脱硫剂(石灰石)经独立配置的制粉岛磨制成粉(或直接采用石灰石粉)后,通过制浆装置配成浆液补充到吸收塔内。脱硫副产品(石膏)通过石膏排出泵从吸收塔浆液池抽出,输送至石膏脱水处理系统。

1 工艺说明

FGD 系统布置在锅炉电除尘系统后,由FGD 系统流程简图(如图1所示)可知,系统有2个通道供烟气流动。一个是FGD 烟气通道,设有原烟气挡板门和净烟气挡板门;另一个是FGD 旁路烟道,设有旁路挡板门。为防止挡板处出现泄漏,设有密封风机。原烟气经过增压风机增压之后进入GGH 与净

烟气进行换热,之后进入吸收塔,从下向上流动,与

喷淋层喷射出的石灰石浆液滴以逆流方式接触,分离SO 2和SO 3,同时,消耗作为吸收剂的石灰石浆液,生成石膏浆液。用作补给剂量而添加的石灰石浆液进入吸收塔,与吸收塔的石膏浆液混合,通过循环浆泵将浆液向上输送到吸收塔中,通过喷嘴进行雾化,使气体与液体充分接触。每个循环泵与各自的喷淋层相连接。

经过净化处理的烟气流经除雾器,净烟气中所携带的浆液微滴被除去。除雾器按照特定的程序不时地进行冲洗,以防止除雾器堵塞和保持吸收塔中的液位。之后净烟气进入GGH ,被原烟气加热至一定的温度后,通过烟道进入烟囱排入大气。同时,石膏浆液在吸收塔收集池中驻留一定的时间后,产生质量良好的石膏结晶,通过石膏排出泵将石膏浆液打入到脱水系统进行脱水,得到副产品———石膏。

2 控制策略

和一般的工艺过程一样,石灰石-石膏湿法烟气脱硫系统也需要把化学物理参数控制在合适的范

10 水利电力机械2007年6

图1 FGD 系统流程简图

围内以取得可靠且经济的性能。这就需要可靠的脱硫控制系统来实现,下面分系统介绍脱硫控制系统的主要控制策略。2.1 烟气系统

因烟气系统涉及到机组的安全性,是整个FGD 系统中最为重要的一个子系统,因此,烟气系统的基本控制要求是保证机组的安全。烟气自引风机出来,通过烟道到达FGD 系统的原烟道。热烟气通过原烟道到达增压风机,增压风机前设有压力信号和温度信号。压力信号主要作为调节增压风机导叶开度用,温度信号用来指示F GD 入口烟温。烟气经增压风机升压后送达烟气换热器GGH 。增压风机出口处设有压力测点用来监视增压风机运行状况。在GGH 原烟气进口设了温度信号,该信号主要有2个作用,一是用来保护GGH (入口温度不得超过160℃);另一作用是与GGH 净烟气出口温度信号一起监视GGH 运行状况(换热性能)。烟气经过GGH 温度降低后到达吸收塔。GGH 出口设有温度和压力信号,温度信号主要是保护吸收塔用,它与吸收塔出口烟气温度(GGH 净烟气入口处)一起用来监视吸收塔工作状况。原烟气经过吸收塔的入口向上流动穿过喷淋层,烟气被冷却,烟气中的SO 2被吸收。经过喷淋洗涤的净烟气经过除雾器脱除烟气中携带的浆液雾滴后进入GGH 的冷端,离开GGH 的冷烟气被加热后通过烟道进入烟囱。在烟囱两侧设有旁路挡板门,烟气可以100%通过旁路挡板门经

旁路烟道被旁路分离掉。脱硫系统也可通过旁路挡板门与旁路烟道分离。

该系统主要通过“F GD 投入允许”、“烟气系统故障”和“FGD 保护动作”3步措施来保证烟气系统和F GD 系统的安全。

“F GD 投入允许”是指F GD 投入前烟气系统所需具备的条件,主要包括锅炉不存在M FT 信号;锅炉煤层工作正常;FGD 进口的原烟气烟尘浓度小于

300m g /m 3

;F GD 进口的原烟气温度须在90℃~155℃之间。只有上述条件同时满足才允许启动F GD 系统中的相关设备。

“烟气系统故障”是指FGD 在运行过程中出现某种情况对机组安全构成威胁时,紧急打开旁路挡板门使烟气通过旁路挡板门直接进入烟囱,然后联停F GD 系统中的相关设备,停运FGD 。导致“烟气系统故障”的主要情况有FGD 在运行过程中原烟气挡板门突然关闭;FGD 在运行过程中净烟气挡板门突然关闭;F GD 在运行过程中GGH 转子停转;循环浆泵中投入运行的数量少于要求的台数。上述情况只要有1种情况存在就发出“烟气系统故障”信号。

“F GD 保护动作”是指F GD 在运行过程中烟气系统出现某种情况对FGD 设备的运行安全构成一定影响,需紧急停运FGD 系统,同时打开旁路挡板门。主要包括锅炉电除尘电场出现异常;锅炉煤层工作不正常;锅炉油枪动作;锅炉出现MFT 信号;F GD 进口的原烟气烟尘浓度大于300m g /m 3

;F GD

第29卷第6期陈志强,等:烟气脱硫系统控制策略11

进口的原烟气温度小于85℃或大于160℃。上述情况只要有1种情况存在就发出“FGD保护动作”信号。

另外,作为F GD系统中旁路设备的旁路挡板门的开关也需要着重考虑,在图1中,除了上面提到的“烟气系统故障”、“FGD保护动作”会联开旁路门外,增压风机的停转也会联开旁路门,从而最大限度地保护机组安全。旁路挡板门关闭的允许条件主要包括原烟气挡板门和净烟气挡板门均打开;GGH转子运行正常;增压风机运行正常;循环浆泵的运行台数大于规定台数;FGD投入允许。上述条件必须同时满足才允许关闭旁路挡板门。

2.2 增压风机系统

控制增压风机系统的关键在于调节增压风机的动叶角度。为了让未经脱硫的锅炉尾部烟气从原烟气烟道进入F GD系统,让脱硫后的净烟气进入烟囱,必须通过调节增压风机动叶的角度,使烟气可以克服FGD系统的阻力,顺利到达烟囱。增压风机动叶角度调节根据烟气流量作为前馈信号,通过FGD进出口压差信号细调增压风机的动叶角度,以保证FGD进出口的烟气压差为0。同时还应保证进出口压力即旁路挡板门两端压力低于密封风的压力。

2.3 吸收塔系统

吸收塔利用湿式石灰石就地强制氧化工艺去除烟气中的二氧化硫(SO2),并形成可做墙板及其他建筑材料(如水泥)的副产品———石膏。

吸收塔主要包括逆流喷淋装置和除雾器。吸收塔系统主要包括以下几个控制回路。

2.3.1 SO2脱除率的控制

SO2脱除率通常是FGD系统首先要考虑的控制量。当机组负荷或者燃煤含硫量变化的时候,控制系统也必须满足SO2脱除率不低于90%的要求(湿法脱硫率的性能保证)。因此,可通过调整吸收塔浆液循环泵的运行台数来调整吸收塔循环浆液量,从而提高或者降低液气比。

