当前位置:文档之家› 超声波传感器测距离

超声波传感器测距离

超声波传感器测距离
超声波传感器测距离

目录

一、课程设计任务书 (2)

二.超声波传感器测距原理 (4)

2.1超声波传感器 (4)

2.2超声波测距原理概述 (5)

三.系统总体设计方案 (6)

四.系统的硬件结构设计 (8)

4.1单片机最小系统原理概述 (8)

4.2超声波发射电路 (14)

4.3超声波检测接收电路 (14)

4.4超声波测距系统的显示电路设计 (15)

4.5PROTUES仿真硬件电路图 (15)

五.系统软件的设计 (16)

5.1超声波测距仪的算法设计 (16)

5.2程序流程图 (16)

5.3主程序设计 (18)

5.4定时中断服务子程序设计 (18)

5.5超声波发生子程序和超声波接收中断程序设计 (19)

六.调试结果 (20)

七.系统误差来源及解决方案分析 (22)

八.收获体会 (23)

参考文献 (24)

附录一超声波测距电路原理图 (25)

附录二程序清单 (26)

附录三元件清单 (36)

一、课程设计任务书

《智能仪器综合设计》课程设计任务书

题目:超声波测距系统设计

一、课程设计任务

超声波测距主要应用于倒车雷达、建筑施工工地以及一些工业现场,如液位、井深、管道长度等场合。超声波测距的原理是,发射器发射出超声波,遇到被测物体后返回声波由接收器接收,测量出超声波发射和接收到回波的时间差,超声波波速与时间差乘积的一半即为被测距离。该超声波测距系统以A T89S52单片机为核心进行设计。

二、课程设计目的

通过本次课程设计使学生掌握:1)智能仪器的一般设计、实现方法;2)超声波传感器测距的工作原理;3)智能仪器设计的实际调试技巧。从而提高学生对智能仪器的设计和调试能力。

三、课程设计内容和要求

1、掌握超声波传感器的测距原理,测量结果数显;

2、根据超声波测距原理,设计超声波测距系统的硬件结构电路并画出原理图;

3、用PROTUES对所设计的系统进行仿真;

4、给出软件设计流程图;

5、系统软硬件连调,给出该测距系统的性能指标,并对产生的误差进行分析。

四、课程设计报告要求

报告中提供如下内容:

1、目录

2、正文

(1)课程设计任务书;

(2)超声波传感器测距原理;

(3)系统总体设计方案;

(4)超声波测距系统硬件电路的设计,包含发射电路、接收电路和显示模块的设计,用PROTEL软件绘制硬件原理图并列出器件清单,用PROTUES仿真;

(5)软件设计:程序流程图及清单(子程序不提供清单,但应列表反映每一个子程序的名称及其功能);

(6)调试结果:各个关键点波形和实测数据组;

(7)系统误差来源及解决方案分析;

3、收获、体会

4、参考文献

五、课程设计进度安排

周次工作日工作内容

第一周1 布置课程设计任务,查找相关资料

2 熟悉智能仪器综合实验平台所提供的相关资源

3 完成总体设计方案

4 画出硬件原理图并进行仿真

5 完成硬件接线,编写程序并调试

第二周1 编写程序并调试

2 编写程序并调试

3 编写程序并调试及准备课程设计报告

4 完成课程设计报告并于下午两点之前上交

5 答辩

本课题共需两周时间

七、课程设计考核办法

本课程设计满分为100分,从课程设计平时表现、课程设计报告及课程设计答辩三个方面进行评分,其所占比例分别为20%、40%、40%。

二.超声波传感器测距原理

2.1超声波传感器

超声波是由机械振动产生的,可以在不同的介质中以不同的速度传播,其频率高于20KHz。由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。超声波测距是一种非接触式的检测电路,因而利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。

由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到农业生产等自动化的使用要求。超声波发射器如今有两类,一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。本系统选用的是压电式超声波传感器。它是利用压电效的应原理,压电效应有逆效应和顺效应,实际上是利用压电晶体的谐振来工作的。超声波发生器它有两个压电晶片和一个共振板,当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。

发射器发出的超声波以速度υ在空气中传播,在到达被测物体时被反射返回,由由接收器接收,其往返时间为t,由s=vt/2即可算出被测物体的距离。由于超声波也是一种声波,其声速v与温度有关,表2.1列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。

表2.1 超声波波速与温度的关系

温度(℃)-30 -20 -10 0 10 20 30 100 声速(m/s)313 319 325 323 338 344 349 386

2.2超声波测距仪原理概述

超声波测距的原理一般采用渡越时间法TOF(timeofflight)。其原理为:检测从超声波发射器发出的超声波,经气体介质的传播到接收器的时间,即渡越时间。渡越时间与气体中的声速相乘,就是声波传输的距离。超声波发射器向某一方向发射超声波,在发射时刻的同时单片机开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

单片机发出40kHZ的信号,经放大后通过超声波换能射器输出;反射后的超声波经超声波换能器作为系统的输入,锁相环对此信号锁定,产生锁定信号启动单片机中断程序,读出时间为t,再由软件进行判别、计算,得出距离数并送LED显示。限制超声波系统的最大可测距离存在四个因素:超声波的幅度、反射物的质地、反射和入射波之间的夹角以及接受换能器的灵敏度。接受换能器对声波脉冲的直接接收能力将决定最小可测距离。

三.系统总体设计方案

超声波测距的原理是利用超声波的发射和接受,根据超声波传播的时间来计算出传播距离。实用的测距方法有两种,一种是在被测距离的两端,一端发射,另一端接收的直接波方式,适用于身高计;一种是发射波被物体反射回来后接收的反射波方式,适用于测距仪。此次设计采用反射波方式。

测距仪的分辨率取决于对超声波传感器的选择。超声波传感器是一种采用压电效应的传感器,常用的材料是压电陶瓷。由于超声波在空气中传播时会有相当的衰减,衰减的程度与频率的高低成正比;而频率高分辨率也高,故短距离测量时应选择频率高的传感器,而长距离的测量时应用低频率的传感器。

超声波测距系统主要由超声波接收器、发射器、放大电路、单片机和显示器几部分组成,其系统框图如下图3.1所示:

超声波接收器

放大电路

(三级放大)

单片机控制

定时器显示

放大电路

超声波放射器

(40kHz方波)

障碍物

图3.1 超声波测距系统框图

显示模块中,通过测得数据经p0口送至LCD进行显示,LCD显示原理:液晶显示模块是128×64 点阵的汉字图形型液晶显示模块,可显示汉字及图形,内置8192 个中文汉字、16X16 点阵、128 个字符、8X16 点阵及64X256 点阵,显示RAM GDRAM 可与CPU 直接,接口提供两种界面来连接微处理机8-位并行及串行两种连接方式具有多种功能光标显示画面移位睡眠模式等。显示资料RAM 提供642 个位元组的空间,最多可以控制4 行16 字和64 个字的中文字型显示,当写入显示资料RAM 时可以分别显示CGROM HCGROM 与CGRAM 的字型,ST7920A 可以显示三种字

型:半宽的HCGROM 字型CGRAM 字型及中文CGROM 字型,三种字型的选择由DDRAM 中写入的编码选择,在0000H 0006H 的编码中将自动的结合下一个位元组,组成两个位元组的编码达成中文字型的编码,A140 D75F 各种字型详细编码如下:

