当前位置:文档之家› 高中物理知识点总结(重点)超详细

高中物理知识点总结(重点)超详细

高中物理知识点总结(重点)超详细
高中物理知识点总结(重点)超详细

A B

物理重要知识点总结

学好物理要记住:最基本的知识、方法才是最重要的。 秘诀:“想” 学好物理重在理解........

(概念和规律的确切含义,能用不同的形式进行表达,理解其适用条件) A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事)

(最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健

物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩!

对联: 概念、公式、定理、定律。 (学习物理必备基础知识) 对象、条件、状态、过程。(解答物理题必须明确的内容)

力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。 说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。

答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。“容易题不丢

分,难题不得零分。“该得的分一分不丢,难得的分每分必争”,“会做?做对?不扣分”

在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。 力的种类:(13个力) 有18条定律、2条定理

1重力: G = mg (g 随高度、纬度、不同星球上不同) 2弹力:F= Kx 3滑动摩擦力:F 滑= μN

4静摩擦力: O ≤ f 静≤ f m (由运动趋势和平衡方程去判断)

5浮力: F 浮= ρgV 排 6压力: F= PS = ρghs 7万有引力: F 引=G

2

2

1r m m

8库仑力: F=K

2

2

1r q q (真空中、点电荷)

9电场力: F 电=q E =q

d

u 10安培力:磁场对电流的作用力

F= BIL (B ⊥I) 方向:左手定则

11洛仑兹力:磁场对运动电荷的作用力

f=BqV (B ⊥V) 方向:左手定则

12分子力:分子间的引力和斥力同时存在,都随距离的增

大而减小,随距离的减小而增大,但斥力变化得快.

。 13核力:只有相邻的核子之间才有核力,是一种短程强力。 1万有引力定律B 2胡克定律B 3滑动摩擦定律B 4牛顿第一定律B

5牛顿第二定律B 力学 6牛顿第三定律B 7动量守恒定律B 8机械能守恒定律B

9能的转化守恒定律. 10电荷守恒定律 11真空中的库仑定律

12欧姆定律

13电阻定律B 电学 14闭合电路的欧姆定律B 15法拉第电磁感应定律 16楞次定律B 17反射定律 18折射定律B 定理: ①动量定理B

②动能定理B 做功跟动能改变的关系

受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。再分析运动过程(即运动状态及形式,动量变化及能量变化等)。 最后分析做功过程及能量的转化过程;

然后选择适当的力学基本规律进行定性或定量的讨论。

强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决 Ⅱ运动分类:(各种运动产生的力学和运动学条件及运动规律.............

)是高中物理的重点、难点 高考中常出现多种运动形式的组合 追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动 F 合=0 a=0 V 0≠0 ②匀变速直线运动:初速为零或初速不为零,

③匀变速直、曲线运动(决于F 合与V 0的方向关系) 但 F 合= 恒力

④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等

⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力) ⑥简谐运动;单摆运动; ⑦波动及共振;

⑧分子热运动;(与宏观的机械运动区别) ⑨类平抛运动;

⑩带电粒在电场力作用下的运动情况;带电粒子在f 洛作用下的匀速圆周运动

Ⅲ。物理解题的依据:

(1)力或定义的公式 (2) 各物理量的定义、公式

(3)各种运动规律的公式 (4)物理中的定理、定律及数学函数关系或几何关系 Ⅳ几类物理基础知识要点:

①凡是性质力要知:施力物体和受力物体;

②对于位移、速度、加速度、动量、动能要知参照物; ③状态量要搞清那一个时刻(或那个位置)的物理量;

④过程量要搞清那段时间或那个位侈或那个过程发生的;(如冲量、功等)

⑤加速度a 的正负含义:①不表示加减速;② a 的正负只表示与人为规定正方向比较的结果。 ⑥如何判断物体作直、曲线运动; ⑦如何判断加减速运动; ⑧如何判断超重、失重现象。

⑨如何判断分子力随分子距离的变化规律

⑩根据电荷的正负、电场线的顺逆(可判断电势的高低)?电荷的受力方向;再跟据移动方向?其做功情况?电势能的变化情况

V 。知识分类举要

1.力的合成与分解、物体的平衡 ?求F 、F 2两个共点力的合力的公式:

F=

θCOS F F F F 212

2

212++

合力的方向与F 1成α角:

1

tgα=

注意:(1) 力的合成和分解都均遵从平行四边行定则。

(2) 两个力的合力范围:? F1-F2 ?≤ F≤?F1 +F2 ?