通过该方法保持液气比在一定的范围内。液气比变化,吸收塔脱硫效率也迅速跟着变化。通过调试,得出进口烟气量及出口SO2浓度和浆液循环泵运行数量的关系曲线,将此关系输入脱硫控制系统,使控制系统可自动判断所需循环泵运行数量(经过人工确认)。但是,仅采用该种控制策略,为达到一定脱硫效率往往会造成石灰石浆液还没有充分反应便排至脱水系统。因此,引入了吸收塔浆液p H值这一重要参数,即当锅炉负荷基本不变,循环泵数目一定时,通过改变pH值(实际值)来保持脱硫效率。

与控制吸收塔浆液循环量不同的是,吸收塔浆液pH值的控制是一个连续控制过程,它可以使石灰石浆液得到更充分的利用。

2.3.2 吸收塔浆液的pH值控制

湿式脱硫系统中最重要的控制参数就是吸收塔浆液的pH值,因此,p H值的控制也被称作为FGD性能控制。该回路的合理设计将使石灰石得到最大限度的利用,并使调节系统具备随负荷变化的灵活性。

吸收塔浆液的pH值必须控制在一定范围内, pH值的设计值是通过性能试验和F GD系统的操作经验得到的。如果pH值过高,低物料利用率将会导致吸收塔和除雾器生锈或者堵塞,影响副产品品质,增加物料消耗;如果pH值过低,脱硫效率达不到要求。吸收塔浆液的p H值是通过2个装设在石膏浆液回流管道中的在线pH值探头测得的,控制系统选择其一作为控制参数(选小的)。若该值超出上限或下限,系统将会报警。另外,若2个读值之差超出设定范围,系统也会报警。将实际测得的p H 值与设计值进行比较,若实际值超出设计范围,则将2者的差值进行整定后作为调节石灰石浆液给料量的反馈信号,调节石灰石浆液给料控制阀。但是,由于吸收塔中浆液量很大,改变给料量引起pH值变化会非常慢,而且这种控制也是非线性的。因此,引入锅炉负荷信号和FGD进口SO2含量信号作为石灰石浆液给料量调节的前馈(预示)信号。这个前馈信号的加入使该控制成为线性的闭环控制,大大提高了F GD的控制水平。另外,FGD出口SO2含量也将作为反馈信号,监视SO2脱除效率,从而改变石灰石浆液给料量。

2.3.3 吸收塔浆液液位和密度控制

为了优化FGD系统的运行及保持整套系统的水平衡,吸收塔液位控制是非常重要且必要的。保证一定的液位,一是可以防止泵空转,二是可以通过调节反应池浆液固体含量(浆液密度)来保持正确高效的化学反应过程。因此,液位控制和浆液密度控制是密切相关的。

吸收塔浆液池必须维持一定的液位,才能保证适当的固体停留时间,并防止吸收塔浆液泵的气蚀。液位通过调节过滤水补水流量维持在一定高度,浆液密度通过调节石膏浆液排放量来控制。上述2个变量的控制都是连续的。

(1)吸收塔液位控制。在吸收塔上设置溢流箱,为防止吸收塔溢流,设置了冗余(下转第15页)

第29卷第6期曾锋,等:蜗轮齿面的三维仿真造型15

图3为仿真加工出的部分蜗轮齿形。

图3 仿真加工出的部分蜗轮齿形

5 结束语

在Solid W or ks平台上,充分利用软件提供的API 函数,在其界面上模拟现实加工中蜗轮滚刀加工蜗轮毛坯的运动关系,通过对蜗轮毛坯和蜗轮滚刀运动所形成的刀具包络体之间的实体布尔差运算,蜗轮毛坯的三维模型随着切削过程被不断更新,从而仿真加工出蜗轮的齿面。基于实体造型的方法中几何模型的表达与实际加工过程相一致,使得仿真造型的最终结果与设计产品间的精确比较成为可能。

参考文献:

[1]江洪,魏峥,王涛威,等.So lid W o rks二次开发实例解析

[M].北京:机械工业出版社,2004.

[2]张俊.新编V isua l Basi c6.0基础操作教程[M].西安:

西北工业大学出版社,2003.

[3]伍俊良.V isua l Basic应用与开发教程[M].北京:机械

工业出版社,2004.

[4]江洪,魏峥,周鲜华,等.So li d W orks2004/2005基础教程

[M].北京:机械工业出版社,2005.

(编辑:刘芳)

(上接第11页)的液位变送器对吸收塔液位连续检测,其反馈信号决定了吸收塔过滤水入口控制阀的开度。另外,除雾器冲洗水也可作为补水。

(2)吸收塔密度控制。位于石膏排出泵回流管道上的浓度计(质量流量计)将连续监测吸收塔浆液的浓度(含固量),如果监测值超出上限/下限,系统将会报警。该信号(实际值)将被传输到控制系统,与设定值相比较,进而调节石膏排出泵出口控制阀的开度。

2.3.4 除雾器冲洗的控制

除雾器既可以装置在吸收塔内又可以装置在吸收塔外出口烟道内。吸收塔的除雾器必须进行冲洗,以防止浆液固体颗粒沉积在叶片上。除雾器的冲洗分段进行,以使冲洗后除雾器的携水量及需要的泵流量最小。冲洗控制系统根据设定的顺序开合控制阀门。但在循环间的停止时间是根据锅炉负荷而变化的,当锅炉负荷降低,循环间的停止时间将提高。该种自动方式,在维持冲洗的最大量时,可提供最恰当的水平衡控制,这一点对除雾器的性能很重要。

2.4 浆液制备系统

石灰石粉通过粉仓下部的旋转给料阀(变频控制)将石灰石粉计量地送入浆液箱,同时打开滤液水至浆液箱入口门,通过浆液箱搅拌器充分混合后制成30%(含固量)的石灰石浆液,然后通过浆液泵送至吸收塔。

石灰石制浆系统采用连续制浆方式,进口SO2浓度和烟气负荷决定进吸收塔的石灰石浆液流量,该流量决定了浆液箱的液位变化。为保持浆液箱液位在一个比较平稳的位置,需要对落粉量进行调整(改变频率),进而决定滤液水的流量。然后再以石灰石浆液回流管上的密度计信号和实际的液位变化作为反馈信号进行修正。

2.5 工艺水系统

主体工艺水送到脱硫岛工艺水箱,根据工业水箱液位控制器的反馈信号来控制工艺水入口门的开或关。

3 结论

随着对石灰石-石膏湿法脱硫工艺控制系统自动化水平要求的不断提高,该系统控制策略的选择也越来越重要。本文针对该控制系统中典型系统的控制策略进行的论述,并希望在以后的工程设计中不断得到优化,以达到更高的控制水平。

(编辑:白银雷)

烟气脱硫DCS系统方案

XXXX项目——烟气脱硫DCS系统方案及报价 XXXX有限公司

目录 系统简介 (3) DCS系统硬件介绍 (4) DCS软件介绍 (8) DCS系统技术规格 (10) 本控制系统统构成 (22) 本控制系统规模及功能 (13) 系统配置清单及供货范围 (19) 检测及质量保证 (20) 技术服务和培训 (22) 其它 (23) 系统报价 (25) 内容截止于第25页