1 显示半宽字型将8 位元资料写入DDRAM 中范围为02H 7FH 的编码

2 显示CGRAM 字型将16 位元资料写入DDRAM 中总共有0000H 0002H 0004H 0006H

四种编码

3 显示中文字形将16 位元资料写入DDRAMK ,范围为A1A1H- F7FEH 的编码。绘图显示RAM 提供6

4 *32 个位元组的记忆空间,最多可以控制256 *64 点的二维绘图缓冲空间,在更改绘图RAM 时,先连续写入水平与垂直的坐标值,再写入两个8 位元的资料到绘图RAM而地址计数器AC 会自动加一。在写入绘图RAM 的期间,绘图显示必须关闭整个写入绘图RAM的步骤如下:

1 关闭绘图显示功能

2 先将水平的位元组坐标X 写入绘图RAM 地址

3 再将垂直的坐标Y 写入绘图RAM 地址

4 将D1

5 D8 写入到RAM 中

5 将D7 D0 写入到RAM 中

6 打开绘图显示功能

四.系统的硬件结构设计

硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路四部分。单片机采用AT89S52或其兼容系列。采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的LED。

4.1 单片机最小系统原理概述

AT89S52单片机是整个系统的主控制器,欲使单片机正常工作,必须要设计单片机的最小系统。单片机最小系统,是指最少的元件组成的单片机可以工作的系统。对于51系列的单片机来说,最小系统一般应该包括单片机、晶振电路、复位电路。一般的晶振电路中晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。51单片机的最小系统原理图如下图4.1所示。

图4.1 51单片机最小系统原理图

AT89S52是一种低功耗、高性能CMOS 8位微控制器,具有8K 在系统可编程Flash 存储器。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52在众多嵌入式控制应用系统中得到广泛应用。AT89S52 是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。使用Atmel 公司高密度非易失性存储器技术制造。

AT89S52具有以下标准功能: 8k字节Flash,256字节RAM, 32 位I/O 口线,看门狗定时器,2个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

P0 口:P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下, P0不具有内部上拉电阻。在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需要外部上拉电阻。

P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4个 TTL 逻辑电平。对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。

此外,P1.0和P1.1分别作定时器/计数器2的外部计数输入(P1.0/T2)和定时器/计数器2 的触发输入(P1.1/T2EX)。在flash编程和校验时,P1口接收低8位地址字节。

引脚号第二功能:

P1.0 T2(定时器/计数器T2的外部计数输入),时钟输出

P1.1 T2EX(定时器/计数器T2的捕捉/重载触发信号和方向控制)

P1.5 MOSI(在系统编程用)

P1.6 MISO(在系统编程用)

P1.7 SCK(在系统编程用)

P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4 个 TTL 逻辑电平。对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址。在这种应用中,P2 口使用很强的内部上拉发送1。在使用 8位地址(如MOVX @RI)访问外部数据存储器时,P2口输出P2锁存器的内容。在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。

P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p3 输出缓冲器能驱动4个 TTL 逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。 P3口亦作为AT89S52特殊功能(第二功能)使用,如下表所示。在flash编程和校验时,P3口也接收一些控制信号。

端口引脚第二功能:

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 INTO(外中断0)

P3.3 INT1(外中断1)

P3.4 TO(定时/计数器0)

P3.5 T1(定时/计数器1)

P3.6 WR(外部数据存储器写选通)

P3.7 RD(外部数据存储器读选通)

RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将是单片机复位。

ALE/PROG:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。一般情况下,ALE仍以时钟振荡频率的1/6输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对FLASH存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0位置位,可禁止ALE操作。该位置位后,只有一条MOVX和MOVC指令才

能将ALE激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。

PSEN:程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89S52由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲,在此期间,当访问外部数据存储器,将跳过两次PSEN信号。

EA/VPP:外部访问允许,欲使CPU仅访问外部程序存储器(地址为0000H-FFFFH),EA端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU则执行内部程序存储器的指令。FLASH存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。

XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。

XTAL2:振荡器反相放大器的输出端。

特殊功能寄存器:并不是所有的地址都被定义了。片上没有定义的地址是不能用的。读这些地址,一般将得到一个随机数据;写入的数据将会无效。

用户不应该给这些未定义的地址写入数据“1”。由于这些寄存器在将来可能被赋予新的功能,复位后,这些位都为“0”。

定时器 2 寄存器:寄存器T2CON 和T2MOD 包含定时器2 的控制位和状态位,寄存器对RCAP2H和RCAP2L是定时器2的捕捉/自动重载寄存器。

中断寄存器:各中断允许位在IE寄存器中,六个中断源的两个优先级也可在IE中设置。定时器 0 和定时器1在AT89S52 中,定时器0 和定时器1 的操作与AT89C51 和AT89C52 一样。为了获得更深入的关于UART 的信息,选择“Products”,然后选择“8051-Architech Flash Microcontroller”,再选择“ProductOverview”即可。

定时器 0 和定时器1:在AT89S52 中,定时器0 和定时器1 的操作与AT89C51 和AT89C52 一样。为了获得更深入的关于UART 的信息,选择“Products”,然后选择“8051-Architech Flash Microcontroller”,再选择“ProductOverview”即可。

定时器 2:定时器2是一个16位定时/计数器,它既可以做定时器,又可以做事件计数器。其工作方式由特殊寄存器T2CON中的C/T2位选择(如表2所示)。定时器2有三种工作模式:捕捉方式、自动重载(向下或向上计数)和波特率发生器。如

表3 所示,工作模式由T2CON中的相关位选择。定时器2 有2 个8位寄存器:TH2和TL2。在定时工作方式中,每个机器周期,TL2 寄存器都会加1。由于一个机器周期由12 个晶振周期构成. 通过T2CON中的EXEN2来选择两种方式。如果EXEN2=0,定时器2时一个16位定时/计数器,溢出时,对T2CON 的TF2标志置位,TF2引起中断。如果EXEN2=1,定时器2做相同的操作。除上述功能外,外部输入T2EX引脚(P1.1)1至0的下跳变也会使得TH2和TL2中的值分别捕捉到RCAP2H和RCAP2L 中。除此之外,T2EX 的跳变会引起T2CON 中的EXF2 置位。像TF2 一样,T2EX 也会引起中断。捕捉模式如图5所示。在计数工作方式下,寄存器在相关外部输入角T2 发生1 至0 的下降沿时增加1。在这种方式下,每个机器周期的S5P2期间采样外部输入。一个机器周期采样到高电平,而下一个周期采样到低电平,计数器将加1。在检测到跳变的这个周期的S3P1 期间,新的计数值出现在寄存器中。因为识别1-0的跳变需要2个机器周期(24个晶振周期),所以,最大的计数频率不高于晶振频率的1/24。为了确保给定的电平在改变前采样到一次,电平应该至少在一个完整的机器周期内保持不变。自动重载当定时器2 工作于16 位自动重载模式,可对其编程实现向上计数或向下计数。这一功能可以通过特殊寄存器T2MOD(见表4)中的DCEN(向下计数允许位)来实现。通过复位,DCEN 被置为0,因此,定时器2 默认为向上计数。DCEN 设置后,定时器2就可以取决于T2EX向上、向下计数。DCEN=0 时,定时器2 自动计数。通过T2CON 中的EXEN2位可以选择两种方式。如果EXEN2=0,定时器2计数,计到0FFFFH后置位TF2溢出标志。计数溢出也使得定时器寄存器重新从RCAP2H 和RCAP2L 中加载16 位值。定时器工作于捕捉模式,RCAP2H和RCAP2L的值可以由软件预设。如果EXEN2=1,计数溢出或在外部T2EX(P1.1)引脚上的1到0的下跳变都会触发16位重载。这个跳变也置位EXF2中断标志位。T2EX 上的一个逻辑0 使得定时器2 向下计数。当TH2 和TL2 分别等于RCAP2H 和RCAP2L 中的值的时候,计数器下溢。计数器下溢,置位TF2,并将0FFFFH加载到定时器存储器中。置位DCEN,允许定时器2向上或向下计数。在这种模式下,T2EX引脚控制着计数的方向。T2EX上的一个逻辑1使得定时器2向上计数。定时器计到0FFFFH 溢出,并置位TF2。定时器的溢出也使得RCAP2H和RCAP2L中的16位值分别加载到定时器存储器TH2和TL2中。定时器2上溢或下溢,外部中断标志位EXF2 被锁死。在这种工作模式下,EXF2不能触发中断。

