当前位置:文档之家› 注射用原位凝胶的研究进展

注射用原位凝胶的研究进展

注射用原位凝胶的研究进展
注射用原位凝胶的研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

万方数据

万方数据

万方数据

纳米复合水凝胶的研究进展

纳米复合水凝胶的功能化及其研究现状 纳米复合水凝胶的研究现状 水凝胶(hydrogels)是一种适度交联的亲水性高分子,可在水中溶胀,但不溶解[1]。自20世纪40年代以来,水凝胶的物理化学性质得到了广泛关注。水凝胶作为高吸水材料、外科软组织填充材料、软性角膜接触镜和皮肤移植材料、隔水混凝土填加剂、石油回收堵水剂等在卫生、生物医学、建筑、化工等诸多领域具有广泛的应用前景。一般的水凝胶是水溶性高分子通过化学交联构成网络,如聚丙烯酰胺水凝胶,但是由于化学交联凝胶的力学性能较差,所以其实际应用范围受到限制。通过提高交联点密度的方法也可以提高有机交联凝胶的强度,但是其它性能如:光学透明性、吸水(脱水)速率、强度、柔性会大大降低,因而在应用上受到限制。 近年来,纳米技术的发展已进入了一个崭新的阶段,由于纳米材料(粒径1~100nm)独特的尺寸效应和界面效应,其在电子学、光学、机械学、催化等方面呈现出优异的性能[2]。纳米复合水凝胶是将纳米尺寸的无机物粒子分散在水凝胶中形成的复合材料。因为它不仅保持了纳米材料本身的功能特性,而且还将纳米材料的刚性、尺寸稳定性和热稳定性与水凝胶的软湿性能相结合,从而明显改善水凝胶的物理机械性能、热稳定性。所以是一种极具发展前景的新材料。利用无机纳米粒子作为物理交联剂,如蒙脱土、无机黏土等,已发现合成的有机-无机纳米复合水凝胶在改善其力学性能方面具有显著的效果。 在传统纳米复合材料的启发下,1997年Messersmith[3]等第一次研究了蒙脱土/PNIPAAm纳米复合水凝胶,随后Liang[4]等前人的经验的基础上,合成了改性蒙脱土/PNIPAAm纳米复合水凝胶。2002年,日本Haraguchi [5][6]等,首次报告将锂藻土(Laponite)纳米粒子分散在水中,使N-异丙基丙烯酰胺(NIPAm)单体在Laponite分散液中原位自由基聚合,不添加化学交联剂,得到了聚N-异丙基丙烯酰胺-Laponite纳米复合水凝胶(nanocomposite hydrogel),这种复合水凝胶拉伸强度约为常见水凝胶的10倍,断裂伸长率高达1300%,约为常见水凝胶的50倍,韧性高,不易拉断;透明性好,如图1。近年来,智能水凝胶作为智能材料

智能复合水凝胶材料研究进展

智能复合水凝胶材料研究进展 综述了近年来以无机增韧相(石墨烯、金、粘土和二氧化硅)和生物质增强相(纤维素和木质素)为基的智能水凝胶复合材料的研究进展;概括了其在增韧增强的同时带来的新功能,并对智能水凝胶复合材料的应用前景进行了展望。 标签:智能复合水凝胶材料;无机物;生物质;应用 智能水凝胶是能够对外界环境(如温度、pH、电场、光、磁场、特定生物分子等)微小的变化或刺激有显著响应的三维网络结构的亲水性聚合物。基于水凝胶的三维网络结构和环境敏感性,智能水凝胶广泛应用于记忆材料[1]、药物缓释[2~4]、敷料、组织工程[5]、智能纺丝、化学机械器件、物质分离、酶的固载等领域。由于水凝胶网络中缺少有效的能量耗散机制,积累的能量接近裂纹尖端不能在凝胶中消散,导致水凝胶存在易断裂、力学强度低、韧性差等缺点[6],从而限制了其在实际生活中的应用。为此,可以通过加入类似于陶瓷基复合相的增韧相或者生物质基增强相来吸收裂纹扩展释放的能量,从而达到增强水凝胶机械强度的目的。本文综述了利用无机物增韧相,生物质基增强相等复合材料改进智能水凝胶性能,实现增韧、增强作用,同时引进新的基团赋予其新功能,展望了智能复合水凝胶材料的应用前景。 1 智能复合水凝胶种类 1.1 无机物复合相 陶瓷基复合材料的增韧相是无机物复合相使用最为广泛的材料之一,如粘土、二氧化硅、石墨烯类、纳米金属等。无机增强相分散在连续相中,达到增强水凝胶的作用。 1.1.1 石墨烯类 石墨烯是目前自然界最薄、最强韧的材料,断裂强度比钢材的还要高200倍,它具有非常好的导热性、电导性、透光性和超大比表面积等特性,同时具有较好的弹性[7]。其独特的结构及性能可显著提高复合材料的机械性能与热稳定性。氧化石墨烯(GO)是石墨烯的一种重要衍生物,其表面有大量的羟基、环氧基及羧基,在水溶液和极性溶剂中有良好的分散性,可与亲水性聚合物形成纳米复合水凝胶材料。GO的亲水性基团增强了GO与基体材料间的界面相互作用,具有良好的相容性,能显著改善材料的力学性能。Shi等[8]将少量化学交联的小分子和物理交联的氧化石墨烯纳米粒子混合制备了新型近红外(NIR)光响应性的聚(N-异丙基丙烯酰胺)/氧化石墨烯(PNIPAM-GO)高拉伸性能的纳米复合水凝胶。 1.1.2 金