一、系统概述 (一)、系统简介: ●德国Wago DCS系统是基于多种总线的控制系统,其代表产品就是基于以太网的控 制系统。 ●其设计特点是融入了DCS系统和FCS系统的优势。 ?WaGo控制系统典型结构图 显示器 PROFIBUS DeviceNet CANopen ?WagoDCS控制系统的特点 ●最佳的模块化结构 1-,2-,和4-,8-通道功能被容纳在一个I/O模块里。 ●现场总线节点可以独立于现场总线而设计 ●DCS现场总线适配器支持所有重要的现场总线 ●一个DCS控制器可以包括带有不同电位,电源和信号的数字量/模拟量的输入输出 模块。 ●电源模块带有熔断器或者不带熔断器。如果需要错误信息可以通过总线传输。 ●快捷方便的接线方式,具有高可靠性。 (二)、总线型分散控制系统的硬件特点:

1.Wago 分散控制系统的可组合节点硬件: 1-1 750-841ETHERNET 控制器: 该控制器支持所有I/O 模块自动配置、生产成包括数字量模块、模拟量模块及特殊功能 模块的本地过程映像,模拟量模块和特殊功能模块以字或者字节的形式传输数据,而数字量模块以位的形式传输数据。 - 开关量输入模块 - 开关量输出模块 - 模拟量输入模块 - 模拟量输出模块 - 特殊功能模块

烟气脱硫系统概述

烟气脱硫系统概述 烟气脱硫(Flue gas desulfurization,简称FGD )是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染最为有效和主要的技术手段。 石灰石/石膏湿法FGD 工艺技术是目前最为先进、成熟、可靠的烟气脱硫技术,更由于其具有吸收剂资源丰富,成本低廉等优点,成为世界上应用最多的一种烟气脱硫工艺,也是我国行业内推荐使用的烟气脱硫技术。 我公司烟气脱硫系统采用石灰石—石膏就地强制氧化脱硫工艺。吸收塔采用单回路四层喷淋、二级除雾装置,脱硫剂为(CaCO 3)。在吸收塔内,烟气中的SO 2与石灰石浆液反应后生成亚硫酸钙,并就地强制氧化为石膏(CaSO 4·2H 2O ),石膏经二级脱水处理后外售或抛弃。其主要化学反应如下: CaCO 3+ SO 2+ H 2O CaSO 3·H 2O+CO 2 CaSO 3·H 2O+21O 2+2H 2O CaSO 4·H 2O+H 2O FGD 工艺系统主要有如下设备系统组成:烟气系统;吸收塔系统;石灰石浆液制备系统;石膏脱水系统;工艺水系统;氧化空气系统;压缩空气系统;事故浆液系统等。 工艺流程描述为: 由锅炉引风机来的热烟气进入喷淋吸收塔进行脱硫。在吸收塔内,烟气与石灰石/石膏浆液逆流接触,被冷却到绝热饱和温度,烟气中的SO2和SO3与浆液中的石灰石反应,

生成亚硫酸钙和硫酸钙,烟气中的HCL、HF也与烟气中的石灰石反应被吸收。脱硫后的烟气温度约50℃,经吸收塔顶部除雾器除去夹带的雾滴后进入烟囱。氧化风机将空气鼓入吸收塔浆池,将亚硫酸钙氧化成硫酸钙,过饱和的硫酸钙溶液结晶生成石膏,产生的石膏浆液通过石膏浆液排出泵连续抽出,通过石膏旋流器、真空皮带脱水机二级脱水后贮存在石膏间或者进行抛弃处理。

脱硫塔专项施工方案

河北XX环境工程有限公司3×135MW机组烟气脱硫改造工程 吸 收 塔 专 项 施 工 方 案 XXXX脱硫脱硝科技有限公司 自备电厂脱硫改造项目部 2015年3月12日

目录 目录 (2) 一.工程概况 (3) 二.编制依据 (3) 三. 作业前的条件和准备 (4) 3.1技术准备 (4) 3.2作业人员配置、资格 (4) 3.3作业工机具 (5) 3.4施工准备及应具备的条件 (5) 四. 作业的程序和方法 (6) 4.1烟道施工方法及要求: (6) 4.2吸收塔制作安装流程 (7) 4.3吸收塔吊装 (10) 五.作业的安全措施: (12) 5.1安全教育 (12) 5.2分项工程安全管理措施 (12) 5.3文明施工及环境保护措施 (13) 5.4设施使用实施验收、检查制度 (13) 5.5危险及紧急情况发生时的预防应对措施 (13) 5.6安全施工技术交底 (14) 5.7紧急应急预案及措施 (14) 六.重要危险源、点分析和控制清单 (15)

一.工程概况 山西XX铝业公司自备电厂脱硫项目工程,采用湿法烟气脱硫工艺。 吸收塔直径为φ8200mm,为全钢制圆筒薄壁容器。上段筒体为除雾喷淋区,下部筒体为浆液循环搅拌回收系统。 脱硫塔安装施工范围为:地脚螺栓、底板隔栅、底板、下部筒体、上部筒体、内部浆液循环回收搅拌系统、平台楼梯栏杆、设备、内部烟气除雾和喷淋系统及设备的制作与安装等。 主要工程量、特征参数: 3级除雾器设备及其系统:一套(一台量); 3层喷淋装置及其系统:一套(一台量); 氧化设备及其系统:一套(一台量); 内部浆液循环回收搅拌设备及系统: 一套(一台量)。 施工重点、难点 该脱硫塔安装工程施工重点难点在于地脚螺栓、基础环板的安装和底板安装的平整度控制;焊接变形的控制。 二.编制依据

氧化镁法烟气脱硫工艺介绍

氧化镁法烟气脱硫工艺介绍 1. 前言 我国是世界上SO2排放量最大的国家之一,年排放量接近2000万吨。其主要原因是煤炭在能源消费结构中所占比例太大。烟气脱硫(FGD)是目前控制SO2污染的重要手段。 湿法脱硫是应用最广的烟气脱硫技术。其优点是设备简单,气液接触良好,脱硫效率高,吸收剂利用率高,处理能力大。根据吸收剂不同,湿法脱硫技术有石灰(石)—石膏法、氧化镁法、钠法、双碱法、氨法、海水法等。 氧化镁湿法烟气脱硫技术,以美国化学基础公司(Chemico-Basic)开发的氧化镁浆洗—再生法发展较快,在日本、台湾、东南亚得到了广泛应用。近年,随着烟气脱硫事业的发展,氧化镁湿法脱硫在我国的研究与应用发展很快。 2. 基本原理 氧化镁烟气脱硫的基本原理是用MgO的浆液吸收烟气中的SO2,生成含水亚硫酸镁和硫酸镁。化学原理表述如下: 2.1氧化镁浆液的制备 MgO(固)+H2O=Mg(HO)2(固) Mg(HO)2(固)+H2O=Mg(HO)2(浆液)+H2O Mg(HO)2(浆液)=Mg2++2HO- 2.2 SO2的吸收 SO2(气)+H2O=H2SO3 H2SO3→H++HSO3- HSO3-→H++SO32- Mg2++SO32-+3H2O→MgSO3?3H2O Mg2++SO32-+6H2O→MgSO3?6H2O Mg2++SO32-+7H2O→MgSO3?7H2O SO2+MgSO3?6H2O→Mg(HSO3)2+5H2O Mg(OH)2+SO2→MgSO3+H2O MgSO3+H2O+SO2→Mg(HSO3)2 Mg(HSO3)2+Mg(OH)2+10H2O→2MgSO3?6H2O 2.3 脱硫产物氧化 MgSO3+1/2O2+7H2O→MgSO4?7H2O MgSO3+1/2O2→MgSO4 3. 工艺流程 整个脱硫工艺系统主要可分为三大部分:脱硫剂制备系统、脱硫吸收系统、脱硫副产物处理系统。图1为氧化镁湿法脱硫的工艺流程图。