中断源:AT89S52 有6个中断源:两个外部中断(INT0 和INT1),三个定时中断(定

时器0、1、2)和一个串行中断。这些中断每个中断源都可以通过置位或清除特殊寄存器IE 中的相关中断允许控制位分别使得中断源有效或无效。IE还包括一个中断允许总控制位EA,它能一次禁止所有中断。IE.6位是不可用的。对于AT89S52,IE.5位也是不能用的。用户软件不应给这些位写1。它们为AT89系列新产品预留。定时器2可以被寄存器T2CON中的TF2和EXF2的或逻辑触发。程序进入中断服务后,这些标志位都可以由硬件清0。实际上,中断服务程序必须判定是否是TF2 或EXF2激活中断,标志位也必须由软件清0。定时器0和定时器1标志位TF0 和TF1在计数溢出的那个周期的S5P2被置位。它们的值一直到下一个周期被电路捕捉下来。然而,定时器2 的标志位TF2 在计数溢出的那个周期的S2P2被置位,在同一个周期被电路捕捉下来。各控制位功能如下表4.2所示。

中断允许控制寄存器(IE)(MSB)(LSB)

中断允许控制位=1,允许中断

中断允许控制位=0,禁止中断

表4.2 控制位功能

符号位地址功能

EA IE.7 中断总允许控制位。EA=0,中断总禁止;EA=1,各中断由各自的控制位设定

IE.6 预留

ET2 IE.5 定时器2中断允许控制位ES IE.4 串行口中断允许控制位ET1 IE.3 定时器1中断允许控制位EX1 IE.2 外部中断1允许控制位ET0 IE.1 定时器0中断允许控制位EX0 IE.0 外部中断0允许控制位

4.2 超声波发射电路

超声波由发射电路产生。通过电路产生一个27MHZ大小的方波。发射电路如图4.2。发射电路主要有反向器和超声波换能器构成,AT89S52单片机在P1.0口产生方波,由单片机产生的发射脉冲信号。一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电可极,用这种推挽形式将方波信号加到超声波换能器两端可以提高超声波的发射强度、增强驱动能力,输出端采用两个反向器并联,用于提高驱动能力。这样,两倍的反向器输出电压施加在传感器上。超声波传感器将输入的电信号转换为超声波信号传输出去,电容C 可以除去直流分量,压电式超声波换能器是利用压电晶体的谐振来工作的。

图4.2 发射电路

4.3 超声波检测接收电路

超声波接收电路包括一个放大电路,以更好的接受反射回来的超声波。如图4.3所示,为超声波检测接收电路。

图4.3 接收电路

4.4 超声波测距系统的显示电路设计

12864是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及128x64全点阵液晶显示器组成。可完成图形显示,也可以显示8x4(16x16点阵)汉字。如下图4.4所示:

图4.4 LCD驱动控制电路

4.5 PROTUES仿真硬件电路图

硬件仿真电路如下图4.5所示,首先由555电路产生40KHz的方波,经过74LS160电路进行100进制计数产生下降沿,下降沿触发AT89S52产生IT0中断,根据定时器T1记录的时间间隔由公式计算得出所测距离,传送至LCD显示。

XTAL2

18

XTAL1

19

ALE 30EA

31

PSEN 29RST

9

P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78

P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD

17

P3.6/WR 16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427U1

AT89C51

C1

1nF

R1

10k

Y1

CRYSTAL

C2

30pF

C3

30pF

3

2

1

8

4

U1:A LM358

567

8

4

U2:B

LM358

3

2

1

8

4

U7:A

LM358

5

6

7

8

4

U7:B

LM358

3

21

8

4

U8:A

LM358

5

67

8

4

U8:B

LM358

R17

10k R18

10k

R20

10k

R19

10k

R28

10k

R8

10k

R25

10k

R10

10k

R23

10k

R22

10k

R21

10k

R6

10k

C9

1nF

C5

1nF

C6

1nF

C7

1nF

C8

1nF

C9

1nF

RV1

1k

RV2

1k

RV3

1k

RV4

1k

1

2D1

LM385-2V5

C S 1

1

C S 22G N

D 3V C C 4V 05R S 6R /W 7

E 8D B 09D B 110D B 211D B 312D B 413D B 514D B 615D B 716R S T 17-V o u t 18LCD1

AMPIRE128X64

RV5

1k

R51

10k

R27

10k

图4.5 Proteus 仿真系统图

五.系统软件的设计

软件分为两部分:主程序和中断服务程序,主程序完成初始化工作、各路超声波发射和接受顺序的控制。

5.1 超声波测距仪的算法设计

超声波测距的原理为超声波发生器T 在某一时刻发出一个超声波信号,当这个超声波遇到被测物体后反射回来,就被超声波接收器R 所接收到。这样只要计算出从发出超声波信号到接收到返回信号所用的时间,就可算出超声波发生器与反射物体的距离。距离的计算公式为: d=s/2=(c×t)/2,其中,d 为被测物与测距仪的距离,s 为声波的来回的路程,c 为声速,t 为声波来回所用的时间。 在启动发射电路的同时启动单片机内部的定时器T0,利用定时器的计数功能记录超声波发射的时间和收到反射波的时间。当收到超声波反射波时,接收电路输出端产生一个负跳变,在INT0或INT1端产生一个中断请求信号,单片机响应外部中断请求,执行外部中断服务子程序,读取时间差,计算距离。

5.2 程序流程

超声波测距仪的软件设计主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。工作时,先把P1.0口置0,启动超声波传感器发射超声波,

同时启动内部定时器T0开始计时。当超声波碰到障碍物时信号立即返回,微处理器不停地扫描INT0引脚,如果INT0接受的信号由高电平变为低电平,此时表明信号已经返回,微处理器进入中断关闭定时器。再把定时器中的数据经过换算就可以得出超声波传感器与障碍物之间的距离。程序流程图如图5.1所示:

初始化

LCD初始化

定时器初始化

开中断

发送信号

是否接收到

信号

计算传输时间

显示否

开始

结束

主程序流程图

定时器中断0

服务子程序定时器初始化

P1.0取反

方波产生

返回

定时器0中断

定时器1中断服务子程序

定时器初始化

超时标志Overflag=1

返回

定时器1中断

5.3 主程序设计

软件分为两部分,主程序和中断服务程序,主程序完成初始化工作、各路超声波发射和接收顺序的控制。当收到超声波反射波时,接收电路输出端产生一个负跳变,在INT0或INT1端产生一个中断请求信号,单片机响应外部中断请求,执行外部中断服务子程序,读取时间差,计算距离。

5.4定时中断服务子程序设计

定时中断服务子程序完成超声波的发射,时间值的读取、距离计算、结果的输

出等工作。主程序首先是对系统环境初始化,设置定时器T0工作模式为16位定时计数器模式。置位总中断允许位EA 并给显示端口P0和P1清0。然后调用超声波发生子程序送出一个超声波脉冲,为了避免超声波从发射器直接传送到接收器引起的直射波触发,需要延时约0.1 ms (这也就是超声波测距仪会有一个最小可测距离的原因)后,才打开外中断0接收返回的超声波信号。由于采用的是12 MHz 的晶 振,计数器每计一个数就是1μs ,当主程序检测到接收成功的标志位后,将计数器T0中的数(即超声波来回所用的时间)按式(2)计算,即可得被测物体与测距仪之间的距离,设计时取20℃时的声速为344 m/s 则有:

d=(c×t)/2=172T 0/10000cm ,其中,T0为计数器T0的计算值。

外部中断0服务子程序

接收标志清零

计算传输时间

返回

外部中断0

5.5超声波发生子程序和超声波接收中断程序设计

超声波发生子程序的作用是通过P1.0端口发送2个左右超声波脉冲信号(频率约40kHz的方波),脉冲宽度为12μs左右,同时把计数器T0打开进行计时。超声波发生子程序较简单,但要求程序运行准确,所以采用汇编语言编程。

超声波测距仪主程序利用外中断0检测返回超声波信号,一旦接收到返回超声波信号(即INT0引脚出现低电平),立即进入中断程序。进入中断后就立即关闭计时器T0停止计时,并将测距成功标志字赋值1。如果当计时器溢出时还未检测到超声波返回信号,则定时器T0溢出中断将外中断0关闭,并将测距成功标志字赋值2以表示此次测距不成功。前方测距电路的输出端接单片机INT0端口,中断优先级最高,中断优先级为先右后左。

六.调试结果

超声波测距仪的制作和调试,中心频率为40kHz,若能将超声波接收电路用金属壳屏蔽起来,则可提高抗干扰能力。根据测量范围要求不同,可适当调整与接收换能器并接的滤波电容C4的大小,以获得合适的接收灵敏度和抗干扰能力。

硬件电路制作完成并调试好后,便可将程序编译好下载到单片机试运行。根据实际情况可以修改超声波发生子程序每次发送的脉冲宽度和两次测量的间隔时间,以适应不同距离的测量需要。根据所设计的电路参数和程序,测距仪能测的范围为0.07~5.5m,测距仪最大误差不超过1cm。系统调试完后应对测量误差和重复一致性进行多次实验分析,不断优化系统使其达到实际使用的测量要求。

P1.0输入到超声波模块的方波波形如下图6.1所示:

图6.1 输入波形

超声波传感器测距原理

芀一、超声波测距原理 肅超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的 同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S , 即: 膂S = v·△t /2 ① 芀这就是所谓的时间差测距法。 蝿由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为: 螅V = 331.45 + 0.607T ② 芄 声 速 确 定

后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 薂二、系统硬件电路设计 腿图2 超声波测距仪系统框图 蒆基于单片机的超声波测距仪框图如图 2 所示。该系统由单片机定时器产生 40KHZ 的频率信号、超声波传感器、接收处理电路和显示电路等构成。单片机 是整个系统的核心部件,它协调和控制各部分电路的工作。工作过程:开机,单 片机复位,然后控制程序使单片机输出载波为40kHz 的10 个脉冲信号加到超声 波传感器上,使超声波发射器发射超声波。当第一个超声波脉冲群发射结束后, 单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数, 这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。下面分别介绍各部分电路: 莅1 、超声波发射电路 螀超声波发射电路如图3所示,89C51 通过外部引脚P1.0 输出脉冲宽度为250 μ s , 40kHz 的10 个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发 射出超声波。由于超声波的传播距离与它的振幅成正比,为了使测距范围足够远, 可对振荡信号进行功率放大后再加在超声波传感器上。 薈图3中T为超声波传感器,是超声波测距系统中的重要器件。利用逆压电效应 将加在其上的电信号转换为超声机械波向外辐射; 利用压电效应可以将作用在它 上面的机械振动转换为相应的电信号, 从而起到能量转换的作用。市售的超声 波传感器有专用型和兼用型,专用型就是发送器用作发送超声波,接收器用作接

超声波测距系统设计

目录 一、课程设计目的 (2) 二、内容及要求 (2) 2.1、设计内容 (2) 2.2、设计要求 (2) 三、超声波传感器的工作原理 (2) 四、系统框图 (3) 五、单元电路设计原理 (3) 5.1、51系列单片机的功能特 (4) 5.2、超声波发射电路 (4) 5.3、超声波检测接收电路 (5) 六、完整的电路图………………………………………………………………… 七、程序流程图 (6) 八、参考文献 (7) 九、设计中的问题及解决方法 (7) 十、总结 (7)

一、课程设计目的 通过《传感器及检测技术》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 二、内容及要求 超声波测距系统设计 2.1设计内容 采用40KHz的超声波发射和接收传感器测量距离。可采用发射和接收之间的距离,也可将发射和接收平行放在一起,通过反射测量距离。 功能:1)LED数码管显示测量距离,精确到小数点后一位(单位:cm)。 2)测量范围:30cm~200cm。 3)误差<0.5cm。 4)其它。 2.2设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图。 三、超声波传感器的工作原理 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到农业生产等自动化的使用要求。 目前在近距离测量方面常用的是压电式超声波换能器。根据设计要求并综合各方面因素,本文采用AT89C51单片机作为控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器。 超声波测距的原理是利用超声波的发射和接受,根据超声波传播的时间来计算出传播距离。实用的测距方法有两种,一种是在被测距离的两端,一端发射,另一端接收的直接波方式,适用于身高计;一种是发射波被物体反射回来后接收的反射波方式,适用于测距仪。此次设计采用反射波方式。 理论计算 如图1所示为反射时间法,是利用检测声波发出到接收到被测物反射回波的时间来测量距离其原理如图所示,对于距离较短和要求不高的场合我们可认为空气中的声速为常数,我们通过测量回波时间T利用公式(T/2) C S=其中,S为被 * 测距离、V为空气中声速、T为回波时间(T2 =),这样可以求出距离: T1 T+

超声波测距传感器(硬件件篇)

