当前位置:文档之家› additive logistic regression a statistical view of boosting

additive logistic regression a statistical view of boosting

additive logistic regression a statistical view of boosting
additive logistic regression a statistical view of boosting

Logistic回归分析简介

Logistic回归分析简介 Logistic回归:实际上属于判别分析,因拥有很差的判别效率而不常用。1.应用范围: ①适用于流行病学资料的危险因素分析 ②实验室中药物的剂量-反应关系 ③临床试验评价 ④疾病的预后因素分析 2.Logistic回归的分类: ①按因变量的资料类型分: 二分类 多分类 其中二分较为常用 ②按研究方法分: 条件Logistic回归 非条件Logistic回归 两者针对的资料类型不一样,后者针对成组研究,前者针对配对或配伍 研究。 3.Logistic回归的应用条件是: ①独立性。各观测对象间是相互独立的; ②LogitP与自变量是线性关系; ③样本量。经验值是病例对照各50例以上或为自变量的5-10倍(以10倍 为宜),不过随着统计技术和软件的发展,样本量较小或不能进行似然

估计的情况下可采用精确logistic回归分析,此时要求分析变量不能太多,且变量分类不能太多; ④当队列资料进行logistic回归分析时,观察时间应该相同,否则需考虑观 察时间的影响(建议用Poisson回归)。 4.拟和logistic回归方程的步骤: ①对每一个变量进行量化,并进行单因素分析; ②数据的离散化,对于连续性变量在分析过程中常常需要进行离散变成等 级资料。可采用的方法有依据经验进行离散,或是按照四分、五分位数 法来确定等级,也可采用聚类方法将计量资料聚为二类或多类,变为离 散变量。 ③对性质相近的一些自变量进行部分多因素分析,并探讨各自变量(等级 变量,数值变量)纳入模型时的适宜尺度,及对自变量进行必要的变量 变换; ④在单变量分析和相关自变量分析的基础上,对P≤α(常取0.2,0.15或 0.3)的变量,以及专业上认为重要的变量进行多因素的逐步筛选;模型 程序每拟合一个模型将给出多个指标值,供用户判断模型优劣和筛选变 量。可以采用双向筛选技术:a进入变量的筛选用score统计量或G统计 量或LRS(似然比统计量),用户确定P值临界值如:0.05、0.1或0.2,选 择统计量显著且最大的变量进入模型;b剔除变量的选择用Z统计量(Wald 统计量),用户确定其P值显著性水平,当变量不显者,从模型中予以剔 除。这样,选入和剔除反复循环,直至无变量选入,也无变量删除为止,选入或剔除的显著界值的确定要依具体的问题和变量的多寡而定,一般

SPSS—二元Logistic回归结果分析报告

SPSS—二元Logistic回归结果分析 2011-12-02 16:48 身心疲惫,睡意连连,头不断往下掉,拿出耳机,听下歌曲,缓解我这严重的睡意吧!今天来分析二元Logistic回归的结果 分析结果如下: 1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个

1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约) 2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为 -1.026,标准误差为:0.103 那么wald =( B/S.E)2=(-1.026/0.103)2 = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小, B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1, sig为0.000,非常显著

1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型 表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下: (公式中(Xi- Xˉ) 少了一个平方) 下面来举例说明这个计算过程:(“年龄”自变量的得分为例) 从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489 那么: yˉ = 129/489 = 0.16 xˉ = 16951 / 489 = 34.2 所以:∑(Xi-xˉ)2 = 30074.9979

混沌映射(序列)matlab算法“小全”:Logistic、Henon、帐篷、kent(含混沌二值图像生成函数)