烟气脱硫脱硝技术方案

1、化学反应原理 任意浓度的硫酸、硝酸,都能够跟烟气当中细颗粒物的酸、碱性氧化物产生化学反应, 生成某酸盐和水,也能够跟其它酸的盐类发生复分解反应、氧化还原反应,生成新酸和新盐,通过应用高精尖微分捕获微分净化处理技术产生的巨大量水膜,极大程度的提高烟气与循环 工质接触、混合效率,缩短工艺流程,在将具有连续性气、固、液多项流连续进行三次微分 捕获的同时,连续进行三次全面的综合性高精度微分净化处理。 2、串联叠加法工作原理 现有技术装备以及烟气治理工艺流程的效率都是比较偏低,例如脱硫效率一般都在98%左右甚至更低,那么,如果将三个这样工作原理的吸收塔原型进行串联叠加性应用,脱硫效率一定会更高,例如99.9999%以上。 工艺流程工作原理 传统技术整治大气环境污染,例如脱硫都是采用一种循环工质,那么,如果依次采用三种化学性质截然不同的循环工质,例如稀酸溶液、水溶液和稀碱溶液进行净化处理,当然可以十分明显的提高脱除效率,达到极其接近于百分百无毒害性彻底整治目标。 1、整治大气环境污染,除尘、脱硫、脱氮、脱汞,进行烟气治理,当然最好是一体 化一步到位,当然首选脱除效率最高,效价比最高,安全投运率最高,脱除污染因子最全 面,运行操作最直观可靠,运行费用最低的,高效除尘、脱硫、脱氮、脱汞一体化高精尖 技术装备。 2、高效除尘、脱硫、脱氮、脱汞一体化高精尖技术装备,采用最先进湿式捕获大化 学处理技术非选择性催化还原法,拥有原创性、核心性、完全自主知识产权,完全国产化,发明专利名称《一种高效除尘、脱硫、脱氮一体化装置》,发明专利号。 3、吸收塔的使用寿命大于30年,保修三年,耐酸、耐碱、耐摩擦工质循环泵,以及 其它标准件的保修期,按其相应行业标准执行。 4、30年以内,极少、甚至可以说不会有跑、冒、滴、漏、渗、堵现象的发生。 5、将补充水引进到3#稀碱池入口,根据实际燃煤含硫量和烟气含硝量调整好钠碱量 以及相应补充水即可正常运行。 6、工艺流程: 三个工质循环系统的循环工质,分别经过三台循环泵进行加压、喷淋。 (1)可以采用废水的补充水进入进行第三级处理的稀碱池,通过第三级循环泵或者称 为稀碱泵,进行第三次微分捕获微分净化处理,然后溢流至中水池。 (2)从稀碱池溢流来的稀碱水自流进入中水池,经过第二级循环泵或者称为中水泵的 加压循环,进行第二次微分捕获微分净化处理的喷淋布水。 (3)从中水池溢流来的中水进入稀酸池,第一级循环泵或者称为稀酸泵泵出的循环工 质,在进行第一级微分捕获微分净化处理循环过程当中,在稀酸池经过处理,成为多元酸, 通过补充水和澄清水保持两个循环系统工作。

烟气脱硫技术方案

烟气脱硫工程设计方案 二〇〇九年七月

目录 第一章概述 (1) 1.1 设计依据 (1) 1.2 设计参数 (1) 1.3 设计指标 (1) 1.4 设计原则 (1) 1.5 设计范围 (2) 1.6 技术标准及规范 (2) 第二章脱硫工艺概述 (4) 2.1 脱硫技术现状 (4) 2.2 工艺选择 (5) 2.3 本技术工艺的主要优点 (9) 2.4 物料消耗 (10) 第三章脱硫工程内容 (13) 3.1 脱硫剂制备系统 (12) 3.2 烟气系统 (12) 3.3 SO 吸收系统 (13) 2 3.4 脱硫液循环和脱硫渣处理系统 (15) 3.5 消防及给水部分 (17) 3.6 浆液管道布置及配管 (17) 3.7 电气系统 (17) 3.8 工程主要设备投资估算及构筑物 (18) 第四章项目实施及进度安排 (19) 4.1 项目实施条件 (19) 4.2 项目协作 (19) 4.3 项目实施进度安排 (19) 第五章效益评估和投资收益 (20)

5.1 运行费用估算统 (21) 5.2 经济效益评估 (21) 5.3 环境效益及社会效益 (21) 第六章结论 (22) 6.1 主要技术经济指标总汇 (22) 6.2 结论 (22) 第七章售后服务 (23) 附图1 脱硫系统工艺流程图24

第一章概述 1.1设计依据 根据厂方提供的有关技术资料及要求为参考依据,并严格按照所有相关的设计规范与标准,编制本方案: §《锅炉大气污染物排放标准》GB13271-2001; §厂方提供的招标技术文件; §国家相关标准与规范。 1.2设计参数 本工程的设计参数,主要依据招标文件中的具体参数,其具体参数见表1-1。 表1-1 烟气参数 1.3设计指标 设计指标严格按照国家统一标准治理标准和业主的招标文件的要求,设计参数下表1-2。 表1-2 设计指标 1.4设计原则 §认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、规范和标准。 §选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统的安全、稳定性能,并减少系统运行费用。

100万吨焦炉烟气脱硫脱硝技术方案

100万吨焦炉烟气脱硫脱硝 技术方案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

100万吨焦化2×60 孔焦炉烟气脱硫脱硝工程 技 术 方 案

目录 第一章总论 (6) 项目简介 (6) 总则 (6) 工程范围 (6) 采用的规范和标准 (6) 设计基础参数(业主提供) (7) 基础数据 (7) 工程条件 (8) 脱硫脱硝方案的选择 (9) 脱硫脱硝工程建设要求和原则 (9) 脱硫脱硝工艺的选择 (10) 脱硫脱硝和余热回收整体工艺说明 (11) 第二章脱硫工程技术方案 (12) 氨法脱硫工艺简介 (12) 氨法脱硫工艺特点 (12) 氨法脱硫吸收原理 (12) 本项目系统流程设计 (13) 设计原则 (14) 设计范围 (14) 系统流程设计 (14) 本项目工艺系统组成及分系统描述 (15) 烟气系统 (15) SO2吸收系统 (15) 脱硫剂制备及供应系统 (17) 脱硫废液过滤 (17) 公用系统 (17) 电气控制系统 (17) 仪表控制系统 (18) 第三章脱硝工程技术方案 (20) 脱硝工艺简介 (20)

SCR工艺原理 (20) SCR系统工艺设计 (21) 设计范围 (21) 设计原则 (21) 设计基础参数 (21) 还原剂选择 (22) SCR工艺计算 (22) SCR脱硝工艺流程描述 (23) 分系统描述 (24) 氨气接卸储存系统 (24) 氨气供应及稀释系统 (24) 烟气系统 (25) SCR反应器 (25) 吹灰系统 (26) 氨喷射系统 (26) 压缩空气系统 (26) 配电及计算机控制系统 (26) 第四章性能保证 (28) 脱硫脱硝设计技术指标 (28) 脱硫脱硝效率 (28) SCR及FGD装置出口净烟气温度保证 (29) 脱硫脱硝装置可用率保证 (29) 催化剂寿命 (29) 系统连续运行温度和温度降 (29) 氨耗量 (29) 脱硫脱硝装置氨逃逸 (30) 脱硫脱硝装置压力损失保证 (30) 第五章相关质量要求及技术措施 (31) 相关质量要求 (31) 对管道、阀门的要求 (31) 对平台、扶梯的要求 (31)