(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。

∑F=0 或∑F x=0 ∑F y=0

推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。按比例可平移为一个封闭的矢量三角形[2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向

三力平衡:F3=F1 +F2

摩擦力的公式:

(1 ) 滑动摩擦力:f= μN

说明:a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G

b、μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以

及正压力N无关.

(2 ) 静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关.

大小范围:O≤ f静≤ f m (f m为最大静摩擦力与正压力有关)

说明:a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。

b、摩擦力可以作正功,也可以作负功,还可以不作功。

c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

d、静止的物体可以受滑动摩擦力的作用,运动的物体也可以受静摩擦力的作用。

力的独立作用和运动的独立性

当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫做力的独立作用原理。

一个物体同时参与两个或两个以上的运动时,其中任何一个运动不因其它运动的存在而受影响,这叫运动的独立性原理。物体所做的合运动等于这些相互独立的分运动的叠加。

根据力的独立作用原理和运动的独立性原理,可以分解速度和加速度,在各个方向上建立牛顿第二定律的分量式,常常能解决一些较复杂的问题。

VI.几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动2.匀变速直线运动:

探究匀变速直线运动实验:

下图为打点计时器打下的纸带。选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O ,然后每5个点取一个计数点A 、B 、C 、D …。(或相邻两计数点间

有四个点未画出)测出相邻计数点间的距离s 1、s 2、s 3 …

利用打下的纸带可以:

⑴求任一计数点对应的即时速度v :如T

s s v c 23

2+=

(其中记数周期:T =5×0.02s=0.1s ) ⑵利用上图中任意相邻的两段位移求a :如2

23T s s a -= ⑶利用“逐差法”求a :()()23216549T

s s s s s s a ++-++=

⑷利用v -t 图象求a :求出A 、B 、C 、D 、E 、F 各点的即时速度,画出如图的v-t 图线,图线的斜率就是加速度a 。

试通过计算推导出的刹车距离s 的表达式:说明公路旁书写“严禁超载、超速及酒后驾车”以及“雨天路滑车辆减速行驶”的原理。

解:(1)、设在反应时间内,汽车匀速行驶的位移大小为1s ;刹车后汽车做匀减速

直线运动的位移大小为2s ,加速度大小为a 。由牛顿第二定律及运动学公式有:

????

????

??????????><+=><=><+=><=4...............3...............22..........1..................

21220001s s s as v m mg F a t v s μ 由以上四式可得出:

>

<++

=5..........)(

22

00g m

F

v t v s μ

①超载(即m 增大),车的惯性大,由><5式,在其他物理量不变的情况下刹车距离就会增长,

遇紧急情况不能及时刹车、停车,危险性就会增加;

②同理超速(0v 增大)、酒后驾车(0t 变长)也会使刹车距离就越长,容易发生事故;

③雨天道路较滑,动摩擦因数μ将减小,由<五>式,在其他物理量不变的情况下刹车距离就越长,汽车较难停下来。

因此为了提醒司机朋友在公路上行车安全,在公路旁设置“严禁超载、超速及酒后驾车”以及“雨天路滑车辆减速行驶”的警示牌是非常有必要的。

思维方法篇

1.平均速度的求解及其方法应用

① 用定义式:t

s

??=

v

普遍适用于各种运动;② v =只适用于加速度恒定的匀变速直线运动

2.巧选参考系求解运动学问题

3.追及和相遇或避免碰撞的问题的求解方法:

两个关系和一个条件:1两个关系:时间关系和位移关系;2一个条件:两者速度相等,往往是物体间能否追上,或两者距离最大、最小的临界条件,是分析判断的切入点。

关键:在于掌握两个物体的位置坐标及相对速度的特殊关系。

基本思路:分别对两个物体研究,画出运动过程示意图,列出方程,找出时间、速度、位移的关系。解出结果,必要时进行讨论。

追及条件:追者和被追者v 相等是能否追上、两者间的距离有极值、能否避免碰撞的临界条件。 讨论:

1.匀减速运动物体追匀速直线运动物体。

①两者v 相等时,S 追

③若位移相等时,V 追>V 被追则还有一次被追上的机会,其间速度相等时,两者距离有一个极大值

2.初速为零匀加速直线运动物体追同向匀速直线运动物体

①两者速度相等时有最大的间距 ②位移相等时即被追上

3.匀速圆周运动物体:同向转动:ωA t A =ωB t B +n 2π;反向转动:ωA t A +ωB t B =2π

4.利用运动的对称性解题 5.逆向思维法解题 6.应用运动学图象解题 7.用比例法解题

8.巧用匀变速直线运动的推论解题

①某段时间内的平均速度 = 这段时间中时刻的即时速度 ②连续相等时间间隔内的位移差为一个恒量 ③位移=平均速度?时间

解题常规方法:公式法(包括数学推导)、图象法、比例法、极值法、逆向转变法

3.竖直上抛运动:(速度和时间的对称)

分过程:上升过程匀减速直线运动,下落过程初速为0的匀加速直线运动. 全过程:是初速度为V 0加速度为-g 的匀减速直线运动。 (1)上升最大高度:H =

(2)上升的时间:t= (3)从抛出到落回原位置的时间:t =2

g

V o

(4)上升、下落经过同一位置时的加速度相同,而速度等值反向 (5)上升、下落经过同一段位移的时间相等。 (6)匀变速运动适用全过程S = V o t -

g t 2 ; V t = V o -g t ; V t 2-V o 2 = -2gS (S 、V t 的正、负号的理解)

4.匀速圆周运动

线速度: V=

t

s ==ωR=2 f R 角速度:ω=

f T

t

ππ

θ

22==

向心加速度: a = 2 f 2 R=

v ?ω

向心力: F= ma = m 2 R= m

m42πn 2 R

追及(相遇)相距最近的问题:同向转动:ωA t A =ωB t B +n 2π;反向转动:ωA t A +ωB t B =2π 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心. (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3)氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。

5.平抛运动:匀速直线运动和初速度为零的匀加速直线运动的合运动

(1)运动特点:a 、只受重力;b 、初速度与重力垂直.尽管其速度大小和方向时刻在改变,但其运动

的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。在任意相等时间内速度变化相等。

(2)平抛运动的处理方法:平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

水平方向和竖直方向的两个分运动既具有独立性又具有等时性. (3)平抛运动的规律:

证明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水平总位移的中点。

证:平抛运动示意如图

设初速度为V0,某时刻运动到A点,位置坐标为(x,y ),所用时间为t.

此时速度与水平方向的夹角为β,速度的反向延长线与水平轴的交点为'x,

位移与水平方向夹角为α.以物体的出发点为原点,沿水平和竖直方向建立坐标。依平抛规律有:

速度: V

x

= V

V

y

=gt

2

2

y

x

v

v

v+

=

'

x

y

v

gt

v

v

tan

x

x

y

-

=

=

=

β

位移: S

x

= V

o

t

2

y

gt

2

1

s=

2

2

y

x

s

s

s+

=

2gt

2

1

t

gt

tan2

1

v

v

x

y

=

=

=

α②

由①②得:β

αtan

2

1

tan=即

)

(

2

1

'

x

x

y

x

y

-

=③

所以: x

x

2

1

'=④

④式说明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水总位移的中点。“在竖直平面内的圆周,物体从顶点开始无初速地沿不同弦滑到圆周上所用时间都相等。”

一质点自倾角为α的斜面上方定点O沿光滑斜槽OP从静止开始下滑,如图所示。为了使质点在最短时间内从O点到达斜面,则斜槽与竖直方面的夹角β等于多少?

