当前位置:文档之家› 浮阀塔机械设计

浮阀塔机械设计

浮阀塔机械设计
浮阀塔机械设计

课程设计任务书

20119~2012学年第2 学期

学生姓名:专业班级:

指导教师:工作部门:化工与材料学院

一、课程设计题目

浮阀塔的机械设计

二、课程设计内容

1.塔设备的结构设计

包括:塔盘结构,塔底、塔顶空间,人孔数量及位置,仪表接管选择、工艺接管管径计算等。

2. 塔体及封头壁厚计算及其强度、稳定性校核

(1)根据设计压力初定壁厚;

(2)计算危险截面的重量载荷、风载荷、地震载荷及偏心载荷;

(3)计算危险截面的由各种载荷作用下的轴向应力;

(4)计算危险截面的组合轴向拉应力和组合轴向压应力,并进行强度和稳定性校核。

3. 筒体和裙座水压试验应力校核

4. 裙座结构设计及强度校核

包括:裙座体、基础环、地脚螺栓

5. 编写设计说明书一份

6. 绘制2号装配图一张,Auto CAD绘3号图一张(换热器的)。

三、设计条件

1. 设备类型:自支承式塔设备(塔顶无偏心载荷);

2. 设置地区环境:

基本风压:q o=400N/㎡;

设计地震烈度:7度(或8度);

场地土:Ⅱ类。地震加速度0.15g(或者0.3g),地震系数根据自己的需要任取一组;

3. 塔体及裙座的机械设计条件:

(1)塔体内径Di=2200mm,塔高近似取H=50000mm(每组增加1000mm);

(2)计算压力Pc=1.6MPa(每组中各人的计算压力根据安排表中数据),设计温度

t=250℃;

(3)塔体装有N=75层浮阀塔盘,每块塔盘上存留介质层高度为hw=100mm,介质密度为

ρ1=800kg/m3;

(4)沿塔高每5m左右开设一个人孔,人数为8-10个,相应在人孔处安装半圆形平台8-10个,平台宽度为B=900mm,高度为1000mm。

(5)塔外保温层厚度为δs=120mm,保温材料密度为ρ2=300kg/m3;

(6)塔体与裙座间悬挂一台再沸器,其操作质量为me=4000kg,偏心距e=2000mm;

(7)塔体与封头材料在低合金高强度刚中间选用,并查出其参数。

(8)裙座统一采用Q235-A

(9)塔体与裙座对接焊接,塔体焊接接头系数Φ=0.85;

(10)塔体与封头厚度附加量C=2mm,裙座厚度附加量C=2mm;

(11)参考图为书中图8-25,尺寸及数据根据自己组的具体情况设计、标注。

四、进度安排

五、基本要求

1.学生要按照任务书要求,独立完成塔设备的机械设计;

2.设计计算书一律采用电子版(电脑打印),2号图纸一律采用徒手绘制;

3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔;

4.画图结束后,将图纸按照统一要求折叠,同设计说明书一同在答辩那天的早上8:30前,由班长负责统一交到HF508。

5.根据设计说明书、图纸、平时表现及答辩综合评分。

六、说明书的内容要求

1.符号说明

2.前言

(1)设计条件;

(2)设计依据;

(3)设备结构形式概述。

3.材料选择

(1)选择材料的原则;

(2)确定各零、部件的材质;

(3)确定焊接材料。

4.绘制结构草图

(1)板式塔装配图

(2)确定裙座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及环向位置,以单线图表示;

(3)标注形位尺寸。

(4)写出图纸上的技术要求、技术特性表、接管表、标题明细表等

5.塔体及裙座壁厚设计

(1)筒体、封头及裙座壁厚设计;

(2)焊接接头设计;

(3)压力试验验算;

6.标准化零、部件选择及补强计算:

(1)接管及法兰选择:根据结构草图统一编制表格。内容包括:代号,PN,DN,法兰密封面形式,法兰标记,用途)。补强计算。

(2)人孔选择:PN,DN,标记或代号。补强计算。

(3)其它标准件选择。

7.结束语:对自己所做的设计进行小结与评价,经验与收获。

8.主要参考资料。

【格式要求】:

1.计算单位一律采用国际单位;

2.计算过程及说明应清楚;

3.所有标准件均要写明标记或代号;

4.设计说明书目录要有序号、内容、页码;

5.设计说明书中与装配图中的数据一致。如果装配图中有修改,在说明书中要注明变更;

6.书写工整,字迹清晰,层次分明;

7.设计说明书要有封面和封底,均采用A4纸,装订成册。

七、主要参考资料

1. 《化工设备机械基础课程设计指导书》.化学工业出版. 2005.1

2.《化工设备机械基础》第五版刁与玮王立业编著 200

3.3;

3. 《化工单元过程与设备设计》匡国柱史启才主编;

4.《化工制图》华东化工学院制图教研室编人民教育出版社 1980;

5.《化工设备机械基础》参考资料;

6.《钢制压力容器》GB150-1998;

7.《钢制塔式容器》JB4710-1992;

8. GB151-1999 《管壳式换热器》1999年;

9.《压力容器安全技术监察规程》国家质量技术监督局 1999年。

教研室主任签名:

2012年 4 月21 日

摘要

本设计对浮阀塔的材料、总体结构、强度、刚度和稳定性等进行了设计和计算。设计前预先准备好设计资料、手册、图册、计算和绘图工具、图纸及报告纸等,并认真研究设计任务书,分析设计题目的原始数据和工业条件,明确设计要求和设计内容。计算的开始先根据塔径和各项已知要求选择浮阀塔塔体、裙痤筒体的材料,再根据材料查出其许用应力,通过公式计算确定塔的各种构件、附件以及辅助装置的结构尺寸。结构设计应满足结构简单、合理,便于安装、制造;密封性满足要求,保证安全生产。按设计压力计算塔体、封头和裙座的壁厚,塔设备质量载荷,风载荷与风弯矩,地震载荷与地震弯矩等强度与刚度的校核,包括基础环设计和地脚螺栓的计算。结果表明,本设计合理。

关键词:浮阀塔;强度;刚度;稳定性;

目录

摘要 ............................................................................................. I Abstract ......................................................... 错误!未定义书签。目录 ................................................................................................. I 1前言 (1)

2塔设备的机械设计 (9)

2.1 按计算压力计算塔体及封头厚度 (9)

2.1.1 塔体厚度计算 (9)

2.1.2 封头厚度计算 (9)

2.2塔设备质量载荷计算 (10)

2.2.1筒体、圆筒、封头、裙座的质量 (10)

2.3风载荷和风弯矩 (13)

2.3.1风载荷计算示例 (13)

2.3.2地震弯矩的计算示例 (17)

2.4偏心弯矩计算 (18)

2.5各种载荷引起的轴向应力 (19)

2.5.1计算压力引起的轴向拉应力 (19)

2.5.2操作质量引起的轴向压应力 (19)

2.5.3最大弯矩引起的轴向应力 (20)

2.6塔体和裙座危险截面的强度与稳定校核 (21)

2.6.1塔体的最大组合轴向拉应力校核 (21)

2.6.2塔体与裙座的稳定校核 (21)

2.7 塔体水压试验和吊装时的应力校核 (23)

2.7.1 水压试验时各种载荷引起的应力 (23)

2.7.2水压试验时应力校核 (24)

2.8基础环设计 (24)

2.8.1基础环尺寸 (24)

2.8.2基础环应力校核 (24)

2.8.3基础环厚度计算 (25)

2.9地脚螺栓计算 (26)

2.9.1地脚螺栓承受的最大拉应力 (26)

2.9.2地脚螺栓的螺纹小径 (26)

3塔盘结构的设计 (27)

3.1塔盘的结构 (27)

3.1.1塔盘 (27)

3.1.2人孔和平台 (28)

3.1.3裙座 (28)

3.1.4裙座开孔 (28)

3.2塔盘的支撑 (29)

4参考文献 (30)

主要符号说明 ................................................................................. I 谢辞 .............................................................. 错误!未定义书签。