锅炉烟气脱硫脱硝改造施工组织方案

3X 25t/h锅炉烟气脱硫脱 硝改造工程 施工组织设计

XXXXXXX工程有限公司

2017年8月

5主要施工方案和措施 ......................................................................................... 18 ........... 1编制依据 (8) 1.1 SNCR 脱硝编制依据 (8) 1.2湿法脱硫编制依据 .................................................... 8 2工程概况 .. (9) 2.1工程简介 ............................................................ 9 ............... 2.2工程改造施工范围及特点 .............................................. 9 .......... 2.3主要烟气参数 2.4工程施工工期 3施工组织机构 3.1项目管理部 ......................................................... 12 ........... 3.2项目组织机构图 ..................................................... 12 ........... 4.1施工总平面布置 ..................................................... 1.3. 4.2力能供应规划 ....................................................... 1.4 4.3劳动力计划表 ....................................................... 1. 5. 4.4主要施工机械设备计划表 (16) 11 11 2.5工程质量标准 ............................................................................................ 12 ........... 12 ............ 3.3项目部职责及岗位人员职责 ................................................................... 13 ........ 4施工部署及资源计划 ........................................................................................ 13 ............

烟气脱硫系统施工方案

23130T/H+13240T/H锅炉烟气脱硫改造工程 施 工 方 案

目录 一、编制依据 二、工程概况和特点 三、施工组织及进度计划 四、作业条件 五、机工具配备 六、设备及材料要求 七、安装工艺和作业程序 八、质量保证体系及技术组织措施 九、安全目标、安全保证体系及技术组织措施 十、施工现场HSE保证措施 十一、施工现场的组织管理措施 十二、计划、统计和信息管理

一、编制依据 二、工程概况 本工程采用三炉两塔的配置方式。烟气脱硫装置整套系统由以下子系统组成:吸收塔系统、烟气系统、石灰石浆液系统、工艺水系统等。 脱硫塔塔本体高90m(含钢烟囱),直径10m,共2只。本脱硫吸收塔安装在水平烟道后部,原有石灰仓保留,水平烟道增加两个开口,用烟道与脱硫吸收塔连接。该工程还包含:事故浆液罐Φ10000mm 1只、石膏排除泵4台、石灰仓1只、吸收塔地坑搅拌器1只、吸收塔地坑泵1台、工艺水箱Φ3000mm 1只、工艺水泵 4台、氧化风机2台、浆液循环泵10台、废水箱Φ2200mm 1只、废水泵2台、滤液水池35003350033500 1只、滤液水泵 2台等。 三、施工组织及进度计划 3.1人力资源需求计划

3.2进度计划安排 3.1吸收塔本体制作计划在 2014 年 7 月底开工,其它分系统安装依据土建交安及设备供货情况安排开工。 四、作业条件 4.1 施工人员 所有施工人员必须经安全技术交底,并在交底单上签字。所有施工人员要熟悉图纸和有关技术要求内容;熟悉作业指导书中的质量要求和质量控制点。作业人员应具有施工经验,特殊工种作业人员(电焊工、起重工、架子工、电工)必须经过专业培训和考试,持有效证件上岗。电焊工上岗前必须进行上岗考核,合格后才允许上岗焊接作业。 4.2 施工场地条件及道路总平布置 厂区和施工区域内主要施工道路,采取永临结合的方式,由业主负责在工程开工前完成,路宽10米。施工道路按混凝土路结合碎石路、临时路结合永久路的思路布置。交通流量大、影响工程顺利实施、文明施工的道路用混凝土路面,其余用泥结碎石路面。 五、机工具配备 5.1机工具配备表

基于PLC的火电厂烟气脱硫控制系统研究与设计

基于PLC的火电厂烟气脱硫控制系统研究与设计 0 引言我国是燃煤大国,煤炭占一次能源消费总量的75%。随着煤炭消费的不断增长,燃煤排放的二氧化硫也不断增加,致使我国酸雨和二氧化硫污 染日趋严重。为了实现SO2 的减排目标,国家制定了一系列的环保措施。目前国内烟气脱硫工艺设备的设计、制造、安装和调试水平已有了大幅度的提高, 已建成、投运了一大批大型机组火电机组烟气脱硫系统。但据了解,目前投运 的火力发电厂都还存在着不少这样或那样的技术问题,其中热工自动化投入水 平不高是其中的一个重要技术问题,如测量不准,系统自动投不上,系统调节 品质差等,致使一些电厂的脱硫系统出现运行故障多、不能与发电机组完全同 步运行或运行中脱硫效率达不到设计值或系统运行成本高等问题。对于整个烟 气脱硫系统,作为监视、控制脱硫系统运行的控制系统是重要的组成部分,它 既要保证脱硫系统的正常工作和异常工况的系统安全,又要与单元机组控制系 统相协调,保证锅炉的安全运行。控制系统采用DCS 虽然自动化程度大为提高,但由于脱硫工艺系统总的监控点数(一般为600~1 000 点)远低于能满足单元机组控制的DCS 系统的经济规模(一般为5 000~10 000 点),造成控制系统造价偏高,经济性下降。目前,国内许多电厂在烟气脱硫控制上己开始尝试采 用可编程控制器PLC 作为控制主机,将脱硫控制纳入全厂辅助系统网络集中监控,既保证可靠性,又能大幅度降低系统造价。本文研究采用可编程控制器PLC 作为控制主机,进行脱硫控制系统的硬件设计,给出了具体的设计方案及各功能模块的详细设计。现场实际运行结果证明了设计方法的有效性。 1 烟气脱硫工艺流程石灰石/石膏湿法烟气脱硫的基本工艺流程为:锅炉烟气经过除尘器除尘后,由引风机送入脱硫系统,烟气由进口烟道进入由增压 风机增压后,经气气换热器(GGH)降温,进入吸收塔。在吸收塔内,烟气由下

烟气脱硫基本原理及方法

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。

目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

25t锅炉烟气脱硫脱硝改造技术方案(新)

目录 第一章项目总说明 (3) 1.1、项目背景 (3) 1.2、项目目标 (3) 1.3概述 (3) 1.4、设计依据 (3) 1.5、设计改造原则 (4) 1.6、设计改造内容 (4) 第二章工艺方案部分 (4) 2.1 除尘系统工艺方案 (4) 2.2脱硫系统工艺方案 (6) 2.3脱硝系统工艺方案 (10) 第三章人员配置及防护措施 (15) 第四章环境保护 (16) 1、设计原则 (16) 2、环境保护设计执行的主要标准、规范 (16) 3、主要污染状况及治理措施 (16) 第五章概算及运行成本估算 (17)

