当前位置:文档之家› 甲醇制烯烃的MTO工艺与市场前景_高美莹

甲醇制烯烃的MTO工艺与市场前景_高美莹

甲醇制烯烃的MTO工艺与市场前景_高美莹
甲醇制烯烃的MTO工艺与市场前景_高美莹

广东化工 2009年第8期· 104 ·https://www.doczj.com/doc/a01093171.html, 第36卷总第196期甲醇制烯烃的MTO工艺与市场前景

高美莹

(河南化工高级技工学校,河南开封 475002)

[摘 要]MTO工艺提供一种以煤制甲醇为原料生产烯烃的途径。文章介绍了MTO工艺和特点,以及MTO在国内外的技术进展,并分析了MTO的市场前景。

[关键词]MTO;甲醇;烯烃;工艺;发展;前景

[中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2009)08-0104-01

MTO of Methanol to Olefins Technology and Market Prospects

Gao Meiying

(Henan Chemical Technical School, Kaifeng 475002, China)

Abstract: MTO process to provide a system of methanol with coal as raw materials to produce the means of olefin, the paper introduced the technology and characteristics of MTO and MTO technology at home and abroad, and an analysis of market prospects MTO.

Keywords: MTO;methanol;olefins;process;development;prospects

MTO是指以煤基或天然气基合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工工艺技术。MTO工艺提供一种把具有低成本优势的原料(天然气或煤)转化为高附加值低级烃乙烯和丙烯产品的途径。甲醇制烯烃工艺的主要产品是乙烯(C2H4)、丙烯(C3H6),传统上乙烯和丙烯的来源主要是石油烃类蒸汽裂解,其原料主要是石脑油。随着煤经合成气生产甲醇的技术日臻成熟,甲醇是低附加值的化工产品,另外受金融风暴的影响,国际甲醇价格下跌,开发甲醇下游产品使煤经由甲醇制取低碳烯烃成为备受关注的一条生产路线。

1 乙烯和丙烯的用途

乙烯工业是石油化工的龙头,其发展水平已成为衡量一个国家经济实力的重要标志之一,在石化工业乃至国民经济发展中占有重要地位。聚乙烯得到了广泛应用,如粘合剂、农膜、电线和电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)。

丙烯是仅次于乙烯的一种重要有机石油化工基本原料,主要用于生产聚丙烯、苯酚、丙酮、丁醇、辛醇、丙烯腈、环氧丙烷、丙二醇、环氧氯丙烷、合成甘油、丙烯酸以及异丙醇等,其他用途还包括烷基化油、高辛烷值汽油调合料等。例如:(1)丙烯制成聚丙烯,聚丙烯应用在塑制品、薄膜制品、纤维制品。

(2)丙烯制成苯酚,苯酚制成木材防腐剂、皮肤科常用的治疗药物、面部美容治疗药物。

2 甲醇制烯烃工艺简介

甲醇制烯烃技术主要分两步,首先由煤或天然气转化生成粗甲醇,该过程已实现工业化;然后甲醇转化生成烯烃,主要是乙烯和丙烯。不同的工艺生成的乙烯与丙烯的比例也不同。

2.1 甲醇制烯烃的原理

MTO的反应历程主反应为:

2CH3OH→C2H4+2H2O △H=-11.72 kJ/mol

3CH3OH→C3H6+3H2O △H=-30.98 kJ/mol

甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,目前还没有统一认识。

2.2 MTO工艺和催化剂

甲醇制烃(碳氢化合物)的转化反应最初是在二十世纪70年代初用ZSM-5催化剂发现的。在80年代联碳公司发现SAPO-34硅铝磷分子筛,这是一种甲醇转化生产乙烯/丙烯很好的催化剂。SAPO-34具有某些有机分子大小的结构,是MTO 工艺的关键。SAPO-34的小孔(大约4A)限制大分子或带支链分子的扩散,得到所需要的直链小分子烯烃的选择性很高。用于其它工艺的ZSM-5分子筛,主要由于其结构的孔口较大(大约5.5 A),所以轻烯烃的收率较低。SAPO-34分子筛的另一个重要特点是相对于硅铝沸石材料而言,有优化的酸性。SAPO-34优化的酸功能,由于混合转移反应而生成的低分子烷烃副产品很少。MTO工艺不需要分离塔就能得到纯度达97 %左右的轻烯烃,这就使MTO工艺容易得到聚合级烯烃,只有在需要纯度很高的烯烃时才需要增设分离塔。

2.3 UOP/Hydro的MTO工艺

由UOP公司和Norsk Hydro公司合作开发的MTO工艺,是一粗甲醇或精制甲醇为原料,采用UOP公司开发的新催化剂,选择生产乙烯和丙烯的技术。以天然气为原料,粗甲醇加工能力为0.75 t/d的UOP/ Hydro甲醇制烯烃流化床工艺示范装置于1995年6月开始在挪威Norsk Hydro公司连续运转90多天。该工艺采用一个带有连续流化再生器的流化床反应器,其反应温度由回收热量的蒸汽发生系统来控制,而再生器则用空气将废催化剂上积炭烧除,并通过发生蒸汽将热量移除。反应出口物料经热量回收后便得到冷却,在分离器将冷却水排除,未凝气体压缩后进入碱洗塔以脱除CO2,之后又在干燥器重脱水,接着在脱甲烷塔、脱乙烷塔、乙烯分离塔、丙烯分离塔等分出甲烷、乙烷、丙烷和副产物C4等物料后即可得到聚合级乙烯和聚合级丙烯。当MTO以最大量生产乙烯时乙烯、丙烯和丁烯的收率分别为46 %、30 %、9 %,其余副产物为15 %。

2.4 MTO工艺的特点

MTO工艺采用优点很多的流化床反应器。部分待生催化剂经过用空气烧焦的连续再生,可以保持催化剂活性和产品组

(下转第121页)

[收稿日期] 2009-06-17

[作者简介] 高美莹(1982-),女,河南人,双学士学位,助理讲师,主要研究方向为化工工艺与化工制药。

2009年第8期广东化工

第36卷总第196期https://www.doczj.com/doc/a01093171.html, · 121 ·(上接第103页)

sulfide removal in a carrier-packed biological deodorization system[J].Biochemical Engineering Journal,2000,5(3):209-217.

[7]Hicham E,Nathalie B,Zarook S,et al.Biofiltration of xylene emissions:bioreactor response to variations in the pollutant inlet concentration and gas flow rate[J].Chemical Engineering Journal,2004,100(1-3):149-158.

[8]羌宁.城市空气质量管理与控制[M].北京:科学出版社,2003.

[9]Guido Busca,Chiara Pistarino.Technologies for the ahaternent of sulphide compounds from gaseous streams:a comparative overview[J].Journal of loss prevention in the process industries.2003,16(5):363-371.

[10]聂福胜.污水行业除臭技术及其应用[J].环境工程,2003,21(2):70-72.

[11]Smet E,Van L H.Abatement of volatile organic sulfur compounds in odour emissions from the bioindustry[J].Biodegration,1998,9:273-284.[12]Johan Van Groeneston,Paul G M Hesselink.Biotechulques for air pollution control[J].Biodegradafion,1993,4:283-301.

[13]Philips J P.Mullins K J.Effluent treatment system[J].Filtration and Separation,1997,34(3):212.

[14]Sheridan B A,Curran T P,Biofiltration of n-butyric acid for the control of odour[J].Bioresource Technology,2003,89(2):199-205.

[15]Aaron B Neal,Raymond C Lochr.Use of biofilters and suspended growth reactors to treat VOCs[J].Waste Management,2000,20:59-68.

[16]Corsi R.,Seed I Biofitration of BTEX:media substrate and loadings effects Environmental Progress 1995,3:151-156.

[17]Larry Finn and Robert Spencer Managing biofilters for consistent odor and VOC treatment Bicycle.Jan ,1997,1:40-44.

[18]Vincent A,Hobson J.Odour control.CIWEM monographs on best practice no.2[R].London:Chartered Institution of Water and Environmental Mangement,1998.

[19]王玉亭,郭兵兵,曾向东,等.用生物过滤法净化炼油污水处理设施排放的废气[J].石油炼制与化工,2003,34(4):54-57.

[20]李建军,岑英华,孙国萍,等.利用生物填充塔处理生活污水厂臭气的研究[J].微生物学通报,2004,31(5):89-92.

[21]Alonso C,Zhu X,Suidan M T,Kim B R.Mathematical model for the biodegradation of VOCs in trickle bed boifilters[J].Wat Sci Tech,1999,(7):139-146.

[22]洪蔚.新型生物滴滤池处理含挥发性有机化合物废气[J].化工环保,2000,20(4):63.

[23]姜安玺,刘波,程养学,等.利用黄单胞菌He4和排硫杆菌Au16固定化生物滴滤技术处理乙硫醇臭气[J].高技术通讯,2003,(1):85-88.[24] WEBSTER T S,TOGNA A P,GUARINI W J,et al.Treatment of Vapor Emissions Generated from an In-dustrial Wastewater Treatment Plant Using a Full-scale Biotrickling Filter Reactor[C].Salt Lake City:AWMA Annual Conference,2000.

