当前位置:文档之家› 第4章:数据链路层与以太网交换技术

第4章:数据链路层与以太网交换技术

第4章:数据链路层与以太网交换技术
第4章:数据链路层与以太网交换技术

交换式以太网和共享式以太网区别

共享式以太网 共享式以太网的典型代表是使用10Base2/10Base5的总线型网络和以集线器为核心的星型网络。在使用集线器的以太网中,集线器将很多以太网设备集中到一台中心设备上,这些设备都连接到集线器中的同一物理总线结构中。从本质上讲,以集线器为核心的以太网同原先的总线型以太网无根本区别。 集线器的工作原理: 集线器并不处理或检查其上的通信量,仅通过将一个端口接收的信号重复分发给其他端口来扩展物理介质。所有连接到集线器的设备共享同一介质,其结果是它们也共享同一冲突域、广播和带宽。因此集线器和它所连接的设备组成了一个单一的冲突域。如果一个节点发出一个广播信息,集线器会将这个广播传播给所有同它相连的节点,因此它也是一个单一的广播域。 集线器的工作特点: 集线器多用于小规模的以太网,由于集线器一般使用外接电源(有源),对其接收的信号有放大处理。在某些场合,集线器也被称为“多端口中继器”。 集线器同中继器一样都是工作在物理层的网络设备。 共享式以太网存在的弊端:由于所有的节点都接在同一冲突域中,不管一个帧从哪里来或到哪里去,所有的节点都能接受到这个帧。随着节点的增加,大量的冲突将导致网络性能急剧下降。而且集线器同时只能传输一个数据帧,这意味着集线器所有端口都要共享同一带宽。 交换式以太网 交换式结构: 在交换式以太网中,交换机根据收到的数据帧中的MAC地址决定数据帧应发向交换机的哪个端口。因为端口间的帧传输彼此屏蔽,因此节点就不担心自己发送的帧在通过交换机时是否会与其他节点发送的帧产生冲突。 为什么要用交换式网络替代共享式网络: ·减少冲突:交换机将冲突隔绝在每一个端口(每个端口都是一个冲突域),避免了冲突的扩散。 ·提升带宽:接入交换机的每个节点都可以使用全部的带宽,而不是各个节点共享带宽。 交换式以太网是以交换式集线器(switching hub)或交换机(switch)为中心构成,是一种星型拓扑结构的网络。简称为交换机为核心设备而建立起来的一种高速网络,这种网络在近几年运用的非常广泛。 交换式以太网技术的优点 交换式以太网不需要改变网络其它硬件,包括电缆和用户的网卡,仅需要用交换式交换机改变共享式HUB,节省用户网络升级的费用。 交换式以太网和共享式以太网区别

以太网标准和物理层及数据链路层专题

资料编码产品名称 使用对象产品版本 编写部门资料版本 以太网标准和物理层、数据链路层专题 拟制:日期: 审核:日期: 审核:日期: 批准:日期: 华为技术有限公司 版权所有侵权必究 修订记录 日期修订版本作者描述

目录 1 以太网标准 5 1.1 以太网标准 5 1.2 IEEE标准 5 1.3 物理层 8 1.3.1 以太网接口类型 8 1.3.2 电口 8 1.3.3 光口 11 1.4 FE自协商 12 1.4.1 自协商技术的功能规范 13 1.4.2 自协商技术中的信息编码 14 1.4.3 自协商功能的寄存器控制 16 1.4.4 GE自协商 18 1.5 物理层芯片和MAC层芯片接口简介 19 1.5.1 MII 19 1.5.2 MDIO管理寄存器 20 1.5.3 RMII 20

1.5.4 SMII 21 1.5.5 SS-SMII 21 1.5.6 GMII 22 1.5.7 TBI 22 2 以太网数据链路层 23 2.1 以太网的帧格式 23 2.2 以太网的MAC地址 25 2.3 CSMA/CD算法 26 2.3.1 CSMA/CD发送过程 27 2.3.2 CSMA/CD如何接收 28 2.4 半双工以太网的限制 31 2.5 以太网流量控制 34 2.5.1 反压(Backpressure) 34 2.5.2 PAUSE 流控 34 关键词: 以太网物理层数据链路局域网城域网协议标准祯结构

摘要: 本文详细地阐述了以太网的标准,以太网在各个传输层面的具体结构和工作方式以及控制方式。 缩略语清单: 无。 参考资料清单 无。 以太网标准和物理层、数据链路层专题 1 以太网标准 1.1 以太网标准 局域网(LAN)技术用于连接距离较近的计算机,如在单个建筑或类似校园的集中建筑中。城市区域网(MAN)是基于10-100Km的大范围距离设计的,因此需要增强其可靠性。但随着通信的发展,从技术上看,局域网和城域网有融合贯通的趋势。 1.2 IEEE标准 IEEE是电气和电子工程师协会(Institute of Electrical and Electronics Engineers)的简称,IEEE组织主要负责有关电子和电气产品的各种标准的制定。IEEE于1980年2月成立了IEEE 802委员会,专门研究和指定有关局域网的各种标准。IEEE 802委员会由6个分委员会组成,其编号分别为802.1