第一章项目总说明 1.1、项目背景 现有25t/h锅炉一台,脱硫除尘系统已经投运。烟气脱硫运行过程中存在脱硫率低下以及运行成本过高等诸多问题。 现如今随着人们对环境的要求越来越高,以及环保部门对从锅炉烟囱排出的废气物的排放监控越来越严格,排放标准也越来越严厉。根据甲方要求,SO2的排放浓度要低于100mg/m3,粉尘颗粒物排放浓度要低于25mg/m3, 氮氧化合物排放浓度要低于150mg/m3,污染物排入大气必须达标排放。 公司领导十分重视环境保护工作,拟针对现行日益严格的环保要求,对锅炉尾气烟气进行处理改造,做到达标排放。 1.2、项目目标 本工程的目的就是在上述建设背景和有关法规要求下对该项目原有污染物治理和工艺系统进行改造,在不影响现有锅炉工况条件下,使该系统能有效减少中各项污染物的排放,保证尾气达标排放,实现良好的经济效益和环保效益,并尽可能利用现有设施资源,把项目改造费用降到最低。 1.3概述 本工程针对现有1台25t/h流化床锅炉脱硫除尘系统进行改造,将原有简易双碱法系统改为氧化镁系统,新增布袋除尘系统、新增脱硫塔装置、新增SNCR脱硝系统、一套新型工艺系统设备、改造配套电气仪表系统。锅炉出口到引风机出口之间工艺系统的所有设备; 详细分工界线内容如下(暂定,最终以招标文件为准): 一、除尘系统 a、除尘系统电气仪表系统1套 b、低压长袋脉冲布袋除尘器1套 二、脱硫系统 a、脱硫电气仪表系统1套; b、制浆系统1套; c、脱硫塔1台; d、脱硫塔工艺循环系统1套; e、土建改造系统1套; f、脱水系统1套; g、管道系统1套; 脱硫前烟气中SO2原始排放浓度:设计时按工况下最大SO2浓度1512mg/m3考虑,烟气脱硫后达到如下指标:SO2浓度≤100mg/m3。 工程改建后脱硫系统运行时采用氧化镁做为脱硫剂。 三、脱硝系统 a、新增尿素溶液制备系统; b、新增SNCR脱硝系统; 1.4、设计依据 1.4.1基本设计条件

烟气脱硫技术方案

技术方案

2.工艺描述 。烟 24小时计)的吸收剂耗量设计。石灰石浆液制备罐设计满足工艺要求,配置合理。全套吸收剂供应系统满足FGD所有可能的负荷范围。 (3)设备 吸收剂浆液制备系统全套包括,但不限于此:

卸料站:采用浓相仓泵气力输送把石灰石送入料仓。 石灰石粉仓:石灰石粉仓根据确认的标准进行设计,出料口设计有防堵的措施;顶部有密封的人孔门,该门设计成能用铰链和把手迅速打开,并且顶部有紧急排气阀门; :其 能安全连续运行。 在烟气脱硫装置的进、出口烟道上设置密封挡板门用于锅炉运行期间脱硫装置的隔断和维护,旁路挡板门具有快速开启的功能,全开到全关的开启时间≤25s。系统设计合理布置烟道和挡板门,考虑锅炉低负荷运行的工况,并确保净烟气不倒灌。 压力表、温度计等用于运行和观察的仪表,安装在烟道上。在烟气系统中,设有人

孔和卸灰门。所有的烟气挡板门易于操作,在最大压差的作用下具有100%的严密性。我方提供所有烟道、挡板、FGD风机和膨胀节等的保温和保护层的设计。 (1)烟道及其附件 用碳 筋统一间隔排列。加强筋使用统一的规格尺寸或尽量减少加强筋的规格尺寸,以便使敷设在加强筋上的保温层易于安装,并且增加外层美观,加强筋的布置要防止积水。 烟气系统的设计保证灰尘在烟道的沉积不会对运行产生影响,在烟道必要的地方(低位)设置清除粉尘的装置。另外,对于烟道中粉尘的聚集,考虑附加的积灰荷重。 所有烟道在适当位置配有足够数量和大小的人孔门和清灰孔,以便于烟道(包括膨

胀节和挡板门)的维修和检查以及清除积灰。另外,人孔门与烟道壁分开保温,以便于开启。 烟道的设计尽量减小烟道系统的压降,其布置、形状和内部件(如导流板和转弯处 每个挡板的操作灵活方便和可靠。驱动挡板的执行机构可进行就地配电箱(控制箱)操作和脱硫自控系统远方操作,挡板位置和开、关状态反馈进入脱硫自控系统系统。 执行器配备两端的位置限位开关,两个方向的转动开关,事故手轮和维修用的机械联锁。 所有挡板/执行器的全开全关位配有四开四闭行程开关,接点容量至少为

脱硫工艺简介

. 1. 湿法烟气脱硫 石灰石(石灰)—石膏烟气脱硫 是以石灰石或石灰浆液与烟气中的SO2反应,脱硫产物是含水15-20%的石膏。 氧化镁烟气脱硫 是以氧化镁浆液与烟气中的SO2反应,脱硫产物是含结晶水的亚硫酸镁和硫酸镁的固体吸收产物。 氨法烟气脱硫 用亚硫酸铵(NH4)2SO3吸收SO2生成亚硫酸氢铵NH4HSO3,循环槽中用补充的氨使NH4HSO3亚硫酸氢铵再生为(NH4)2SO3亚硫酸铵循环使用。 双碱法烟气脱硫 是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用 海水法烟气脱硫 海水通常呈弱碱性具有天然的二氧化硫吸收能力,生成亚硫酸根离子和氢离子,洗涤后的海水呈酸性,经过处理合格后排入大海。 2.干法或半干法烟气脱硫 所谓干法烟气脱硫,是指脱硫的最终产物是干态的 喷雾法:利用高速旋转雾化器,将石灰浆液雾化成细小液滴与烟气进行传热和反应,吸收烟气中的SO2。 炉内喷钙尾部增湿活化法:将钙基吸收剂如石灰石、白云石等喷入到炉膛燃烧室上部温度低于1200℃的区域,石灰石煅烧成氧化钙,新生成的氧化钙CaO与SO2进行反应生成CaSO4硫酸钙,并随飞灰在除尘器中收集,并且在活化反应器内喷水增湿,促进脱硫反应。 循环流化床法:将干粉吸收剂粉喷入塔内,与烟气中的SO2反应,同时喷入一定量的雾化水,增湿颗粒表面,增进反应,控制塔出口烟气的温度,吸收剂和生成的产物一起经过除尘器的收集,再进行多次循环,延长吸收剂与烟气的接触时间,大大提高吸收剂的利用率和脱硫效率。 荷电干式喷射脱硫法:吸收剂干粉以高速通过高压静电电晕充电区,使干粉荷上相同的负电荷被喷射到烟气中荷电干粉同电荷相斥,在烟气中形成均匀的悬浊状态,离子表面充分暴露,增加了与SO2的反应机会。同时荷电粒子增强了活性,缩短了反应所需停留时间,提高了脱硫效率。 二、烧结机石灰—石膏湿法脱硫工艺概述 1、烧结机的烟气特点 烧结烟气是烧结混合料点火后,随台车运行,在高温烧结成型过程中产生的含尘废气,烧结烟气的主要特点是: (1)烧结机年作业率较高,达90%以上,烟气排放量大; (2)烟气成分复杂,且根据配料的变化存在多改变性别; (3)烟气温度波动幅度较大,波动规模在90~170 ℃; (4)烟气湿度比较大一般在10%左右; (5)由于烧结原料含硫率关系,引起排放烟气SO2浓度随配料比的变化而发生较大的变化; (6)烧结烟气含氧量高,约占10%~15%左右; (7)含有腐蚀性气体。烧结机点火及混合料的烧结成型过程,均产生一定量的氯化氢(HCl)、硫氧化物(SOx)、氮氧化物(NOx)、氟化氢(HF)等。 2. 石灰-石膏湿法脱硫工艺原理 脱硫剂采用石灰粉(150目以上,含钙率≥80%,筛余量≤5%),脱硫浆液吸收烟气中的S02后,经氧化生成石膏,其反应方程式如下: (1)烟气中SO2及SO3的溶解; 烟气中所含的SO2与吸收剂浆液发生充分的气/液接触,在气—液界面上发生传质过程,烟气中气态的SO2及SO3溶解转变为相应的酸性化合物: SO2+H2O ←→H2SO3亚硫酸 SO3+H2O ←→HSO4硫酸氢根 烟气中的一些其他酸性化合物(如:HF(氟化氢)、HCl(氯化氢)等),在烟气与喷淋下来的浆液接触时也溶于浆液中形成氢氟酸、盐酸等。