混沌映射(序列)matlab 算法“小全”:Logistic 、Henon 、帐篷、kent (含 混沌二值图像生成函数) 1.Logistic (罗切斯特)映射 变换核: ) 1(1n n n x ax x ?=+绘图程序: n=64; key=0.512; an=linspace(3.1,3.99,400); hold on;box on;axis([min(an),max(an),-1,2]);N=n^2; xn=zeros(1,N);for a=an; x=key;for k=1:20; x=a*x*(1-x);%产生公式end; for k=1:N; x=a*x*(1-x);xn(k)=x; b(k,1)=x;%一维矩阵记录迭代结果end; plot(a*ones(1,N),xn,'k.','markersize',1);end; %figure;%imhist(b) 实用混沌加密函数: function ichao_ans=ichaos_logistic(varargin)%logistic 序列生成算法%函数名: %logistic 混沌序列生成函数%参数:%(n ,key ),n 为矩阵阶数,key 为迭代初始值。%(n ),n 为矩阵阶数,key=0.600。 %()或(n ,key ,...),n=64,key=0.600。switch nargin; case 1; n=varargin{1};key=0.600;case 2; n=varargin{1}; key=varargin{2};otherwise key=0.600;n=64;end N=n^2; xn=zeros(1,N);a=4; x=key;for k=1:20; x=a*x*(1-x);%产生公式end; for k=1:N; x=a*x*(1-x); xn(k)=x;%一维矩阵记录迭代结果end;c=reshape(xn,n,n);%一维矩阵转换二维矩阵d=zeros(n,n); %二维混沌矩阵调制for a1=1:n; for a2=1:n; if c(a1,a2)>=0.5;d(a1,a2)=1;else d(a1,a2)=0;end;end;end; %figure;title('logistic 映射');%imshow(d);ichao_ans=d;

logistic回归分析案例

1. 数据制备(栅格数据) (1) 宝塔区基底图层.tif (2) 居民点扩增.tif 、坡度.tif 、坡向.tif 等要素数据。 在 environment settings ------ p rocessing extent ------ snap raster (选中基底图层),保证栅格数据 像元无偏移,且行列的数量一致。 化:Raster to ASCII Inyul r aiLtvl- 匚” k 『号樹 ± 如葡让也\1非*订kilt :f 10. 2 'iiStati EeiT-SlaT 14t L J. KT 2.通过CLUE-S 莫型中的fileconvert 模块,获得logistic 回归分析的数据集。 (1) 将上一步骤中的因变量 y 和影响因素x 的.txt 文档后缀改为.asc 格式,并将文件 放在CLUE-S 模型所在的文件夹中。 (2) 打开FileCo nvert V2软件,按下图勾选,填写"file list "内容,点击start con version , 3 田F1 曰 It:. (3)栅格数据转为 ASCII 码,生成txt 文档。 匚onversion Tools Ejicel From GPS From KML From Raster 气 Raster to ASCII y Raster to Fist 声.Raster to Point

生成stat .txt文档。 祥Fi le 荃 flFfijie? I1id J?1Ji w ■■ 1 ? 9><4 P t414 Tl ?J19 12词 ■M*£LD|i4I# ■ Q电兀列心£i k1lf\ 15?1 *■4JE RI7 <1- I 4 話M3 IS r擠uSstalB-^aG 齬£ 淨珀bCMir 二i缶 pad... ■ 枝jfcsurrT^cM.a^t 炉 MBlOrtTIdH■: 护 xVcomr-.iic / rll asc 播Tann砂£]T (2)logistic回归分析 按图设置参数因变量、自变量;由于x3属于分类变量,点击分类按钮,按图设置参数。 >M!L4M|昨T祜lt?M? 曲唱-Hl'F1 wB-j' MtF M|T ffl¥ g: ZTStiRiiri SHilfi VTU '_'■ rt 舖C r TI薔色Z4d* ■i aa ■;? 1 iTdlfAflWVK4Wt4「利 E 呻■■} 1■ IdfcWM^U.一尉仇■臂H xlAftL lAMDf Jfit 1Q1?7r -iwns ■B-13磁MT 13 J 工 '-恫fl T l£j v-IIHH M4Q J0W PW回沐神to 型 rwa: wm 1 H teiiy- 卩厲 4a13 4 ■ira 401?wa 70i-221 ?d'131fefl 加ifUnm 片nu t013*Ozmwkt他 w p1W址?囲血|淞:幽 11013 1 Qm Sft?t 121JJ V s? 014*」; 11 H?iKa; H013 5 *旳 ti a IM■ KK MS V;941 ti Q144T f 7W filwvjcfic OH