工业以太网的意义和应用分析

以太网技术在工业控制领域的应用及意义 随着计算机和网络技术的飞速发展,在企业网络不同层次间传送的数据信息己变得越来越复杂,工业网络在开放性、互连性、带宽等方面提出了更高的要求。现场总线技术适应了工业网络的发展趋势,用数字通信代替传统的模拟信号传输,大量地减少了仪表之间的连接电缆、接线端口等,降低了系统的硬件成本,被誉为自动化领域的计算机局域网。 现场总线的出现,对于实现面向设备的自动化系统起到了巨大的推动作用,但现场总线这类专用实时通信网络具有成本高、速度低和支持应用有限等缺陷,以及总线通信协议的多样性使得不同总线产品不能直接互连、互用和互可操作等,无法达到全开放的要求,因此现场总线在工业网络中的进一步发展受到了限制。 随着Internet技术的不断发展,以太网己成为事实上的工业标准,TCP/IP 的简单实用已为广大用户所接受,基于TCP/IP协议的以太网可以满足工业网络各个层次的需求。目前不仅在办公自动化领域,而且在各个企业的上层网络也都广泛使用以太网技术。由于它技术成熟,连接电缆和接口设备价格较低,带宽也在飞速增加,特别是快速Ethernet与交换式Ethernet的出现,使人们转向希望以物美价廉的以太网设备取代工业网络中相对昂贵的专用总线设备。 Ethernet通信机制 Ethernet是IEEE802. 3所支持的局域网标准,最早由Xerox开发,后经数字仪器公司、Intel公司和Xerox联合扩展,成为Ethernet标准。Ethernet采用星形或总线形结构,传输速率为10Mb/s,100 Mb/s,1000 Mb/s或是更高,传输介质可采用双绞线、光纤、同轴电缆等,网络机制从早期的共享式发展到目前盛行的交换式,工作方式从单工发展到全双工。 在OSI/ISO 7层协议中,Ethernet本身只定义了物理层和数据链路层,作为一个完整的通信系统,它需要高层协议的支持。自从APARNET将TCP/IP和Ethernet捆绑在一起之后,Ethernet便采用TCP/IP作为其高层协议,TCP用来保证传输的可靠性,IP则用来确定信息传递路线。 Ethernet的介质访问控制层协议采用CSMA/CD,其工作原理如下:某节点要

数据链路层与网络安全

课 程 设 计 任 务 书 题目:网络安全技术分析与安全方案设计 小组成员:

姓名:刘锡淼学号:540907040127 负责内容:统筹协作和运输层安全分析与解决方案 姓名:杨大为学号:540907040144 负责内容:应用层安全分析与解决方案 姓名:余飞学号:540907040145 负责内容:网络层安全分析与解决方案 姓名:周恺学号:540907040156 负责内容:物理层安全分析与解决方案 姓名:赵伟学号:540907040153 负责内容:数据链路层安全分析与解决方案 基本要求:

?设计网络安全技术实现方案。选择合适的安全协议、安全 技术、安全设备,设计安全组网方案。 ?按5人左右组合成一个小组,集中讨论,提出各小组的实现 方案,总结并写出报告。 设计目的: ?分析网络各种安全技术和安全设备 ?设计网络安全的方案 计算机网络安全技术内容: ?保密性 ?安全协议的设计 ?访问控制 网络安全分析类别: ?物理层安全分析及解决方案 ?数据链路层安全分析及解决方案 ?网络层安全分析及解决方案 ?运输层安全分析及解决方案 ?应用层安全分析及解决方案 设计内容:数据链路层与网络安全

通信的每一层中都有自己独特的安全问题。数据链路层(第二协议层)的通信连接就安全而言,是较为薄弱的环节。网络安全的问题应该在多个协议层针对不同的弱点进行解决。在本部分中,我将集中讨论与有线局域网相关的安全问题。在第二协议层的通信中,交换机是关键的部件,它们也用于第三协议层的通信。对于相同的第三协议层的许多攻击和许多独特的网络攻击,它们和路由器都会很敏感,这些攻击包括: 内容寻址存储器(CAM)表格淹没:交换机中的CAM 表格包含了诸如在指定交换机的物理端口所提供的MAC 地址和相关的VLAN 参数之类的信息。一个典型的网络侵入者会向该交换机提供大量的无效MAC 源地址,直到CAM 表格被添满。当这种情况发生的时候,交换机会将传输进来的信息向所有的端口发送,因为这时交换机不能够从CAM 表格中查找出特定的MAC 地址的端口号。CAM 表格淹没只会导致交换机在本地VLAN 范围内到处发送信息,所以侵入者只能够看到自己所连接到的本地VLAN 中的信息。 VLAN 中继:VLAN 中继是一种网络攻击,由一终端系统发出以位于不同VLAN 上的系统为目标地址的数据包,而该系统不可以采用常规的方法被连接。该信息被附加上不同于该终端系统所属网络VLAN ID 的标签。或者发出攻击的系统伪装成交换机并对中继进行处理,以便于攻击者能够收发其它VLAN 之间的通信。 操纵生成树协议:生成树协议可用于交换网络中以防止在以太网拓朴结构中产生桥接循环。通过攻击生成树协议,网络攻击者希望将自己的系统伪装成该拓朴结构中的根网桥。要达到此目的,网络攻击者需要向外广播生成树协议配置/拓朴结构改变网桥协议数据单元(BPDU),企图迫使生成树进行重新计算。网络攻击者系统发出的BPDU 声称发出攻击的网桥优先权较低。如果获得成功,该网络攻击者能够获得各种各样的数据帧。 媒体存取控制地址(MAC)欺骗:在进行MAC 欺骗攻击的过程中,已知某其它主机的MAC 地址会被用来使目标交换机向攻击者转发以该主机为目的地址的数据帧。通过发送带有该主机以太网源地址的单个数据帧的办法,网络攻击者改写了CAM 表格中的条目,使得交换机将以该主机为目的地址的数据包转发给该网络攻击者。除非该主机向外发送信息,否则它不会收到任何信息。当该主