烟气脱硫脱硝工程施工方案

烟气脱硫脱硝工程施工方案 1石灰石制浆系统安装方案 1.1概述 本电厂烟气脱硫工程石灰石浆液制备系统包括石灰石粉贮存系统和石灰石制浆系统两部分。运来的石灰石粉经卸下称重计量后送入粉仓内贮存,仓内石灰石粉经出料计量给料机,再经电动旋转给料机输入石灰石粉仓内暂时贮存,粉仓内石灰石粉经出料计量给料机送入制浆罐,向制浆罐内加水来调节浆液浓度,并用搅拌器搅拌均匀,然后通过浆液给料泵将制备好的浆液向吸收塔输送。 1.2安装方案 (A)力能配备 作业区域内电源集中控制,作业区域布置电源开关柜,各机械用空气开关控制,电动工具使用时配移动电源盘,电焊机集中布置,汽车吊为配合机械。 (B)作业方案及作业方法 a作业方案 粉仓组成筒圈后具有一定的刚度,可在地面上按吊装设备的起升能力,将筒壁制成数个圆圈筒段,为防止筒圈变形,可用十字形吊梁方法吊装。 b注意事项

?安装前应对设备进行检查,发现有损坏处要及时纠正。?每一层壁板焊接完毕后,应立即进行焊缝检查和打磨作业,然后方可起升。 ?壁板装配时随时检查每块板曲率大小,若变形超标须及时校正,同时应测量每块壁板垂直度,符合要求后予以定位点固。壁板安装完毕后,其上口水平允许偏差不大于2mm,在整个圆周上任意两点的水平偏差不大于6mm。壁板铅垂允许偏差不大于3mm。上口任意点半径的允许偏差不大于15mm。装配前用弦长2m样板检查其圆度,样板与受检处间隙小于2mm。 (2)其它设备及管道、阀门等安装 利用汽车吊按照设备安装要求进行安装。对于计量设备的安装应严格、规范、精心、细致,确保计量装置的准确性。1.3石灰石粉仓安装 (1)作业顺序 石灰石粉仓仓体安装→钢结构安装→仓顶排气过滤装置安装→电动旋转给料机安装→出料计量给料机安装→其它辅助设备及管道阀门等安装。 (2)施工机械配置 本系统内布置汽车吊作为设备吊装机械。 (3)石灰石粉仓安装 (A)力能配备

基于PLC的锅炉烟气脱硫控制系统的设计

基于PLC的锅炉烟气脱硫控制系统的设计 1、引言 我国是燃煤大国,燃煤排放的SO2成为影响我国城市空气质量的主要污染物。因此,锅炉烟气脱硫是减排SO2的重要手段。 锅炉烟气脱硫系统具有很高的复杂性,其对控制系统的要求往往很高。而使用PLC控制已经成为一种较先进,应用势头强劲,应用越来越广泛的一种控制设备。它具有可靠性极高、能经受恶劣环境的考验、功能齐全、性价比高等特点,广泛应用于锅炉烟气脱硫工程。作者参与设计山东某热源厂2×75t/h锅炉烟气脱硫控制系统,采用了西门子S7-200可编程控制器,上位机采用北京亚控公司组态王KINGVIEW 6.53工业控制软件,实现对脱硫系统的监控。 2、脱硫系统工艺流程 本热源厂采用石灰石—石膏湿法烟气脱硫技术。该技术以石灰石浆液作为脱硫剂,在吸收塔内对烟气进行喷淋洗涤,使烟气中的二氧化硫反应生成亚硫酸钙,同时向吸收塔的浆液中鼓入空气,强制使亚硫酸钙转化为硫酸钙,脱硫剂的副产品为石膏。该法脱硫效率高(大于95%),工作可靠性高。 该系统包括烟气换热系统、吸收塔脱硫系统、给料系统、石膏脱水和废水处理系统。本文设计的是给料系统的PLC控制系统。 3、锅炉脱硫系统简介 (1)本系统为2x75t/h锅炉烟气脱硫工程,每台锅炉前有三台气动双插板阀,系统运行时打开,系统停止时关闭;可现场操作,控制室操作员站操作,每套系统有一台22kw罗茨风机,用于将石灰石粉吹入锅炉,进行脱硫;带有就地/远控转换开关,可由现场控制柜或控制室操作员站操作,并能与炉前气动阀连锁,气动阀不能全部打开,罗茨风机不能运行。 (2)每套系统有一台4kw给料机,可变频调速。带有柜门安装的控制面板,可由现场控制柜或控制室操作员站操作给料机的启停,故障复位和给料机转速的控制,并能与罗茨风机连锁,罗茨风机不运行,给料机亦不能运行。 (3)两套系统共用一个石灰石粉仓,粉仓上安装有一个高料位、两个低料位三个射频导纳物位开关,带有就地/远控转换开关,可由现场控制柜、现场除尘器操作箱或控制室操作员站操作;现场除尘器操作箱安装于0m层,石灰石粉仓进料口附近,用于进料时操作粉仓除尘器并能检测粉仓内的石灰石粉的高度。 4、PLC控制系统硬件组成 (1)中央处理单元

脱硫技术方案

柏立化学有限公司5×35t/h锅炉烟气脱硫项目技术方案 上海晓沃环保防腐工程有限公司 2013年11月17日

第一篇工程概况上海晓沃环保防腐工程有限公司2013年11月17日

1、工程概况 柏立化学有限公司热电厂5台35t/h链条炉,按照环保“三同时”的要求,锅炉烟气脱硫设施应与主体工程同时设计、同时施工、同时投产,本方案为烟气脱硫方案,供建设方参考。 第一种方案,采用两炉一塔、三炉一塔的布置方式,每塔可处理3台锅炉烟气。脱硫工艺采用石灰-石膏湿法烟气脱硫工艺技术,采用石灰作为脱硫剂,脱硫产物为石膏,含量达90%,可综合利用。脱硫塔为花岗岩,采用逆流喷淋空塔,脱硫过程较易控制,脱硫渣石膏可利用。 第二种方案,重建脱硫塔,布置有引风机后,采用两炉一塔、三炉一塔的布置方式,可处理3台锅炉烟气量,目前的双碱法系统不作改动。 方案实施后,可全面提高脱硫系统的效率,彻底解决引风机带水的问题。如采用石灰-石膏法,脱硫渣可以全部利用。 本方案适用于柏立化学有限公司热电厂5台35t/h链条炉烟气脱硫工程,使用含硫量2%的煤时,脱硫率不小于95%,二氧化硫排放浓度小于200mg/m3;粉尘排放浓度小于50mg/m3。 2、设计条件 2.1环境条件 2.2 厂址及电厂概况 柏立化学有限公司热电厂位于山东省潍坊市。 2.3 燃煤 硫份:~2 % 2.4 主要设备参数 蒸发量:35t/h 耗煤量:6t/h 烟气量:90000m3/h 烟气温度:140℃