图文举例详细讲解Logistic曲线的回归分析

Logistic曲线的回归分析 例某一品种玉米高度与时间(生长周期,每个生长周期为2-3天,与气温有关)的数据如 表1.所示。用转化为线性方程的方法估计其logistic曲线预测模型。设最大值k为300(cm)。 表1.玉米高度与时间(生长周期)的关系 时间(生长周期)高度/cm时间(生长周期)高度/cm时间(生长周期)高度/cm 10.671212.752297.4620.851316.5523112.7 31.281420.124135.141.751527.3525153.652.271632.5526160.362.751737.55271 67.173.691844.7528174.984.711953.3829177.996.362071.6130180.2 107.732183.8931180.8119.91 3.1基本绘图操作 在Excel中输入时间x与高度y的数据。 选择插入->图表 图87 点击图表,选择“标准类型”中的xy散点图,并点击子图表类型的第一个。

图88 点击下一步,得到如图89。 图89

点击下一步。 图90 分别点击标题、网格线、图例进行修改,然后点击下一步。 图91 点击完成。 图92 右击绘图区,修改绘图区格式,双击做表格,修改坐标轴刻度,最后的散点图。

图93 观察散点图,其呈S型曲线,符合logistic曲线。采用转化为线性方程的方法求解模型。 3.2Logistic曲线方程及线性化 Logistic曲线方程为: y 1 k at me(12) (1)将数据线性化及成图 转化为线性方程为: y'aat 01 (13 ) 其中,y'ln(k/y1),a 0lnm,a1a 具体操作为: 向excel表格中输入y’数据。

Logistic回归分析报告结果解读分析.docx

Logistic回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。比较常用的情形是分析危险因素与是否发生某疾病相关联。例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。自变量既可以是连续变量,也可以为分类变量。通过Logistic回归分析,就可以大致了解胃癌的危险因素。 Logistic回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。多元线性回归的因变量为连续变量;Logistic回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。 1.Logistic回归的用法 一般而言,Logistic回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。 2.用Logistic回归估计危险度 所谓相对危险度(risk ratio,RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的 比值。Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。如不同性别的胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1.7,

这样就表示,男性发生胃癌的风险是女性的1.7倍。这里要注意估计的方向问题,以女性作为参照,男性患胃癌的OR是1.7。如果以男性作为参照,算出的OR将会是0.588(1/1.7),表示女性发生胃癌的风险是男性的0.588倍,或者说,是男性的58.8%。撇开了参照组,相对危险度就没有意义了。 Logistic回归在医学研究中广泛使用的原因之一,就是模型直接给出具有临床实际意义的OR值,很大程度上方便了结果的解读与推广。 图1 相对危险度(risk ratio,RR)与OR(odds ratio)的表达 3. Logistic报告OR值或β值 在Logistic回归结果汇报时,往往会遇到这样一个问题:是应该报告OR值,

Logistic混沌映射

Logistic混沌映射 引言 如果一个系统的演变过程对初始的状态十分敏感,就把这个系统称为是混沌系统。 在1972年12月29日,美国麻省理工教授、混沌学开创人之一E.N.洛仑兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风,并由此提出了天气的不可准确预报性。至此以后,人们对于混沌学研究的兴趣十分浓厚,今天,伴随着计算机等技术的飞速进步,混沌学已发展成为一门影响深远、发展迅速的前沿科学。 混沌来自于非线性动力系统,而动力系统又描述的是任意随时间变化的过程,这个过程是确定性的、类似随机的、非周期的、具有收敛性的,并且对于初始值有极敏感的依赖性。而这些特性正符合序列密码的要求。1989年Robert Matthews 在Logistic映射的变形基础上给出了用于加密的伪随机数序列生成函数,其后混沌密码学及混沌密码分析等便相继发展起来。混沌流密码系统的设计主要采用以下几种混沌映射:一维Logistic映射、二维He’non映射、三维Lorenz映射、逐段线性混沌映射、逐段非线性混沌映射等,在本文中,我们主要探讨一维Logistic映射的一些特性。 Logistic映射分析 一维Logistic映射从数学形式上来看是一个非常简单的混沌映射,早在20世纪50年代,有好几位生态学家就利用过这个简单的差分方程,来描述种群的变化。此系统具有极其复杂的动力学行为,在保密通信领域的应用十分广泛,其数学表达公式如下: Xn+1=Xn×μ×(1-Xn) μ∈[0,4] X∈[0,1] 其中μ∈[0,4]被称为Logistic参数。研究表明,当X∈[0,1] 时,Logistic 映射工作处于混沌状态,也就是说,有初始条件X0在Logistic映射作用下产生的序列是非周期的、不收敛的,而在此范围之外,生成的序列必将收敛于某一个特定的值。如下图所示:

(整理)多项分类Logistic回归分析的功能与意义1.

多项分类Logistic回归分析的功能与意义 我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。 例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。

“年龄”使之进入“协变量”列表框。

还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示: 上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic 回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下: 1:设置随机抽样的随机种子,如下图所示:

选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、 2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面: 在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值 如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0" 为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件” 点击“如果”按钮,进入如下界面:

第18章 Logistic回归思考与练习参考答案

第18章Logistic回归 思考与练习参考答案 一、最佳选择题 1. Logistic回归与多重线性回归比较,( A )。 A.logistic回归的因变量为二分类变量 B.多重线性回归的因变量为二分类变量 C.logistic回归和多重线性回归的因变量都可为二分类变量 D.logistic回归的自变量必须是二分类变量 E.多重线性回归的自变量必须是二分类变量 2. Logistic回归适用于因变量为( E )。 A.二分类变量B.多分类有序变量C.多分类无序变量 D.连续型定量变量E.A、B、C均可 3. Logistic回归系数与优势比OR的关系为( E )。 A.> β0等价于OR<1 C.β=0等价于OR=1 β0等价于OR>1 B.> D.β<0等价于OR<1 E.A、C、D均正确 4. Logistic回归可用于( E )。 A.影响因素分析B.校正混杂因素C.预测 D.仅有A和C E.A、B、C均可 5. Logistic回归中自变量如为多分类变量,宜将其按哑变量处理,与其他变量进行变量筛选时可用( D )。 A.软件自动筛选的前进法B.软件自动筛选的后退法 C.软件自动筛选的逐步法D.应将几个哑变量作为一个因素,整体进出回归方程E.A、B、C均可 二、思考题 1. 为研究低龄青少年吸烟的外在因素,研究者采用整群抽样,在某中心城区和远城区的初中学校,各选择初一年级一个班的全部学生进行调查,并用logistic回归方程筛选影响因素。试问上述问题采用logistic回归是否妥当?

答:上述问题采用logistic回归不妥当,因为logistic回归中参数的极大似然估计要求样本结局事件相互独立,而研究的问题中低龄青少年吸烟行为不独立。 2. 分类变量赋值不同对logistic回归有何影响? 分析结果一致吗? 答:(1)若因变量交换赋值,两个logistic回归方程的参数估计绝对值相等,符号相反;优势比互为倒数,含义有所区别,实质意义一样;模型拟合检验与回归系数的假设检验结果相同。 (2)若改变自变量参照类或哑变量设置方法,logistic回归方程形式、参数含义虽有不同,但是模型实质与应用结果相同,可以根据研究需要选择不同赋值方法。Logistic回归结果报告中,一定要说明分类变量赋值方法及其参照,否则无法理解模型意义。 3. 例18-6研究性别对吸烟行为的影响,采用logistic回归校正了年龄对居民吸烟行为的影响,请考虑有无其他混杂因素需要校正? 答:例18-6的主要目的是研究吸烟行为与性别的联系及其强度,例题采用logistic回归只校正了年龄对居民吸烟行为的影响。事实上,除年龄外,仍有其他因素会影响吸烟行为与性别的联系强度,如家庭人均年收入、受教育程度、主动获取保健知识等。建立回归模型时,首先应根据专业知识确定可能的影响因素,再采用logistic回归,将性别作为强制引入变量,对其他可能的影响因素进行变量筛选,最后将性别与筛选出的因素作为自变量建立logistic回归方程,从而正确回答校正混杂因素后吸烟行为与性别的联系及其强度。 4. 配对病例-对照研究资料若采用非条件logistic回归进行分析,对结果有何影响? 答:采用配对(匹配)方法的目的是对可能的混杂因素加以控制,有助于提高研究效率和可靠性。配对设计的特点是对子内部控制的混杂变量一致,有较好的可比性。配对(匹配)资料若采用非条件logistic回归进行分析,则忽视了这种可比性,降低了分析方法的检验效能。 三、计算题 探讨肾细胞癌转移有关的因素研究中,收集了26例行根治性肾切除术患者的肾癌标本资料(教材表18-19),有关变量说明如下,试进行logistic回归分析。 X:确诊时患者的年龄(岁)。 1 X:肾细胞癌血管内皮生长因子,其阳性表达由低到高共3个等级,分别赋值1、2、3。 2 X:肾细胞癌组织内微血管数。 3 X:肾细胞癌细胞核组织学分级,由低到高共4级,分别赋值1、2、3、4。 4