水凝胶的研究进展

水凝胶的研究进展 俊机哥哥07 (广西师范学院化学与生命科学学院09高分班) 摘要:本文对水凝胶的制备方法、性质及其应用进行了简单的介绍。关于水凝胶的制备,我们在文章的介绍了三种方法:单体聚合并交联、聚合物交联、载体的接枝共聚。 关键字: 水凝胶制备性质应用生物医学 前言 水凝胶这个词最早出现于1960年,当时是由捷克的Wicherle和Lim研制的聚强乙基丙烯酸甲酯。它本身是硬的高聚物,但它吸收水分后就变成具有弹性的凝胶,故称水凝胶。水凝胶是一类具有三维网络结构的聚合物,在水中能够吸收大量水分而溶胀,并在溶胀之后能够继续保持其原有结构而不被溶解。水凝胶可由不同的亲水单体和疏水单体聚合而成。由于其具有三维网络结构,故相对分子质量很高,其交联网络结构主要由化学键、氢键或范德华力等组成。溶胀时溶液可以扩散进入交联键之间的空间内,交联密度越大,三维网络间的空问就越小,水凝胶在溶胀时吸收的水分也就越少。由于水凝胶表面不易粘附蛋白质和细胞,故在与血液、体液及人体组织相接触时会表现出良好的生物相容性;另外,水凝胶由于含有大量的水分而非常柔软,并且类似于生物体组织,故作为人体植入物可以减少不良反应。因此,水凝胶被作为优良的生物医学材料得到广泛应用2。例如,PVP水凝胶可作为眼科手术中黏弹物质及人工玻璃体材料。PVA水凝胶可用于关节重建、人工软骨、人工喉及人工玻璃体。PVA 是第一个被广泛使用在移植方面的水凝胶。水凝胶已被用做鼻子、面部、缺唇修补、替

代耳鼓膜等方面。水凝胶用做人工软骨、腱以及主动脉接枝不久将被商业化。另外,水凝胶在日用品,工业用品,农业、土建等领域也有广泛应用。 1 水凝胶的制备 1. 1 单体聚合并交联 合成水凝胶的单体很多,大致分为中性、酸性、碱性3 种,表1 列出了部分单体及交联剂。 表1 水凝胶制备中常用的单体和交联剂 水凝胶可以由一种或多种单体采用电离辐射、紫外照射或化学引发聚合并交联而得。一般来说,在形成水凝胶过程中需要加入少量的交联剂。Nogaoka[12 ]及本文作者[13 ]等在不使用交联剂的情况下通过辐射引发使单体在水溶液中交联合成聚N2异丙基丙烯酰胺(polyNI2PAAm) 水凝胶,这种方法操作简单,交联度可通过改变单体浓度及辐射条件来控制,无任何添加成分,不会污染产品,可以一步完成产品的制备及消毒。与传统方法

可注射水凝胶的研究进展

可注射水凝胶的研究进展 一、水凝胶定义 水凝胶是一类能够吸收并保有大量水分的具有交联网络结构的聚合物,在聚合物网络结构中含有亲水基团或亲水的链段,它们在水环境中能够与水结合,从而形成水凝胶结构,这种水凝胶结构使得亲水的小分子能够在其中进行扩散。 原位可注射水凝胶是近年来出现的新型水凝胶体系。通过注射的方法将具有一定流动性的生物材料植入体内,因此很容易充满整个具有不规则形状的缺损部位,手术创伤非常微小。该体系可由酸碱度、温度的变化或者多价离子的存在而产生溶液-凝胶相转变,或通过共价键而形成水凝胶。 二、水凝胶分类 根据水凝胶对外界刺激的应答情况,可以分为两类化合物:一类是传统的水凝胶高分子材料,这类水凝胶对环境的变化相对不是很敏感;而另外一类则是对外界条件非常敏感的水凝胶高分子材料,这类水凝胶高分子材料由于对于不同的环境条件具有不同的应答表现,因此可以作为一种新型的智能材料来使用,具有良好的科研和市场应用前景。 智能型水凝胶是一种可以进行传感、处理并且具有执行功能的高分子材料,作为一种新型的智能材料,在诸多领域有着重要的用途。根据对外界环境条件的刺激表现出不同的响应情况可以分为:温度敏感性的水凝胶高分子材料、对于pH敏感性的水凝胶高分子材料、对光敏感的水凝胶高分子材料、对压力敏感的水凝胶高分子材料、对于生物分子敏感的水凝胶高分子材料、对于电场敏感的水凝胶高分子材料等。 1、温度敏感性水凝胶 这一类水凝胶高分子材料的溶胀与收缩性,对于温度的变化具有非常高的敏感度,具体表现为在较低温度下溶胀度较高,在相对较高温度下溶胀度比较低。该凝胶具有最低临界共溶温度(LCST),即溶胀度的变化和温度的变化并不是线性的,在某一温度下水凝胶的体积表现为突然的收缩和膨胀。 2、pH敏感性水凝胶 水凝胶高分子材料对于pH的敏感性是指其溶胀或消溶胀作用是随着pH值的不同而进行变化。具有pH响应性的水凝胶都是通过交联而形成大分子网络,网络中含有酸性或碱性基团,随着介质pH值、离子强度改变,这些基团发生电离,导致网络内大分子链段间氢键的解离,引起不连续的溶胀体积变化。 3、光敏感性水凝胶 水凝胶高分子材料的光敏感性是指水凝胶在受到光照的刺激下而发生的一种体积相互转变的现象。 除此之外还有磁性水凝胶、压力敏感性凝胶以及聚合物水凝胶等。 三、制备水凝胶的材料 凡是水溶性或亲水性的高分子,通过一定的化学交联或物理交联,都可以形成水凝胶。 理想的材料都应具备以下条件:①良好的生物相容性。②适当的生物降解性。