工业以太网的特色技术及其应用选择

工业以太网的特色技术及其应用选择 发布时间:2007-05-15 浏览次数:105 | 我要说几句 | ?? 用户解决方案2012优秀论文合订本 ?? NIDays2012产品演示资料套件 ?? 《提高测量精度的七大技巧》资源包 ?? LabVIEW 2012评估版软件 关键词:工业以太网实时特色技术 编者按:工业以太网成为自动化领域业界的技术热点已有时日,其技术本身尚在发展之中,还没有走向成熟,还存在许多有待解决的问题。究竟什么是工业以太网,它有哪些特色技术,如何应用与选择适合自己需求的工业以太网技术与产品,依然是今天人们所关心的问题。 一什么是工业以太网 工业以太网技术,是以太网或者说是互联网系列技术延伸到工业应用环境的产物。前者源于后者又不同于后者。以太网技术原本不是为工业应用环境准备的。经过对工业应用环境适应性的改造,通信实时性改进,并添加了一些控制应用功能后,形成了工业以太网的技术主体。因此,工业以太网是一系列技术的综称。 二工业以太网涉及企业网络的各个层次

企业网络系统按其功能划分,一般称为以下三个层次:企业资源规划层(Enterprise Resource Plan NI ng, ERP)、制造执行层(Manufacturing Excurtion System, MES)和现场控制层(Field Control System,FCS)。通过各层之间的网络连接与信息交换,构成完整的企业信息系统。( 见图1) 图中的ERP与MES功能层属于采用以太网技术构成信息网络。这个层次的工业以太网,其核心技术依然是信息网络中原本的以太网以及互联网系列技术。工业以太网在该层次的特色技术是对其实行的工业环境适应性改造。而现场控制层FCS中,基于普通以太网技术的控制网络、实时以太网则属于该层次中工业以太网的特色技术范畴。可以把工业以太网在该层的特色技术看作是一种现场总线技术。除了工业环境适应性改造的内容之外,通信实时性、时间发布与同步、控制应用的功能与规范,则成为工业以太网在该层次的技术核心。

计算机网络(第5版)课后习题答案:第3章-数据链路层

计算机网络(第5版)课后习题答案:第3章-数据链路层

第三章数据链路层 3-01 数据链路(即逻辑链路)与链路(即物理链路)有何区别? “电路接通了”与”数据链路接通了”的区别何在? 答:数据链路与链路的区别在于数据链路除链路外,还必须有一些必要的规程来控制数据的传输,因此,数据链路比链路多了实现通信规程所需要的硬件和软件。 “电路接通了”表示链路两端的结点交换机已经开机,物理连接已经能够传送比特流了。在物理连接基础上,再建立数据链路连接,才是“数据链路接通了”,此后,由于数据链路连接具有差错检测功能,才使不太可靠的物理链路变成无差错的数据链路,进行无差错的数据传输。当数据链路断开连接时,物理电路连接不一定跟着断开连接。 3-02 数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点.

答:功能:链路管理、帧定界、透明传输、差错控制。 可靠的链路层的优点和缺点取决于所应用的环境:对于干扰严重的信道,可靠的链路层可以将重传范围约束在局部链路,防止全网络的传输效率受损;对于优质信道,采用可靠的链路层会增大资源开销,影响传输效率。 3-03 网络适配器的作用是什么?网络适配器工作在哪一层? 答:网络适配器(即网卡)是用来实现数据链路层和物理层这两层协议的硬件和软件。 网络适配器工作在TCP/IP协议中的网络接口层(OSI中的数据链里层和物理层)。 3-04 数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决? 答:帧定界是分组交换的必然要求;透明传输避免消息符号与帧定界符号相混淆;差错检测防止有差错的无效数据帧浪费后续路由上的传输和处理资源。