1前言

塔器作为气液和液液之间进行传质与传热的重要设备,广泛应用于炼油、石油化工、精细化工、化肥、农药、医药、环保等行业的物系分离,涉及蒸(精)馏、吸收、解吸、汽提、萃取等化工单元操作。塔器主要分为填料塔和板式塔两大类板式塔。从1813 年Cellier 首次提出泡罩塔至今,出现了许多不同类型的塔板。

塔板按鼓泡元件分主要有泡罩型、筛孔型、浮阀型、斜孔型以及其他特殊类型塔板。浮阀塔板是在塔盘上开阀孔,安置能上下浮动的阀件(固定阀除外)。由于浮阀塔板的气体流通面积能随气体负荷变动自动调节,因而能在较宽的气体负荷下保持稳定操作,同时气体以水平方向吹出,气液接触时间长,雾沫夹带少,具有良好的操作弹性和较高的塔板效率,在工业中得到了较为广泛地应用。

浮阀塔是20世纪50年代开发的一种新塔型,其特点是在筛板塔基础上,在每个筛孔除安装一个可上下移动的阀片。当筛孔气速高时,阀片被顶起上升,空速低时,阀片因自身重而下降。阀片升降位置随气流量大小自动调节,从而使进入夜层的气速基本稳定。又因气体在阀片下侧水平方向进入液层,既减少液沫夹带量,又延长气液接触时间,故收到很好的传质效果。浮阀的阀片可以浮动,随着气体负荷的变化而调节其开启度,因此,浮阀塔的操作弹性大,特别是在低负荷时,仍能保持正常操作。

浮阀塔有活动泡罩、圆盘浮阀、重盘浮阀和条形浮阀四种形式。

圆形浮阀[3]

圆形浮阀自开发成功的,回其具有操作弹性大、效率高等诸多优点,在工业生产中得到广泛的应用。其代表是美国Glsh公司推出的V1型浮阀,国内称之为F1型浮阀。其后Glsh公司针对V1型浮阀的不,以开发了V2~V4等几种种圆形浮阀。20世纪60年代英国Hydronyl公司及西德MAN公司共同研制了锥形浮阀,日本日曹工程自英国引入了该种浮阀的专利,用作石油化工及精细化工等的精馏和吸收设备,其独特之处在于浮阀的中心有一向下凹陷的圆锥,使锥形浮阀的通道截面突变较少,气流呈流线形,增加了操作的稳定性,并减少压力损失。但随着塔器技术不断进步,发现上述传统圆形浮阀塔板依然存在不足:(1)

浮阀阀盖上方无鼓泡区,其上访气液接触状况较差,造成塔板传质效率降低;(2)塔板上液面梯度较大,气体在液体流动方向上分布不戴均匀;(3)从阀孔出来的气体向四周吹出,导致塔板上液体返混程度较大;(4)在操作上,浮阀和阀孔易被磨损,浮阀易脱落。

盘形浮阀

1953年Koch工程公司开发了T形和A形盘形浮阀,其中又以T形浮阀应用更广泛一些。它是由无阀腿的圆弧形阀片及具有四只脚的十字形挡架所组成。挡架的脚固定在塔板上,对阀片起定位和导向的作用。T形浮阀塔析具有压力降小、漏液少、抗污能力强等特点。

条形浮阀[9]

Nutter在1951年开发了Nutter条形浮阀,此后陆续对其进行改进,出现了P形、D形、L形、DL形等条形浮阀。条形浮阀的特点为:条形浮阀不会旋转,因而不易磨损,阀片不会卡死、脱落;由于条形浮阀的气体从两侧喷出,不像圆形浮阀从四周喷出,所以塔板上的液体返混小于圆形类浮阀塔板,效率相对较高;可以排出较圆孔形更大的开孔率,从而提高处理能力。经工业实践证明,条形结构的浮阀塔板操作性能较传统圆形浮阀塔板略为优秀。

但是上述条形浮阀依然存在一些不足:(1)与传统圆形浮阀类似,阀盖上方无鼓泡区,造成塔板传质效率降低;(2)由于大多采用矩形阀腿,阀前端存在传质死区;(3)虽然其返混较圆形浮阀小,但对塔板弓形区的返混无太大改进;(4)长条形阀孔的四个锐角会形成严重的应力集中,易引起塔板的机械损坏。因此近年来国内不仅对条形浮阀的性能进行大量研究,还针对条形浮阀的不足,开发出多种形式的条形浮阀。

具有导流性能的条形浮阀,在结构上主要有3种形式。

(1)阀盖由传统的矩形进化为梯形、箭形前端呈梯形后端为矩形的组合结构三角形,阀盖或短边一侧朝向降液管。具有代表性的是梯形浮阀塔板口,如图所示。它的特点是气体从梯形阀体两侧斜边喷出,因此气流方向与液流方向呈锐角,有助于推动液体在塔板上的流动,达到降低液面梯度、消除板上液体死区、减少返混、提高传质效率和降低塔板压降等目的。

(2)在条形浮阀的阀盖上开孔,开孔方向朝着降液管,以导向浮阀、JF复合浮阀塔板为代表,如图和图所示,这种浮阀以独创的构思,在阀盖上开导向孔或舌孔,使阀盖上的气、液肉相并流,气相推动液相流动,液面梯度及塔板压降减小,通量增大。更重要的是这类浮阀解决了传统浮阀上端存在传质死区的不足,板效率大大提高,为中国的浮阀塔事业作出了贡献。

导向浮阀示意图

JF复合浮阀示意图

(3)在浮阀的前阀腿上开孔以洛阳石油化工工程公司设备研究所开发的导流浮阀塔板为代表如下图所示。该导流浮阀在条形浮阀的前阀腿上开一矩形孔,气流在水平通过阀体两侧的同时,增加一个向前吹出的气流动力,导引液体向前流动。它不但可以改善阀与阀之间的鼓泡状态,还有利于克服液体滞流与返混现象,减小液面落差,这对于降低塔板压降和提高塔板效率都有积极作用。

导流浮阀塔板示意图

新型椭圆形浮阀[8]

这种椭圆浮阀综合了条形浮阀和圆形浮阀的优点,在增加了机械强度的同时提高了传质效率,如图所示。其特点在于:该浮阀的阀盖由两个短轴相等、长轴不等的半椭圆组合而成,因此其重心向一端偏移,造成浮阀开启后阀体有一定的前后倾斜度,使得从阀孔中吹出的气体能推动塔板上的液体作定向流动;阀盖边缘的锯齿增加了气液接触的表面,同时减少了雾沫夹带,并使阀体的开启阻力大大减小。该浮阀继承了条形浮阀塔板开孔率高,同时又继承了圆形浮阀塔板机械强度较高的特点,保证了塔板的机械强度。

椭圆形浮阀阀盖示意图

B 型导向浮阀塔板的结构特点

B 型导向浮阀塔板由A 型导向浮阀和B 型导向浮阀按适当的配比组合而成,结构参见图1。A型导向浮阀全张后,浮阀的张开高度相同,阀盖与阀孔板基本平行。B 型导向浮阀也为矩形,但前端的阀腿较长,浮阀全张后,阀盖与水平方向成一个

适当的仰角。对于B 型导向浮阀,在操作中,除了从导向孔流出的气体推动塔板上的液体流动之外,从浮阀二侧流出的气体,还存在一个向前的分力。与A型导向浮阀相比,B 型导向浮阀对塔板上液体的推力明显增大。B 型导向浮阀塔板的主要特点:

(1)塔板上除含有A 型导向浮阀外,还含有适当配比的B 型导向浮阀(B 型导向浮阀塔板上B 型导向浮阀数与塔板上的浮阀总数之比,称为组合配比,以K 表示)。当液流强度较大或液体流路较长时,K 值适当增大;反之,K 值适当减小,以适应消除塔板上液面梯度的需要。