(本文文献格式:刘国华.生物除臭技术研究进展[J].广东化工,2009,36(8):102-103)

(上接第104页)

成不同。工业规模生产的催化剂已经通过示范试验,选择性、长期稳定性和抗磨性都符合要求。流化床反应器还具有调节操作条件和较好回收反应热的灵活性。这种反应器早已广泛用于炼油厂的催化裂化装置特别是催化剂再生。反应器的操作条件可以根据目的产品的需要进行调节。压力通常决定于机械设计的考虑,较低的甲醇分压有利于得到较高的轻烯烃特别是乙烯的选择性。因此,采用粗甲醇(通常可以含有20 %左右水)作原料,可以得到某些产率优势。温度是一个重要的控制参数,较高的温度有利于得到较高的乙烯收率。如果温度太高,由于生焦过量,会降低轻烯烃的总收率。第一代MTO工艺甲醇或二甲醚转化为乙烯和丙烯碳的选择性约为75 %~80 %,乙烯/丙烯产出比在0.5~1.5之间。在得到最高的总收率、乙烯和丙烯产品差不多等量的情况下,轻烯烃(乙烯+丙烯)的总收率的变化稍高于上述范围。乙烯/丙烯产出比在0.75~1.25之间。因此,可以用最少的甲醇得到最高收率的轻烯烃,但乙烯/丙烯产出比可以根据市场需求和乙烯与丙烯的价格进行调节。已经证实,用传统的处理方法可以除去副产品,使乙烯/丙烯达到烯烃聚合工艺要求的规格。事实上,工业验证试验已经表明,MTO中试装置生产的乙烯和丙烯,生产聚烯烃是适用的。

3 甲醇制烯烃的技术进展

MTO技术的新进展。近几年来进一步强化MTO技术的工作已取得重要进展。在工艺方面,MTO工艺与烯烃裂化工艺(OCP)组合(OCP是Total石化与UOP公司联合开发的)己通过工业验证试验。用这种组合工艺,用甲醇生产乙烯和丙烯的选择性可以提高到85 %~90 %。在这种组合工艺中,MTO装置产C4-C6'烯烃副产品可以用作OCP装置的进料,大分子烯烃可以裂化为乙烯和丙烯,但丙烯多于乙烯。组合工艺生产轻烯烃的灵活性很大,丙烯/乙烯产品比可以高达1.7甚至更高。而且,可使生成的C4+副产品减少近80 %,轻烯烃的收率提高20 %。MTO装置的回收部分保持不变,但其规模要适应进出OCP装置循环量增大的需要。在催化剂方面,持续的研发工作已使MTO催化剂的性能有很大提高。这种优化的催化剂,与原先的催化剂相比,灵活性提高,在多产丙烯时其丙烯/乙烯产出比可以提高近20 %。用这种优化的催化剂和MTO-OCP 组合技术,得到的丙烯/乙烯产出比可以超过2.0,满足丙烯日益增长的需求。

国内主要是中国科学院大连化学物理研究所的DMTO工艺,该所在20世纪80年代初开始进行甲醇制烯烃研究工作,“七五”期间完成300 t/a装置中试,2004年陕西省政府组织一些重点企业成立了陕西新兴煤化工科技发展有限责任公司,并与大连化物所和洛阳石化工程公司合作,通过工业性试验开发甲醇制烯烃工业化技术。该项目于2005年底建成了年加工甲醇1.67万t DMTO工业性试验装置,2006年2月实现投料试车一次成功,累积平稳运行近1150 h。该装置是目前世界上第一套万吨级甲醇制烯烃工业化试验装置。

4 甲醇制烯烃的市场前景

2006年聚烯烃的产量和表观消费量相差甚多,自给率仅为50 %~70 %,以乙烯为例:2007年我国乙烯生产能力约为966.5万t/a,中国乙烯工业将迅速发展,预计2010年乙烯产能将达1784万t/a,比2006年的966.5万t/a增加817.5万t/a。据有关部门预测,2010年我国乙烯需求量将达到2500万~2600万t,生产能力将达到1400万t/a,只能满足国内需求的55 %。2020年我国乙烯需求量将达到3700万~4100万t,生产能力将达到2300万t/a,只能满足国内需求的60 %左右。上面数据表明我国烯烃市场缺口巨大,具有良好的发展前景。

煤制烯烃和石脑油裂解制烯烃技术路线相比较,在经济上的竞争力取决于甲醇的成本。如果在煤炭产地附近建设工厂,以廉价的煤炭为原料,通过大规模装置生产低成本的甲醇,再将甲醇转化成烯烃,经济上将具有很强的竞争能力。目前的高油价背景下,在煤炭比较丰富且价格低廉的内蒙古、新疆及陕西省等地区,将煤炭做为化工原料具有无可比拟的成本优势。通过煤制烯烃工艺,将煤炭加工成低碳烯烃,进而再加工成高附加值化工产品后运往沿海发达地区,获得较好的经济效益是不言而喻的。

我国以煤为主的能源格局,使得一些业内人士对煤制烯烃等煤化工项目寄予很大希望。从需求看,我国未来对烯烃的市场需求较大,但从技术看,核心技术甲醇制烯烃工艺尚无商业化实例,在项目建设和运行管理上没有现成的经验可借鉴。与此同时,国家对煤制烯烃也持谨慎态度。因此,该产业发展中还存在着诸多不确定因素和风险。

广东化工 2009年第8期· 122 ·https://www.doczj.com/doc/a01093171.html, 第36卷总第196期

参考文献

[1]贺永德.甲醇制低碳烯烃的前景及建议[J].第三届中国国际煤化工及煤转化高新技术研讨会论文集[C],2006.22.

[2]高俊文,张勇.甲醇制烯烃催化剂和工艺的研究进展[J].第2届全国工业催化技术及应用年会论文集[C].2005.

[3]齐国祯,马涛,张成芳,等.甲醇制烯烃反应动力学[J].化工学报,2005,12.

[4]何祚云,李建新,安福.甲醇制烯烃工艺技术及经济性分析[J].第三届中国国际煤化工及煤转化高新技术研讨会论文集[C].2006.23.

[5]高俊文,张勇.甲醇制烯烃催化剂和工艺的研究进展[J].第2届全国工业催化技术及应用年会论文集[C].2005.

[6]冯静,黄志永,柯丽,等.SAPO-34分子筛催化甲醇制烯烃反应的研究[J].第十三届全国催化学术会议论文集[C],2006

[7]Bipin V,Edward C,Arnold T M.天然气到乙烯和丙烯的转化──UOP/HYDRO MTO工艺[J]石油与天然气化工,1997,(3):5-8.

[8]任诚.非石油路线制取低碳烯烃的生产技术及产业前景[J].精细化工中间体,2007,(5):10-12.

[9]李仲来.甲醇制低碳烯烃(MTO)技术综述[J].氮肥技术,2007,(2):10-12.

[10]齐国祯,谢在库,钟思青,等.甲醇制低碳烯烃(MTO)反应热力学研究[J].石油与天然气化工,2005,(5):5-7.

[11]白尔铮.甲醇制烯烃用SAPO-34催化剂新进展[J].工业催化,2001,(4):6-8.

[12]蔡光宇,刘中民,石仁敏,等.合成气经由二甲醚制取低碳烯烃[J].天然气化工(C1化学与化工),1994,(5):12-15.

(本文文献格式:高美莹.甲醇制烯烃的MTO工艺与市场前景[J].广东化工,2009,36(8):104)

(上接第106页)

(2)建议生产厂家调整目前榆林气田使用的ZD1-1型缓蚀剂配方,使药剂抗CO2、无机盐的针对性更强一些。

参考文献

[1]郭稚弧.缓蚀剂及其应用[M].第I版.湖北:华中工学院出版社,1987.141.

[2]苏俊华,张学元,王风平.饱和CO2的高矿化度溶液中咪唑啉缓蚀机理的研究[J].材料保护,2000,32 (5):32-33.

[3]邸静,孙冬柏,初一鸣,等.咪唑啉类缓蚀剂的缓蚀性研究[C].第十届全国缓蚀剂学术研讨会论文集.华中理工大学.中国腐蚀与防护学会缓蚀剂专业委员会.1997,145-149.[4]Vidcan K,Dugstad A.Effect of Flow Velocity pH.Fe2+ Concentration and Steel Quality on the CO2 Corrosion of Carbon Steels[J].Corrosion1990,Paper No.42(Houston,NACE International).

[5]Burke P A,Synopsis.Recent Progress in the Understandling of:CO2 Corrosion[J].Corrosion 1985,Paper No.1 ( Houston,NACE International).[6]Waard C De,Lotz V,Dugstad A.Flow Velocity Effects on CO2 Corrosion of Carbon Steel[J].Corrosion 1995, Paper No.128(Houston,NACEInternational).