千兆以太网技术与应用

千兆以太网技术与应用 1. 简介 于1998年6月通过的IEEE 802.3z千兆比以太网标准描述了用于一个通用链路编码且可进行1000Mb/s 传输的3个物理层接口(1000BASE-SX、1000BASE-LX和1000BASE-CX)。1000BASE-SX、 1000BASE-LX接口采用光纤作为介质时,最远传输距离可达5000米,因而可应用于建筑物内或校园主干网络。 1000BASE-CX接口计划用于限制在25米内的计算机房内的连接。 IEEE 802.3ab千兆比以太网标准于1999年6月通过认证,它描述了用于不同线路编码的附加物理层接口(1000BASE-T)。 1000BASE-T接口通过5类非屏蔽双绞线(UTP)介质传输的最远距离可达100米,并主要应用于面向桌面的网络连接。 在1999年3月,一个IEEE 802.3研究小组正式成立,主要致力于发展通过光纤介质传输万兆比以太网的标准。 2. 铜缆布线系统 事实上,所有采用结构化综合布线系统的建筑物都有双绞线铜缆水平子系统,用于连接每一层的通讯配线间和墙上的信息出口。而这些布线系统的安装大部分都采用5类产品,所以1000BASE-T是设计应用于5类布线系统的。 1000BASE-T采用一根电缆中的所有4对线来传输,每对线的有效传输速率为250Mb/s,以此完成全双工传输。为了应用于5类带宽的布线系统,1000BASE-T 采用5级编码传输,而接收器采用数字信号处理(DSP)技术以减少来自布线系统中反射和近端串音干扰(NEXT)的影响。 应用于1000BASE-T的布线系统要求包括原5类系统未描述的附加的传输性能,如ELFEXT(等电平远端串扰)和回路损耗。这可由经强力推荐的最新专业测试仪测试、认可,多数已安装的5类布线系统能够支持1000BASE-T来证实。 ---https://www.doczj.com/doc/a6656598.html,(学电脑) 1000BASE-T布线系统的规范将反馈到随ANSI/TIA/EIA的发展而形成的新的规程中。“4对100欧姆5类布线系统的附加传输性能参数”有望于今年年底由TSB-95颁布。 ANSI/TIA/EIA还发布了一篇说明“4对100欧姆增强型5类布线系统的传输性能参数”的草案,现在已是第12稿,预计作为ANSI/TIA/EIA568A标准的附录5在今年年底颁布。该草案同TSB-95的描述类似,但回路损耗和NEXT性能指标好2dB~3dB。 ANSI建议新的布线安装至少应满足增强型5类布线性能要求。

第四章 以太网数据链路层

肆 以太网数据链路层 P 目标: 了解数据链路层结构。 熟悉各以太网帧格式,CSMA/CD (载波监听多路访问/冲突检测)机制, 熟悉PAUSE 帧格式,和流量控制原理 了解半双工模式下以太网端口的工作方式。 根据IEEE 的定义,以太网的数据链路层又分为2个子层:逻辑链路控制子层(LLC )和媒体访问控制子层(MAC )。 划分2个子层的原因是:数据链路层实际是与物理层直接相关的,针对不同的物理层需要有与之相配合的数据链路层,例如针对以太网、令牌环需要不同的数据链路层,而这是不符合分层原则的;于是通过划分LLC 和MAC 2个子层,尽量提高链路层的独立性,方便技术实现。 其中MAC 子层与物理层直接相关,以太网的MAC 层和物理层都是在802.3 中定义的,LLC 子层则可以完全独立,在802.2中定义,可适用于以太网、令牌环、WLAN 等各种标准。 í?1 以太网数据链路层 MAC 子层处理CSMA/CD 算法、数据出错校验、成帧等;LLC 子层定义了一些字段使上次协议能共享数据链路层。 在实际使用中,LLC 子层并非必需的。 1 以太网的帧格式 有两种主要的以太网帧类型:由RFC894定义的传统以太网(EthernetII )和802.3定义的以太网; 最常使用的封装格式是RFC 894定义的格式。 下图显示了两种不同形式的封装格式。图中每个方框下面的数字是它们的字节长度。 EthernetII (RFC894)帧结构如下,该帧包含了5个域(前导码在此不作描应用层 传输层 网络层 链路层 物理层逻辑链路控制(LLC )子层MAC 子层

述),它们分别是:目的MAC地址、源MAC地址、类型、净荷(PAD)、FCS、 ?? EthernetII(RFC894)帧结构 1)目的MAC地址( D A ) 包含6个字节。 D A标识了帧的目的地站点。 D A可以是单播地址(单个目的地)或组播地址(组目的地)。 2)源MAC地址( S A ) 包含6个字节。S A标识了发送帧的站。 S A通常是单播地址(即,第1位是0 )。 3)类型域包含 2个字节。 类型域标识了在以太网上运行的客户端协议。使用类型域,单个以太网可以向上复用(upward multiplex)不同的高层协议( I P,I P X,A p p l e Ta l k,等等)。以太网控制器一般不去解释这个,但是使用它来确定所连接计算机上的目的进程。本来类型域的值由X e r o x公司定义,但在1 9 9 7年改由I E E E负责。例如08-00 表示 IP、81-37表示 NetWare。 5)数据域 包含 4 6 ~ 1 5 0 0字节。数据域封装了通过以太网传输的高层协议信息。由于C S M A / C D算法的限制,以太网帧必须不能小于某个最小长度(46字节)。高层协议要保证这个域至少包含4 6字节。如果实际数据不足 4 6个字节,则高层协议必须填充到46字节,填充数为PAD。数据域长度的上限是任意的,但已经被设置为 1 5 0 0字节(1 5 0 0字节最大长度的真正原因是 1 9 7 9年( 1 0 M b / s以太网正在设计之中)的内存成本以及低成本的 L A N控制器的缓冲区要求)。 6)帧效验序列( F C S ) 包含4个字节。F C S是从D A开始到数据域结束这部分的校验和。校验和的算法是3 2位的循环冗余校验法( C R C )。生成多项式是: G ( x ) = x3 1+ x2 6+ x2 3+ x2 2+ x1 6+ x1 2+ x11+ x1 0+ x8+ x7+ x5+ x4+ x2+ x1+ 1 F C S域的传送方法是:第 1位是x3 1项的系数,而最后 1位是x0项的系数。因此C R C的各个位传输了:x3 1,x3 0,. . .,x1,X0。 802.3 以太网帧(RFC1042)的结构与Ethernet II 的非常类似,如下图所