(2)在塔板二侧的弓形区与塔板上的中央区相比,弓形区内B 型导向浮阀所占比率较大,以满足消除塔板上液体滞止区的需要。

(3)当塔内部分塔板的液流强度较大,部分塔板的液流强度较小时(例如炼厂常压塔和催化分馏塔),可采用不同的组合配比,以适应不同的需要。

(4)B 型导向浮阀塔板,兼有导向浮阀塔板所具有的优点,克服了导向浮阀塔板所存在的缺点,具有更广的使用范围和更好的操作性能。

B 型导向浮阀塔板在工业上的应用[10]

B 型导向浮阀塔板已在炼油和石化装置中的常压塔、初馏塔、稳定塔、催化分馏塔、焦化分馏塔、气分装置、乙二醇装置、醋酸装置、甲乙酮装置、氯乙烯装置、聚酯装置、环己酮装置等100 余塔内应用,均获得良好效果。例如洛阳炼油厂常压塔(Ф5000),在1995 年应用了导向浮阀塔板,最大处理能力按300 万t / a 设计,开车后,操作情况良好;1999 年,该塔需要扩产,采用了B 型导向浮阀塔板,最大处理能力按500 万t / a 年设计,改造后,处理能力大幅提高,轻油收率增加了2%左右,油品分割质量比也有明显改善,获得了显著的经济效益。再如B 型导向浮阀塔板在洛阳炼油厂宏力化工厂气分装置上应用,以代替原F1 型浮阀塔板,丙烯塔回流比由原17降为14,处理能力增加了80%,丙烯纯度达到99. 7%,取得了增产和节能的良好效果。

实验研究和工业应用表明,B 型导向浮阀塔板与导向浮阀塔板相比,具有更好的操作性能,处理能力约提高20%,塔板效率约提高10%,操作弹性约提高30%,用于汽液传质操作,可获得良好效果。

通过对新型塔板的研究与分析,板式塔的研究在今后一段时问内应主要进行以下几方面的工作:

(1)在复合塔板的研究上应加大力度。目前的复合塔板主要是栅板与填料的复合,而筛板与填料的复合、立体喷射型塔板与填料的复合、浮阀塔板与填料的复合等也应该出现一些新的、性能更优良的塔板。

(2)提高塔的空间利用率。目前已有一些这方面的研究,如立体喷射型塔板,使传质区域向塔板空间发展;多降液管塔板和复合塔板大幅度降低了板间距,这些塔板都大大提高了塔的空间利用率,但应该看到这些塔板的板问仍然有很大的空间没有充分发挥作用,还有很大的潜力可挖。

(3)充分利用塔板面积,改善塔板上液流流动,状况。传统塔板的弓形区、安定区及边缘部分没有充分发挥作用;塔板上液流庇尽鼍呈活塞流或设计新的流动形式以减小返混,提高塔板效率。

当然,在进行以上工作的同时,也应该对板式塔的其它部件进行研究,如降液管、气体分布器、液体分布器、除沫器等。另外,也应对已经出现的这些新型塔板进行全面的比较,便于工程设计人员选用,让新技术尽早转化为生产力。

2塔设备的机械设计

2.1 按计算压力计算塔体及封头厚度

2.1.1 塔体厚度计算

计算压力:MPa p c 6.1=,许用应力MPa t 156][=σ,焊接系数85.0=φ 圆筒的计算厚度: )(35.136

.185.015622200

6.1][2mm p D p c t i c =-???=-=

φσδ

考虑厚度附加量mm C 2=

圆筒的设计厚度:mm C c 35.15235.13=+=+=δδ 圆整后取名义厚度: mm n 16=δ 有效厚度:mm C n e 14216=-=-=δδ

2.1.2 封头厚度计算

采用标准椭圆形封头:

计算压力: MPa p c 6.1=,许用应力MPa t 156][=σ,焊接系数85.0=φ 封头的计算厚度:)(31.136

.15.085.015622200

6.15.0][2mm p D p c t i c =?-???=-=

φσδ

考虑厚度附加量mm C 2=

封头的设计厚度:mm C c 31.15231.13=+=+=δδ 圆整后取名义厚度: mm n 16=δ

有效厚度:mm C n e 14216=-=-=δδ 塔设备质量载荷计算

计算前先对塔进行分段,以地面为0-0截面,裙座人孔为1-1截面,塔底封头焊缝为2-2截面,塔板间第一个人孔为3-3截面,塔板间第二个人孔为4-4截面,塔板间第三个人孔为5-5截面,塔顶为6-6截面。

表2-1塔分段表

0-1 1-2 2-3 3-4 4-5 5-6 1325

2650

9275

13250

13250

13250

2.2塔设备质量载荷计算

2.2.1筒体、圆筒、封头、裙座的质量

1. 筒体质量:)(19.42332435.488741kg m =?=

封头质量:)(42.1366221.6832kg m =?= 裙座质量:)(1.2369975.35963kg m =?=

)(71.460671.236942.136619.4233201kg m =++=

1) 塔体圆筒总高度为m mm l l H H 435.4848435590210==---= 2) 由mm D i 2200=,mm n 12=δ查得单位筒体质量m kg m m /8741=

3) 由mm D i 2200=,mm n 12=δ查得椭圆形封头的单位质量为m kg /21.683(封头

曲面深度为550mm ,直边高度40mm ,总深度590mm )

2. 塔内构件质量02m

)(63.2137175752.2785.070754

22

02kg D m i =???=??=

π

(由表8-1查得浮阀塔盘质量为75 2/m kg )

3. 保湿层质量03m

03

2022032])2()22[(4

m H D D m n i s n i '++-++=

ρδδδπ

300)54.199.1(2300435.48])016.022.2()12.02016.022.2[(785.022?-?+???+-?+?+?= )(42.13147kg =

其中,03

m '为封头保温层质量,kg. 平台、扶梯质量04m

由表8-1查得,平台质量2/150m kg q p =;笼式扶梯质量m kg q F /40=;笼式扶梯总高m H F 39=;平台数量n=8。

F F F n i n i H q nq D B D m ?+?++-+++=

2

1

])22()222[42204δδδδπ

39

4015085.0])12.02016.022.2()9.0212.02016.022.2[(785.022?+????+?+-?+?+?+?= )(56.7277

kg = 4. 操作时物料质量05m

物料密度31/800m kg =ρ,塔釜圆筒部分深度m h 8.11=,塔板层数N=75,塔板上液层高度m h w 1.0=,由附录D 表D-2查得,封头容积35459.1m V f =

kg V h D N h D m f i w i 26.295048005459.18008.12.2785.0800751.02.2785.04

4221

1021205=?+???+????=++

=

ρρπ

ρπ

5. 附件质量a m 按经kg m m a 93.1151671.4606725.025.001=?==

充水质量w m

kg

V H D m w f w i w 74.18711510005459.121000435.482.2785.024

202=??+???=+=

ρρπ

其中,3/1000m kg w =ρ

表2-2各种质量载荷汇总表

塔段 0~1 1~2 2~3 3~4 4~5 5~顶 合计 塔段长度/mm 1325 2650 9275 13250 13250 13250 53000 人孔与平台

数 0 0 1 3 2 2 8 塔板数

0 0

9

24

24

18 75 01i m /kg 1158.05 2999.3

1 8106.35 11580.5 11580.5 10643

46067.71

02

i m /kg — —

2564.60 6838.92 6838.92 5129.19

21371.6

3

03

i

m

/kg

— 187.40 2417.10

3453

3453

3636.92

13147.4

2

04i m /kg 42.45 84.91 1005.08 2548.26 1840.35 1756.51 7277.56 05

i

m

/kg

1257.9

2 9040.04 7363.69 7363.69 5690

30715.34 a i m /kg 288.06 432.09 2042.63 3198.63 2777.76 2777.76 11516.93 w i

m /kg — 1872.94 34698.67 49569.53 49569.53 51393.27 187103.94 e i m /kg

— 1400

2600

— — — 4000 o i m /kg

1488.56

6361.6

3

27775.8 34983

33854.22

29633.38

134096.59

全塔操作质量/kg 71.4606705040302010=++++++=e a m m m m m m m m 全塔最小质量/kg 95.862832.004030201min =+++++=e a m m m m m m m 水压试验时最大质量

/kg

26.27896804030201max =++++++=e w a m m m m m m m m

2.3风载荷和风弯矩

2.3.1风载荷计算示例

任一计算段风载荷的大小,与塔设备所在地区的基本风压值有关,同时也与塔设备的高度、直径、形状以及自振周期有关。 两相邻计算截面间的水平风力为

602110-?=ei i i i i D l f q K K P (2-1) 以2-3段为例计算风载荷3P

对圆形容器,7.01=K ;20/400m N q =;由表8-5查得:09.13=f ;mm l 92753=; 由表8-7查得:72.03=ν;

对等直径、等厚度圆截面塔,其基本自振周期

3

3

011033.90-?=i

e D E H m H

T δ (2-2)

浮阀塔的自振周期为s T 77.2102200

14109.153000

59.1340965300033.9033

51=??????