自制一个由你掌控的 —— 超声波测距传感器(硬件篇) 一、背景 四年多前,我曾尝试自己制作一个超声波测距传感器。 当时是想为 LEGO 的 RCX 配套,因为我是Semia 的技术支持,那时RCX 还没有配置任何测距传感器。由于可查阅的资料有限,且不详细,最后以失败告终 /(也许在网络搜索上我属于“菜鸟”)。 为了达到目的,只好选用了 Sharp 公司的 GP2D12。但自制超声波测距传感器的愿望一直没被遗忘。一是觉得超声波用于测距从原理上讲应该效果不错(GP2D12的测距范围太小,只有 10 — 80 cm);二是市售成品不够灵活,为了适应它还得做转换接口,费力耗财。 前段时间协助一个单位搞项目,涉及到超声波测距;有幸的是解剖了一款进口的超声波测距传感器 —— SensComp公司的6500,使我对相关原理和技术有了比较透彻的了解。 本想项目结束后立刻动手设计一个自己的传感器,后因忙于“圆梦小车”耽搁了。 现在圆梦小车已初具雏形,可以腾出一点时间,而且小车也需要一些传感器与之配套,便着手实现了这个夙愿。

基于嵌入之梦工作室的宗旨 —— 为学习单片机的大学生服务,将设计和制作的细节与大家分享,希望能有助于读者做出属于你自己的超声波传感器,也让和我有类似想法的人不至于再次失望于网络。 二、需求分析 ?能在测距范围上弥补 GP2D12 的不足,将距离延伸到 80cm以外; ?可以提供给大学生和爱好者 DIY,具有学习功能; ?方便自己随时修改程序,使学习的作用得以充分发挥; ?成品具有一定的使用价值,可方便的应用于小车等需要测距的装置上。 三、概要设计 总体设计参照 SensComp公司(https://www.doczj.com/doc/a4381927.html,)6500测距模块,其核心是两片专用的超声波测距IC:TL851和TL852。 TL852是一片专门设计用于超声波接收、放大、检测的芯片,集成了可变增益、选频放大器,可通过四根控制线变换11级增益,对于检测超声波信号十分有效。 TL851 与TL852 配套,它可实现超声波发射及控制TL852的增益变换,通过定时控制增益,使TL852的增益与回波时间相匹配,一方面提高了检测的灵敏度,同时减小了干扰。 如果不能随时间变换增益,为增加检测距离,就需要加大灵敏度;而开始时灵敏度就很高,无疑会收到一些不想要的信号。(6500测距模块的相关资料及芯片资料见附件) 解剖此模块时,对TL852的功能十分感兴趣,当初我制作时就是“栽”在这个环节;而TL851的功能基本属数字控制范畴,输出还需要配合单片机才能得到结果,接口也不是十分灵活,笔者认为完全可以用单片机替代。 所以,本次设计的主要改变就是用单片机替换6500模块的TL851。 单片机还是选用圆梦小车所用的STC12系列,一是考虑是51兼容,符合国内多数教材;二是下载程序方便。此次选用的是 STC12LE4052(4K FlashROM,256 RAM)。考虑体积因素,选择了SOP20封装。

超声波测距

超声波测距 超声波测距原理: 超声波发生器内部结构有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波本时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。在超声探测电路中,发射端得到输出脉冲为一系列方波,其宽度为发射超声的时间间隔,被测物距离越大,脉冲宽度越大,输出脉冲个数与被测距离成正比。超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压(其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,故被测距离为S=1/2vt。本测量电路采用第二种方案。由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 采用AT89C51或AT89S51单片机,晶振:12M,单片机用P1.0口输出超声波换能器所需的40K方波信号,利用外中断0口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码

管,断码用74LS244,位码用8550驱动. 超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则有340m×0.03S=10.2m。由于在这10.2m的时间里,超声波发出到遇到返射物返回的距离, 超声波测距器的系统框图如下图所示:

10米超声波测距仪设计实现

10米超声波测距仪设计实现 一、功能要求 设计一个超声波测距仪,可以测量测距仪与被测物体间的距离。要求测量范围0.1~10.00米,测量精度1cm,测量时与被测物体不接触,并将测量结果显示出来。 二、系统硬件电路 1.单片机系统及显示电路 单片机采用89C51或89S51。采用12MHz高精度晶振,以获得较稳定的时钟频率,减小测量误差。单片机用p1.0端口输出超声波换能器所需的40Hz方波信号,利用外中断0口监测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用74LS244驱动,位用PNP8550驱动。 2.超声波发射电路 主要由74LS04和超声波换能器T构成。这种推挽形式的方波信号可以提高发射强度。反相器并联提高驱动能力。上拉电阻R1、R2提高74LS04输出高电平的驱动能力。 3.超声波接收电路 CX20106A是接收38KHz超声波的芯片,可利用它做接收电路。 4.系统程序 超声波测距仪的软件主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。 主程序:

开始 系统初始化 发送超声波脉冲 等待反射超声波 计算距离 显示结果 丢系统初始化,设置T0为方式1,EA=1,P0,P2清0。为避免超声波发射器直接接传送到接收器,需要延时0.1ms。由于时钟的频率是12MHz,计数器每计一个数就是1us。如果按声速344m/s,则d=c*t/2=172T0 cm 超声波发生子程序:通过P1.0端口发送2个左右超声波脉冲信号,脉宽12us,同时T0计数。 超声波测距仪利用中断0检测返回的超声波,一旦接收到返回的信号,立即进入中断。中断后就立即关闭T0停止计时。如果计数器益出则测试不成功。 3方案设计和选择 根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。 3.1 超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波

超声波传感器及其测距原理

安全避障是移动机器人研究的一个基本问题。障碍物与机器人之间距离的获得是研究安全避障的前提,超声波传感器以其信息处理简单、价格低廉、硬件容易实现等优点,被广泛用作测距传感器。本超声波测距系统选用了SensComp公司生产的Polaroid 6500系列超声波距离模块和600系列传感器,微处理器采用了ATMEL公司的AT89C51。本文对此超声波测距系统进行了详细的分析与介绍。 1、超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波[1]。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应[1]的原理将电能和超声波相互转 化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法TOF(time of flight)[2]。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的

声源与障碍物之间的距离,即 1、硬件电路设计 我们设计的超声波测距系统由Polaroid 600系列传感器、Polaroid 6500系列超声波距离模块和AT89C51单片机构成。 2.1 Polaroid 600系列传感器 此超声波传感器是集发送与接收一体的一种传感器。传感器里面有一个圆形的薄片,薄片的材料是塑料,在其正面涂了一层金属薄膜,在其背面有一个铝制的后板。薄片和后板构成了一个电容器,当给薄片加上频率为49.4kHz、电压为300VAC pk-pk的方波电压时,薄片以同样的频率震动,从而产生频率为49.4kHz的超声波。当接收回波时,Polaroid 6500内有一个调谐电路,使得只有频率接近49.4kHz的信号才能被接收,而其它频率的信号则被过滤。 Polaroid 600超声传感器发送的超声波具有角度为30度的波束角[3],如图1所示:

超声波测距系统设计

中北大学 物联网工程专业 无线传感器网络课程设计 报告 课题名称:超声波测距系统设计 班级: 13270841 指导教师:马永 开设时间: 2016 年 6 月

目录 一、课程设计目的 (1) 二、课程设计题目 (1) 三、课程设计内容、要求 (1) 1、设计内容 (1) 2、设计要求 (1) 四、传感器工作原理 (1) 1.超声波传感器 (1) 2.温度传感器DS18B20 (3) 五、系统框图 (3) 六、单元电路设计原理 (4) 1、超声波发射电路 (4) 2、超声波检测接收电路 (4) 3、单片机最小系统 (5) 3.1、STC89C52芯片 (5) 3.2 复位电路 (5) 3.3 晶振电路 (6) 4、显示部分 (7) 5、温度检测电路 (7) 七、软件设计与系统调试 (8) 1、主程序流程图 (8) 1.1发射程序与接收程序流程图 (9) 1.2 中断子程序流程图 (10) 1.3 距离计算与显示子程序 (11) 2.系统调试 (12) 八、设计中的问题及解决方法 (12) 九、总结 (13) 十、参考文献 (14)

一、课程设计目的 通过《无线传感器网络》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 二、课程设计题目 超声波测距系统设计 三、课程设计内容、要求 1、设计内容 采用40KHz的超声波发射和接收传感器测量距离。采用发射和接收平行放在一起,通过反射测量距离。根据温度传感器DS18B20所采集的温度数据来修正测距系统中的声速,从而使超声波测得的距离更准确。 功能:1)所有测距和温度数据均通过液晶显示器LCD1602 显示出来,距离精确到毫米,温度精确到小数点后一位(单位:摄氏度)。 2)测量范围:30mm~2000mm。 3)误差<5mm。 4)其它。 2、设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图 四、传感器工作原理 1. 超声波传感器 本次设计超声波传感器采用电气方式中的压电式超声波传感器分机械方式

超声波测距系统设计

摘要 随着科技的发展,人们生活水平的提高,城市发展建设加快,城市给排水系统也有较大发展,其状况不断改善。但是,由于历史原因合成时间住的许多不可预见因素,城市给排水系统,特别是排水系统往往落后于城市建设。因此,经常出现开挖已经建设好的建筑设施来改造排水系统的现象。城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市给排水系统污水处理,人们生活舒适显得非常重要。而设计研制箱涵排水疏通移动机器人的自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核心部分。控制系统核心部分就是超声波测距仪的研制。因此,设计好的超声波测距仪就显得非常重要了。 介绍了一种以A T 89C2051 单片机为核心, 利用超声波的特性设计出低成本、高精度测距仪的方法。给出了这种测距仪的硬件原理电路和主要的软件设计思路,用Psp ice 对硬件的主要部分进行了模拟仿真。根据理论分析和试验统计对设计进行改进, 电路达到了预期的效果。 关键词:AT89C2051; 超声波;测距 Abstract With the development of science and technology, the improvement of people's tandard of living, speeding up the development and construction of the city. Urban rainage system have greatly developed their situation is constantly improving. However,due to historical reasons many unpredictable factors in the synthesis of her time, the city drainage system. In particular drainage system often lags behind urban construction.Therefore, there are often good building excavation has been building facilities to upgrade the drainage system phenomenon. It brought to the city sewage, and it is clear to the city sewage and drainage culvert in the sewage treatment system. comfort is very important to people's lives. Mobile robots designed to clear the drainage culvert and the automatic control system Free sewage culvert clear guarantee robot, the robot is designed to clear the culvert sewage to the core. Control System is the core component of the development of ultrasonic range finder. Therefore, it is very important to design a good ultrasonic range finder. A kind of u lt rason ic telem eter based on A T 89C205 is in t roduced. Th is telem eter is provided w ith som e m er it s such as low co st and h igh2accu racy becau se of the u lt rason ic w ave character ist ic. The hardw are p r incip le elect r ic circu it and them ain sof tw are design idea are show ed. The sim u lat ion of the m ain par t of the hardw are has been done w ith P sp ice. A t last, acco rding to the theo ret ical analysis and the exper ience som e imp rovem en t s of the design are m ade. The system has ach ieved the an t icipated effect. Key words:AT89C2051; Silent Wave;Measure Distance

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

超声波测距器课程设计

《微机原理及应用》课程设计 超声波测距器的设计 学生姓名郝强 学号20110611113 学院名称机电工程学院 专业名称机械电子工程 指导教师王前 2013年12月27日

摘要 随着科学技术的快速发展,超声波将在科学技术中的应用越来越广。本文对超声波传感器测距的可能性进行了理论分析,利用模拟电子、数字电子、微机接口、超声波换能器、以及超声波在介质的传播特性等知识,采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。为了保证超声波测距传感器的可靠性和稳定性,采取了相应的抗干扰措施。就超声波的传播特性,超声波换能器的工作特性、超声波发射、接收、超声微弱信号放大、波形整形、速度变换、语音提示电路及系统功能软件等做了详细说明。 关键词:超声波;传感器;测量距离;控制

目录 摘要 (2) 目录 (3) 1.设计目的 (4) 2.总体方案 (4) 3.硬件设计 (5) 3.1 超声波测距器硬件电路设计 (5) 3.2.1单片机芯片的选择 (6) 3.2.2AT89C51定时计数应用电路 (6) 3.3超声波发射电路设计 (6) 3.3.1选择超声波发生器类型 (6) 3.3.2 超声波发射电路设计 (7) 3.4超声波接收电路设计 (8) 3.5超声波显示电路设计 (9) 4.软件设计 (9) 4.1波测距器的算法设计 (10) 4.2系统的主控制程序设计 (11) 4.3发生子程序设计 (12) 4.4接收中断程序设计 (13) 4.5显示程序设计 (14) 4.6距离计算程序 (15) 5.结论 (17) 参考文献 (18)

基于超声波传感器的液位测量

基于超声波传感器的液位测量 1.摘要 超声波传感器应用广泛,其中液体液位的准确测量是实现生产过程检测和实时控制的重要保障,也是实现安全生产的重要环节。本文主要介绍液位的测量。液体罐内液位测量的方法有很多种,其中超声波传感器由于结构简单、体积小、费用低、信息处理简单可靠,易于小型化与集成化,并且可以进行实时控制,所以超声波测量法得到了广泛的应用。2.超声波概要 超声波是指频率高于20kHz的机械波,一般由压电效应或磁致伸缩效应产生;它沿直线传播,频率越高,绕射能力越弱,但反射能力越强;它还具有强度大、方向性好等特点,为此,利用超声波的这些性质就可制成超声波传感器。超声波传感器是利用超声波在超声场中的物理特性和各种效应研制而成的传感器。超声波传感器按其工作原理可分为压电式、磁致伸缩式、电磁式等,其中以压电式最为常用。压电式超声波传感器常用的材料是压电晶体和压电陶瓷,它是利用压电材料的压电效应来工作的:逆压电效应将高频电振动转换成高频机械震动,从而产生超声波,可作为发射探头;而正压电效应是将超声波振动转换成电信号,可作为接收探头。 3.检测方法选择 从测量范围来说,有的液位计只能测量几十厘米,有的却可达几十米。从测量条件和环境来说,有的非常简单,有的却十分复杂。例如:有的是高温高压,有的是低温或真空,有的需要防腐蚀、防辐射,有的从安装上提出苛刻的限制,有的从维护上提出严格的要求等。 按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类。接触型液位测量主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计等。它们的共同点是测量的感应元件与被测液体接触,即都存在着与被测液体相接触的测量部件且多数带有可动部件。因此存在一定的磨损且容易被液体沾污或粘住,尤其是杆式结构装置,还需有较大的安装空间,不方便安装和检修。非接触型液位测量主要有超声波液位计、微波雷达液位计、射线液位计以及激光液位计等。顾名思义,这类测量仪表的共同特点是测量的感应元件与被测液体不接触。因此测量部件不受被测介质影响,也不影响被测介质,因而其适用范围较为广泛,可用于接触型测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。 根据以上几种因素得知,超声波液位计是非接触式液位计中发展最快的一种。超声波在同一种介质中传播速度相对恒定,遇到被测物体表面时会产生反射,基于此原理研制出