(本文文献格式:樊红珍.榆林气田气井缓蚀剂评价[J].广东化工,2009,36(8):105-106)

(上接第109页)

点做好全流程优化,增产高附加值产品,加大装置整合力度,做大做优常减压装置、催化裂化等装置,降低装置重复度,降低操作费用和能耗是关键。内部优化仍有潜力,挖潜增效是长期任务,做好各装置之间配合,采用新技术优化加工流程,降低操作成本,提高全厂装置利用率也是提高效益的主要措施之一。

参考文献

[1]张德义.建设节约型炼油工业进一步搞好节能降耗[J].炼油技术与工程,2006,36(1):1-5.

[2]颜军文.常减压装置能耗分析与节能途径探讨[J].能源工程,2002(3):42-45.

[3]李志强,侯凯锋,严淳.常减压蒸馏装置的“三环节”用能分析[J].石油学报:石油加工版,2003,19(3):53-57.

[4]连喜增.常减压装置增产柴油采取的措施[J].济炼科技,2000,8(1):6-10.

[5]侯芙生.优化炼油工艺过程发展中国炼油工业[J].石油学报:石油加工,2005,21(3):8-16.

[6]孙丽丽.150万吨/年加氢裂化装置的设计及运行[J].炼油技术与工程,2004,34(1):5-7.

[7]晁可绳.延迟焦化工艺技术及其进展[J].炼油技术与工程,2004,31(10):1-5.

(本文文献格式:王宇.提高炼厂经济效益的资源配置优化方案运行分析[J].广东化工,2009,36(8):107-109)

(上接第111页)

续表1

符号说明符号说明符号说明

F 气相动能因子,m/s·(kg/m3)0.5K2常数x 填料层高度,m

F p填料因子,m-1K l考虑在塔壁处和填料空隙率的修正因子X 流动参数

F r液体弗鲁德准数L 液相流率,kg/m2·s Y 通量参数

F t湿润表面对总滞料量的修正因子m 湿填料压降曲线中直线段斜率Z 填料层高度,m

f 摩擦因子ΔP 单位填料高度的压降,Pa/m

表2 希腊字母说明

Tab.2 Illustrations of the Greek letters used in the paper

希腊字母说明希腊字母说明希腊字母说明希腊字母说明ε填料空隙率eη表面润湿分数τ剪切力,N/m2ψ1湿填料层阻力因子θ波纹倾角,° ζ损失总系数δ液膜厚度,m μ粘度,kg/m·s ρ密度,kg/m3λ常数ψ0干填料层阻力因子ν液体粘度,cst

甲醇制烯烃的相关工艺

甲醇制低碳烯烃的工艺举例以及本组最佳工艺的确定 一、 甲醇制低碳烯烃的工艺列举 甲醇制烯烃工艺是煤基烯烃产业链中的关键步骤,其工艺流程主要为在合适的操作条件下,以甲醇为原料,选取适宜的催化剂(ZSM-5沸石催化剂、SAPO-34分子筛等),在固定床或流化床反应器中通过甲醇脱水制取低碳烯烃。根据目的产品的不同,甲醇制烯烃工艺分为甲醇制乙烯、丙烯(methanol-to-olefin ,MTO ),甲醇制丙烯(methanol-to-propylene ,MTP )。MTO 工艺的代表技术有环球石油公司( UOP )和海德鲁公司( Norsk Hydro )共同开发的UOP/Hydro MTO 技术,中国科学院大连化学物理研究所自主创新研发的DMTO 技术;MTP 工艺的代表技术有鲁奇公司(Lurgi )开发的Lurgi MTP 技术和我国清华大学自主研发的FMTP 技术。 1.1 UOP /I-Iydro 公司的MTO 工艺 美国环球油品公司(UOP)和挪威海德鲁(Hydro)公司共同开发了UOP /Hydro MTO 工艺。MTO 工艺对原料甲醇的适用范围较大,可以使用粗甲醇(浓度80%一82%)、燃料级甲醇(浓度95%)和AA 级甲醇(浓度>99%) 。该工艺采用流化床反应器和再生器设计,其流程见图3。其反应温度由回收热量的蒸汽发生系统来控制,失活的催化剂被送到流化床再生器中烧碳再生,并通过发生蒸汽将热量移除,然后返回流化床反应器继续反应。由于流化床条件和混合均匀催化剂的共同作 甲醇制取低碳烯烃 UOP/Hydro 公司 的MTO 工艺 大连化学物理研究 所的DMTO 工艺 上海化工研究院的SMTO 工艺 鲁奇(Lurgi)公司的MTP 工艺 清华大学的 FMTP 工艺 MTO MTP

甲醇制乙烯丙烯原理

甲醇制烯烃技术(MTO/MTP) 甲醇制烯烃(Methanol to Olefins,MTO)和甲醇制丙烯(Methanol to Propylene)是两个重要的C1化工新工艺,是指以煤或天然气合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工技术。 从MTG反应机理分析,低碳烯烃是MTG反应的中间产物,因而MTG工艺的开发成功促进了MTO工艺的开发。国际上的一些知名石化公司,如Mobil、BASF、UOP、Norsk Hydro 等公司都投入巨资进行技术开发。 Mobil公司以该公司开发的ZSM-5催化剂为基础,最早研究甲醇转化为乙烯和其它低碳烯烃的工作,然而,取得突破性进展的是UOP和Norsk Hydro两公司合作开发的以UOP MTO-100为催化剂的UOP/Hydro的MTO工艺。 国内科研机构,如中科院大连化物所、石油大学、中国石化石油化工科学研究院等亦开展了类似工作。其中大连化物所开发的合成气经二甲醚制低碳烯烃的工艺路线(SDTO)具独创性,与传统合成气经甲醇制低碳烯烃的MTO相比较,CO转化率高,达90%以上,建设投资和操作费用节省50%~80%。当采用D0123催化剂时产品以乙烯为主,当使用D0300催化剂是产品以丙烯为主。 一、催化反应机理 MTO及MTG的反应历程主反应为: 2CH3OH→C2H4+2H2O 3CH3OH→C3H6+3H2O 甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,目前还没有统一认识。 Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。改进后的工艺名称MTE,即甲醇转化为乙烯,最初为固定床反应器,后改为流化床反应器,乙烯和丙烯的选择性分别为45%和25%。 UOP开发的以SAPO-34为活性组分的MTO-100催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性进展。其乙烯和丙烯的选择性分别为43%~61.1%和27.4%~41.8%。 从近期国外发表的专利看,MTO研究开发的重点仍是催化剂的改进,以提高低碳烯烃的选择性。将各种金属元素引入SAPO-34骨架上,得到称为MAPSO或ELPSO的分子筛,这是催化剂改型的重要手段之一。金属离子的引入会引起分子筛酸性及孔口大小的变化,孔

甲醇制烯烃工艺_MTO_

纪律和奖罚制度,调动全体试车人员的积极性,经过一年多的工作,于1998年11月15日又开始试车。经过一个多月的投料表明,1.5万t a氯化法钛白的主要技术难关基本上已被攻克,初步实现了连续稳定生产。 5 几点建议 (1)面对世界钛白由跨国集团高度垄断的新局面,国内钛白工业必须加强集中统一领导、统一规划、合理布局,一致对外。 (2)对现有的钛白厂要实行强强联合,对亏损严重、污染大的厂要坚决实行关停并转。 (3)对已引进的3套较大型的钛白粉生产装置,国家应继续给予优惠政策和资金支持,并跨地区、跨部门地组织专家联合进行技术攻关。特别要充分发挥经验丰富的老专家的作用,协同作战,解决工艺、技术难题,提高产品质量,开发新品种,以满足国民经济发展的需要。 (4)由于硫酸法钛白生产三废排放量大,较难处理,而氯化法钛白生产的主要技术难题又已基本被攻克,现在完全可以利用国内技术兴建万吨级以上的氯化法钛白生产装置。建议除了特殊地区外,今后兴建的钛白厂主要应采用氯化法。而且厂址最好能与氯碱厂在一起,以达到优势互补,提高经济效益的目的。 (5)为保护民族工业,扶植国内钛白生产,建议对国外钛白供应商向我国低价倾销钛白粉要进行处罚;要制定相关法律,向其所在国贸易管理机构起诉,并对进口产品征收高额的反倾销税。 ?新产品新装置? 吉化公司乙撑双硬脂酰胺装置建成投产 具有国内领先水平的年产700t乙撑双硬脂酰胺生产装置,在吉化公司研究院建成,并投入批量生产。 乙撑双硬脂酰胺是一种多功能塑料加工助剂,可广泛应用于高分子聚合树脂,如AB S树脂、聚氯乙烯、聚丙烯、酚醛树脂及氨基树脂加工中的润滑剂、防粘剂、粘度调节剂和表面光亮剂等。 该装置是由吉化研究院自行开发、设计的。经半年的运转考核,生产能力达到并超过设计能力(已达800t a以上),其产品经在吉化合成树脂厂引进的10万t a AB S生产装置上应用,性能指标完全满足生产要求。目前,产品已向该公司及国内多家用户批量供货,质量及稳定性已达到国外同类产品水平。 (微笔) 扬子石化大型空分装置投入运行 扬子石化股份公司投资近3亿元的每小时增产氧气2万m3、氮气3.75万m3的大型空气分离装置投入运行。 该空分装置在设计、安装过程中,采用了引进国外先进技术和设备与国内配套设计相结合的办法,装置开停车过程可全部自动调整控制,DCS控制系统达到国际90年代先进水平。(微笔) 甲醇制烯烃工艺(M TO) 一项以天然气为原料经甲醇制取混合烯烃(乙烯+丙烯+丁烯)的工艺技术即M TO工艺,已由美国环球油品公司(UO P)和挪威海德罗(H ydroc)公司联合开发中试成功。 1995年11月,在南非第四次天然气转化国际年会上,UO P和H ydroc公司首次公布了这一工艺技术及其示范装置的运行数据。据称,这一工艺经小试、中试和示范装置长期、连续试验,操作稳定,得到了相互验证,可以用来建设年产50万t乙烯的工业化生产装置。 该技术的工艺流程和设备与炼厂的 型催化裂化装置基本相同,产品分离流程比传统的深冷分离流程简单。 采用M TO工艺生产烯烃,需要大量天然气或甲醇:一套30万t a M TO法乙烯装置,年消耗天然气13亿m3或甲醇150万t。因此,在天然气供应充足而且价格便宜的地方,采用此法生产烯烃,比之石脑油或轻柴油裂解制烯烃,在技术和经济上都具有一定的优越性。 我国对M TO工艺的开发也已经历多年,中试数据与国外很接近,而催化剂性能则优于国外。据了解,中国石油和天然气北方公司正在进行M TO工艺的千吨级工业化试验。(宗言恭) 81 化 工 技 术 经 济 第17卷