如何用SPSS做logistic回归分析

如何用spss17.0进行二元和多元logistic回归分析 一、二元logistic回归分析 二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。 下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。 (一)数据准备和SPSS选项设置 第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。 图1-1 第二步:打开“二值Logistic 回归分析”对话框: 沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic (Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。

如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。

在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。 接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。在“分类”对话框中,因为性别为二分类变量,因此将其选入分类协变量中,参考类别为在分析中是以最小数值“0(第一个)”作为参考,还是将最大数值“1(最后一个)”作为参考,这里我们选择第一个“0”作为参考。在“存放”选项框中是指将不将数据输出到编辑显示区中。在“选项”对话框中要勾选如图几项,其中“exp(B)的CI(X)”一定要勾选,这个就是输出的OR和CI值,后面的95%为系统默认,不需要更改。

图文举例详细讲解Logistic曲线的回归分析

Logistic 曲线的回归分析 例 某一品种玉米高度与时间(生长周期,每个生长周期为2-3天,与气温有关)的数据如表1.所示。用转化为线性方程的方法估计其logistic 曲线预测模型。设最大值k 为300(cm )。 表1. 玉米高度与时间(生长周期)的关系 时间(生长周期) 高度/cm 时间(生长周期) 高度 /cm 时间(生长周期) 高度/cm 1 2 3 4 5 6 7 8 9 10 11 0.67 0.85 1.28 1.75 2.27 2.75 3.69 4.71 6.36 7.73 9.91 12 13 14 15 16 17 18 19 20 21 12.75 16.55 20.1 27.35 32.55 37.55 44.75 53.38 71.61 83.89 22 23 24 25 26 27 28 29 30 31 97.46 112.7 135.1 153.6 160.3 167.1 174.9 177.9 180.2 180.8 3.1 基本绘图操作 在Excel 中输入时间x 与高度y 的数据。 选择插入->图表 图87 点击图表,选择“标准类型”中的xy 散点图,并点击子图表类型的第一个。

图88 点击下一步,得到如图89。 图89

点击下一步。 图90 分别点击标题、网格线、图例进行修改,然后点击下一步。 图91 点击完成。 图92 右击绘图区,修改绘图区格式,双击做表格,修改坐标轴刻度,最后的散点图。

图93 观察散点图,其呈S 型曲线,符合logistic 曲线。采用转化为线性方程的方法求解模型。 3.2 Logistic 曲线方程及线性化 Logistic 曲线方程为: 1at k y me -= + (12) (1) 将数据线性化及成图 转化为线性方程为: 01'y a a t =+ (13) 其中,'ln(/1)y k y =-,0ln a m =,1a a =- 具体操作为: 向excel 表格中输入y ’数据。