水凝胶的应用和研究进展

水凝胶的应用和研究进展 摘要:水凝胶是一类具有广泛应用前景的高分子材料,本文主要叙述了水凝胶在生物医学、记忆元件开关、生物酶的固定、农业中的保水抗旱等领域的应用及研究进展,简要介绍了水凝胶在国内外研究状况,最后对其发展趋势作了展望。关键词:高分子材料;水凝胶;应用;进展 前言 水凝胶可定义为在水中能够溶胀并保持大量水分而又不能溶解的交联聚合物。分子能够在水凝胶中扩散。水凝胶的网络结构如图1所示。水凝胶具有良好的生物相容性,它能够感知外界刺激的微小变化,如温度、pH值、离子强度、电场、磁场等,并能够对刺激发生敏感性的响应,常通过体积的溶胀或收缩来实现。水凝胶的这一特点使它在生物医学领域、记忆元件开关、生物酶的固定、农业中的保水抗旱等方面有广泛的应用前景[1]。 图一,水凝胶的三维网络结构和扫描电镜图片 水凝胶有各种分类方法,根据水凝胶网络键合的不同,可分为物理凝胶和化学凝胶。物理凝胶是通过物理作用力如静电作用、氢键、链的缠绕等形成的,这种凝胶是非永久性的,通过加热凝胶可转变为溶液,所以也被称为假凝胶或热可逆凝胶。许多天然高分子在常温下呈稳定的凝胶态,如k2型角叉菜胶、琼脂等[2];在合成聚合物中,聚乙烯醇(PVA)是一典型的例子,经过冰和融化处理,可得到在60℃以下稳定的水凝胶[3]。化学凝胶是由化学键交联形成的三维网络聚合物,是永久性的,又称为真凝胶。 根据水凝胶大小形状的不同,有宏观凝胶与微观凝胶(微球)之分,根据形状的不同宏观凝胶又可分为柱状、多孔海绵状、纤维状、膜状、球状等,目前制备的微球有微米级及纳米级之分。根据水凝胶对外界刺激的响应情况可分为传统

的水凝胶和环境敏感的水凝胶两大类。传统的水凝胶对环境的变化如温度或pH 等的变化不敏感,而环境敏感的水凝胶[4,5]是指自身能感知外界环境(如温度、pH、光、电、压力等)微小的变化或刺激,并能产生相应的物理结构和化学性质变化甚至突变的一类高分子凝胶。此类凝胶的突出特点是在对环境的响应过程中其溶胀行为有显著的变化,利用这种刺激响应特性可将其用做传感器、控释开关等,这是1985年以来研究者最感兴趣的课题之一。 根据合成材料的不同,水凝胶又分为合成高分子水凝胶和天然高分子水凝胶。天然高分子由于具有更好的生物相容性、对环境的敏感性以及丰富的来源、低廉的价格,因而正在引起越来越多学者的重视。但是天然高分子材料稳定性较差,易降解,近几年不少学者开始了天然高分子与合成高分子共混合成水凝胶的研究工作[6,7],这将是今后的一大重要课题。 1 聚合物交联 从聚合物出发制备水凝胶有物理交联和化学交联两种。物理交联通过物理作用力如静电作用、离子相互作用、氢键、链的缠绕等形成。化学交联是在聚合物水溶液中添加交联剂,如在PVA水溶液中加入戊二醛可发生醇醛缩合反应从而使PVA交联成网络聚合物水凝胶。从聚合物出发合成水凝胶的最好方法是辐射交联法,所谓辐射交联是指辐照聚合物使主链线性分子之间通过化学键相连接。许多水溶性聚合物可通过辐射法制备水凝胶[9],如PVA、polyNI2PAAm、聚乙烯基吡咯烷酮(PVP)、聚丙烯酸(PAAc)、聚丙烯酰胺(PAAm)、聚氧乙烯(PEO)、聚甲基丙烯酸羟乙酯(PHEMA)等。采用辐射法合成水凝胶无须添加引发剂,产物更纯净。 2 水凝胶的性质研究 2.1 溶胀-收缩行为 吸水溶胀是水凝胶的一个重要特征。在溶胀过程中,一方面水溶剂力图渗入高聚物内使其体积膨胀,另一方面由于交联聚合物体积膨胀,导致网络分子链向三维空间伸展,分子网络受到应力产生弹性收缩能而使分子网络收缩。当这两种相反的倾向相互抗衡时,达到了溶胀平衡。 2.2 力学性能 水凝胶不仅要求具有良好的溶胀性能,而且应具有理想的力学强度,以满足

国内外药物凝胶剂研究进展

国内外药物凝胶剂研究进展 药剂学研究中的剂型设计,主要目的是为了方便临床用药并使药物发挥最 佳疗效。随着药物新剂型研究的不断深入,一种新型的外用药物制剂--凝胶剂 开始引起药剂研究人员的重视。由于凝胶剂具有水溶性特点,局部给药后,患 处表面皮肤吸收良好,不仅避免了口服给药存在的胃肠道首过效应,而且使副 作用大大减小;同时,水溶性凝胶剂给药后皮肤表面的药股不粘衣物,也使患 者乐于接受。凝胶剂有单相和双相凝胶之分。《中国药典》2000年版在(二部) 凡例中界定了凝胶剂:"凝胶剂是指药物与能形成凝胶的辅料制成的均一、混悬或乳剂型的乳胶稠厚液体或半固体制剂。""小分子无机药物凝胶剂是由分散的 药物胶体小粒子以网状结构存在于液体中,具有触变性,属两相分散系统,也 称混悬凝胶剂。局部用凝胶剂属单相分散系统,有水性凝胶剂与油性凝胶剂之分。水性凝胶剂的主要基质一般由水、甘油或丙二醇与纤维素衍生物、卡波姆 和海藻酸盐、西黄蓍胶、明胶、淀粉等构成;油性凝胶剂的主要基质由液体石 蜡与聚氧乙烯或脂肪油与胶体桂或铝皂、锌皂构成。"随着新药研究的进展和新型辅料的不断出现,药剂研究人员对凝胶剂也进行了深入的研究和探索,许多 有较高临床应用价值的凝胶剂外用新药,相继进入临床试验或工业化生产,并 且已有许多药物凝胶剂上市。 1国外药物凝胶剂研究、生产和上市概况 国外对凝胶剂的研究较早,发达国家的药典早就有各种凝胶剂药品的记载。《英国药典》1993年版就收载了水杨酸胆碱牙用凝胶、利多卡因凝胶、利多卡 因洗必泰复方凝胶等外用凝胶剂5种。《美国药典》ⅩⅩⅢ版(1995年)收载有 苯晔卡因凝胶剂、氢氧化铝凝胶剂、磷酸克林霉素凝胶剂等35种凝胶剂药品。2000年2月,美国FDA批准的新药和通用名药品中,E.Fougera公司研制生产 的克林霉素凝胶也名列其中。目前,法国生产的阿达帕林凝胶和德国 A.Menarini Industrie F公司研制生产的2.5%酮基布洛芬凝胶剂(商品名:法 斯通)等国外凝胶剂药品都已进入我国医药市场,并在全国各地医院广泛应用。据《Scrip Magazine》报道,瑞士Janssen Cliag公司最近研制成功了becaplermin(Regranex)0.01%凝胶剂,用于治疗糖尿病性溃疡。美国Medicix