煤制烯烃研究报告范本

煤制烯烃研究报告

煤制烯烃工艺研究报告 一、煤制烯烃简介 制备丙烯的传统方法是采用轻油(石脑油、轻柴油)裂解工艺,但石油储量有限,因此世界各国开始致力于非石油路线制乙烯和丙烯类低碳烯烃的开发。其中,以煤或天然气为原料制甲醇,再由甲醇制低碳烯烃的工艺受到重视。 煤制烯烃主要指乙烯、丙烯及其聚合物。聚乙烯主要应用于粘合剂、农膜、电线和电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)等行业。 丙烯是仅次于乙烯的一种重要有机石油化工基本原料,主要用于生产聚丙烯、苯酚、丙酮、丁醇、辛醇、丙烯腈、环氧丙烷、丙二醇、环氧氯丙烷、合成甘油、丙烯酸以及异丙醇等。 煤制烯烃简单来说可分为煤制甲醇、甲醇制烯烃这两个过程。主要有四个步骤:首先经过煤气化制合成气,然后将合成气净化,接着将净化合成气制成甲醇,甲醇在催化剂的作用下脱水生成二甲醚(DME),形成甲醇、二甲醚和水的平衡混合物,然后转化为低碳烯烃,烯烃经过聚合反应生产聚烯烃。当前,国际上有几种领先的甲醇制烯烃工艺,如美国UOP公司与挪威海德鲁(Lydro)公司的甲醇制烯烃工艺(MTO)、德国鲁奇(Lurgi)公司的甲醇制丙烯工艺(MTP)、美国AtoFina与UOP公司的烯烃裂

解工艺等,其中Lurgi公司的MTP工艺已经在国内的生产装置上应用,在最先实现工业化。 二、国外煤制烯烃技术 MTO是国际上对甲醇制烯烃的统一叫法。最早提出煤基甲醇制烯烃工艺的是美孚石油公司(Mobil),随后巴斯夫公司(BASF)、埃克森石油公司(Exxon)、环球石油公司(UOP)及海德鲁公司(Hydro)等相继投入开发,在很大程度上推进了MTO 的工业化。1995年,UOP与挪威Norsk Hydro公司合作建成一套甲醇加工能力0.75 吨/天的示范装置,连续运转90天,甲醇转化率接近100%,乙烯和丙烯的碳基质量收率达到80%。1998年建成投产采用UOP/Hydro工艺的20万吨/年乙烯工业装置,截止已实现50万吨/年乙烯装置的工业设计,并表示可对设计的50万吨/年大型乙烯装置做出承诺和保证。UOP/Hydro的MTO工艺能够在比较宽的范围内调整反应产物中C2与C3;烯烃的产出比,可根据市场需求生产适销对路的产品,以获取最大的收益。 惠生(南京)清洁能源股份有限公司甲醇制烯烃装置采用环球油品公司(UOP)的甲醇制烯烃(MTO)/烯烃裂化(OCP)技术,是全球首套采用霍尼韦尔先进技术(Honeywell)的装置,与传统工艺相比,该项工艺被验证拥有高收率和低副产品形成的优点。

甲醇制烯烃工艺

甲醇制烯烃工艺 学生姓名:冯佑磊 班级学号:101409121

在天然气制烯烃工艺中,天然气经甲醇制烯烃MTO/MTP工艺技术是最具备工业化条件的技术。中国化工学会理事长、中国工程院院士曹湘洪表示,在后石油时代,炼油工业应以汽油、煤油、柴油产量最大化为目标;新建乙烯、丙烯装置,宜选择MTO「甲醇制烯烃」工艺路线;已有乙烯装置,宜用费托合成油来替代石脑油作为原料。“中国科学院大连化学物理研究所”的DMTO在神华包头的成功实现工业化生产,证明了国产的MTO技术与催化剂的生产都已达到世界领先的水平。MTO 工艺与MT P工艺都是可行的,从市场的风险性考虑,MTO工艺比MT P工艺更安全些。 MTO/MTP工艺概述 1.1 概述 MTO是指以煤基或天然气基合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工工艺技术,其主要产品为乙烯、丙烯。 MTP是指以煤基或天然气基合成的甲醇为原料,采用固定床反应器,生产丙烯的化工工艺技术。 甲醇制烯烃技术源于甲醇制汽油。在甲醇合成汽油过程中,发现C2~C4 烯烃是过程的中间产物。控制反应条件(如温度等)和调整催化剂的组成,就能使反应停留在生产乙烯等低碳烃的阶段。显然,催化剂的研究则是MTO 技术的核心。 目前世界上,对研制MTO催化剂卓有成效,因而具备工业化和商业转让条件的甲醇制低碳烯烃的技术主要有三种:美国环球油品公司(UOP)和挪威海德鲁(Hydro)公司共同开发的UOP/Hydro MTO 工艺;德国鲁奇公司开发的Lurgi MTP 工艺;中国科学院大连化学物理研究所开发的D M TO 工艺。 1.2 MTO技术特点 采用流化床反应器和再生器,连续稳定操作;采用专有催化剂,催化剂需要在线再生,保持活性;甲醇的转化率达100%,低碳烯烃选择性超过85%,主要产物为乙烯和丙烯;可以灵活调节乙烯/丙烯的比例;乙烯和丙烯达到聚合级。 1.3 MTP技术特点 采用固定床由甲醇生产丙烯,首先将甲醇转化为二甲醚和水,然后在三个MTP反应器中进行转化为丙烯。催化剂系采用南方化学开发的改进ZSM-5催化剂,有较高的丙烯选择性。甲醇和DME 的转化率均大于99%,对丙烯的收率则约为71%。产物中除丙烯外还将有液化石油气、汽油和水。 1.4 基本反应历程 MTP、MTO反应历程通常认为可分成三个步骤: (1)甲醇首先脱掉一分子水生成二甲醚。甲醇和二甲醚迅速形成平衡混合物。甲醇/二甲醚分子与分子筛上酸性位作用生成甲氧基. (2)甲氧基中一个C.H质子化生成C-H+,与甲醇分子中-OH.作用形成氢键,然后生成已基氧缝,进而生成C=C键。 (3)C=C键继续发生链增长生成(CH2)n。反应过程以分子筛作催化剂时,产物分布比较简单,以C2--一C4(特别是乙烯、丙烯)为主。MTP、 MTO过程的关键技术是催化剂,由于反应过程中有大量的水存在,且催化剂运行中需要在较高温度下频繁再生烧炭,因而催化剂的热稳定性及水热稳定性是影响化学寿命的决定因素。 二.国内外MTO、MTP技术介绍 2.1 UOP/Hydro 甲醇制烯烃工艺 2.1.1工艺简介 挪威海德鲁(Hydro)公司创建于1905年2月,以生产氮肥起家。现在油气开发是其支柱产业。美国环球油品公司(U O P)创建于1914年,是当今世界上炼油和石油化工最主要的工艺技术专利商之一,而又以生产和供应分子筛及炼油、石油化工用催化剂见长。1992年,美国UOP公司和挪威Hydro公司开始了类似催化裂化装置的甲醇制烯烃工艺,并进行了小试工作。1995 年两公司合作