logistic回归分析实例操作

Logistic回归分析 二分类(因变量Y有(如发病1与未发病0)两种可能出现的结果)资料的Logistic回归分析,至于多分类Logistic回归分析,与二分类操作过程类似,只是在数据编制及分析方法选择处不同。 分析的一般步骤: 变量的编码 哑变量的设置和引入 各个自变量的单因素分析 变量的筛选 交互作用的引入 建立多个模型 选择较优的模型 模型应用条件的评价 输出结果的解释 实例操作 11.1 某研究人员在探讨肾细胞癌转移的有关临床病理因素研究中,收集了一批行根治性肾切除术患者的肾癌标本资料,现从中抽取26例资料作为示例进行logistic回归分析。 1.各变量及其赋值说明 x1:确诊时患者的年龄(岁) x2:肾细胞癌血管内皮生长因子(VEGF),其阳性表述由低到高共3个等级(1-3)x3:肾细胞癌组织内微血管数(MVC) x4:肾癌细胞核组织学分级,由低到高共4级(1-4) x5:肾细胞癌分期,由低到高共4期(1-4) y:肾细胞癌转移情况(有转移y=1; 无转移y=0)。为二分类变量。 若作单因素的Logistic回归分析,也就是分别作Y与各自变量间的回归分析,如Y与X1、Y与X2等的单因素Logistic回归分析。 2.建立数据库

3.分析步骤 (1)

(2)

上图中若为单因素回归分析,只需在Covariates协变量框内导入单一自变量如X1即可。(3) 4.分析结果 (1)数据描述 Case Processing Summary Unweighted Cases a N Percent Selected Cases Included in Analysis 26 100.0 Missing Cases 0 .0 Total 26 100.0 Unselected Cases 0 .0 Total 26 100.0 a. If weight is in effect, see classification table for the total number of cases. (2)Block 1: Method = Forward Stepwise (Likelihood Ratio)

Logistic回归分析报告结果解读分析

L o g i s t i c回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。比较常用的情形是分析危险因素与是否发生某疾病相关联。例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。自变量既可以是连续变量,也可以为分类变量。通过Logistic回归分析,就可以大致了解胃癌的危险因素。 Logistic回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。多元线性回归的因变量为连续变量;Logistic回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。 回归的用法 一般而言,Logistic回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。 2.用Logistic回归估计危险度 所谓相对危险度(riskratio,RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的 比值。Logistic回归给出的OR(oddsratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。如不同性别的胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如,这样就表示,男性发生胃癌的风险是女性的倍。这里要注意估计的方向问题,以女性作为参照,男性患

SAS 中Logistic回归方法的正确应用及结果的正确解释

Logistic回归方法的正确应用及结果的正确解释 金水高 (中国疾病预防控制中心,北京,100050) Logistic回归是研究当因变量为二分变量时,因变量与自变量关系的常用方法,自80年代初引入国内后,随着计算机技术的发展,统计软件的日益成熟而得到了十分广泛的应用。但是并不是所有的研究者对于Logistic回归的方法都能正确使用,对结果都能正确解释。近年来文献中经常出现对方法错用、误用及对结果的错误解释的现象。本文仅就在使用Logistic方法时经常出现的错误进行探讨。 1.Logistic回归中分类变量的数量化方法 在Logistic回归中,自变量可以有多种形式。以连续变量形式的如年龄;以等级变量进入方程的如不同的污染等级。而更多的却是以分类变量(定性变量)形式出现的,如性别,地区,职业等。对于多水平分类变量(如职业)的各个水平的赋值方式,尽管在正规的教科书上有详细的介绍,但经常有有些作者将多水平的分类变量按等级来进行赋值(1)。下面摘引的是文献1的作者对其中一些分类变量取值的赋值(表1)。 表1 某个吸烟调查中一些自变量的意义及赋值 作者将第一个变量不同水平赋为具有等级关系的四个值,虽然比较勉强,还可以接受,因为变量的四个取值确实存在程度的差异(但为什麽相邻之间都相差1,这就没有太多的道理了)。而对后面的两个变量(M2及J4)的不同水平也赋予具有等级关系的值,而且相邻之间都相差1,那就没有任何道理了。因为变量M2是询问调查对象是否在电视中看到过有关吸烟的内容,人们对这个问题给出的答案显然并不存在任何量上的程度差别。 对这类自变量的赋值应该采取数量化的方法。通常建议的数量化方法为设臵哑变量。例如对于上面的M2,有4种可能回答,则要设臵3个哑变量,假设为M21,M22,M23。将每一种可能回答(水平)用一组哑变量的取值来表述(表2)。 从表2可以看到,用M21,M22及M23同时等于0表示没有在电视里看到过有关吸烟方面的任何内容;而用M21=1,M22及M23均为0表示在电视里看到过关于吸