可生物降解智能水凝胶的研究进展.

可生物降解智能水凝胶的研究进展* 孙姣霞1 ,罗彦凤2,屈 晟2 (1.重庆大学化学化工学院,重庆400044;2.重庆大学生物工程学院,重庆400044 *基金项目:重庆市自然科学基金资助项目(CSTC2006BB5010;国家自然科学基金资助项目(30470474 收到稿件日期:2007-06-08通讯作者:罗彦凤 作者简介:孙姣霞(1984-,女,湖南新化人,在读研究生,主要从事高分子材料研究。 摘 要:可生物降解智能水凝胶因其在生物医学领域 有着广泛的应用前景,因而已成为科研工作者研究的热点。详细介绍了可生物降解智能水凝胶的研究现状及其在药物释放体系中的应用,并预测了智能水凝胶可能的发展方向。 关键词:智能水凝胶;可生物降解;药物释放系统; 综述 中图分类号:O648;R313.08 文献标识码:A 文章编号:1001-9731(2007增刊-1895-04

1引言 水凝胶是指可被水溶胀的半固态交联聚合物网络。智能型水凝胶(intelligent hydrogels or smart hydrogels是一类对外界刺激能产生敏感响应的水凝胶。典型的外界刺激有温度、pH 值、溶剂、盐浓度、光、电场、化学物质等。目前研究最多的是pH 敏感型和温度敏感型水凝胶[1~3]。智能水凝胶按其降解性能可分为可降解性智能水凝胶和不可降解性智能水凝胶。聚丙烯酰胺类、聚丙烯酸类、聚乙烯醇类等水凝胶主要是依赖双键的自由基反应形成以C —C 连接为主的交联网络,这种以C —C 连接的交联网络通常都是不可降解的。而可降解水凝胶能在机体生理环境下,通过水解、酶解,从高分子、大分子物质降解成对机体无损害的小分子物质,并且这些小分子降解产物通常是体内自身就存在的,如氨基酸、乳酸等,最后,通过机体的新陈代谢完全吸收和排泄,对机体无毒副作用。这类材料可用于控制药物在体内的释放,实现药物靶向输送,使药物在体内能够保持有效的浓度,减小或消除副作用,此外还可以避免免疫排斥以及二次手术等缺陷[4~6] ,因而在生物医学领域有 广泛的应用。 水凝胶的主要应用之一是用作药物释放材料。由于其在人体内使用,因此其必须具有良好的血液相容性和组织相容性。设计和研制一种集良好生物相容性、生物可降解性和智能型于一身的水凝胶药物释放材料,是一项极具挑战性的课题,对于推动药物控释材料研究的进程具有重要的意义。本文主要综述了可生物降解性智能水凝胶材料的研究现状及其在药物释放体系中的应用,并预测了智能水凝胶可能的发展方向。 目前研究最多的可生物降解智能水凝胶有壳聚糖类和PEG-PLGA 等嵌段共聚物类。 2壳聚糖类 壳聚糖是一个带有阳电荷的天然多糖,是甲壳素脱

结冷胶的成胶特性及应用研究进展__百替生物

结冷胶的成胶特性及应用研究进展 孟岳成洪伦波陈波王伟潮 浙江工商大学食品生物与环境工程 浙江天伟生化工程有限公司 摘要:本文综述了结冷胶的凝胶特性,凝胶机制和流变学特性,对结冷胶的凝胶原理、显微结构也进行了阐述,并介绍了结冷胶复配体系的特点及其应用前景。 关键词:结冷胶;凝胶性质;流变性;微观结构;应用 Gelation Properties and Application of the Gellan Gum Abstract:This paper reviewed the gelatin characteristics,gelation mechanism and rheological properties of gellan gum,it also expatiate the principle and microstructure network of the gelation,the property of complex gellan gum and prospect of application were also introduced. Key words:gellan gum;gelation;rheological property;microstructure;application 1.前言 结冷胶(gellan gum)是一种微生物多糖,是伊乐藻假单胞杆菌(Pseudomonas elodea),后确认为少动鞘脂单胞菌(Sphingomonas paucimobilis)所产生的胞外多糖。它于1987年由美国Kelco公司生产制造,1992年获得FDA认证,是可应用于食品的微生物胞外多糖。结冷胶为相对分子质量高达100万左右的阴离子型线形多糖,具有双螺旋结构,结冷胶的单糖分子组成是葡萄糖、鼠李糖和葡萄糖醛酸,分子组成大约为2:1:1[1]。 结冷胶具有凝胶形成能力强、透明度高、耐酸耐热性能好,在室温下,结冷胶有很强的保水能力,在4℃储存4个月水分损失率仅是1?2%。在食品领域主要用作增稠剂、稳定剂、凝结剂、悬浮剂和成膜剂,它能够赋予食品一种令人愉悦的质地和口感。 2、凝胶性质 2.1离子 结冷胶能溶于冷水,在90℃以上更易溶解,添加一定量盐离子,溶液冷却至大约30-35℃转变成凝胶[2]。结冷胶凝胶强度对离子的类型、原子价和浓度都很敏感,随着离子和胶浓度的增加,凝胶强度增加;但离子浓度超过一定的范围,凝胶强度又开始下降,即根据胶浓度的不同,存在一个最适钙离子的用量。结冷胶对钙、镁离子敏感,钠盐和钾盐也能形成凝胶但是用量比较大,大约0.5mmol/L 浓度的钙离子和镁离子就相当于约150mmol/L的钾离子和钠离子能在0.5%凝胶中产生最大的模量。钾离子和钙离子在促进结冷胶凝胶上无协同作用,因为少量的K+不能使结冷胶链形成足够量的氢键连接,同时又减弱了Ca2+的作用,而当K+质量分数增大到一定程度时,反过来溶液中就主要以K+为主体,但由于Ca2+的存在,二者互相竞争不能形成有序的双螺旋,影响凝胶的强度[3]。