?=- 根据自振周期,由表8-6查得,96.2=ξ;由表8-8查得,068.0=zi φ; 塔的风振系数计算:

i

zi

i i f K φξν+

=12 (2-3)

当塔高H=53m >20m ,浮阀塔的风振系数为

137.109

.1068

.074.096.2123=??+

=K

塔的有效直径计算

设笼式扶梯与塔顶管线成90°,取以下a 、b 式中较大者。 a .432K K D D si oi ei +++=δ

浮阀塔的设计示例

浮阀塔设计示例 设计条件 拟建一浮阀塔用以分离某种液体混合物,决定采用F1型浮阀(重阀),试按下述条件进行浮阀塔的设计计算。 气相流量V s = 1.27m3/s;液相流量L s = 0.01m3/s; 气相密度ρV = 3.62kg/m3;液相密度ρL = 734kg/m3; 混合液表面张力σ= 16.3mN/m,平均操作压强p = 1.013×105Pa。 设计计算过程 (一)塔径 欲求出塔径应先计算出适宜空塔速度。适宜空塔速度u一般为最大允许气速u F的0.6~0.8倍 即: u=(0.6~0.8)u F 式中C可由史密斯关联图查得,液气动能参数为: 取板间距H T =0.6m,板上液层高度h L =0.083m,图中的参变量值H T-h L=0.6-0.083 =0.517m。根据以上数值由图可得液相表面张力为20mN/m时的负荷系数C20=0.1。由所给出的工艺条件校正得: 最大允许气速: 取安全系数为0.7,则适宜空塔速度为:

由下式计算塔径: 按标准塔径尺寸圆整,取D = 1.4m; 实际塔截面积: 实际空塔速度: 安全系数:在0.6~0.8范围间,合适。 (二)溢流装置 选用单流型降液管,不设进口堰。 1)降液管尺寸 取溢流堰长l w=0.7D,即l w/D=0.7,由弓形降液管的结构参数图查得:A f/A T=0.09,W d/D=0.15 因此:弓形降液管所占面积:A f=0.09×1.54=0.139(m2) 弓形降液管宽度:W d=0.15×1.4=0.21(m2) 验算液体在降液管的停留时间θ, 由于停留时间θ>5s,合适。 2)溢流堰尺寸 由以上设计数据可求出: 溢流堰长 l w=0.7×1.4=0.98m 采用平直堰,堰上液层高度可依下式计算,式中E近似取1,即

苯-甲苯连续精馏浮阀塔课程设计

设计任务书 设计题目: 苯-甲苯连续精馏浮阀塔设计 设计条件: 常压: 1p atm = 处理量: 100Kmol h 进料组成: 0.45f x = 馏出液组成: 98.0=d x 釜液组成: 02.0=w x (以上均为摩尔分率) 塔顶全凝器: 泡点回流 回流比: min (1.1 2.0)R R =- 加料状态: 0.96q = 单板压降: 0.7a kp ≤ 设 计 要 求 : (1) 完成该精馏塔的工艺设计(包括物料衡算、热量衡算、筛板塔的设计算)。 (2) 画出带控制点的工艺流程图、塔板负荷性能图、精馏塔工艺条件图。 (3) 写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。

目录 摘要 ........................................................................................................................................................................... I 绪论 (1) 设计方案的选择和论证 (3) 第一章塔板的工艺计算 (5) 1.1基础物性数据 (5) 1.2精馏塔全塔物料衡算 (5) 1.2.1已知条件 (5) 1.2.2物料衡算 (5) 1.2.3平衡线方程的确定 (6) 1.2.4求精馏塔的气液相负荷 (7) 1.2.5操作线方程 (7) 1.2.6用逐板法算理论板数 (7) 1.2.7实际板数的求取 (8) 1.3精馏塔的工艺条件及有关物性数据的计算 (9) 1.3.1进料温度的计算 (9) 1.3.2操作压力的计算 ................................................................................................ 错误!未定义书签。 1.3.3平均摩尔质量的计算 (9) 1.3.4平均密度计算 (10) 1.3.5液体平均表面力计算 (11) 1.3.6液体平均粘度计算 (12) 1.4 精馏塔工艺尺寸的计算 (12) 1.4.1塔径的计算 (12) 1.4.2精馏塔有效高度的计算 (14) 1.5 塔板主要工艺尺寸的计算 (14) 1.5.1溢流装置计算 (14) 1.6浮阀数目、浮阀排列及塔板布置 (15) 1.7塔板流体力学验算 (16) 1.7.1计算气相通过浮阀塔板的静压头降h f (16) 1.7.2计算降液管中清夜层高度Hd (17) 1.7.3计算雾沫夹带量e V (18) 1.8塔板负荷性能图 (19) 1.8.1雾沫夹带线 (19) 1.8.2液泛线 (19) 1.8.3 液相负荷上限线 (21) 1.8.4漏液线 (21) 1.8.5液相负荷下限线 (21) 1.9小结 (22) 第二章热量衡算 (23) 2.1相关介质的选择 (23) 2.1.1加热介质的选择 (23) 2.1.2冷凝剂 (23) 2.2热量衡算 (23) 第三章辅助设备 (28)

化工原理课程设计 乙醇-水连续浮阀精馏塔的设计解析

化工原理课程设计乙醇-水连续精馏塔的设计 姓名 学号 年级 专业化学工程与工艺 系(院)化学化工学院 指导教师张杰 2013年 6月

目录 第一章绪论 (1) 第二章塔板的工艺设计 (3) 2.1 精馏塔全塔物料衡算 (3) 2.2 常压下乙醇-水气液平衡组成(摩尔)与温度关系 (3) 2.3 理论塔板的计算 (8) 2.4 塔径的初步计算 (10) 2.5 溢流装置 (11) 2.6 塔板布置及浮阀数目与排列 (12) 第三章塔板的流体力学计算 (14) 3.1 气相通过浮阀塔板的压降 (14) 3.2 淹塔 (15) 3.3 液沫夹带 (15) 3.4 塔板负荷性能图 (16) 第四章附件设计 (20) 4.1 接管 (21) 4.2 筒体与封头 (22) 4.3 除沫器 (22) 4.4 裙座 (22) 4.5 吊柱 (22) 4.6 人孔 (23) 第五章塔总体高度的设计 (23) 第六章塔附属设备设计 (23) Q (23) 6.1确定冷凝器的热负荷 c 6.2 冷凝器的选择 (24) 参考书目 (24) 主要符号说明 (25) 结束语 (26)

(一)设计题目 乙醇-水连续精馏塔的设计 (二)设计任务及操作条件 1) 进精馏塔的料液含乙醇30%(质量分数,下同),其余为水; 2) 产品的乙醇含量不得低于93%; 3) 残液中乙醇含量不得高于0.5%; 4) 每年实际生产时间:7200小时/年,处理量:80000吨/年; 5) 操作条件 a) 塔顶压力:常压 b) 进料热状态:饱和液体进料 (或自选) c) 回流比: R=1.55Rmin d) 加热方式:直接蒸汽 e) 单板压降:≤0.7kPa (三)板类型 浮阀塔 (四)厂址 临沂地区 (五)设计内容 1、设计说明书的内容 1) 精馏塔的物料衡算; 2) 塔板数的确定; 3) 精馏塔的工艺条件及有关物性数据的计算; 4) 精馏塔的塔体工艺尺寸计算; 5) 塔板主要工艺尺寸的计算; 6) 塔板的流体力学验算; 7) 塔板负荷性能图; 8) 精馏塔接管尺寸计算;9)设计结果汇总 10) 对设计过程的评述和有关问题的讨论。 2、设计图纸要求 绘制生产工艺流程图(选作); 注:常压下乙醇-水气液平衡组成与温度的关系见课程设计教材附录(105页)