以太网交换机交换方式学习

以太网交换机交换方式学习 在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。 AD: 在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。 在实际使用时,一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。交换机拥有一条很高带宽的背部总线和内部交换矩阵。 交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。 交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点A向节点D发送数据时。 节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。和HUB 的一点小区别假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2× 10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出 10Mbps。 HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。这种方式就是共享网络带宽

计算机网络 数据链路层 练习题

第三章数据链路层 一、选择题 1、数据在传输过程出现差错的主要原因是(A ) A. 突发错 B. 计算错 C. CRC错 D. 随机错 2、PPP协议是哪一层的协议(B ) A. 物理层 B. 数据链路层 C. 网络层 D. 高层 3、控制相邻两个结点间链路上的流量的工作在(A )完成。 A. 链路层 B. 物理层 C. 网络层 D. 运输层 4、在OSI参与模型的各层中,(B )的数据传送单位是帧。 A.物理层B.数据链路层 C.网络层D.运输层 5、若PPP帧的数据段中出现比特串“”,则采用零比特填充后的输出为(B) 6、网桥是在(A )上实现不同网络的互连设备。 A.数据链路层 B.网络层 C.对话层 D.物理层 7、局域网的协议结构(B)。 A.包括物理层、数据链路层和网络层 B.包括物理层、LLC子层和MAC子层 C.只有LLC子层和MAC子层 D.只有物理层 18、10Base-T以太网中,以下说法不对的是:( C ) A.10指的是传输速率为10Mbps B.Base指的是基带传输 C.T指的是以太网D.10Base-T 是以太网的一种配置 9、以太网是下面哪一种协议的实现(C ): A. B. C. D. 10、Ethernet采用的媒体访问控制方式为(A ) A.CSMA/CD B.令牌环 C.令牌总线 D.无竞争协议 11、若网络形状是由站点和连接站点的链路组成的一个闭合环,则称这种拓扑结构为(C ) A.星形拓扑 B.总线拓扑 C.环形拓扑 D.树形拓扑 12、对于基带CSMA/CD而言,为了确保发送站点在传输时能检测到可能存在的冲突,数据

帧的传输时延至少要等于信号传播时延的(B ) A.1倍 B.2倍 C.4倍 D.倍 13、以太网采用的发送策略是(C ) A.站点可随时发送,仅在发送后检测冲突 B.站点在发送前需侦听信道,只在信道空闲时发送 C.站点采用带冲突检测的CSMA协议进行发送 D.站点在获得令牌后发送 14、在不同网络之间实现数据帧的存储转发,并在数据链路层进行协议转换的网络互连器称为( C ) A.转换器 B.路由器 C.网桥 D.中继器 15、100Base-T使用哪一种传输介质(C ) A. 同轴电缆 B. 光纤 C. 双绞线 D. 红外线 16、IEEE802规定了OSI模型的哪一层B A.数据链路和网络层 B.物理和数据链路层 C.物理层 D.数据链路层 17、要控制网络上的广播风暴,可以采用哪个手段A A.用路由器将网络分段 B.用网桥将网络分段 C.将网络转接成10BaseT D.用网络分析仪跟踪正在发送广播信息的计算 18、就交换技术而言,局域网中的以太网采用的是(A) A.分组交换技术 B.电路交换技术 C.报文交换技术 D.分组交换与电路交换结合技术 19、交换机工作在哪一层(A) A.数据链路层 B.物理层 C.网络层 D.传输层 20、一个快速以太网交换机的端口速率为100Mbit/s,若该端口可以支持全双工传输数据,那么该端口实际的传输带宽为(C )。 A.100Mbit/s B.150Mbit/s C.200Mbit/s D.1000Mbit/s 21、以太网协议中使用了二进制指数退避算法,这个算法的特点是__B_____。 A.容易实现,工作效率高 B.在轻负载下能提高网络的利用率 C.在重负载下能有效分解冲突 D.在任何情况下不会发生阻塞 22、关于的CSMA/CD协议,下面结论中错误的是 B 。 CD协议是一种解决访问冲突的协议 CD协议适用于所有以太网

第4章 数据链路层

第4章数据链路层 本章能帮助大家掌握以下技术要点: ①了解数据链路层的功能 ②了解以太网的地址和帧格式 ③了解交换机的数据转发原理 ④熟悉Cisco交换机的几种操作模式 ⑤能够正确接入交换机,并掌握Cisco交换机的基本配置