7.牛顿第二定律:F合= ma (是矢量式)或者∑F x = m a x∑F y = m a y

理解:(1)矢量性(2)瞬时性(3)独立性(4)同体性(5)同系性(6)同单位制

●力和运动的关系

①物体受合外力为零时,物体处于静止或匀速直线运动状态;

②物体所受合外力不为零时,产生加速度,物体做变速运动.

③若合外力恒定,则加速度大小、方向都保持不变,物体做匀变速运动,匀变速运动的轨迹可以是直线,

也可以是曲线.

④物体所受恒力与速度方向处于同一直线时,物体做匀变速直线运动.

3

22)(33R h R GT GT +==

远近

ππρ⑤根据力与速度同向或反向,可以进一步判定物体是做匀加速直线运动或匀减速直线运动; ⑥若物体所受恒力与速度方向成角度,物体做匀变速曲线运动.

⑦物体受到一个大小不变,方向始终与速度方向垂直的外力作用时,物体做匀速圆周运动.此时,外力仅改变速度的方向,不改变速度的大小.

⑧物体受到一个与位移方向相反的周期性外力作用时,物体做机械振动.

表1给出了几种典型的运动形式的力学和运动学特征.

综上所述:判断一个物体做什么运动,一看受什么样的力,二看初速度与合外力方向的关系.

力与运动的关系是基础,在此基础上,还要从功和能、冲量和动量的角度,进一步讨论运动规律.

8.万有引力及应用:与牛二及运动学公式

1思路和方法:①卫星或天体的运动看成匀速圆周运动, ② F 心=F 万 (类似原子模型)

2公式:G 2r

Mm =ma n ,又a n =r )T 2(r r v 22

2π=ω=, 则v=

r GM ,3r GM =ω,T=GM r 23π 3求中心天体的质量M 和密度ρ

由G 2r

Mm ==m 2

ωr =m r

)T 2(2π?M=

2

3

2GT r 4π (恒量=23

T

r ) ρ=233

3

3

43T GR r R M ππ=(当r=R 即近地卫星绕中心天体运行时)?ρ=2

G T 3π

=

(M=

ρV

π3

4

r 3) s 球面=4πr 2 s=πr 2 (光的垂直有效面接收,球体推进辐射) s 球冠

=2πRh

轨道上正常转: F 引=G 2r

Mm

= F 心= m a 心= m ωm R v =2 2 R= m m42πn 2 R

地面附近: G 2

R

Mm

= mg ?GM=gR 2 (黄金代换式) mg = m R v 2?gR =v =v 第一宇宙

=7.9km/s

题目中常隐含:(地球表面重力加速度为g);这时可能要用到上式与其它方程联立来求解。

轨道上正常转: G 2r

Mm

= m R v 2 ? r

GM

v =

【讨论】(v 或E K )与r 关系,r 最小时为地球半径时,v 第一宇宙=7.9km/s (最大的运行速度、最小的发射速度);

T 最小=84.8min=1.4h

①沿圆轨道运动的卫星的几个结论: v=

r

GM

,3

r GM =

ω,T=GM

r 23π

②理解近地卫星:来历、意义 万有引力≈重力=向心力、 r 最小时为地球半径、 最大的运行速度=v

第一宇宙

=7.9km/s (最小的发射速度);T 最小=84.8min=1.4h

③同步卫星几个一定:三颗可实现全球通讯(南北极仍有盲区)

轨道为赤道平面 T=24h=86400s 离地高h=3.56x104km(为地球半径的5.6倍) V 同步=3.08km/s ﹤V 第一宇宙=7.9km/s ω=15o /h (地理上时区) a =0.23m/s 2 ④运行速度与发射速度、变轨速度的区别