功能性水凝胶的活性聚合与应用研究进展

第 46 卷 第 11 期 2017 年 11 月 Vol.46 No.11Nov .2017 化工技术与开发 Technology & Development of Chemical Industry 功能性水凝胶的活性聚合与应用研究进展 梁 良1,张亚平2,周 瑜2,任 锦2 (1.九江学院分析测试中心,江西 九江 332005;2.九江学院药学与生命科学学院,江西 九江 332005)摘 要:功能性水凝胶能够针对不同环境的变化而做出响应,在生物医药、组织工程、环境保护等领域被广泛研究。活性聚合则拥有结构设计性强、反应控制灵活、产物均一性好的优势。本文主要介绍了目前功能性水凝胶活性聚合的研究进展和应用情况。 关键词:功能性水凝胶;活性聚合;应用 中图分类号:TQ 317 文献标识码:A 文章编号:1671-9905(2017)11-0030-03 基金项目:九江学院科研基金项目(No.8500353)和启动基金项目(No.8879415) 作者简介:梁良(1986-),男,硕士,实验师,研究方向:复合药物载体材料的合成通信联系人:任锦(1986-),女,博士,讲师,研究方向:载药体系的研究收稿日期:2017-08-07 水凝胶是一种含有大量亲水基团的三维网状高分子材料,能够吸收大量的水进行溶胀。水凝胶功能化后,面对外界环境敏感点的变化,如温度、pH 值、压力、磁力、溶剂极性等,能够实现凝胶-溶胶或者溶胀的形态变换,并在这一过程中完成设定的功能化目的。基于水凝胶良好的生物相容性与环境友好性,以及超强的分子可设计性,其在药物传输[1]、组织工程[2]、水环境保护[3]和催化剂载体[4]等领域拥有巨大的开发潜力和发展前景。 活性聚合因不存在链转移和链终止过程,使得反应过程能够被精确控制,同时链引发速率又大于链增长速率,使产物分子量分布集中,均一性非常好,因此,使用活性聚合可以让包含各种功能基团的水凝胶被精确制造出来,产物的高一致性也提升了其运用到工业生产的可能性。 1 活性聚合 1.1 原子转移自由基聚合 原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)又称金属催化自由基聚合,是利用了金属催化剂具备发生可逆氧化还原反应的能力,使特定基团可以在活性种与休眠种之间自由转移,氧化-还原的往复循环实现链的增长。该法的特点在于聚合产物结构的可设计性很强,不仅能 够通过选用不同的聚合单体,还可以通过改变引发剂-卤代烷中烷烃部分的结构来设计所需要的水凝胶结构。盛维娟课题组[5]用2-溴代丙酸乙酯为引发剂,氯化亚铜为催化剂,通过ATRP 法将具有温度响应特性的甲基丙烯酸-2-(2-甲氧基乙氧基)乙酯和寡聚乙二醇甲醚甲基丙烯酸酯,以及N -羟甲基丙烯酰胺按比例共聚,再分别对共聚物进行叠氮化与炔基化处理,最后将二者交联得到温敏性水凝胶。周应学等[6]用2-溴异丁酰溴改性的α-环糊精与溴丙酰溴封端的F127水凝胶自组装形成聚准轮烷,并以此作为大分子引发剂,通过ATRP 法将聚乙二醇二丙烯酸酯和2-甲基丙烯酸羟乙酯进行共聚,由于引发剂中烷烃部分含有引入的改性α-环糊精与凝胶大分子结构,使得产物水凝胶不仅具有交联网络的超分子结构,还获得了良好的热敏性与力学强度。1.2 可逆加成-断裂链转移聚合 可逆加成-断裂链转移聚合(Reversible Addition-Fragmentation Transfer Polymerization, RAFT)实际上是在传统的自由基聚合反应中,加入了高链转移常数的链转移剂,使链转移成为一个快速而且可逆的过程,从而实现活性种与休眠种的可逆平衡,期间链转移相对链增长的反应时间可以忽略不计。这种活性聚合方法的优势是继承了传统自由基聚合的所有工艺和条件,拥有实现大规模工业