浮阀塔的设计方案(优秀)解析

滨州学院 课程设计任务书 一、课题名称 甲醇——水分离过程板式精馏塔设计 二、课题条件(原始数据) 原料:甲醇、水溶液 处理量:3200Kg/h 原料组成:33%(甲醇的质量分率) 料液初温:20℃ 操作压力、回流比、单板压降:自选 进料状态:冷液体进料 塔顶产品浓度:98%(质量分率) 塔底釜液含甲醇含量不高于1%(质量分率) 塔顶:全凝器 塔釜:饱和蒸汽间接加热 塔板形式:筛板 生产时间:300天/年,每天24h运行 冷却水温度:20℃ 设备形式:筛板塔 厂址:滨州市 三、设计内容 1、设计方案的选定 2、精馏塔的物料衡算 3、塔板数的确定 4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数) 5、精馏塔塔体工艺尺寸的计算 6、塔板主要工艺尺寸的计算

滨州学院化工原理课程设计说明书 7、塔板的流体力学验算 8、塔板负荷性能图(精馏段) 9、换热器设计 10、馏塔接管尺寸计算 11、制生产工艺流程图(带控制点、机绘,A2图纸) 12、绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸) 13、撰写课程设计说明书一份 设计说明书的基本内容 ⑴课程设计任务书 ⑵课程设计成绩评定表 ⑶中英文摘要 ⑷目录 ⑸设计计算与说明 ⑹设计结果汇总 ⑺小结 ⑻参考文献 14、有关物性数据可查相关手册 15、注意事项 ⑴写出详细计算步骤,并注明选用数据的来源 ⑵每项设计结束后列出计算结果明细表 ⑶设计最终需装订成册上交 四、进度计划(列出完成项目设计内容、绘图等具体起始日期) 1、设计动员,下达设计任务书0.5天 2、收集资料,阅读教材,拟定设计进度1-2天 3、初步确定设计方案及设计计算内容5-6天 4、绘制总装置图2-3天 5、整理设计资料,撰写设计说明书2天 6、设计小结及答辩1天

苯-甲苯连续精馏浮阀塔设计

精馏塔设计 苯-甲苯连续精馏浮阀塔设计 1.课程设计的目的 课程设计是“化工原理”课程的一个总结性教学环节,是培养学生综合运用本门课程及有关先修课程的基本知识去解决某一设计任务的一次训练,在整个教学计划中它也起着培养学生独立工作能力的重要作用,通过课程设计就以下几个方面要求学生加强训练 1.查阅资料选用公式和搜集数据的能力 2.树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力。3.迅速准确的进行工程计算(包括电算)的能力。 4.用简洁文字清晰表达自己设计思想的能力。 2 课程设计题目描述和要求 精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。 本设计的题目是苯-甲苯连续精馏浮阀塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔,板空上安装浮阀,具体工艺参数如下: 原料苯含量:质量分率= (30+0.5*学号)% 原料处理量:质量流量=(10-0.1*学号)t/h [单号] (10+0.1*学号)t/h [双号] 产品要求:质量分率:xd=98%,xw=2% [单号] xd=96%,xw=1% [双号] 2 工艺操作条件如下: 常压精馏,塔顶全凝,塔底间接加热,泡点进料,泡点回流,R=(1.2~2)Rmin。 3.课程设计报告内容 3.1 流程示意图 冷凝器→塔顶产品冷却器→苯的储罐→苯 ↑↓回流 原料→原料罐→原料预热器→精馏塔 ↑回流↓ 再沸器←→塔底产品冷却器→甲苯的储罐→甲苯 3.2 流程和方案的说明及论证 3.2.1 流程的说明 首先,苯和甲苯的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。因为被加热到泡点,混合物中既有气相混合物,又有液相混合物,这时候原料混合物就分开了,气相混合物在精馏塔中上升,而液相混合物在精馏塔中下降。气相混合物上升到塔顶上方的冷凝器

板式塔设备机械设计

板式塔设备机械设计

————————————————————————————————作者:————————————————————————————————日期:

1 板式塔设备机械设计任务书 1.1 设计任务及操作条件 试进行一蒸馏塔与裙座的机械设计 已知条件为:塔体内径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在广州郊区,地震强度为7度,塔内安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。 1.2 设计内容 (1)根据设计条件选材; (2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力; (8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。 1.3.设计要求: (1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)

2 塔设备已知条件及分段示意图 已知设计条件 分段示意图 塔体内径i D 2000mm 塔体高度H 30000mm 设计压力P 1.2MPa 设计温度t 300℃ 塔 体 材料 16MnR 许用应力 [σ] 170MPa [σ]t 144MPa 设计温度下弹性模量E MPa 51086.1? 常温屈服点s σ 345MPa 厚度附加量C 2mm 塔体焊接接头系数φ 0.85 介质密度ρ 3/800m kg 塔盘数N 55 每块塔盘存留介质层高度w h 100mm 基本风压值0q 500N/㎡ 地震设防烈度 7度 场地土类别 II 类 地面粗糙度 B 类 偏心质量e m 4000kg 偏心距e 2000mm 塔外保温层厚度s δ 100mm 保温材料密度2ρ 3/300m kg 材料 Q235-A 裙 座 许用应力t s ][σ 86MPa 常温屈服点s σ 235MPa 设计温度下弹性模量s E

年生产2.9万吨丙烯精馏浮阀塔结构设计的设计书

年产2.9万吨丙烯精馏浮阀塔结构设计的设计方案 第一部分工艺计算 设计方案 本设计任务为分离丙烯混合物,在常压操作的连续精馏塔分离丙-丙烯混合液:已知塔底的生产能力为丙烯3.6万吨/年,进料组成为0.50(苯的质量分率),要求塔顶馏出液的组成为0.98,塔底釜液的组成为0.02。 对于二元混合物分离采用连续精馏流程,设计中进料为冷夜进料,将原料液通过泵送入精馏塔,塔顶上升蒸汽采用全冷凝器冷凝,冷凝液一部分回流至塔,其余部分经产品冷却器冷却送至储罐。该物系属易分离物系,最小回流比小,故操作回流比取最小回流比的1.2倍。塔釜采用间接加热,塔底产品冷却后送至储罐。 1.1原始数据 年产量:2.9万吨丙烯 料液初温:25~35℃ 料液浓度: 50%(丙质量分率) 塔底产品浓度: 98%(丙烯质量分率) 塔顶苯质量分率不低于 97% 每年实际生产天数:330天(一年中有一个月检修) 精馏塔塔顶压强:4 kpa(表压) 冷却水温度:30℃ 饱和水蒸汽压力:2.5kgf/cm2(表压) 设备型式:浮阀塔 =45㎏/㎡,地质:地震烈度7级,土质为Ⅱ类场地土,气厂址:地区(基本风压:q 温:-20~40℃)

1.2选取塔基本参数 40.0=苯F x 60.0x F =甲苯 98.0y D =苯 02.0y F =甲苯 03.0x W =苯 97.0x W =甲苯 1.3确定最小回流比 1.3.1 汽液平衡关系及平衡数据 表1-1 常压下苯—甲苯的汽液平衡组成 1.3.2 求回流比 (1)M 苯=78.11 kg/mol, M 甲苯=92.13kg/mol 苯摩尔分率:XF=(50/78.11)/(50/78.11+50/92.13)=0.5412 XD=(97/78.11)/(97/78.11+3/92.13)=0.9744 XW=(2/78.11)/(2/78.11+98/92.13)=0.0235 表1-1 常压下丙烯的汽液平衡组成