甲醇制丙烯工艺

甲醇制丙烯工艺 与甲醇制烯经同时生产乙烯和丙烯不同,甲醇制丙烯工艺主要生产丙烯,副产LPG和汽油;反应中生成的乙烯和丁烯返回系统再生产,作为歧化制备丙烯的原料。 1、鲁奇公司(Lurgi)的MTP工艺 1996年鲁奇公司使用南方化学公司的高选择性沸石基改性ZSM-5催化剂,开始研发MTP工艺。1999年,鲁奇公司在德国法兰克福研发中心建立了一套单管绝热固定床反应装置,装置设计规模为数百克/时甲醇处理能力,主要完成了催化剂性能测试,并验证了MTP设计理念、优化了反应条件。2000年,鲁奇公司在法兰克福研发中心建立了三管(3x50%能力)绝热固定床反应装置,装置处理甲醇能力为1千克/小时,该装置打通了MTP总工艺流程,模拟了系统循环操作,进一步优化了反应条件,并为MTP示范厂的建立积累了大量基础数据。2002年1月,鲁奇公司在挪威Tjeldbergodden地区的Statoil甲醇厂建成甲醇处理能力为360千克/天的MTP示范厂。2004年5月,示范工作结束。通过测试,催化剂在线使用寿命满足8000小时的商业使用目标;产物丙烯纯度达到聚合级水平,并副产高品质汽油。 鲁奇公司MTP技术特点是甲醇经两个连续的固定床反应器,第一个反应器中甲醇首先转化为二甲醚,第二个反应器中二甲醚转化为丙烯。该技术生成丙烯的选择性高,结焦少,丙烷产率低。整个MTP工艺流程对丙烯的总碳收率约为71%。催化剂由德国南方化学公司生产。 鲁奇公司MTP反应器有两种形式:即固定床反应嚣(只生产丙烯)和流化床反应器(可联产乙烯/丙烯)。

2008年3月,鲁奇公司与伊朗Fanavaran石化公司正式签署MTP技术转让合同,装置规模为10万吨/年。 2008年9月,LyondeIIBasell,特立尼达多巴哥政府,特立尼达多巴哥国家气体公司(NGC),特立尼达多巴哥国家能源公司(NEC)和鲁奇(Lurgi)公司联合宣布,已经签署了一项项目发展协议,共同建设和运营在特立尼达多巴哥的一体化甲醇制丙烯(MTP)和聚丙烯(PP)项目。通过三条世界级的工厂,包括大规模天然气制甲醇和MTP以及PP工厂,该项目最终将实现49万吨PP产能。其中,大规模甲醇和MTP的工艺分别由鲁奇公司提供,而丙烯聚合将利用巴塞尔公司的Spherizone工艺。 采用鲁奇MTP技术的神华宁煤50万吨/年煤基聚丙烯项目于2010年12月打通全流程,2011年4月底产出终端合格聚丙烯产品,由试车阶段全面进入试生产阶段,并于5月实现首批产品外运销售。 2、中国化学工程集团、清华大学和淮化集团联合开发的FMTP工艺 流化床甲醇制烯烃(FMTP)技术由中国化学工程集团公司、清华大学和淮化集团联合开发,三方在安徽淮南建设甲醇处理量3万吨/年的流化床甲醇制丙烯(FMTP)中试装置,于2008年底建成,截至2009年8月,该装置己完成11吨催化剂生产任务,进行了二次流态化试车,全面打通了系统工艺流程。 该技术采用SAPO-18/34分子筛催化剂和流化床反应器,与MTO工艺一样。但是通过把生成物中的丙烯分离出之后,使C2组分和C4以上组分进入一个独立的烯烃转化反应器使其转化成丙烯。 该技术可调节丙烯/乙烯比例,从1.2:1到1:0(全丙烯产出)均可实现。据称,利用该技术生产以丙烯为目标产物的烯烃产品,丙烯总收率可达77%,原料甲醇

毕业设计 --年产60万吨甲醇制乙烯装置的设计

目录 1 概述 (3) 1.1甲醇制乙烯的研究和生产概况 (3) 1.1.1 MTP工艺 (3) 1.1.2 MTO及DMTO工艺 (4) 1.2 甲醇制低碳烯烃的原理 (6) 1.2.1 主要化学反应和反应动力学 (6) 1.2.2 氧内盐机理 (7) 1.2.3 碳烯离子机理 (7) 1.2.4 串联型机理 (7) 1.2.5 平行型机理 (8) 1.3设计任务 (8) 1.3.1 设计要求 (8) 1.3.2 设计内容 (9) 1.4过程模拟计算简介 (9) 1.4.1 Aspen Plus 模拟软件 (9) 1.4.2 Aspen Plus软件的使用 (11) 2 工艺流程设计 (13) 2.1工艺流程设计概述 (13) 2.2 反应器 (14) 2.2.1 甲醇转化为烯烃的反应特征 (14) 2.2.2 反应器及反应条件的选择 (15) 2.2.3物料衡算 (16) 2.2.4 反应器及再生器尺寸设计一览表 (17) 2.3 换热器 (18) 2.3.1 冷、热物流热状况及换热要求 (18) 2.3.2换热器模拟计算结果 (19) 2.3.3 换热器E0101设计尺寸一览表 (20) 2.4 精馏塔 (21) 2.4.1 精馏塔设计概述 (21)

2.4.2 精馏塔简捷模拟计算 (22) 2.4.3 精馏塔严格模拟计算 (25) 2.4.4 T0201精馏塔设计参数及尺寸一览表 (30) 2.4.5精馏塔模拟计算结果汇总 (30) 3 工艺模拟计算结果 (32) 3.1物料及能量衡算一览表 (32) 3.2 产品产量及纯度 (38) 4 环境保护及安全防护 (39) 4.1 安全防护措施及意义 (39) 4.2 环境保护措施及意义 (39) 5 总结 (41) 参考文献 (42) 致谢 ..................................................................................................................... 错误!未定义书签。

MTO装置甲醇转化制低碳烯烃技术

MTO装置甲醇转化制低碳烯烃技术 乙烯和丙烯是现代化学工业中的重要基础原料,其需求量将越来越大。制备乙烯和丙烯的传统方法是采用轻油(石脑油、轻柴油)裂解工艺,但石油储量有限,所以世界各国开始致力于非石油路线制乙烯和丙烯类低碳烯烃的开发。其中,以煤或天然气为原料制甲醇,再由甲醇制低碳烯烃的工艺受到越来越多的重视。目前石油价格高,今后石油价格也难于有大的降低,对于缺油少气的中国来说甲醇制低碳烯烃的工艺更为重要。甲醇转化制低碳烯烃技术包括两种工艺:甲醇转化以制乙烯和丙烯 为主(MTO);甲醇转化以制丙烯为主(MTP)。 美国美孚石油公司(Mobil)对采用ZSM-5系列分子筛催化剂将甲醇转化为乙烯和较低级烃做了大量初始研究,Mobil的甲醇生产汽油(MTG)工艺已工业化。在1985年Mobil在新西兰Montonui公司的甲醇制汽油(MTG)生产厂就已经投产。甲醇转化为较低级烯烃的研究后来被用来制备C3 烯烃(它易于聚成汽油和馏份油产品),Mobil的甲醇制烯烃(MTO)以及烯烃制汽油和馏份油(MOGD)工艺已经得到证明。由于烯烃是甲醇制汽油反应的中间产物,所以甲醇制汽油技术的成功开发推动了后来甲醇制烯烃(MTO)、甲醇制丙烯(MTP)等工艺的开发。 甲醇制烯烃技术(Methanol-to-Olefin,简称MTO)的工业化,开辟了由煤炭或天然气生产基础有机化工原料的新工艺路线,是实现煤化工向石油化工延伸发展的有效途径。 国际上一些著名的石油和化学公司如美孚公司(Mobil)、巴斯

夫公司(BASF)、埃克森石油公司(Exxon)、环球油品公司(UOP)、海德罗公司(Norsk Hydro)等多年来都投入了大量资金研究甲醇制取烯烃的工业化。催化剂活性和选择性及相应的工艺流程设计是甲醇制烯烃技术的关键。 美孚公司(Mobil)提出了一种使用ZSM-5催化剂,在列管式反应器中进行甲醇转化制烯烃的工艺流程,并于1984年进行过9个月的中试实验,试验规模为100桶/天。乙烯收率可达60%(wt),烯烃总收率可达80%(wt),但催化剂的寿命尚不理想。 巴斯夫公司(BASF)采用沸石催化剂,1980年夏季在德国建立了一套日消耗30吨甲醇的中试装置。用各种沸石做催化剂,初步试验结果是C2-C4烯烃的收率太低。 环球油品公司(UOP/HYDRO)筛选出的催化剂称作MTO-100,MTO-100催化剂的基体是是联碳公司开发的SAPO-34。主要化学成分包括硅(Si)、铝(Al)、磷(P)、氧(O)等元素。硅铝化物的磷酸盐滤网内部均一的孔径约为3.8埃。孔径的尺寸控制着从催化剂孔中生成的烯烃分子的大小。较大分子的烯烃扩散的速度较慢,产品主要由较小的链烯烃生成。在典型的操作状况下,80%的甲醇(按碳含量计算%)进料转化为乙烯和丙烯,大约10%转化为丁烯。 环球油品公司(UOP/HYDRO)的MTO工艺是由UOP和Norsk Hydro 公司联合开发的由粗甲醇或精甲醇选择性生产乙烯和丙烯的技术。这项技术已在Norsk Hydro的演示装置中被广泛证实,已发展了十多年之久。在流化床反应器中MTO工艺将甲醇转化为乙烯和丙烯,碳的选择性接近80%。如果丁烯也计入产品量的变化,碳的选择性接近90%。MTO单元的操作有相当大的灵活性。典型的,通过严格调整操作,C2=/C3=的比率能够在0.75到1.25之间调整,