SPSS学习笔记之——二项Logistic回归分析

SPSS学习笔记之——二项Logistic回归分析 一、概述 Logistic回归主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。他可以从多个自变量中选出对因变量有影响的自变量,并可以给出预测公式用于预测。 因变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。 下面学习一下Odds、OR、RR的概念: 在病例对照研究中,可以画出下列的四格表: ------------------------------------------------------ 暴露因素病例对照 ----------------------------------------------------- 暴露 a b 非暴露 c d ----------------------------------------------- Odds:称为比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。在病例对照研究中病例组的暴露比值为: odds1 = (a/(a+c))/(c(a+c)) = a/c, 对照组的暴露比值为: odds2 = (b/(b+d))/(d/(b+d)) = b/d OR:比值比,为:病例组的暴露比值(odds1)/对照组的暴露比值(odds2) = ad/bc 换一种角度,暴露组的疾病发生比值: odds1 = (a/(a+b))/(b(a+b)) = a/b 非暴露组的疾病发生比值: odds2 = (c/(c+d))/(d/(c+d)) = c/d OR = odds1/odds2 = ad/bc 与之前的结果一致。 OR的含义与相对危险度相同,指暴露组的疾病危险性为非暴露组的多少倍。OR>1说明疾病的危险度因暴露而增加,暴露与疾病之间为“正”关联;OR<1说明疾病的危险度因暴露而减少,暴露与疾病之间为“负”关联。还应计算OR的置信区间,若区间跨1,一般说明该因素无意义。 关联强度大致如下: ------------------------------------------------------ OR值联系强度 ------------------------------------------------------ 0.9-1.0 1.0-1.1 无 0.7-0.8 1.2-1.4 弱(前者为负关联,后者为正关联) 0.4-0.6 1.5-2.9 中等(同上) 0.1-0.3 3.0-9.0 强(同上) <0.1 10.0以上很强(同上) ------------------------------------------------------

Logistic回归分析报告结果解读分析

Logistic 回归分析报告结果解读分析 Logistic 回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。比较常用的情形是分析危险因素与是否发生某疾病相关联。例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是” 或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。自变量既可以是连续变量,也可以为分类变量。通过Logistic 回归分析,就可以大致了解胃癌的危险因素。 Logistic 回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。多元线性回归的因变量为连续变量;Logistic 回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。 1. Logistic 回归的用法 一般而言,Logistic回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic 回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。 2. 用Logistic回归估计危险度 所谓相对危险度(risk ratio,RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的 比值。Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。如不同性别的胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1.7,

二分类Logistic回归的详细SPSS操作

SPSS操作:二分类Logistic回归 作者:张耀文 1、问题与数据 某呼吸内科医生拟探讨吸烟与肺癌发生之间的关系,开展了一项成组设计的病例对照研究。选择该科室内肺癌患者为病例组,选择医院内其它科室的非肺癌患者为对照组。通过查阅病历、问卷调查的方式收集了病例组和对照组的以下信息:性别、年龄、BMI、COPD病史和是否吸烟。变量的赋值和部分原始数据见表1和表2。该医生应该如何分析? 表1. 肺癌危险因素分析研究的变量与赋值 表2. 部分原始数据 ID gender age BMI COPD smoke cancer 1 0 34 0 1 1 0 2 1 32 0 1 0 1 3 0 27 0 1 1 1 4 1 28 0 1 1 0 5 1 29 0 1 0 0 6 0 60 0 2 0 0 7 1 29 0 0 1 1 8 1 29 1 1 1 1 9 1 37 0 1 0 0 10 0 17 0 0 0 0 11 0 20 0 0 1 1 12 1 35 0 0 0 0 13 0 17 1 0 1 1