超声波测距

总体方案 本设计主要是进行距离的测量和报警,设计中涉及到的内容较多,主要是将单片机控制模块、超声波测距模块、蜂鸣器报警模块、4位数码管显示模块这几个模块结合起来。而本设计的核心是超声波测距模块,其他相关模块都是在测距的基础上拓展起来的,测距模块是利用超声波传感器,之后选择合适单片机芯片,以下就是从相关方面来论述的。 超声波测距仪 超声波是一种超出人类听觉极限的声波即其振动频率高于20 kHz的机械波。超声波传感器在工作的时候就是将电压和超声波之间的互相转换,当超声波传感器发射超声波时,发射超声波的探头将电压转化的超声波发射出去,当接收超声波时,超声波接收探头将超声波转化的电压回送到单片机控制芯片。超声波具有振动频率高、波长短、绕射现象小而且方向性好还能够为反射线定向传播等优点,而且超声波传感器的能量消耗缓慢有利于测距。在中、长距离测量时,超声波传感器的精度和方向性都要大大优于红外线传感器,但价格也稍贵。从安全性,成本、方向性等方面综合考虑,超声波传感器更适合设计要求。 综合上述三种测距仪的对比,本实验选着超声波测距仪。 系统方案 本系统选择52单片机作为控制系统核心,所测得的距离数值由4位共阴极数码管显示,与障碍物之间的不同距离利用蜂鸣器频率的不同报警声提示,超声波发射信号由52单片机的P1.0口送出到超声波发射电路,将超声波发送出去,报警系统由蜂鸣器电路构成。本设计中将收发超声波的探头分离这样不会使收发信号混叠,从而能避免干扰,可以很好的提高系统的可靠性。系统框图如下:

硬件设计 超声波测距模块 模块功能 该模块利用超声波测距仪,测试小车与障碍物之间的距离,当距离小于某一给定值时,利用程序,将信号传递给单片机的某个引脚。其他控制模块检测该引脚的电平高低,根据电平的高低,控制小车的行驶状态。 基本实现原理 超声波接收器 放大器 检波电路 显示模块 51单片机 放大电路 报警模块 超声波接收器

超声波测距系统设计

(一)题目 超声波测距系统设计 (二)内容及要求 1)设计内容 采用40KHz的超声波发射和接收传感器测量距离。可采用发射和接收之间的距离,也可将发射和接收平行放在一起,通过反射测量距离。 功能:1)LCD液晶显示测量距离,精确到小数点后一位(单位:cm)。 2)测量方式可通过硬件开关预置。 3)测量范围:30cm~200cm, 4)误差<0.5cm。 5)其它。 2)设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图。(三)传感器工作原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距离S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 (四)系统框图 图1 超声波测距系统框图 (五)单元电路设计原理

1、AT89C2051的功能特点 AT89C2051是一个2k字节可编程EPROM的高性能微控制器。它与工业标准MCS-51的指令和引脚兼容,因而是一种功能强大的微控制器,它对很多嵌入式控制应用提供了一个高度灵活有效的解决方案。AT89C2051有以下特点:2k字节EPROM、128字节RAM、15根I/O线、2 个16位定时/计数器、5个向量二级中断结构、1个全双向的串行口、并且内含精密模拟比较器和片内振荡器,具有4.25V至5.5V的电压工作范围和12MHz/24MHz工作频率,同时还具有加密阵列的二级程序存储器加锁、掉电和时钟电路等。此外,AT89C2051还支持二种软件可选的电源节电方式。空闲时,CPU停止,而让RAM、定时/计数器、串行口和中断系统继续工作。可掉电保存RAM的内容,但可使振荡器停振以禁止芯片所有的其它功能直到下一次硬件复位。 AT89C2051有2个16位计时/计数器寄存器Timer0t Timer1。作为一个定时器,每个机器周期寄存器增加1,这样寄存器即可计数机器周期。因为一个机器周期有12个振荡器周期,所以计数率是振荡器频率的1/12。作为一个计数器,该寄存器在相应的外部输入脚P3.4/T0和P3.5/T1上出现从1至0的变化时增1。由于需要二个机器周期来辨认一次1到0的变化,所以最大的计数率是振荡器频率的1/24,可以对外部的输入端P3.2/INT0和P3.3/INT1编程,便于测量脉冲宽度的门。 图2 ATC2051示意图 2、LCD的工作原理 在两片玻璃基板上装有配向膜,所以液晶会沿着沟槽配向,具有偶极矩的液晶棒状分子在外加电场的作用下其排列状态发生变化,使得通过液晶显示器件的光被调制,从而呈现明与暗或透过与不透过的显示效果。液晶显示器件中的每个显示像素都可以单独被电场控制,不同的显示像素按照控制信号的“指挥”便可以在显示屏上组成不同的字符、数字及图形。因此建立显示所需的电场以及控制显示像素的组合就成为液晶显示驱动器和液晶显示控制器的功能。 LCD器件是由背光源发射的光通过偏振片和液晶盒时,控制投

超声波传感器测量距离

一、超声波测距原理 超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即: S = v·△t /2 ① 这就是所谓的时间差测距法。 由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为: V = 331.45 + 0.607T ② 声 速 确 定 后, 只 要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 二、系统硬件电路设计

图2 超声波测距仪系统框图 基于单片机的超声波测距仪框图如图2所示。该系统由单片机定时器产生40KHZ的频率信号、超声波传感器、接收处理电路和显示电路等构成。单片机是整个系统的核心部件,它协调和控制各部分电路的工作。工作过程:开机,单片机复位,然后控制程序使单片机输出载波为40kHz的10个脉冲信号加到超声波传感器上,使超声波发射器发射超声波。当第一个超声波脉冲群发射结束后,单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数,这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。下面分别介绍各部分电路: 1 、超声波发射电路 超声波发射电路如图3所示,89C51通过外部引脚P1.0 输出脉冲宽度为250μs , 40kHz的10个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发射出超声波。由于超声波的传播距离与它的振幅成正比,为了使测距范围足够远,可对振荡信号进行功率放大后再加在超声波传感器上。 图3中T为超声波传感器,是超声波测距系统中的重要器件。利用逆压电效应将加在其上的电信号转换为超声机械波向外辐射; 利用压电效应可以将作用在它上面的机械振动转换为相应的电信号, 从而起到能量转换的作用。市售的超声

超声波测距

编码: 山东省第二届大学生物理科技创新大赛 作品申报书 作品名称:超声波测距 学校全称: 申报者姓名: 指导教师: 类别: □实验方法研究(A类) □自制实验教学仪器(B类) ■物理量智能化测量技术(C类) □实验模拟与仿真(D类) 山东省第二届大学生物理科技创新大赛组委会制 2010年3月