甲醇制烯烃技术(MTOMTP)

甲醇制烯烃(Methanol to Olefins,MTO)和甲醇制丙烯(Methanol to Propylene)是两个重要的C1化工新工艺,是指以煤或天然气合成的甲醇为原料,借助类似催化裂化装置的流化床反应形式,生产低碳烯烃的化工技术。 上世纪七十年代美国Mobil公司在研究甲醇使用ZSM-5催化剂转化为其它含氧化合物时,发现了甲醇制汽油(Methanol to Gasoline,MTG)反应。1979年,新西兰政府利用天然气建成了全球首套MTG装置,其能力为75万吨/年,1985年投入运行,后因经济原因停产。 从MTG反应机理分析,低碳烯烃是MTG反应的中间产物,因而MTG工艺的开发成功促进了MTO工艺的开发。国际上的一些知名石化公司,如Mobil、BASF、UOP、Norsk Hydro等公司都投入巨资进行技术开发。 Mobil公司以该公司开发的ZSM-5催化剂为基础,最早研究甲醇转化为乙烯和其它低碳烯烃的工作,然而,取得突破性进展的是UOP和Norsk Hydro两公司合作开发的以UOP MTO-100为催化剂的UOP/Hydro的MTO工艺。 国内科研机构,如中科院大连化物所、石油大学、中国石化石油化工科学研究院等亦开展了类似工作。其中大连化物所开发的合成气经二甲醚制低碳烯烃的工艺路线(SDTO)具独创性,与传统合成气经甲醇制低碳烯烃的MTO相比较,CO转化率高,达90%以上,

建设投资和操作费用节省50%~80%。当采用D0123催化剂时产品 以乙烯为主,当使用D0300催化剂是产品以丙烯为主。 一、催化反应机理 MTO及MTG的反应历程主反应为: 2CH3OH→C2H4+2H2O 3CH3OH→C3H6+3H2O 甲醇首先脱水为二甲醚(DME),形成的平衡混合物包括甲醇、二甲醚和水,然后转化为低碳烯烃,低碳烯烃通过氢转移、烷基化和缩聚反应生成烷烃、芳烃、环烷烃和较高级烯烃。甲醇在固体酸催化剂作用下脱水生成二甲醚,其中间体是质子化的表面甲氧基;低碳烯烃转化为烷烃、芳烃、环烷烃和较高级烯烃,其历程为通过带有氢转移反应的典型的正碳离子机理;二甲醚转化为低碳烯烃有多种机理论述,目前还没有统一认识。 Mobil公司最初开发的MTO催化剂为ZSM-5,其乙烯收率仅为5%。改进后的工艺名称MTE,即甲醇转化为乙烯,最初为固定床反应器,后改为流化床反应器,乙烯和丙烯的选择性分别为45%和25%。 UOP开发的以SAPO-34为活性组分的MTO-100催化剂,其乙烯选择性明显优于ZSM-5,使MTO工艺取得突破性进展。其乙烯和丙烯的选择性分别为43%~61.1%和27.4%~41.8%。 从近期国外发表的专利看,MTO研究开发的重点仍是催化剂的改进,以提高低碳烯烃的选择性。将各种金属元素引入SAPO-34骨架上,得到称为MAPSO或ELPSO的分子筛,这是催化剂改型的重要

煤制烯烃成本分析

煤制烯烃成本分析 煤制烯烃和石脑油裂解制烯烃技术路线相比较,在经济上的竞争力的先决条件是:项目须在煤炭基地坑口建设,以自产廉价煤炭为原料,通过经济型的大规模装置生产低成本的甲醇,再由该甲醇制烯烃。前几年专家测算,原油价格在35~40美元/桶时,煤制烯烃即有市场竞争力(中国煤没有涨价前)。现在原油已经回落到50美/桶左右,相对于高油价时期煤制烯烃的竞争力缩小。UOP公司公开发表的文献介绍,当原料甲醇价格控制在90~100美元/吨时,采用MTO工艺制取的乙烯和丙烯成本与20~22美元/桶原油价格条件下石脑油裂解制烯烃的成本相比具备经济竞争力,在目前油价背景下,煤制烯烃工艺路线的经济性不言而喻。 1.成本分析 MTO(或DHTO)及MTP工艺均属催化反应合成工艺。一般的裂解工艺每产1吨当量烯烃约需3吨石脑油,目前国内石脑油价格为4500元/吨左右,而MTP(或DMTO)及MTP对甲醇的消耗量也大约为3吨,煤基甲醇的完成成本(坑口媒价)一般在1500~2000元/吨左右,如以60万吨/年大型装置测算,价格更低。说明煤基低碳烯烃在我国的发展已具备了十分重要的战略优势。 2.神华集团煤制油有限公司经济性测算 根据神华集团煤制油有限公司所作的研究表明(2007年):神华集团原料煤价格在100元/吨左右,煤制甲醇的规模达到100万吨/年以上时,可以将甲醇的完全生产成本控制在100美元/吨以下。对以煤为原料(采用美国环球油品公司的MTO 工艺)与以石脑油为原料制取的聚乙烯、聚丙烯成本进行测算和比较表明,煤路线(煤价100元/吨)制取的聚烯烃成本比石脑油路线(石脑油价格22美元/桶)低400元/吨左右。此外,煤路线制烯烃的成本中原料煤所占的比例小于20%,煤价的波动对经济性影响较小。 3.中科院大连化物所经济性分析 中国中科院大连化物所甲醇制烯烃DMTO技术工业化试验结果是,甲醇转化率接近100%;2.95吨甲醇产1吨烯烃,其中50%乙烯、50%丙烯。由于每2.0吨煤即可生产1吨甲醇,所以,原料加燃料需7.5吨煤生产1吨烯烃。中科院大连化物所试验室人员对两种化工路线的经济性作了比较:当国际原油价格为35美元/桶时,原油炼制石脑油所生产的烯烃成本是5300元/吨。走煤制烯烃路线的话,除非煤价超过513元/吨,否则煤制烯烃的成本不会超过5300元/吨。目前,北方的煤炭开采成