乙醇-水精馏塔课程设计报告浮阀塔

-- - 目录 设计任务书 (4) 第一章前言 (5) 第二章精馏塔过程的确定 (6) 第三章精馏塔设计物料计算 (7) 3.1水和乙醇有关物性数据 (7) 3.2 塔的物料衡算 (8) 3.2.1料液及塔顶、塔底产品及含乙醇摩尔分率 (8) 3.2.2平均分子量 (8) 3.2.3物料衡算 (8) 3.3塔板数的确定 (8) 3.3.1理论塔板数N T的求取 (8) 3.3.2求理论塔板数N T (9) 3.4塔的工艺条件及物性数据计算 (11) 3.4.1操作压强P m (12) 3.4.2温度t m (12) 3.4.3平均分子量M精 (12) 3.4.4平均密度ρM (13) 3.4.5液体表面X力σm (13) 3.4.6液体粘度μm L, (14) 3.4.7精馏段气液负荷计算 (14) 第四章精馏塔设计工艺计算 (15) 4.1塔径 (15) 4.2精馏塔的有效高度计算 (16) 4.3溢流装置 (16) 4.3.1堰长l W (16) 4.3.2出口堰高h W (16)

4.3.3降液管的宽度W d与降液管的面积A f (16) 4.3.4降液管底隙高度h o (17) 4.4塔板布置及浮阀数目排列 (17) 4.5塔板流体力学校核 (18) 4.5.1气相通过浮塔板的压力降 (18) 4.5.2淹塔 (18) 4.6雾沫夹带 (18) 4.7塔板负荷性能图 (19) 4.7.1雾沫夹带线 (19) 4.7.2液泛线 (20) 4.7.3液相负荷上限线 (20) 4.7.4漏液线(气相负荷下限线) (20) 4.7.5液相负荷下限线 (21) 4.8塔板负荷性能图 (22) 设计计算结果总表 (23) 符号说明 (24) 关键词 (25) 参考文献 (25) 课程设计心得 (26) 附录 (27) 附录一、水在不同温度下的黏度 (27) 附录二、饱和水蒸气表 (27) 附录三、乙醇在不同温度下的密度 (27)

浮阀塔课程设计说明书

浮阀塔课程设计说明书

题目: 拟建一浮阀塔用以分离苯-氯苯混合物(不易气泡),决定采用F1型浮阀,试根据以下条件做出浮阀塔(精馏段)的设计计算。 (1)进行塔板工艺设计计算及验算 (2)绘制负荷性能图 (3)绘制塔板结构图 (4)给出设计结果列表 (5)进行分析和讨论 设计计算及验算 1.塔板工艺尺寸计算 (1)塔径 欲求塔径应先给出空塔气速u ,而 max u )(?=安全系数u v v l c u ρρρ-=max 式中c 可由史密斯关联图查出,横标的数值为 0625.0)996 .29.841(61.1006.0)(5 .05.0==v l h h V L ρρ 取板间距m H T 45.0=,板上液层高度m h L 05.0=,则图中 参数值为 m h H L T 4.005.045.0=-=-

由图53-查得0825 .020 =c ,表面张力./9.20m mN =σ 0832 .0)20 ( 2.020=?=σ c c s m u /399.1996 .2996 .29.8410832.0max =-? = 取安全系数为0.6,则空塔气速为 m /s 84.0399.16.0u max =?=?=安全系数u 塔径m u V D s 562.184 .014.361 .144=??== π 按标准塔径圆整m D 6.1=,则 塔截面积 22201.2)6.1(4 14 .34 m D A T =?= = π 实际空塔气速 s m A V u T s /801.001 .261.1=== (2)溢流装置 选用单溢流弓形降液管,不设进口堰。各项计算如下: ①堰长W l :取堰长D l W 66.0=,即 m l W 056.16.166.0=?= ②出口堰高W h :OW L W h h h -= 采用平直堰,堰上液层高度OW h 可依下式计算: 3 2 )(100084.2W h OW l L E h = 近似取1=E ,则可由列线图查出OW h 值。 m 021.0h 056.1,/6.213600006.0OW 3===?=,查得m l h m L W h m h h h OW L W 029.0021.005.0=-=-=则

苯-甲苯浮阀精馏塔课程设计

目录 1 课程设计的目的 (3) 2 课程设计题目描述和要求 (3) 3 课程设计报告内容 (4) 4 对设计的评述和有关问题的讨论 (22) 5 参考书目 (22) 1苯-甲苯连续精馏浮阀塔设计 1.课程设计的目的 2 课程设计题目描述和要求 本设计的题目是苯-甲苯连续精馏浮阀塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔,板空上安装浮阀,具体工艺参数如下: 原料苯含量:质量分率= (30+0.5*学号)% 原料处理量:质量流量=(10-0.1*学号)t/h [单号] (10+0.1*学号)t/h [双号] 产品要求:质量分率:xd=98%,xw=2% [单号] xd=96%,xw=1% [双号] 工艺操作条件如下: 常压精馏,塔顶全凝,塔底间接加热,泡点进料,泡点回流,R=(1.2~2)Rmin。 3.课程设计报告内容 3.1 流程示意图 冷凝器→塔顶产品冷却器→苯的储罐→苯 ↑↓回流 原料→原料罐→原料预热器→精馏塔 ↑回流↓ 再沸器← → 塔底产品冷却器→甲苯的储罐→甲苯 3.2 流程和方案的说明及论证 3.2.1 流程的说明 首先,苯和甲苯的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。因为被加热到泡点,混合物中既有气相混合物,又有液相混合物,这时候原料混合物就分开了,气相混合物在精馏塔中上升,而液相混合物在精馏塔中下降。气相混合物上升到塔顶上方的冷凝器中,这些气相混合物被降温到泡点,其中的液态部分进入到塔顶产品冷却器中,停留一定的时间然后进入苯的储罐,而其中的气态部分重新回到精馏塔中,这个过程就叫做回流。液相混合物就从塔底一部分进入到塔底产品冷却器中,一部分进入再沸器,在再沸器中被加热到泡点温度重新回到精馏塔。塔里的混合物不断重复前面所说的过程,而进料口不断有新鲜原料的加入。最终,完成苯与甲苯的分离。 3.2.2 方案的说明和论证 本方案主要是采用浮阀塔。 精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下:3 一:生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流 动。

浮阀塔设计

化工原理课程设计Ⅱ ——浮阀塔的选型设计 专业班级: 姓名: 学号: 指导教师: 成绩:

目录 前言--------------------------------------------------------1设计任务书------------------------------------------------2 设计计算及验算------------------------------------------3 塔板工艺尺寸计算---------------------------------------------3 塔的流体力学验算---------------------------------------------7 塔板负荷性能图------------------------------------------------9 分析与讨论-----------------------------------------------13 结果列表--------------------------------------------------14

化工原理课程设计任务书 拟建一浮阀塔用以分离甲醇—水混合物,决定采用F1型浮阀(重阀),是根据以下条件做出浮阀塔的设计计算。已知条件: 要求: 1.进行塔的工艺计算和验算 2.绘制负荷性能图 3.绘制塔板的结构图 4.将结果列成汇总表

5.分析并讨论 前言 浮阀塔结构简单,有两种结构型式,即条状浮阀和盘式浮阀,它们的操作和性能基本是一致的,只是结构上有区别,其中以盘式浮阀应用最为普遍。盘式浮阀塔板结构,是在带降液装置的塔板上开有许多升气孔,每个孔的上方装有可浮动的盘式阀片。为了控制阀片的浮动范围,在阀片的上方有一个十字型或依靠阀片的三条支腿。前者称十字架型,后者称V型。目前因V型结构简单,因而被广泛使用,当上升蒸汽量变化时,阀片随之升降,使阀片的开度不同,所以塔的工作弹性较大。 浮阀塔总的原则是尽可能多地采用先进的技术,使生产达到技术先进、经济合理的要求,符合优质、高产、安全、低能耗的原则,具体考虑以下几点。 ⑴满足工艺和操作的要求所设计出来的流程和设备能保证得到质量稳定的产品。设计的流程与设备需要一定的操作弹性,可方便地进行流量和传热量的调节。设置必需的仪表并安装在适宜部位,以便能通过这些仪表来观测和控制生产过程。 ⑵满足经济上的要求要节省热能和电能的消耗,减少设备与基建的费用,回流比对操作费用和设备费用均有很大的影响,因此必须选择合适的回流比。设计时应全面考虑,力求总费用尽可能低一些。 ⑶保证生产安全生产中应防止物料的泄露,生产和使用易燃物料车间的电器均应为防爆产品。塔体大都安装在室外,为能抵抗大自然的破坏,塔设备应具有一定刚度和强度。