水凝胶的制备及其研究进展

水凝胶的制备及其应用进展 摘要水凝胶是一类具有广泛应用的聚合物材料,它在水中能够吸收大量水分而溶胀,并在溶胀之后能够继续保持其原有结构而不被溶解。由于其特殊的结构和性能,水凝胶自人们发现以来,一直被人们广为研究。本文综述了近些年国内外在水凝胶制备和在生物医药、环境保护等方面的一些研究进展,并对水凝胶的应用前景做了一些展望。 关键词水凝胶药物释放壳聚糖染料吸附 凝胶按照分散相介质的不同而分为水凝胶(hydro-gel)、醇凝胶(alcogel)和气凝胶(aerogel)等。水凝胶的分散相介质是水,它是由水溶性分子经过交联后形成的,能够在水中溶胀并且保持大量水分而不溶解的胶态物质。它在水中能够吸收大量的水分显著溶胀,并在显著溶胀之后能够继续保持其原有结构而不被溶解。[1]正因为水凝胶的这种特性,水凝胶能够对外界环境,如温度、pH、电场、磁场等条件变化做出响应。近年来,对水凝胶的研究逐渐深入。水凝胶的应用也越来越广泛,不仅在载药缓释、环境保护方面有很大用途,而且在喷墨打印等方面也有越来越大的作用。 一、水凝胶的制备 (一)PVA水凝胶的制备 上世纪50年代,日本科学家曾根康夫最早注意到聚乙烯醇(PVA)水溶液的凝胶化现象。由于PVA水凝胶除了具备一般水凝胶的性能外,具有毒性低、机械性能优良(高弹性模量和高机械强度)、高吸水量和生物相容性好等优点,因而倍受青睐。PVA水凝胶在生物医学和工业方面的用途非常广泛[2]。 龚桂胜,钟玉鹏[3]等人利用冷冻-解冻法制备了不同类型高浓度聚乙烯醇(PVA)水凝胶,研究了PVA水凝胶的溶胀率、拉伸强度和流变特性。他们发现不同类型的高浓度 PVA 水凝胶的力学性能相差较大,高分子量的 PVA 水凝胶的拉伸强度较低;这与低浓度的水凝胶相反。徐冰函[4]首先制备PVA水凝胶,再以PVA 水凝胶作为载体利用反复冷冻的方法成功制备含有二甲基砜的PVA水凝胶。实验制备的MSM/PVA水凝胶具有优良的理化性能,并且可以用于人工敷料的制备。同时研究发现,二甲基矾在PVA水凝胶内缓慢释放,24h后释放量可达55%以上。体外细胞实验证明MSM/PVA水凝胶对细胞无毒副作用,对细胞增殖具有促进作用,其中以1%MSM用VA对细胞的增殖能力最强。

壳聚糖智能水凝胶研究进展

第24卷 第9期中 国 塑 料Vo l.24,N o.9 2010年9月C HINA PLASTIC S Sept.,2010 壳聚糖智能水凝胶研究进展 舒 静1,李小静1,赵大飙2 (1.东北石油大学化学化工学院,黑龙江大庆163318;2.大庆油田储运销售分公司,黑龙江大庆163455) 摘 要:概述了壳聚糖智能水凝胶的优点和发展状况,主要介绍了温度敏感型、pH敏感型、温度/pH双重敏感型壳 聚糖水凝胶的研究进展及应用,详细介绍了壳聚糖水凝胶在医学领域如药物释放、组织工程方面的应用。指出了目 前壳聚糖水凝胶存在的问题以及未来发展趋势。 关 键 词:智能水凝胶;壳聚糖;温度敏感型;pH敏感型;药物释放;组织工程 中图分类号:T Q321.4 文献标识码:A 文章编号:1001 9278(2010)09 0006 05 Research Progress in Chitosan based Intelligent Hydrogels SH U Jing1,LI Xiaojing1,ZH A O Dabiao2 (1.Co llege of Chemistr y and Chem ical Engineering,N o rtheast Petr oleum U niver sity,Daqing163318,China; 2.Branch o f T r ansport ation and Sales,Daqing Oilfield,Daqing163455,China) Abstract:Chitosan based intelligent hy dro gels including tem peratur e sensitiv e,pH sensitive,and temperature/pH sensitive types w ere summarized w ith their m er its and sho rtcom ings analyzed. The applications o f the chitosan based hydrog els in drug releasing and org anization engineering were r ev iew ed.Finally,the cur rent problems and future development of chitosan based hydrog els were presented. Key words:intelligent hydrog el;chitosan;tem perature sensitive;pH sensitive;drug releasing;tis sue engineering 0 前言 水凝胶是能显著溶胀于水但不溶解于水的一类亲水性高分子网络。根据对外界刺激的响应情况,水凝胶可分为传统水凝胶和智能水凝胶。所谓智能水凝胶就是能对外界环境(如温度、pH值、电、光、磁场、特定生物分子等)微小的变化或刺激有显著应答的三维交联网络结构的聚合物。由于它能够对外界刺激产生应答,具有智能性,极大地扩大了其应用范围。近年来对它的研究和开发工作异常活跃,成为当今研究的热点,尤其在生物医学领域有了快速的发展,已广泛用于细胞分离与培养、组织工程、固定化酶、药物的控制释放和靶向药物等领域。但大部分的研究工作还是集中在 收稿日期:2010 04 02 黑龙江省博士后落户基金(L BH Q09193) 联系人,shuj73@https://www.doczj.com/doc/a51445134.html, 几种经典的智能水凝胶上,对于生物相容性好又可降解的天然高分子的研究甚少。与合成高分子相比,天然高分子水凝胶具有低毒性、良好的生物相容性、对环境敏感等优点。 壳聚糖是甲壳素脱乙酰基的产物,属天然含氨基的均态直链多糖,含有游离氨基,反应活性和溶解性均比甲壳素强,具有对环境无污染、易降解、来源广泛、价格低廉等优点,且能够形成水凝胶,是一种可用于制备新型智能水凝胶很有潜力的原料。近年来,人们开始采用壳聚糖为原料来制备智能水凝胶并取得了一些令人关注的成果。以壳聚糖为原料制备的水凝胶将好于以传统原料如聚丙烯酰胺、聚丙烯酸等制备的水凝胶,会弥补传统水凝胶的不足,如不易降解、对环境有一定的污染性等,扩大智能水凝胶的应用范围。但壳聚糖水凝胶同时也存在一些不足,如力学强度差、性能不稳定、对环境敏感性不强,还有待于改善。 本文主要介绍了温敏型、pH敏感型、温度/pH双