甲醇制烯烃技术发展现状及应用

甲醇制烯烃技术发展现状及应用 发表时间:2019-05-13T16:08:29.723Z 来源:《防护工程》2019年第2期作者:赵峰涛刘登攀 [导读] 随着经济的发展和科技的进步,烯烃的量也逐年递增。众所周知,乙烯不仅仅是化工产业的基础原料,其本质也是合成材料的重要组成部分,就当下塑料产品的生产过程而言,也是不可或缺的重要参与成分。 陕西煤化工技术工程中心有限公司陕西渭南 714104 摘要:随着经济的发展和科技的进步,烯烃的量也逐年递增。众所周知,乙烯不仅仅是化工产业的基础原料,其本质也是合成材料的重要组成部分,就当下塑料产品的生产过程而言,也是不可或缺的重要参与成分。丙烯作为一种应用范围同样十分广泛的低碳烯烃,该材料的应用对于我国化工产业的发展意义重大。甲醇制烯烃技术作为以生产乙烯、丙烯为主要目的的化工技术,其对于我国化工产业乃至社会发展的推动作用毋庸置疑。本文就甲醇制烯烃技术发展现状及应用展开探讨。 关键词:甲醇制烯烃;技术分析;应用 引言 烯烃是衡量一个国家化工产业实力的标准,在过去10多年中,我国50%以上的乙烯和丙烃大多为石油烃类蒸汽裂解而形成,而所采用的原料为石脑油,但由于近年来原油的价格持续攀升,致使生产烯烃的成本也逐年提升,为改变此种被动的局面,通过科研人员的不断探索与反复试验,一种新型的制烯烃技术进入人们的视野,并逐渐受到社会各界的广泛关注,此种技术即是甲醇制取烯烃技术。甲醇制烯烃技术不仅消耗成本较低,且符合我国的能源格局衍生需要,因此,对于“甲醇制烯烃技术进展及与石油烃裂解制烯烃技术的对比分析”研究,就具有极大的现实意义。 1甲醇制烯烃技术的简介 通俗的来说,甲醇制烯烃技术正是以煤或天然气合成的甲醇为原料,用来生产低碳烯烃。低碳烯烃在国内市场比较短缺,采用这一项技术,烯烃的供应不足问题可以得到很大程度的改善。尤其是生产出来的乙烯,对各项工业技术的发展有着巨大的推动作用。乙烯不仅仅是各项化工产业的基本原料,它更是合成材料的重要单体。在通用塑料的生产中也是必不可少的原料之一。甲醇制烯烃技术生产的烯烃主要以低碳烯烃为主。除了常用的乙烯之外,丙烯也是另一种应用较广泛的低碳烯烃,它的应用范围也仅次于乙烯。该项技术的发展,极大地推动了我国化工业的发展,可以说是一项历史性的突破。该工艺最终的目的是为生产乙烯和丙烯,然而整个工艺反应之后剩余的副产品中主要包括汽油、焦炭、水、C4等杂质。这些杂质的存在使得整个工艺的选择难度进一步加大,必须使用合理的选择性催化剂,只选择需要的乙烯和丙烯,将其他的杂质都排除在外,并且要装置乙烯和丙烯的分离器,将这两种主要的烯烃分离开来,便于后续的工业生产,同时也为后续的生产提供了很多的便利。 2甲醇制烯烃技术的发展现状 2.1 MTO技术的发展现状分析 作为当下一种较为普遍的应用技术,MTO技术的本质是通过对甲醇的利用,在历经反应器的反应之后,实现乙烯与丙烯的生产。该技术最早是由美国研发,并逐渐在世界范围内应用。该技术的应用主要分为再生系统与反应器分离系统。两个系统在应用的过程中相互配合,最终促进技术目标的达成。生产后得到的乙烯与丙烯在分离器的帮助下实现分离,最终可获得较高纯度的烯烃。相比于MTP技术,MTO技术的综合利用价值更高,MTO技术对于乙烯与丙烯都具有较高的生产价值。 2.2 MTP技术的发展 MTP技术是在德国成功研发的。它与MTO技术还是存在较大的不同。MTP技术的工艺流程主要是先将原料甲醇进行加热,待其温度达到一定范围之后,再将其通入到甲醚反应器中,此时需要采用高活性、高选择性的催化剂,先将甲醇转化为二甲醚、水、甲醇—水—二甲醚的混合物,接着将这些产物通入到分凝器中,再放入MTP反应器中。整个反应得到的主要产物是丙烯,乙烯含量较少,不如MTO技术生产的乙烯多。总的来说,MTP技术是优点与缺点并存,在实际生产的时候需要根据具体情况进行选择。 2.3甲醇制烯烃技术在国内的应用分析 下文针对神华包头煤化工有限公司的烯烃项目进行分析。神华包头煤化工有限公司的甲醇制烯烃项目的发展历程并不悠久,但是该公司紧跟时代潮流,勇于就公司自身进行大刀阔斧的改革,且对于市场定位与公司发展有着较为独到的视角。所以该公司的甲醇制烯烃项目发展至今如鱼得水。伴随着企业的发展,该项目对于社会进步的推动作用也不可忽视。该项目在2010年的七月份正式投入使用,随着该项目的持续发展与优化,乙烯与丙烯的产出率也在不断的提升,与此同时该项目的发展也已经逐步实现了商业化的运营。甲醇制烯烃技术的应用一方面可以有效的缓解我国对进口石油的依赖程度,另一方面也可以有效的实现烯烃原料的多元化发展,这对于我国能源结构的改善具有重要的践行意义。根据《石油和化学工业“十三五”发展指南要求》,在“十三五”期间,我国应就现有乙烯装置的升级与改造予以重视,到2020年我国应达到乙烯产能3200万吨/年,比较2016年底我国MTO/MTP装置产能1293万吨/年的发展数据,可以预知在未来的几年中,我国的甲醇制烯烃技术仍旧具备较大的发展空间。尽管如此,由于现阶段的规划与管理的缺失,使得具体工艺开展的过程中面临着前期投入过大,环境污染严重以及因竞争激励而导致的产生过剩等因素。加强对相关工作的管理与引导,也是未来工作开展的重中之重。 3甲醇制烯烃技术发展动向 当前的MTO技术,烃类产物中乙烯和丙烯的质量总和可以达到80%左右,混合碳四约为13%,其组分以1-丁烯和2-丁烯为主(占90%),其余组分是丁烷、异丁烯、丁二烯和丁炔等,而丙烷为2%~3%,混合碳五为约2%,碳六及以上烃在1%左右。每生成1t乙烯约产生0.34t的C4~C5+烃类,如何利用这些副产物使之更多、更有效地转化为乙烯和丙烯是目前甲醇制烯烃研究的主要技术方向。将这些MTO 反应的副产物一起进入反应器参加对SAPO-34分子筛催化剂的流化,同时可将这些物质进一步转化成为乙烯和丙烯。则发现这些副产物直接返回反应器会对催化剂的性能造成一定的影响(如结焦速率更快等),因此,采用副产物先加氢处理再返回反应器的方案。当加氢催化剂含有Ni、Cu、MO、W等活性组分,可将其中所含的烯烃转化成为烷烃,所含的醛、酮等含氧化合物转化成烃类物质或醇类,这样可有效地减少返回物料对催化剂的影响。将副产物经过多次分离,只将高浓度的含氧化合物返回反应器,这样可减少反应器的负荷,同时返回物料中

甲醇制烯烃工艺技术及经济性分析

甲醇制烯烃工艺技术及经济性分析 李建新安福何祚云 (中国石化咨询公司) 甲醇制烯烃(Methanol to Olefins,简称MTO)工艺是美国UOP公司和挪威HYDRO公司于1995 年合作开发成功的一种新技术,该工艺以甲醇为原料,通过甲醇裂解制得以乙烯和丙烯为主的烯烃产品。 按甲醇原料的不同,可以有天然气和煤两种路线。MTO工艺的开发成功拓宽了烯烃原料来源渠道,同 时为天然气和煤的化工利用开辟了一条新的途径。 目前,MTO工艺虽尚未实现在工业化大型装置上的应用,但已实现技术转让。作为一种新兴工艺, 其技术成熟度及与其它烯烃生产工艺相比的经济性怎样成为人们普遍关心的问题。 下面将重点对MTO工艺的技术可靠性及天然气、煤路线及传统蒸汽裂解工艺路线烯烃产品的成本 经济性状况进行分析研究,供大家参考。 1 MTO工艺技术可靠性分析 1.1 MTO工艺开发进程 甲醇制取烯烃的概念最早由美国Mobil公司在20世纪80年代提出。美国UOP公司和挪威Hydro 公司相继从1992年开始有关MTO技术的研究,两家公司利用筛选出的新型SAPO-34型催化剂开展 MTO工艺的研究。该催化剂是硅铝磷酸盐型具有择形能力的分子筛催化剂,可控制酸性中心的位置和 强度,使低碳烯烃齐聚的反应减少,从而大幅提高甲醇转化为乙烯和丙烯的选择性,SAPO-34催化剂 的研发成功是对MTO工艺研究的极大推进。目前,UOP公司MTO工艺的定型催化剂为MTO-100。 UOP和Hydro开发了类似催化裂化装置的MTO工艺流程,并于1992年开始小试工作,1995年两 公司合作在挪威建设了原料处理量为0.75 t/d的工业演示装置。甲醇的转化率始终保持在100%附近。 催化剂再生次数超过450次,其稳定性和强度得到一定的验证。该工艺的乙烯/丙烯的生成比例可从最 大量生产乙烯时的1.5到最大量生产丙烯时的0.75。该工业演示装置典型的产品收率数据见表1。 表1 MTO工业演示装置典型产品收率 组份产率Wt%,以甲醇进料为基产率,Wt%,以甲醇中碳为基 C l~C4饱和烃 1.5 3.5 乙烯 21.1 48.0 丙烯 14.6 33.0 碳四 4.2 9.6 C5+ 1.0 2.4 COX+焦炭 0.5 3.5 生成水 57.1 一 合计 100 100 1995年11月UOP和HRDRO在南非第四届国际天然气转化会议上宣布可以进行MTO技术的转让, 并称该过程已可实现年产50万t/a乙烯的工业化生产,可从UOP和Hydro获得建厂许可证。目前,该 技术已成功转让给尼日利亚一家天然气联合企业,MTO装置规模为年产80万t烯烃,下游配套建设40 万t/a HDPE和40万t/a PP,配套建设250万t/a甲醇装置。 我国中科院大连化物所从20世纪80年代也开始了有关甲醇制烯烃工艺的研究,现在围绕合成气转 化为低碳烯烃已申请专利20余项,在甲醇或二甲醚制取低碳烯烃方面构成了自主的知识产权。大连化 物所在1993年完成了以ZSM-5为催化剂的固定床MTO工艺中试研究,90年代提出了由合成气制二甲 醚进而制取烯烃的SDTO工艺,并于1995年在上海青浦化工厂建设了原料二甲醚处理量为0.06~0.10 t/d 146