:r 增?v 减小(E K 减小

⑥应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2 月球公转周期30天

力学助计图 有a v 会变化

受力

●典型物理模型及方法 ◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起

的物体组。解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程

隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。只要两物体保持相对静止

记住:N= 21

12

12

m F m F m m ++ (N 为两物体间相互作用力),

一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2

12m m m N

+=

讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a

m 2

m 1 F

m 1 m 2

结果

原因

原因

受力

N=

2

12

m F m m +

② F 1≠0;F 2≠0 N=

2112

12

m F m m m F ++

(2

0F

=就是上面的情况)

F=211221m m g)(m m g)(m m ++

F=122112

m (m )m (m gsin )m m g θ++

F=A B B 12

m (m )m F m m g ++

F 1>F 2 m 1>m 2 N 1

N 5对6=F M

m (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm

12)m -(n

◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)

研究物体通过最高点和最低点的情况,并且经常出现临界状态。(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥3

③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。 ⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)

(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。由于外轨略高于内轨,使

得火车所受重力和支持力的合力F 合提供向心力。

为转弯时规定速度)(得由合002

0sin tan v L

Rgh v R v m L h

mg mg mg F ===≈=θθR g v ?=θtan 0

(是内外轨对火车都无摩擦力的临界条件)

①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合

2

m

v

③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R

2m

v

即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。火车提速靠增大轨道半径或倾角来实现

(2)无支承的小球,在竖直平面内作圆周运动过最高点情况:

受力:由mg+T=mv 2

/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力. 结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。 能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力) 不能过最高点条件:V

讨论:① 恰能通过最高点时:mg=R

m

2临

v ,临界速度V 临=

gR ;

可认为距此点2

R h = (或距圆的最低点)2

5R h =处落下的物体。

☆此时最低点需要的速度为V 低临=gR 5 ☆最低点拉力大于最高点拉力ΔF=6mg

② 最高点状态: mg+T 1=L

2m

高v (临界条件T 1=0, 临界速度V 临=

gR , V ≥V 临才能通过)

最低点状态: T 2- mg = L

2

m

低v 高到低过程机械能守恒:

mg2L m m 22

122

1+=高低v v T 2- T 1=6mg (g 可看为等效加速度)

② 半圆:过程mgR=

2

2

1mv 最低点T-mg=R

2v m

?绳上拉力T=3mg ; 过低点的速度为V 低 =gR 2

小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度a=2g ③与竖直方向成θ角下摆时,过低点的速度为V 低 =)cos 1(2θ-gR ,

此时绳子拉力T=mg(3-2cos θ)

(3)有支承的小球,在竖直平面作圆周运动过最高点情况:

①临界条件:杆和环对小球有支持力的作用知)

(由R

U m N mg 2

=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点) 圆心。

增大而增大,方向指向随即拉力向下时,当④时,当③增大而减小,且向上且随时,支持力当②v N gR v N gR v N mg v N gR v )(0

00>

==>><<

作用

时,小球受到杆的拉力>,速度当小球运动到最高点时时,杆对小球无作用力,速度当小球运动到最高点时长短表示)

(力的大小用有向线段,但(支持)

时,受到杆的作用力,速度当小球运动到最高点时N gR v N gR v mg N N gR v 0

==

<<

恰好过最高点时,此时从高到低过程 mg2R=

22

1

mv

低点:T-mg=mv 2

/R ? T=5mg ;恰好过最高点时,此时最低点速度:V 低 =gR 2 注意物理圆与几何圆的最高点、最低点的区别: (以上规律适用于物理圆,但最高点,最低点, g 都应看成等效的情况)

2.解决匀速圆周运动问题的一般方法

(1)明确研究对象,必要时将它从转动系统中隔离出来。 (2)找出物体圆周运动的轨道平面,从中找出圆心和半径。 (3)分析物体受力情况,千万别臆想出一个向心力来。

(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。

╰ α

╰α

(5)??