说明 1.申报者应在认真阅读此说明各项内容后按要求如实填写。 2.编码由大赛组委会统一填写。 3.作品的研究报告必须用中文撰写,并附于申报书后,一般不应少于2000字。 4.作品申报书必须按规定时间由各校统一将电子稿件发到大赛组委会E-MAIL邮箱,或者直接送到大赛组委会。 5.竞赛组委会地址:青岛市经济技术开发区前湾港路579号 山东科技大学物理实验中心 邮编: E-MAIL: 联系人: 联系电话: 手机:

申报者情况 申报者情况 姓名性别 出生 年月 学校全称专业 现学历年级学制通讯地址联系电话 合 作 者 情 况 姓名性别年龄学历所在单位 指导教师情况和意见指导教 师情况 姓名性别年龄职称 单位联系电话 对作品 的真实 性以及 作品的 意义、 水平等 评价 该作品为我校等三名同学在老师的耐心指导下,利用课余时间研制而成。采用单片机为主控,显示部分用了1602液晶显示模块,电源 采用6v碳性电池。通过超声波模块反馈回来的时间差,算出待测距离。 另外,用到了一块DS18B20温度采集芯片,实现测量实时温度的目的。 所有的信息,集中显示在12232液晶屏上,功能之间的切换用按键来 实现。作品设计灵感来源于实际生活的需要,实用性较强,在生活中 有着广泛的应用。 申报者所在 学院审核意 见 年月日

超声波传感器及超声波测距

超声波传感器及超声波测距 摘要:介绍了一种基于AT89C52单片机的超声波测距系统,由555和运放及比较器配合超声波传感器有效组成了超声波的发射电路和接收电路。同时在数据处理,盲区消隐方面提出了有效解决方法! 从而提高了检测的精度及灵敏度,以及用LCD液晶显示器配合美妙的音乐进行显示。本文主要阐述了超声测距系统的硬件电路构成、工作原理及软件设计方法。该系统硬件结构简单、工作可靠,有良好的测量精度和灵敏度。 [关键字] 超声波测距 LCD液晶

前言 随着科技的迅猛发展越来越多科技成果被广泛的运用到人们的日常生活当中,给我们的生活带来了诸多方便。这一设计就是本着这个宗旨出发,利用超声波的特性来为我们服务。 人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。常用的超声波频率为几十KHZ-几十MHZ。由于超声波指向性强,因而常于距离的测量。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人,汽车安全,海洋测量等上得到了广泛的应用。本设计提供一种液晶显示测距装置,该装置利用了发射接收一体化的超声波传感器和微处理器。采用超声波传感器分时工作于发射和接收,利用声波在空气中的传播速度和发射脉冲到接收反射脉冲的时间间隔计算出障碍物到超声波测距器之间的距离。 距离是在不同的场合和控制中需要检测的一个参数,所以,测距就成为数据采集中要解决的一个问题。尽管测距有多种方式,比如,激光测距,微波测距,红外线测距和超声波测距等。但是,超声波测距不失为一种简单可行的方法。虽然超声波测距电路多种多样,甚至已有专用超声波测距集成电路。但是,有的电路复杂,技术难度大,有的调试困难,有的元件不易购买。本文介绍的电路,成本低廉,性能可靠,所用元件易购,并且利用测距原理,结合单片机的数据处理,使测量精度提高,电路实现容易,无须调试,工作稳定可靠。

超声波测距数码管显示,内容完全正确

《单片机课程设计》 设计报告 设计课题:超声波测距 专业班级:电子信息工程xxx班 学生姓名: wang da na 指导教师: cai 设计时间: 2015年7月9日 赣南师范学院科技学院数学与信息科学系

超声波测距 一、设计任务与要求 1.设计任务: (1)利用超声波测量距离。 (2)使用数码管显示测出的距离。 (3)在超出一定的范围后进行报警。 二、方案设计与论证 1设计方案 采用单片机来控制超声波测距,信号线发射到与超声波发射器相连的信号端,超声波发射器向既定方向发射,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物将产生回波,超声波接收器接收回波,产生电平变化。 通过单片机设计一个程序,处理超声波接受的信号,计算出发射与接受的时间差,并根据距离公式计算出距离,用数码管显示。 把所测出的距离分范围,超出2米或小于0.1米蜂鸣器报警,当处于正常范围时立即停止报警。 2 原理框图 图(1) 系统原理框图 51单片机 数码管显示模 块 报警模块 超声波模块

三、电路设计 1. 电路设计 图(2)电路图 2. 主要性能参数计算 (1)超声波测距模块 本测距系统采用超声波渡越时间检测法。其原理为:检测从发射传感器发射的超声波经气体介质传播到接收传感器的时间t,这个时间就是渡越时间,然后求出距离l。设l为测量距离,t为往返时间差,超声波的传播速度为c,则有l=ct/2。超声波接收器收到反射波就立即停止计时。再由单片机计算出距离,送数码管显示测量结果。 超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。t2是接收超声波时刻,t1是超声波声波发射时刻,t2-t1得出的是一个时间差的绝对值,假定t2-t1=0.03S,则有340m×0.03S=10.2m。由于在这10.2m 的时间里,超声波发出到遇到返射物返回的距离如下:如图2-2-1为测距原理。

如何选择适用于接近或距离测量的超声波传感器

如何选择适用于接近或距离测量的超声波传感器 超声波传感器是使用换能器发送和接收超声波脉冲,该超声波脉冲中继有关物体接近度的信息,经反射返回传感器,系统通过测量回波返回传感器的时间,并利用声波在介质中的传播速度计算超声波测量到物体距离的仪器。 因其特性超声波传感器被广泛用于各种非接触场景如接近或距离测量中,然而目前市场上的各种超声波传感器在安装配置、环境密封、电子特征等方面各不相同。特别是在声学上,根据操作频率和辐射模式不同,不难选择最符合特定应用环境和机械要求的传感器,也不难评估不同型号产品电子性能。声学对超声波传感器操作和测量产生了深远影响。本文工采网小编通过介绍超声波传感器的特性和影响因素来解答如何选择适用于接近或距离测量的超声波传感器。

影响超声波传感器操作的一些基本声学参数 1、声速随温度和传输介质(通常是空气) 的组成变化而变化,测量的精度和分辨率有何影响? 重点:抓住空气中,声速与温度的关系 在回波测距系统中, 测量了超声脉冲发射与返回接收机之间的运行时间。然后使用传输介质(通常是空气) 中的声速计算到目标的距离。测得的目标距离的精度与计算中使用的声速精度成正比。声波的实际速度是声音传播的介质组成和温度的函数,如图1。 空气中的声速随温度的变化由关系[5]:

c(T):空气中声速与温度函数,单位:英寸/秒;T:大气温度,单位:℃。不同气体介质中的声速与空气组成的关系,同时受化学成分和温度的影响。下表是10°C 的各种气体的声速。 2、声波波长随声速和频率而变化,分辨率、精度、最小目标尺寸以及最小和最大目标距离的影响规律。 重点:声波波长与声速和频率的关系 声波波长随声速和频率的变化而变化,λ= c/f。λ:波长;c:声速;f:频率

相关主题
文本预览
相关文档 最新文档