纳米凝胶的研究进展

纳米凝胶的研究进展 摘要:纳米凝胶是由亲水性或两亲性高分子链组成的三维网状结构,它能显著的溶胀于水但是不溶解于水,由于水和凝胶网络的亲和性,水可能以键合水、束缚水和自由水等形式存在于高分子网络中而失去流动性,因此纳米凝胶能够保持一定的形状。它们可以作为一种药物载体,而且也可以通过盐键,氢键或者疏水作用自发的结合一些生物活性分子。高分子电解质的纳米凝胶可以稳定地结合带相反电荷的小分子药物和生物大分子,比如寡或多聚核苷酸(siDNA,DNA)和蛋白质。目前的研究表明纳米凝胶在生物医药方面有很广阔的应用前景。关键词:纳米凝胶药物载体 前言 纳米凝胶通常指的是由物理或者化学交联的聚合物网络组成的水凝胶颗粒, 它是一种纳米尺度的水分散体。按形成的化学键,凝胶分为两种:一种是化学凝胶(聚合物凝胶),这种凝胶是由交联的共价键而形成的三维网络结构,比如PEG-cl-PEI。另一种是物理凝胶,是由非共价键形成的三维网络结构,比如甘露糖类,右旋糖酐等。按溶剂分,则一般分为有机凝胶和水凝胶。 纳米凝胶可以很好的作为药物运输载体是因为它们有很高的负载能力,高的稳定性,更重要的是相对于普通的药物纳米载体,它们对环境敏感,比如离子强度,pH和温度。至从2002年第一篇关于纳米凝胶的合成与应用的综述发表后,这类新颖的纳米结构材料在药物,大分子和显影剂运输方面受到人们越来越大的关注。这篇综述简单介绍了纳米凝胶的合成与应用,尤其是药剂学方面的应用。 没有负载的纳米凝胶含有大量的水而处于一种溶胀的状态。纳米凝胶可以通过生物活性因子与其多聚链基质之间的静电作用,范德华

力或者疏水作用自发的负载这些因子。因此,纳米凝胶塌陷而形成稳定的纳米粒子,生物活性因子负载其中。可以在其结构中加入分散的亲水性聚合物比如聚乙二醇来阻止纳米凝胶的聚集。在负载药物的纳米凝胶络合物塌陷的过程中,这类聚合物可以暴露在其表面并形成一个亲水的保护层从而阻止了相分离。纳米凝胶表面的官能团可以进一步的用各种不同的靶向基团修饰以达到靶向输送特定部位的目的。研究表明纳米凝胶可以将其负载送到细胞里面并穿过生物膜。这种纳米凝胶有很好的稳定性并且可以保护生物活性因子不被细胞内代谢系统降解。纳米凝胶在全身性药物输送及提高口服和脑部位的生物利用度方面表现出很大的潜能。 1 纳米凝胶的制备 目前报道的制备纳米凝胶的方法有以下几种:(1)聚合物之间的物理自组装;(2)均相或微小非均相环境下的单体聚合;(3)形成了的聚合物交联;(4)模板辅助。下面详细介绍这几种方法。 许多研究团队用聚合物之间的物理自组装制备了各种不同的纳米凝胶。这种方法通常包括控制亲水性聚合物之间通过疏水作用或者静电作用或者氢键导致的聚集。这种制备纳米凝胶的方法在温和条件和水介质中进行。亲水性聚合物相互作用将生物大分子包裹其中,并且对于制备负载蛋白质的纳米凝胶非常有用。比如Akiyoshi等人通过胆固醇修饰的淀粉之间的疏水作用制备了负载胰岛素的纳米凝胶(如图1a)【1】。这种纳米凝胶在一个窄的胆固醇∕糖比例(1:40-1:100)

凝胶的应用与研究进展

凝胶的应用与研究进展 班级:应用化学10-2 姓名:陈某某学号:1011####### 摘要:凝胶是一类具有广泛应用前景的高分子材料,本文主要叙述了智能纳米水凝胶的应用研究进展、等离子体在制备碳凝胶材料研究方面的应用及研究进展、气凝胶研究领域取得新进展的应用及研究进展,简要介绍了水凝胶在国内外研究状况,并对其发展趋势作了展望。 关键词:凝胶;气凝胶;应用;进展 一、智能纳米水凝胶的应用研究进展 智能纳米水凝胶最早报道于上世纪八十年代初,当时未受到特别的重视。近十年来随着纳米科技、生物医学和智能材料的发展,智能纳米水凝胶显示出了诱人的应用前景,因此受到国内外的高度关注。 水凝胶是一类具有亲水基团,能被水溶胀但不溶于水的具有三维网络结构的聚合物。它在水中能够吸收大量的水分显著溶胀,并在显著溶胀之后能够继续保持其原有结构而不被溶解。它能够感知外界刺激的微小变化,如温度、pH值、离子强度、电场、磁场等,并能够对刺激发生敏感性的响应,常通过体积的溶胀或收缩来实现。水凝胶的这一特点使它在生物医学领域、记忆元件开关、生物酶的固定、农业中的保水抗旱等方面有广泛的应用前景。 智能纳米水凝胶还有如下特点:(1)能分散在水介质中,形成稳定的胶体体系;(2)内部具有交联结构,稳定性比其它聚合物纳米粒子如聚合物胶束等的稳定性要高;(3)比表面积大,表面的功能基团可偶联有特定作用的组分;(4)含水量高,类似于生物组织,具有良好的生物相容性;(5)与其它纳米粒子一样,容易越过生物屏障;(6)由于智能水凝胶对外界刺激产生响应的速度与其尺寸大小成反比,因而智能纳米水凝胶对外界刺激产生响应的速度非常快。

可注射水凝胶的研究进展.