???=∑===∑0222

2y x F R T

m R m R v m F )(建立方程组πω

3.离心运动

在向心力公式F n =mv 2

/R 中,F n 是物体所受合外力所能提供的向心力,mv 2

/R 是物体作圆周运动所需要的向心力。当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动。其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;

提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。

◆3斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定

μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)

◆4.轻绳、杆模型

绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 如图:杆对球的作用力由运动情况决定只有θ=arctg(

g

a )时才沿杆方向

最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢?

假设单B 下摆,最低点的速度V B =

R 2g ?mgR=2

2

1B

mv 整体下摆2mgR=mg 2R +'2

B '2A mv 21mv 2

1+

'A 'B V 2V = ? '

A V =

gR 53 ; '

A '

B V 2V ==gR 25

6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功

◆ .通过轻绳连接的物体

①在沿绳连接方向(可直可曲),具有共同的v 和a 。

特别注意:两物体不在沿绳连接方向运动时,先应把两物体的v 和a 在沿绳方向分解,求出两物体的v 和a 的关系式,

②被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。 讨论:若作圆周运动最高点速度 V 0<

gR ,运动情况为先平抛,绳拉直时沿绳方向的速度消失

即是有能量损失,绳拉紧后沿圆周下落机械能守恒。而不能够整个过程用机械能守恒。 求水平初速及最低点时绳的拉力?

换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒

m L

·

F

m S 1

S 2

例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?

◆5.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )

向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)

难点:一个物体的运动导致系统重心的运动

1到2到3过程中 (1、3除外)超重状态

绳剪断后台称示数

铁木球的运动

系统重心向下加速 用同体积的水去补充 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?

◆6.碰撞模型:

两个相当重要典型的物理模型,后面的动量守恒中专题讲解

◆7.子弹打击木块模型: ◆8.人船模型:

一个原来处于静止状态的系统,在系统内发生相对运动的过程中,

在此方向遵从①动量守恒方程:mv=MV ;ms=MS ;②位移关系方程 s+S=d

?s=

d M

m M

+ M/m=L m /L M 载人气球原静止于高h 的高空,气球质量为M,人的质量为m.若人沿绳梯滑至地面,则绳梯至少为多长?

◆9.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型或

竖直型

◆10.单摆模型:T=2π

g l / (类单摆)利用单摆测重力加速度

◆11.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。

①各质点都作受迫振动,

②起振方向与振源的起振方向相同, ③离源近的点先振动,

④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长。

⑥波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf

20m

M

m

O R

a

图9

θ

波速与振动速度的区别 波动与振动的区别:波的传播方向?质点的振动方向(同侧法) 知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)

◆12.图象模形:识图方法: 一轴、二线、三斜率、四面积、五截距、六交点 明确:点、线、面积、斜率、截距、交点的含义 中学物理中重要的图象

⑴运动学中的s-t 图、v-t 图、振动图象x-t 图以及波动图象y-x 图等。

⑵电学中的电场线分布图、磁感线分布图、等势面分布图、交流电图象、电磁振荡i-t 图等。 ⑶实验中的图象:如验证牛顿第二定律时要用到a-F 图象、F-1/m 图象;用“伏安法 ”测电阻时要画I-U 图象;测电源电动势和内电阻时要画U-I 图;用单摆测重力加速度时要画的图等。

⑷在各类习题中出现的图象:如力学中的F-t 图、电磁振荡中的q-t 图、电学中的P-R 图、电磁感应中的Φ-t 图、E-t 图等。 ●模型法常常有下面三种情况 (1)“对象模型”:即把研究的对象的本身理想化. 用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型),

实际物体在某种条件下的近似与抽象,如质点、光滑平面、理想气体、理想电表等;

常见的如“力学”中有质点、点电荷、轻绳或杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等; (2)条件模型:把研究对象所处的外部条件理想化.排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型.