………………… 2、对数据结构的分析 该设计中,因变量为二分类,自变量(病例对照研究中称为暴露因素)有二分类变量(性别、BMI和是否吸烟)、连续变量(年龄)和有序多分类变量(COPD 病史)。要探讨二分类因变量与自变量之间的关系,应采用二分类Logistic回归模型进行分析。 在进行二分类Logistic回归(包括其它Logistic回归)分析前,如果样本不多而变量较多,建议先通过单变量分析(t检验、卡方检验等)考察所有自变量与因变量之间的关系,筛掉一些可能无意义的变量,再进行多因素分析,这样可以保证结果更加可靠。即使样本足够大,也不建议直接把所有的变量放入方程直接分析,一定要先弄清楚各个变量之间的相互关系,确定自变量进入方程的形式,这样才能有效的进行分析。 本例中单变量分析的结果见表3(常作为研究报告或论文中的表1)。 表3. 病例组和对照组暴露因素的单因素比较 病例组(n=85)对照组(n=259) χ2 /t统计量P 性别,男(%)56 (65.9) 126 (48.6) 7.629 <0.01 年龄(岁),x± s40.3 ±14.0 38.6 ±12.4 1.081 0.28 BMI,n (%) 正常48 (56.5) 137 (52.9) 0.329 0.57 超重或肥胖37 (43.5) 122 (47.1) COPD病史,n (%) 无21 (24.7) 114 (44.0) 14.123 <0.01 轻中度24 (28.2) 75 (29.0) 重度40 (47.1) 70 (27.0) 是否吸烟,n(%) 否18 (21.2) 106 (40.9) 10.829 <0.01 是67 (78.8) 153 (59.1) 单因素分析中,病例组和对照组之间的差异有统计学意义的自变量包括:性别、COPD病史和是否吸烟。 此时,应当考虑应该将哪些自变量纳入Logistic回归模型。一般情况下,建议纳入的变量有:1)单因素分析差异有统计学意义的变量(此时,最好将P值放宽一些,比如0.1或0.15等,避免漏掉一些重要因素);2)单因素分析时,

第十二章+Logistic回归分析

第十二章 Logistic 回归分析 一、Logistic 回归概述: Logistic 回归主要用于筛选疾病的危险因素、预后因素或评价治疗措施;通常以疾病的死亡、痊愈等结果发生的概率为因变量,以影响疾病发生和预后的因素为自变量建立模型。 二、Logistic 回归的分类及资料类型: 第一节 非条件Logistic 回归分析 一、Logistic 回归模型: Logistic 回归模型: logit (P )= ln( p p -1) = β0+β1χ1 + … +βn χn 二、回归系数的估计(参数估计): 回归模型的参数估计:Logistic 回归模型的参数估计通常利用最大似然估计法。 三、假设检验: 1.Logistic 回归方程的检验: ·检验模型中所有自变量整体来看是否与所研究事件的对数优势比存在线性关系,也即方程是否成立。 ·检验的方法有似然比检验、比分检验(score test )和Wald 检验(wald test )。上述三种方法中,似然比检验最可靠。 ·似然比检验(likehood ratio test ):通过比较包含与不包含某一个或几个待检验观察因素的两个模型的对数似然函数变化来进行,其统计量为G=-2ln(L)(又称Deviance )。无效假设H 0:β=0。当H 0成立时,检验统计量G 近似服从自由度为N-P-1的X 2分布。当G 大于临界值时,接受H 1,拒绝无效假设,认为从整体上看适合作Logistic 回归分析,回归方程成立。 2.Logistic 回归系数的检验: ·为了确定哪些自变量能进入方程,还需要对每个自变量的回归系数进行假设检验,判断其对模型是否有贡献。 ) (11011011011011)](exp[11 )exp(1)exp(p p X X p p p p p p e X X X X X X p ββββββββββββ+++-+= +++-+=+++++++=

相关主题
文本预览
相关文档 最新文档