本章将讲解TCP/IP参考模型中数据链路层的功能、协议。工作在数据链路层的协议有很多种,但是在 本部分,以目前使用最广泛的局域网技术——以太网技术为主,讲解协议以及工作在数据链路层的设备一交换机。 在本章中,首先要了解一些关于以太网的理论知识,在局域网中,以太网技术是目前使用最为广泛的技术。 在学习以太网的理论知识之前,首先来思考几个问题,如果是你需要将几台计算机连接起来通信,如图4.1所示,你是否也需要考虑下面这些问题呢? 图4.1 多台计算机通信 (1)如果中间的线路是共享的,这条链路在同一时间由谁来使用呢?如何来保证这些主机能有序地使用共享线路,不发生数据的冲突? (2)如果主机A发出一个数据包给主机B,如何标识主机A和主机B呢?这就是主机的地址问题。 (3)主机之间发送的数据,需要保证双方都能读懂,那么它们发送的数据的格式是不是需要有一个统一的规范呢? 本章将就这几个问题,展开对以太网工作原理的介绍。 4.1 数据链路层 数据链路层负责网络中相邻节点之间可靠的数据通信,并进行有效的流量控制。在局域网中,数据链路层使用帧完成主机对等层之间数据的可靠传输。如图 4.2所示,以主机A 与主机B的一次数据发送为例,数据链路层的作用包括数据链路的建立、维护与拆除、帧包装、帧传输、帧同步、帧的差错控制以及流量控制等。 数据链路层(Data Link Layer)在物理线路上提供可靠的数据传输,使之对网络层呈现为一条无差错的线路,本层所关心的问题包括以下几方面: ◇物理地址、网络拓扑

以太网交换机交换方式学习资料讲解

以太网交换机交换方 式学习

以太网交换机交换方式学习 在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。 AD 在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。 在实际使用时,一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的 始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。交换机拥有一条很高带宽的背部总线和内部交换矩阵。 交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。 交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点A向节点D发送数据时。 节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。和 HUB的一点小区别假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于 2 X 10Mbps=20Mbps而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出10Mbps。 HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数 据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。这种方式就是共享网络带宽

2.3 交换式以太网实验

2.3 交换式以太网实验 2.3.1 实验目的 一是验证交换式以太网的连通性,证明连接在交换式以太网上的任何两个分配了相同网络号、不同主机号的IP地址的终端之间能够实现IP分组传输过程。而是验证转发表建立过程。三是验证交换机MAC帧转发过程,重点验证交换机过滤MAC帧的功能,即如果交换机接收MAC帧的端口与该MAC帧匹配的转发项中的转发端口相同,交换机丢弃该MAC帧。四是验证转发项与交换式以太网拓扑结构一致性的重要性。 2.3.2 实验原理 通过各个终端之间相互交换IP分组,在三个交换机中建立四个终端对应的转发项。清楚交换机S1中的转发表内容,启动终端A至终端B的MAC帧传输过程,由于交换机S1广播该MAC帧,使得交换机S2连接交换机S1的端口接收到该MAC帧。由于交换机S2中与该MAC帧匹配的转发项中的转发端口就是交换机S2连接交换机S1的端口,交换机S2将丢弃该MAC帧。 在三个交换机的转发表中均存在四个终端对应的转发项的前提下,终端A端口与交换机S1的连接,并重新连接到交换机S3中。在终端A发送的MAC帧到达交换机S2前,交换机S2的转发表中仍然保留用于指明终端A的MAC地址,与交换机S2连接交换机S1的端口之间关联的转发项,这种情况下,如果启动终端B至终端A的MAC帧传输过程,交换机S1由于监测到原来连接终端A的端口处于关闭状态,将以该端口为转发端口的转发项变为无效转发项,交换机S1将广播该MAC帧。交换机S1通过连接交换机S2的端口输出的MAC 帧到达交换机S2。由于交换机2中与该MAC帧匹配的转发项的转发端口与接收该MAC帧的端口相同,交换机S2将丢弃该MAC帧。同样,对于交换机S3,在终端A发送的MAC帧到达交换机S3前,交换机S3的转发表中仍然保留用于指明终端A的MAC地址与交换机S3连接交换机S2的端口之间关联的转发项。如果启动终端C至终端A的MAC帧传输过程,交换机S3将通过连接交换机S2的端口输出该MAC帧。 解决上述问题的方法有两种:一是终端A广播一帧MAC帧,即发送一帧以终端A的MAC地址为源地址,以广播地址为目的地址的MAC帧;二是等到所有交换机的转发表中与终端A的MAC地址匹配的转发项过时。 2.3.3 实验步骤 (1)启动Packet Tracer,在逻辑工作区中按照图2.15所示网络结构放置和连接设备,需要强调的是,用于互连交换机的连线是交叉线,用于互连交换机和终端的连接线是直通线。按照图2.15所示的终端配置信息完成各个终端的IP地址和子网掩码设置。图2.16所示的是PC0以太网接口的配置界面,PC0的MAC地址为0001.C77E.C3E2。完成设备放置和连接后的逻辑工作区界面如图2.17所示。通过简单报文工具完成各个终端之间的ICMP报文交换后,各个交换机的转发表内容如图2.17所示。 (2)断开PC0与交换机Switch1之间的连接,并将PC0重新连接到交换机Switch3上,通过简单报文工具启动PC1至PC0的MAC帧传输过程,由于交换机Switch1连接终端A的端口处于关闭状态,以该端口为转发端口的转发项变为无效转发项,这种情况下,如果启动PC1至PC0的MAC帧传输过程,交换机Switch1将广播该MAC帧。当交换机Wwitch2接收到该MAC帧,发现与该MAC帧匹配的转发项的转发端口与接收该MAC帧的端口相同,交换机Switch2将丢弃该MAC帧。如图2.18所示,交换机Switch2转发表中与PC0的MAC地址0001.C77E.C3E2匹配的转发项的转发端口是FastEthernet0/1,该端口是交换机Switch2连接交换机Switch1的端口,也是接收PC1发送给PC0的MAC帧的端口。 (3)在PC0发送MAC帧钱,交换机Switch3转发表中与PC0的MAC地址0001.C77E.C3E2