化工原理课程设计(浮阀塔)

板式连续精馏塔设计任务书 一、设计题目:分离苯一甲苯系统的板式精馏塔设计 试设计一座分离苯一甲苯系统的板式连续精馏塔,要求原料液的年处理量 为 50000 吨,原料液中苯的含量为 35 %,分离后苯的纯度达到 98 %, 塔底馏出液中苯含量不得高于1% (以上均为质量百分数) 二、操作条件 厂址拟定于天津地区。 设计内容 1. 设计方案的确定及流程说明 2. 塔的工艺条件及有关物性数据的计算 3. 精馏塔的物料衡算 4. 塔板数的确定 5. 塔体工艺尺寸的计算 6. 塔板主要工艺尺寸的设计计算 7. 塔板流体力学验算 8. 绘制塔板负荷性能图 9. 塔顶冷凝器的初算与选型 10. 设备主要连接管直径的确定 11. 全塔工艺设计计算结果总表 12. 绘制生产工艺流程图及主体设备简图 13. 对本设计的评述及相关问题的分析讨论 1. 塔顶压强: 2. 进料热状态: 3. 回流比: 加热蒸气压强: 单板压降: 4 kPa (表压); 101.3 kPa (表压); 塔板类型 浮阀塔板 四、 生产工作日 每年300天,每天 24小时运行。 五、 厂址

一、绪 论 二、设计方案的确定及工艺流程的说明 2.1 设计流程 2.2 设计要求 2.3 设计思路 2.4 设计方案的确定 三、全塔物料衡算 3.2 物料衡算 四、塔板数的确定 4.1 理论板数的求取 4.2 全塔效率实际板层数的求取 五、精馏与 提馏段物性数据及气液负荷的计算 5.1 进料板与塔顶、塔底平均摩尔质量的计算 5.4 液相液体表面张力的计算 目录 5.5 塔内各段操作条件和物性数据表 11 六、塔径及塔板结构工艺尺寸的计算 14 6.1塔径的计算 14 6.2塔板主要工艺尺寸计算 15 6.3 塔板布置及浮阀数目与排列 17 5.2 气相平均密度和气相负荷计算 10 5.3 液相平均密度和液相负荷计算 10 11

塔设备机械设计

第一章绪论 1.1塔设备概述 塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。以及吸附、离子交换、干燥等方法。相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。 在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。 在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。两相的组分浓度沿塔高呈阶梯式变化。 不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为: (1)塔体,包括圆筒、端盖和联接法兰等; (2)内件,指塔盘或填料及其支承装置; (3)支座,一般为裙式支座; (4)附件,包括人孔、进出料接管、各类仪表接管、

液体和气体的分配装置,以及塔外的扶梯、平台、保温层等。 塔体是塔设备的外壳。常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。另外对塔体安装的不垂直度和弯曲度也有一定的要求。 支座是塔体的支承并与基础连接的部分,一般采用裙座。其高度视附属设备(如再沸器、泵等)及管道布置而定。它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。 塔设备强度计算的主要的内容是塔体和支座的强度和刚度计算。 化工生产对塔设备的基本要求 塔设备设计除应满足工艺要求外,尚需考虑下列基本要求:(1)气、液处理量大,接触充分,效率高,流体流动阻力小。 (2)操作弹性大,即当塔的负荷变动大时,塔的操作仍然稳定,效率变化不大,且塔设备能长期稳定运行。 (3)结构简单可靠,制造安装容易,成本低。 (4)不易堵塞,易于操作、调试及检修。 1.2板式塔 板式塔具有物料处理量大,重量轻,清理检修方便,操作稳定性好等优点,且便于满足工艺上的特殊要求,如中间加热或或冷却、多段取出不同馏分、“液化气”较大等。但板式塔的结构复杂,成本较高。由于板式塔良好的操作的性能和成熟的使用经验,目前在化工生产的塔设备中,占有很大比例,广泛用于蒸馏、吸收等传质过程。 板式塔内部装有塔盘,塔体上有进料口、产品抽出口以及回

浮阀塔课程设计报告书

化工原理课程设计 浮阀塔的设计 专业:化学工程与工艺 班级:化工1003 :皓升 学号:1001010310 成绩: 指导教师:王晓宁

目录 设计任务书 (1) 一、塔板工艺尺寸计算 (2) (1)塔径 (2) (2)溢流装置 (3) (3)塔板布置及浮阀数目与排列 (4) 二、塔板部结构图 (6) 三、塔板流体力学验算 (7) (1)气相通过浮阀塔板的压强降 (7) (2)夜泛 (7) (3)雾沫夹带 (8) 四、塔板负荷性能图 (9) (1)雾沫夹带线 (9) ⑵液泛线 (10) ⑶液相负荷上限线 (10) ⑷漏液线 (11) ⑸液相负荷下限线 (11) 五、汇总表 (13)

设计任务书 拟建一浮阀塔用以分离甲醇——水混合物,决定采用F1型浮阀(重阀),试根据以下条件做出浮阀塔的设计计算。 已知条件: 其中:n为学号 要求: 1.进行塔的工艺计算和验算 2.绘制负荷性能图 3.绘制塔板的结构图 4.将结果列成汇总表 5.分析并讨论

一 、塔板工艺尺寸计算 (1)塔径 欲求塔径应先给出空塔气速u ,而 max u )(?=安全系数u v v l C u ρρρ-=m ax 式中C 可由史密斯关联图查出,横标的数值为 0963.0)01 .1819(89.10064.0)(5 .05.0==v l h h V L ρρ 取板间距m H T 5.0=,板上液层高度m h l 07.0= ,则图中参数值为 m h H L T 38.007.045.0=-=- 由图53-查得085.020=c ,表面力./38m mN =σ 0.2 0.2 2038() 0.085=0.096 20 20c c σ ?? =?=? ??? max 0.096 2.73/u m s =?= 取安全系数为0.6,则空塔气速为 max u=0.6u =0.6 2.73=1.63m/s ? 则塔径D 为: 1.22D m = == 按标准塔径圆整D=1.4m ,则 塔截面积: 2 22 54.1)4.1(4 14.34m D A T =?==π

【精品】浮阀塔课程设计

化工原理课程设计—浮阀塔塔板设计 专业:化学工程与工艺 班级:化工0701 姓名:曾超 学号:0701010101 成绩: 指导教师:张克铮

题目: 拟建一浮阀塔用以分离苯—氯苯混合物(不易气泡),决定采用F1型浮阀,试根据以下条件做出浮阀塔(精馏段)的设计计算。 已知条件见下表: (1)进行塔板工艺设计计算及验算 (2)绘制负荷性能图 (3)绘制塔板结构图 (4)给出设计结果列表 进行分析和讨论 设计计算及验算 1.塔板工艺尺寸计算 塔径欲求塔径应先给出空塔气速u ,而 max u )(?=安全系数u v v l c u ρρρ-=max 式中c 可由史密斯关联图查出,横标的数值为 0625.0)996 .29.841(61.1006.0)(5.05.0==v l h h V L ρρ取板间距m H T 45.0=,板上液层高度m h L 05.0=,则图中参数值为 m h H L T 4.005.045.0=-=-由图53-查得0825.020=c ,表面张力./9.20m mN =σ