二氧化硫浓度:3500mg/m3 2.5 脱硫剂:石灰 3、脱硫设计原则 (1)脱硫项目的主体设备采用国产设备,考虑炉型、负荷、煤种、燃煤量、炉后脱硫场地等方面因素,提出脱硫工艺改造方案。 (2)综合分析煤质情况,燃煤含硫量按2%设计。 (3)设计脱硫率不小于95%,保证效率为≥92%。 (4)脱硫装置采用PLC上位计算机控制,同时考虑与主体工程的信号连接。 (5)因地制宜设计合理可靠的布置方案。 (6)地震烈度:7度 (7)SO2排放浓度小于200mg/Nm3,烟尘排放浓度小于50mg/Nm3。 (8)充分利用热电厂75t/h链条炉已建的设备、设施,采用最佳设计工艺并结合热电分厂实际情况以达到降低投资和运行成本的目的,烟气脱硫项目总平面布置满足热电分厂已有的场地安排。脱硫吸收塔布置在引风机后,正压操作,可避免风机腐蚀。目前引风机压头有较大的余量,不需要增加脱硫风机。 (9)脱硫渣最终达到含水率不大于15%的石膏,综合利用或用汽车外运。 (10)系统应具备自防护功能,当出现故障、烟气高温、厂用电消失等情况时,系统能在最短时间内将烟气切换到旁路烟道,确保系统安全。 (11)系统CRT操作界面应能显示:将在线监测数据引入脱硫自控系统,系统出口SO2浓度、O2含量、烟尘浓度、烟气流速、烟气进出口温度、烟气量等。 (12)承包商对系统功能设计、结构、性能、制造、供货、安装、调试、试运行等采用最新国家标准和国际标准。如果国家标准低于国际标准,则采用国际标准。同时必须符合国家和山东省节能减排相关文件的要求。 (13)环境保护、劳动卫生和消防、防雷接地设计采用中华人民共和国最新国家标准。 (14)承包商提供设计、制造、安装、调试、试运行的规范和标准等清单。列出制造厂家在选用材料、制造工艺、验收要求中所执行的标准清单。 (15)具体为(但不限于此):

脱硫工艺流程

脱硫工艺流程 1、石灰石/石膏湿法脱硫工艺过程简介 石灰石/石膏湿法脱硫工艺是以石灰石溶解后制成的碱性溶液作为吸收剂对烟气中含有的酸性气体污染物(主要是二氧化硫)进行吸收处理的一种工艺。湿法脱硫工艺的主要过程可分为以下几个部分: (1)混合和加入新鲜的吸收液;(2)吸收烟气中的二氧化硫并反应生成亚硫酸钙;(3)氧化亚硫酸钙生成石膏;(4)从吸收液中分离石膏。 2 、吸收塔系统在湿法脱硫工艺中的重要地位 吸收塔系统是石灰石/石膏湿法脱硫工艺的核心部分,在湿法脱硫工艺的四个部分中,(1)~(3)三个部分是在吸收塔系统中实现的,即在吸收塔系统中完成了对烟气中二氧化硫进行吸收、氧化和结晶的整个反应过程。 2.1吸收塔系统的构成 吸收塔系统主要由如下几个子系统构成:吸收塔本体系统、石灰石浆液供应系统、氧化空气供应系统、石膏浆液排出系统。此外,石膏一级脱水系统及排空系统等也与吸收塔系统的运行密切相关。 2.2 吸收塔系统的工作原理 2.2.1 吸收塔本体吸收系统:在吸收塔的喷淋区,石灰石、副产物和水等混合物形成的吸收液经循环浆液泵打至喷淋层,在喷嘴处雾化成细小的液滴,自上而下地落下,而含有二氧化硫的烟气则逆流而上,气液接触过程中,发生如下反应: CaCO3+2 SO2+H2O <=> Ca(HSO3)2+CO2 除SO2外,烟气中三氧化硫、氯化氢和氟化氢等酸性组分也以很高的效率从烟气中去除。浆液中的水将烟气冷却至绝热饱和温度,消耗的水量由工艺水补偿。为优化吸收塔的水利用,这部分补充水被用来清洗吸收塔顶部的除雾器。 2.2.2氧化空气供应系统 在吸收塔的浆池区,通过鼓入空气,使亚硫酸氢钙在吸收塔氧化生成石膏,反应如下: Ca(HSO3)2+O2+ CaCO3+3 H2O 2CaSO4.2H2O+CO2

烟气脱硫DCS系统

烟气脱硫工程 DCS系统培训 远大环保集团有限公司 2005.12

1.系统概述 1. 1本培训材料是根据北京ABB贝利控制有限公司提供的资料,针对永济热电厂2X300MW机组烟气脱硫工程所采用的分散控制系统(以下简称DCS)所提出的。 1.2本脱硫工程采用石灰石-石膏脱硫工艺。 2.系统特点 2.1D CS由分散处理单元、数据通讯系统和操作员站,工程师站等人 机接口及厂级计算机网络接口组成。 2.2D CS系统易于组态,易于扩展。 2.3D CS的设计采用合适的冗余配置和诊断至通道级的自诊断功能, 具有高度的可靠性。系统内任一组件发生故障,均不影响整个系统的工作。 2.4系统的监视、报警和自诊断功能高度集中在CRT上显示,并能 在打印机上打印,控制、报警、监视和保护等基本功能将尽可能在功能上和物理上分散。特别注意保护功能的独立性,以保证人员和设备的安全。 2.5卖方所供DCS系统可防止各类计算机病毒的侵害和DCS内各存 贮器中的数据丢失。 2.6整个DCS的可利用率至少为99.99%。 2.7控制系统的设计和配置符合下列总的防止故障原则。 2.7.1个别故障不会引起整个控制系统故障。 2.7.2个别故障不会引起FGD的保护系统误动或拒动。 2.7.3将控制功能组合在系统块中,系统设计要保证使任何模块故障只解列部分系统的控制,且这种局部解列可由操作人员随时干预。 2.7.4控制系统的结构能反映设备的冗余度,不致于因控制系统内的个别故障而导致受控设备控制失灵,同时又使备用设备也无法启动。 2.7.5由于一个控制系统故障,电厂设备或控制功能要能在执行级(即远方手动控制)响应其控制。该设备或控制过程自动解列 2.7.6所有重要保护信号采用冗余(三取二)通道,以保证其可靠性,卖方充分保证防止保护系统误动或拒动。 2.8显示设备状态的颜色规定如下: 2.8.1红色:带电、运行、阀开 2.8.2绿色:断电、停止、阀关

相关主题
文本预览
相关文档 最新文档