万兆以太网技术发展及应用

万兆以太网技术发展及应用摘要:随着互联网技术的更新与发展,万兆以太网(10GBase-T)技术将在不久的将来成为网络应用的主流,本文综合阐述了10GBase-T技术、市场及应用。应用10GBase-T铜缆布线解决方案构建高性能网络核心成为行业发展趋势。 关键字:万兆以太网802.3ae10GE标准10GBase-T铜缆布线线性传输性能 一以太网技术的发展 以太网(Ethernet)技术由施乐公司(Xerox)于1973年提出并实现,它采用“载波监听多路访问/冲突检测CSMA/CD(Carrier Sense Multiple Access/Collision Detection)”的共享访问方案,将多个工作站都连接在一条总线上,所有的工作站都不断向总线发出监听信号。但在同一时刻,只能有一个工作站在总线上传输,其它工作站必须等待传输结束后,再开始自己的传输。由于以太网技术具有共享性、开放性、加上设计技术上的一些优势(如结构简单、算法简洁、良好的兼容性和平滑升级)以及关键的传输速率的大幅提升,它不但在局域网领域站稳了脚跟,而且在城域网甚至广域网范围内都得到了进一步的应用。 最早的以太网传输速率为10Mbps。采用CSMA/CD介质访问控制方式的局域网技术,由Xerox公司于1975年研制成功。而在1979年7月至1982年间,当时的DEC、Intel和Xerox三家公司共同制定了以太网的技术规范DIX。在这个技术规范的基础上,形成了IEEE802.3以太网标准,并在1989年正式成为一种以太网技术的国际标准。在20多年中,以太网

技术经历了不断发展,成为迄今最广泛应用的局域网技术。 千兆以太网技术作为一种高速以太网技术,给用户带来了提高核心网络的有效解决方案。它继承了传统以太网技术价格便宜的特点,采用与10M 以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于这项技术可以不用改变传统以太网的桌面应用和操作系统,因此可与10M或100M的以太网很好地配合工作。在升级到千兆以太网时,不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护用户投资,所以这项技术的市场前景十分被用户看好。 再发展就进入到以太网的万兆时代。万兆以太网使用IEEE 802.3以太网介质接入控制(MAC)协议、IEEE 802.3以太网帧格式和IEEE 802.3帧格式,不需要修改以太网介质接入控制(MAC)协议或分组格式。所以,能够支持所有网络的上层服务,包括在OSI七层模型的第二/三层或更高层次上运行的智能网络服务,具有高可用性、多协议标记交换(MPLS)、含IP语音(VoIP)在内的服务质量(QoS)、安全与策略实施、服务器负载均衡(SLB)和Web高速缓存等特点。 二10GBase-T万兆以太网技术 万兆以太网技术(10GBase-T)始于2002年6月802.3ae10GE标准的正式发布。在物理层,802.3ae大致分为两种类型,一种为与传统以太网连接速率为10Gbps的“LANPHY”,另一种为连接SDH/SONET速率为9.58464Gbps的“WANPHY”;WANPHY与SONETOC-192帧结构的融合,可以与OC-192电路和SONET/SDH设备一起运行,保护了传统基础设施投资,使运营商能够在不同地区中通过城域网提供端到端以太网。

网络基础习题及答案

1、使用DHCP服务,下面哪种情况不会发生( A )。 A.IP地址冲突 B.计算机名冲突 C.机器的IP地址经常变化 D.计算机无法启动 2、令牌总线(Token Bus)的访问方法和物理层技术规范由( C)描述。 A.IEEE802.2 B.IEEE802.3 C.IEEE802.4 D.IEEE802.5 3、数据链路层中的数据块常被称为( C )。 A.信息 B.分组 C.帧 D.比特流 4、实现计算机网络需要硬件和软件,其中,负责管理整个网络各种资源、协调各种操作的(D)软件叫做 A.网络应用软件 B.通信协议软件 C.OSI D.网络操作系统 5、对局域网来说,网络控制的核心是(C) A.工作站 B.网卡 C.网络服务器

D.网络互连设备 6、实现通信协议的软件一般固化在( C )的ROM中。 A.微机主板 B.IDE卡 C.网卡 D.MODEM卡 7、PPP是Internet中使用的( C )。 A.传输协议 B.分组控制协议 C.点到点协议 D.报文控制协议 8、制定各种控制规程(即OSL协议)的国际标准化组织是(D) A.INTEL B.IBM C.ARPA D.ISO 9、一个80个站点的传统以太网被分割为4个冲突域,那么任何一个时间最多有( D)个站点竞争访问介质。 A.320个 B.80个 C.76个 D.20个 10、SNMP调用的下层协议是( B )。 A.TCP B.UDP