0832.0)20(2.020=?=σ c c s m u /399.1996 .2996.29.8410832.0max =-?= 取安全系数为0。6,则空塔气速为

m /s 84.0399.16.0u max =?=?=安全系数u 塔径m u V D s 562.184 .014.361.144=??==π 按标准塔径圆整m D 6.1=,则 塔截面积22201.2)6.1(4 14.34m D A T =?==π (1)实际空塔气速s m A V u T s /801.001.261.1=== 溢流装置选用单溢流弓形降液管,不设进口堰。各项计算如下: ①堰长W l :取堰长D l W 66.0=,即 m l W 056.16.166.0=?=②出口堰高W h :OW L W h h h -= 采用平直堰,堰上液层高度OW h 可依下式计算: 32 )(100084.2W h OW l L E h =近似取1=E ,则可由列线图查出OW h 值。 m 021.0h 056.1,/6.213600006.0OW 3===?=,查得m l h m L W h m h h h OW L W 029.0021.005.0=-=-=则 ③弓形降液管宽度d W 和面积f A : 66.0=D l W 由图103-查得:124.0,0721.0==D W A A d T f ,则 2145.001.20721.0m A f =?=m W d 199.06.1124.0=?= 停留时间s L H A L H A s T f h T f 88.10006 .045.0145.03600=?===θ

浮阀塔设计-过程装备设计-课程设计

1 引言 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的精馏塔,实现苯—甲苯的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。 浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。浮阀有很多种形式,但最常用的形式是F1型和V-4型。F1型浮阀的结果简单、制造方便、节省材料、性能良好,广泛应用在化工及炼油生产中。 1.1 精馏塔对塔设备的要求 1.生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流 动。 2.效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。 3.流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。 4.有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。 5.结构简单,造价低,安装检修方便。 6.能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。 1.2 浮阀塔的优点 1.生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大 20%~40%,与筛板塔接近。 2.操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。 3.塔板效率高,由于上升气体从水平方向吹入液层,故气液接触时间较长,而雾沫夹带量小,塔板效率高。 4.气体压降及液面落差小,因气液流过浮阀塔板时阻力较小,使气体压降及液面落差比泡罩塔小。 5.塔的造价较低,浮阀塔的造价是同等生产能力的泡罩塔的 50%~80%,但是比筛板塔高 20%~30。 但是,浮阀塔的抗腐蚀性较高(防止浮阀锈死在塔板上),所以一般采用不锈钢作成,致使浮阀造价昂贵,推广受到一定限制。随着科学技术的不断发展,各种新型填料,高效率塔板的不断被研制出来,浮阀塔的推广并不是越来越广。

板式塔设备机械设计资料

1 板式塔设备机械设计任务书 1.1 设计任务及操作条件 试进行一蒸馏塔与裙座的机械设计 已知条件为:塔体内径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在广州郊区,地震强度为7度,塔内安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。 1.2 设计内容 (1)根据设计条件选材; (2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力; (8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。 1.3.设计要求: (1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)

2 塔设备已知条件及分段示意图 已知设计条件 分段示意图 塔体内径i D 2000mm 塔体高度H 30000mm 设计压力P 1.2MPa 设计温度t 300℃ 塔 体 材料 16MnR 许用应力 [σ] 170MPa [σ]t 144MPa 设计温度下弹性模量E MPa 51086.1? 常温屈服点s σ 345MPa 厚度附加量C 2mm 塔体焊接接头系数φ 0.85 介质密度ρ 3/800m kg 塔盘数N 55 每块塔盘存留介质层高度w h 100mm 基本风压值0q 500N/㎡ 地震设防烈度 7度 场地土类别 II 类 地面粗糙度 B 类 偏心质量e m 4000kg 偏心距e 2000mm 塔外保温层厚度s δ 100mm 保温材料密度2ρ 3/300m kg 材料 Q235-A 裙 座 许用应力t s ][σ 86MPa 常温屈服点s σ 235MPa 设计温度下弹性模量s E

浮阀塔课程设计说明书模板

浮阀塔课程设计说 明书

题目: 拟建一浮阀塔用以分离苯-氯苯混合物(不易气泡),决定采用F1型浮阀,试根据以下条件做出浮阀塔(精馏段)的设计计算。 已知条件见下表: 要求: (1)进行塔板工艺设计计算及验算 (2)绘制负荷性能图 (3)绘制塔板结构图 (4)给出设计结果列表 (5)进行分析和讨论 设计计算及验算 1.塔板工艺尺寸计算 (1)塔径 欲求塔径应先给出空塔气速u ,而 max u )(?=安全系数u v v l c u ρρρ-=max

式中c 可由史密斯关联图查出,横标的数值为 0625.0)996 .29.841(61.1006.0)(5 .05.0==v l h h V L ρρ 取板间距m H T 45.0=,板上液层高度m h L 05.0=,则图中参数值为 m h H L T 4.005.045.0=-=- 由图53-查得0825.020=c ,表面张力./9.20m mN =σ 0832.0)20 ( 2.020=?=σ c c s m u /399.1996 .2996 .29.8410832.0max =-? = 取安全系数为0.6,则空塔气速为 m /s 84.0399.16.0u max =?=?=安全系数u 塔径m u V D s 562.184 .014.361 .144=??== π 按标准塔径圆整m D 6.1=,则 塔截面积 22201.2)6.1(4 14 .34m D A T =?= = π 实际空塔气速 s m A V u T s /801.001 .261.1=== (2)溢流装置 选用单溢流弓形降液管,不设进口堰。各项计算如 下: ①堰长W l :取堰长D l W 66.0=,即 m l W 056.16.166.0=?= ②出口堰高W h :OW L W h h h -= 采用平直堰,堰上液层高度OW h 可依下式计算:

浮阀塔的机械设计

浮阀塔机械设计 北京理工大学珠海学院 课程设计任务书 2012~2013学年第2 学期 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目 浮阀塔的机械设计 二、课程设计内容 1.塔设备的结构设计 包括:塔盘结构,塔底、塔顶空间,人孔数量及位置,仪表接管选择、工艺接管管径计算等。 2. 塔体及封头壁厚计算及其强度、稳定性校核 (1)根据设计压力初定壁厚; (2)计算危险截面的重量载荷、风载荷、地震载荷及偏心载荷; (3)计算危险截面的由各种载荷作用下的轴向应力; (4)计算危险截面的组合轴向拉应力和组合轴向压应力,并进行强度和稳定性校核。 3. 筒体和裙座水压试验应力校核 4. 裙座结构设计及强度校核 包括:裙座体、基础环、地脚螺栓 5. 编写设计说明书一份 6. 手工绘制2号装配图一张,Auto CAD绘3号图一张(换热器)。 三、设计条件 1. 设备类型:自支承式塔设备(塔顶无偏心载荷); 2. 设置地区环境: 基本风压:q o=400N/㎡; 设计地震烈度:7度(或8度); 场地土:Ⅱ类。地震加速度0.15g(或者0.3g),地震系数根据自己的需要任取一组;

3. 塔体及裙座的机械设计条件: (1)塔体内径Di=2200mm,塔高近似取H=45000mm; (2)计算压力Pc=1.0MPa(每组中各人的计算压力根据安排表中数据),设计温度t=250℃; (3)塔体装有N=75层浮阀塔盘,每块塔盘上存留介质层高度为hw=100mm,介质密度为 ρ1=800kg/m3; (4)沿塔高每5m左右开设一个人孔,人数为8个,相应在人孔处安装半圆形平台8-10个,平台宽度为B=900mm,高度为1000mm。 (5)塔外保温层厚度为δs=120mm,保温材料密度为ρ2=300kg/m3; (6)塔体与裙座间悬挂一台再沸器,其操作质量为me=4000kg,偏心距e=2000mm; (7)塔体与封头材料在低合金高强度刚中间选用,并查出其参数。 (8)裙座统一采用Q235-A (9)塔体与裙座对接焊接,塔体焊接接头系数Φ=0.85; (10)塔体与封头厚度附加量C=2mm,裙座厚度附加量C=2mm; (11)参考图为书中图8-25,尺寸及数据根据自己组的具体情况设计、标注。四、进度安排 制图地点:暂定HE402,HE404

相关主题
文本预览
相关文档 最新文档