可注射水凝胶的研究进展一、水凝胶定义 水凝胶是一类能够吸收并保有大量水分的具有交联网络结构的聚合物, 在聚合物网络结构中含有亲水基团或亲水的链段, 它们在水环境中能够与水结合, 从而形成水凝胶结构,这种水凝胶结构使得亲水的小分子能够在其中进行扩散。原位可注射水凝胶是近年来出现的新型水凝胶体系。通过注射的方法将具有一定流动性的生物材料植入体内, 因此很容易充满整个具有不规则形状的缺损部位, 手术创伤非常微小。该体系可由酸碱度、温度的变化或者多价离子的存在而产生溶液 -凝胶相转变,或通过共价键而形成水凝胶。 二、水凝胶分类 根据水凝胶对外界刺激的应答情况, 可以分为两类化合物:一类是传统的水凝胶高分子材料, 这类水凝胶对环境的变化相对不是很敏感; 而另外一类则是对外界条件非常敏感的水凝胶高分子材料, 这类水凝胶高分子材料由于对于不同的环境条件具有不同的应答表现, 因此可以作为一种新型的智能材料来使用, 具有良好的科研和市场应用前景。 智能型水凝胶是一种可以进行传感、处理并且具有执行功能的高分子材料, 作为一种新型的智能材料, 在诸多领域有着重要的用途。根据对外界环境条件的刺激表现出不同的响应情况可以分为:温度敏感性的水凝胶高分子材料、对于 pH 敏感性的水凝胶高分子材料、对光敏感的水凝胶高分子材料、对压力敏感的水凝胶高分子材料、对于生物分子敏感的水凝胶高分子材料、对于电场敏感的水凝胶高分子材料等。 1、温度敏感性水凝胶 这一类水凝胶高分子材料的溶胀与收缩性, 对于温度的变化具有非常高的敏感度,具体表现为在较低温度下溶胀度较高,在相对较高温度下溶胀度比较低。该凝胶具有最低临界共溶温度 (LCST , 即溶胀度的变化和温度的变化并不是线性的,在某一温度下水凝胶的体积表现为突然的收缩和膨胀。

水凝胶的改性及其在生物医学中的应用研究进展

Advances in Material Chemistry 材料化学前沿, 2014, 2, 32-37 Published Online April 2014 in Hans. https://www.doczj.com/doc/a51445134.html,/journal/amc https://www.doczj.com/doc/a51445134.html,/10.12677/amc.2014.22005 The Progress of Modification and Biomedical Applications of Hydrogels Zhenchao Guo1,2 , Ke Hu1,2, Xiaoe Ma1,2, Naizhen Zhou1,2, Tianzhu Zhang1,2*, Ning Gu1,2 1School of Biological Science and Medical Engineering, Southeast University, Nanjing 2Jiangsu Key Laboratory of Biological Materials and Devices, Nanjing Email: *zhangtianzhulq@https://www.doczj.com/doc/a51445134.html, Received: Mar. 26th, 2014; revised: Apr. 10th, 2014; accepted: Apr. 18th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/a51445134.html,/licenses/by/4.0/ Abstract Modification of hydrogels is the necessary precondition of their applications in many biomedical fields. This paper summarized the modification of composit hydrogel of Polyvinyl Alcohol (PVA) and gelatin, protein hydrogel, nano hydrogel and other smart hydrogels. At the same time, it also points out that it is important to keep a close eye on biocompatibility, modified cost, biodegrada-bility and application range of modified hydrogels, in order to put these hydrogels to clinical ap-plication, and obtain a wider range of applications. Keywords Composite Hydrogel, Smart Hydrogels, Modification of Hydrogel, Biomedical Application 水凝胶的改性及其在生物医学中的 应用研究进展 郭振超1,2,胡克1,2,马晓娥1,2,周乃珍1,2,张天柱1,2*,顾宁1,2 1东南大学生物科学与医学工程学院,南京 2江苏省生物材料与器件重点实验室,南京 Email: *zhangtianzhulq@https://www.doczj.com/doc/a51445134.html, *通讯作者。

水凝胶的研究进展

水凝胶的研究进展 俊机哥哥0913010407 (广西师范学院化学与生命科学学院09高分班) 摘要:本文对水凝胶的制备方法、性质及其应用进行了简单的介绍。关于水凝胶的制备,我们在文章的介绍了三种方法:单体聚合并交联、聚合物交联、载体的接枝共聚。 关键字: 水凝胶制备性质应用生物医学 前言 水凝胶这个词最早出现于1960年,当时是由捷克的Wicherle和Lim研制的聚强乙基丙烯酸甲酯。它本身是硬的高聚物,但它吸收水分后就变成具有弹性的凝胶,故称水凝胶。水凝胶是一类具有三维网络结构的聚合物,在水中能够吸收大量水分而溶胀,并在溶胀之后能够继续保持其原有结构而不被溶解。水凝胶可由不同的亲水单体和疏水单体聚合而成。由于其具有三维网络结构,故相对分子质量很高,其交联网络结构主要由化学键、氢键或范德华力等组成。溶胀时溶液可以扩散进入交联键之间的空间内,交联密度越大,三维网络间的空问就越小,水凝胶在溶胀时吸收的水分也就越少。由于水凝胶表面不易粘附蛋白质和细胞,故在与血液、体液及人体组织相接触时会表现出良好的生物相容性;另外,水凝胶由于含有大量的水分而非常柔软,并且类似于生物体组织,故作为人体植入物可以减少不良反应。因此,水凝胶被作为优良的生物医学材料得到广泛应用2。例如,PVP水凝胶可作为眼科手术中黏弹物质及人工玻璃体材料。PVA水凝胶可用于关节重建、人工软骨、人工喉及人工玻璃体。PVA 是第一个被广泛使用在移植方面的水凝胶。水凝胶已被用做鼻子、面部、缺唇修补、替代耳鼓膜等方面。水凝胶用做人工软骨、腱以及主动脉接枝不久将被商业化。另外,水凝胶在日用品,工业用品,农业、土建等领域也有广泛应用。 1 水凝胶的制备 1. 1 单体聚合并交联 合成水凝胶的单体很多,大致分为中性、酸性、碱性3 种,表1 列出了部分单体及交联剂。 表1水凝胶制备中常用的单体和交联剂

相关主题
文本预览
相关文档 最新文档