C.TCP或UDPD D.TCP与UDP 1、因特网中最基本的IP地址分为A、B、C三类,对C类地址,它的网络号占(C )个字节。 A.1 B.2 C.3 D.4 2、在传输介质中,抗干扰能力最强的是( B )。 A.微波 B.光纤 C.同轴电缆 D.双绞线 3、X.25网络是一种(D) A.企业内部网 B.帧中继网 C.局域网 D.公用分组交换网 4、二维奇偶监督码( B )。 A.能发现奇数个错,但不能纠正 B.若仅有一位错码,则能发现哪位有错,并可纠正 C.若有两位错码,则能发现哪两位有错,并可纠正 D.能发现所有错码,但不能纠正 5、PPP是Internet中使用的( C )。 A.传输协议

以太网交换机工作原理

以太网交换机工作原理 交换机是用来连接局域网的主要设备,交换机能够根据以太网帧中目标地址智能的转发数据,因此交换机工作在数据链路层。交换机分割冲突域,实现全双工通信。 交换机数据转发原理1: 交换机A在接收到数据帧后,执行以下操作: 交换机A查找MAC地址表,查看是否有此MAC地址 若没有,学习主机11的MAC地址 交换机A向其他所有端口发送广播 交换机数据转发原理2: 换机B在接收到数据帧后,执行以下操作: 交换机B查看MAC地址表,查看是否有此MAC地址 若没有,学习源MAC地址和端口号 交换机B向所有端口广播数据包 主机22,查看数据包的目标MAC地址不是自己,丢弃数据包

交换机数据转发原理3: 主机33,接收到数据帧 主机44,丢弃数据帧 交换机数据转发原理4: 交换机B在接收到数据帧后,执行以下操作: 交换机B学习源MAC地址和端口号 交换机B查看MAC地址表,根据MAC地址表中的条目,单播转发数据到端口3

交换机数据转发原理6: 学习 通过学习数据帧的源MAC地址来形成的MAC地址表 广播 若目标地址在MAC地址表中没有,交换机则向除接收到该数据帧的端口外的其他所有端口广播该数据帧 转发 若目标地址在MAC地址表中存在,交换机根据MAC地址表单播转发数据帧 更新 交换机MAC地址表的老化时间是300秒,即MAC地址在MAC地址表中存在的时间。 交换机若发现一个帧的入端口和MAC地址表中源MAC地址的所在端口不同,交换机将MAC 地址重新学习到新的端口 交换机的工作模式 单工 只有一个信道,传输方向只能是单向的

半双工 只有一个信道,在同一时刻,只能是单向传输 全双工 双信道,同时可以有双向数据传输 交换机的三种交换方式: 1.直通转发(Cut-through)

计算机学科专业基础综合计算机网络-数据链路层(四).doc

计算机学科专业基础综合计算机网络-数据链路层(四) (总分:66.00,做题时间:90分钟) 一、{{B}}单项选择题{{/B}}(总题数:51,分数:51.00) 1.以太网的MAC协议提供的是______。 ? A.无连接的不可靠的服务 ? B.无连接的可靠的服务 ? C.有连接的可靠的服务 ? D.有连接的不可靠的服务 (分数:1.00) A. B. C. D. 2.以下关于以太网的说法中,正确的是______。 ? A.以太网的物理拓扑是总线型结构 ? B.以太网提供有确认的无连接服务 ? C.以太网参考模型一般只包括物理层和数据链路层 ? D.以太网必须使用CSMA/CD协议 (分数:1.00) A. B. C. D. 3.下列以太网中,采用双绞线作为传输介质的是______。 ? A.10BASE-2 ? B.10BASE-5 ? C.10BASE-T ? D.10BASE-F (分数:1.00) A. B. C. D. 4.10BaseT以太网采用的传输介质是______。 ? A.双绞线 ? B.同轴电缆 ? C.光纤 ? D.微波

A. B. C. D. 5.如果使用5类UTP来设计一个覆盖范围为200m的10BASE-T以太网,需要采用的设备是______。 ? A.放大器 ? B.中继器 ? C.网桥 ? D.路由器 (分数:1.00) A. B. C. D. 6.网卡实现的主要功能在______。 ? A.物理层和数据链路层 ? B.数据链路层和网络层 ? C.物理层和网络层 ? D.数据链路层和应用层 (分数:1.00) A. B. C. D. 7.每块以太网卡都有自己的时钟,每个网卡在互相通信的时候为了知道什么时候一位结束、下一位开始,即具有同样的频率,它们采用了______。 ? A.量化机制 ? B.曼彻斯特机制 ? C.奇偶校验机制 ? D.定时令牌机制 (分数:1.00) A. B. C. D. 8.以下关于以太网地址的描述,错误的是______。 ? A.以太网地址就是通常所说的MAC地址 ? B.MAC地址又称为局域网硬件地址 ? C.MAC地址是通过域名解析查得的 ? D.以太网地址通常存储在网卡中

相关主题
相关文档 最新文档