【精品】煤制烯烃成本分析

【关键字】精品 煤制烯烃成本分析 煤制烯烃和石脑油裂解制烯烃技术路线相比较,在经济上的比赛力的先决条件是:项目须在煤炭基地坑口建设,以自产廉价煤炭为原料,通过经济型的大规模装置生产低成本的甲醇,再由该甲醇制烯烃。前几年专家测算,原油价格在35~40美元/桶时,煤制烯烃即有市场比赛力(中国煤没有涨价前)。现在原油已经回落到50美/桶左右,相对于高油价时期煤制烯烃的比赛力缩小。UOP公司公开发表的文献介绍,当原料甲醇价格控制在90~100美元/吨时,采用MTO工艺制取的乙烯和丙烯成本与20~22美元/桶原油价格条件下石脑油裂解制烯烃的成本相比具备经济比赛力,在目前油价背景下,煤制烯烃工艺路线的经济性不言而喻。 1.成本分析 MTO(或DHTO)及MTP工艺均属催化反应合成工艺。一般的裂解工艺每产1吨当量烯烃约需3吨石脑油,目前国内石脑油价格为4500元/吨左右,而MTP(或DMTO)及MTP 对甲醇的消耗量也大约为3吨,煤基甲醇的完成成本(坑口媒价)一般在1500~2000元/吨左右,如以60万吨/年大型装置测算,价格更低。说明煤基低碳烯烃在我国的发展已具备了十分重要的战略优势。 2.神华集团煤制油有限公司经济性测算 根据神华集团煤制油有限公司所作的研究表明(2007年):神华集团原料煤价格在100元/吨左右,煤制甲醇的规模达到100万吨/年以上时,可以将甲醇的完全生产成本控制在100美元/吨以下。对以煤为原料(采用美国环球油品公司的MTO工艺)与以石脑油为原料制取的聚乙烯、聚丙烯成本进行测算和比较表明,煤路线(煤价100元/吨)制取的聚烯烃成本比石脑油路线(石脑油价格22美元/桶)低400元/吨左右。此外,煤路线制烯烃的成本中原料煤所占的比例小于20%,煤价的波动对经济性影响较小。 3.中科院大连化物所经济性分析 中国中科院大连化物所甲醇制烯烃DMTO技术工业化试验结果是,甲醇转化率接近100%;2.95吨甲醇产1吨烯烃,其中50%乙烯、50%丙烯。由于每2.0吨煤即可生产1吨甲醇,所以,原料加燃料需7.5吨煤生产1吨烯烃。中科院大连化物所试验室人员对两种化工路线的经济性作了比较:当国际原油价格为35美元/桶时,原油炼制石脑油所生产的烯烃成本是5300元/吨。走煤制烯烃路线的话,除非煤价超过513元/吨,否则煤制烯烃的成本不会超过5300元/吨。目前,北方的煤炭开采成本不到100元/吨,车板价约200多元/吨,东

甲醇制烯烃技术进展及评价

甲醇制烯烃技术进展及经济评价 甲醇制烯烃技术主要分两步。首先由天然气转化生成粗甲醇,该过程已实现工业化;然后甲醇转化生成烯烃,主要是乙烯和丙烯。不同的工艺生成的乙烯与丙烯的比例也不同。UOP/Hydro公司的甲醇制烯烃工艺(MTO)是在Mobil公司的甲醇制汽油技术(MTG)上发展起来的。该MTO工艺具有很大的灵活性,可根据市场的需求变化,通过改变反应器的操作条件,来调整乙烯与丙烯的产量。产品中乙烯与丙烯之产量比可在 0.77-1.33的范围内进行调节。 1 催化剂进展 UOP/Hydro公司在SAPO-34催化剂基础上开发了新型催化剂 MTO-100,取得了突破性的进展。SAPO-34催化剂是磷酸硅铝分子筛,对甲醇转化乙烯和丙烯具有较高的选择性。新型催化剂MTO-100具有择形选择性,其酸性位和强度具有可控性,大大提高了向乙烯和丙烯转化的选择性,可使乙烯、丙烯的选择性达到80%。SAPO系列属通用性较强的催化材料,尽管它与沸石的热稳定性不同,但其化学性质和晶体结构与沸石材料很相似,具有均一的孔隙率、晶体分子结构、可调酸度、择形催化剂以及酸性交换能力。其最大的改进在于孔隙更小,酸性位和强度具有可控性。尽管改进的SAPO-34是MTO工艺理想的催化材料,但对于流化床反应器来说仍不是最佳的选择。必须将SAPO-34与一系列专门选择的粘合剂结合起来。粘合剂的选择极其重要,它必须要能提高催化剂的活性,但又不能影响催化剂的选择性。美国Nexant化学系统公司认为采用处理过的氧化硅和氧化铝作粘合剂可达到一定的孔隙率、酸度以及强度。粘合剂的孔隙率很重要,它必须允许甲醇和MTO的产品快速地进出SAPO-34。该催化剂与FCC催化剂的制备方式相似,通过喷雾法干燥制备。 2 工艺进展 UOP/Hydro公司的MTO工艺设计与Mobil公司的工艺很相似,由于需要分离和处理的较重副产品很少,分离系统相对简单。该工艺采用的原料是粗甲醇,因此没必要通过蒸馏制取AA级的甲醇(纯度为99.85%),减少了上游甲醇装置的资本投资。但粗甲醇不能出售用于其他方面,因此限制了甲醇设备的灵活性。为了较容易地保持稳定的温度和产量,MTO 工艺采用流化床反应器,操作温度为350-525℃,操作压力为0.1-0.3Mh。MTO工艺的苛刻度可以通过产量、温度、压力以及催化剂循环率来控制。温度决定热动力学操作,生产能力决定接触时间。同时,转化率和选择

甲醇制低碳烯烃_MTO_技术综述

2007年第28卷第2期甲醇制低碳烯烃(MTO)技术综述 李仲来 (全国化工合成氨设计技术中心站 250013) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!!!!!!!" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!!!!!!!" 摘 要 简述了甲醇制低碳烯烃(MTO)的技术和技术经济概况。关键词 甲醇 低碳烯烃 技术 氮肥技术 1前言 面对我国缺油、少气、煤炭相对丰富的能源 结构和我国经济与环境可持续发展的战略,煤化工则成为我国能源发展的趋势。发展煤化工的主要途径之一就是煤气化制合成气。合成气经过F-T合成,可以生产汽油、柴油和烯烃;合成气也可生产一氧化碳、甲醇、合成氨等。而甲醇不仅是极为重要的有机化工原料,也是性能良好的能源和车用燃料。 F-T合成是将合成气中CO和H2在催化剂和一定温度、压力下合成烃类混合物的最直接的方法。但F-T合成在合成品的选择性上,却受到一个被称作Schulz-Flory分布规律的限制,不能任意最大限度地生产某一碳数范围的产物。因此在实际生产中,对所要生产的某种烃类的选择性并不理想。对此,20世纪30年代开始,某些研究部门开发了多种改进型或全新型的煤间接液化技术,其中最有成效的就是将合成气先合成甲醇和二甲醚,再进一步转化成烃类。甲醇制低碳烯烃技术即源于此。2 低碳烯烃 低碳烯烃也称作低级烯烃,主要指乙烯、丙烯、丁烯。丁二烯有时也称低碳烯烃。2.1 乙烯 (1)性质、用途及制取 乙烯(ethylene),分子式C2H4,结构式CH2=CH2, 相对分子质量28.05。无色可燃性气体。熔点-169.4℃,沸点-103.7℃,液体密度(-103.8℃)0.5699g/cm3,闪点<-66.9℃。溶于醇和醚,难溶于水。具有烃类特有的臭味,属低毒类气体。乙烯与空气混合形成爆炸性气体,爆炸极限3.1%~32.0%。 乙烯是现代石油化学工业的重要基础原料。以乙烯为原料通过多种合成途径,可得到一系列重要的石油化工中间产品和最终产品。乙烯衍生物产品已遍及有机原料和高分子材料等各个方面,也可作合成材料的单体(如聚乙烯等)。乙烯在石油化学工业乃至国民经济中占重要地位,正象钢铁的产量往往标志着一个国家的工业发展水平那样,乙烯产量很大程度上反应出一个国家的石油化学工业发展水平。 自然界不存在天然的乙烯。石油原料的裂解是乙烯、丙烯等低碳烯烃的重要来源。早期的乙烯生产,主要由乙醇催化脱水和从焦炉气炼厂气中回收制取。现在则主要以石油烃为原料,通过高温裂解法制得。高温裂解的石油烃原料有乙烷、丙烷、丁烷、石脑油、轻柴油等。世界各国和地区都根据其资源情况及原料供应的稳定性,分别选用相应的原料路线。如:美国气体资源丰富,主要以乙烷、丙烷、天然气凝析液(NGL)为原料;西欧天然气贫乏,大多数国家以石脑油为原料;日本油、气资源贫乏,乙烯原料几乎全靠进口,以石脑油为主,约占90%;俄国以石脑油为主,约占80%。我国目前所用乙烯原料以轻柴油、石脑油为主。但我国贫油、富煤,因而乙烯原料逐渐转向煤制甲醇,当是较好的选择。 (2)产能、产量与消费 我国乙烯工业起步于20世纪60年代,80年代以来发展较快。1983年国内乙烯生产能力为70×104t ,1993年生产能力达223.0×104t,年均增长率10.13%,1995年生产能力为290.3×104t,年均增长率14.10%。 近10年来,我国乙烯发展概况见表1。 1

相关主题
文本预览
相关文档 最新文档