(3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型

理想化了的物理现象或过程,如匀速直线运动、自由落体运动、竖直上抛运动、平抛运动、匀速圆周运动、简谐运动等。

有些题目所设物理模型是不清晰的,不宜直接处理,但只要抓住问题的主要因素,忽略次要因素,恰当的将复杂的对象或过程向隐含的理想化模型转化,就能使问题得以解决。

解决物理问题的一般方法可归纳为以下几个环节:

原始的物理模型可分为如下两类:

物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等.

● 知识分类举要

力的瞬时性(产生a )F=ma 、?运动状态发生变化?牛顿第二定律

1.力的三种效应:时间积累效应(冲量)I=Ft 、?动量发生变化?动量定理

空间积累效应(做功)w=Fs ?动能发生变化?动能定理

2.动量观点:动量(状态量):p=mv=

K

mE 2 冲量(过程量):I = F t

动量定理:内容:物体所受合外力的冲量等于它的动量的变化。

公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)

I=F 合t=F 1t

1+F 2t 2+---=?p=P 末-P 初=mv 末-mv 初

对象模型(质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型等) 过程模型(匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运

动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等) 物理模型

动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =?;21p -p ?=?

内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。

(研究对象:相互作用的两个物体或多个物体所组成的系统) 守恒条件:①系统不受外力作用。 (理想化条件)

②系统受外力作用,但合外力为零。

③系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。 ④系统在某一个方向的合外力为零,在这个方向的动量守恒。 ⑤全过程的某一阶段系统受合外力为零,该阶段系统动量守恒,

即:原来连在一起的系统匀速或静止(受合外力为零),分开后整体在某阶段受合外力仍为零,可用动量守恒。 例:火车在某一恒定牵引力作用下拖着拖车匀速前进,拖车在脱勾后至停止运动前的过程中(受合外力为零)动量守恒

“动量守恒定律”、“动量定理”不仅适用于短时间的作用,也适用于长时间的作用。 不同的表达式及含义(各种表达式的中文含义):

P =P ′ 或 P 1+P 2=P 1′+P 2′ 或 m 1V 1+m 2V 2=m 1V 1′+m 2V 2′

(系统相互作用前的总动量P 等于相互作用后的总动量P ′)

ΔP =0 (系统总动量变化为0) ΔP =-ΔP ' (两物体动量变化大小相等、方向相反)

如果相互作用的系统由两个物体构成,动量守恒的实际应用中的具体表达式为 m 1v 1+m 2v 2='

22'

11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共

原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0

注意理解四性:系统性、矢量性、同时性、相对性 系统性:研究对象是某个系统、研究的是某个过程 矢量性:对一维情况,先.

选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负, 再.

把矢量运算简化为代数运算。,引入正负号转化为代数运算。不注意正方向的设定,往往得出错误结果。一旦方向搞错,问题不得其解

相对性:所有速度必须是相对同一惯性参照系。

同时性:v 1、v 2是相互作用前同一时刻的速度,v 1'、v 2'是相互作用后同一时刻的速度。

解题步骤:选对象,划过程,受力分析.所选对象和过程符合什么规律?用何种形式列方程(先要规定正方向)求解并讨论结果。

动量定理说的是物体动量的变化量跟总冲量的矢量相等关系;

动量守恒定律说的是存在内部相互作用的物体系统在作用前后或作用过程中各物体动量的矢量和保持不变的关系。

◆7.碰撞模型和◆8子弹打击木块模型专题:

碰撞特点①动量守恒 ②碰后的动能不可能比碰前大 ③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。

由上可讨论主动球、被碰球的速度取值范围

2

1

1

2

1

1

2

1

m

m

v

m

v

m

m

)v

m

-

(m

+

?

?

+主

2

1

1

1

2

1

1

m

m

m

2

m

m

v

m

+

?

?

+

v

v

“碰撞过程”中四个有用推论

推论一:弹性碰撞前、后,双方的相对速度大小相等,即:u2-u1=υ1-υ2

推论二:当质量相等的两物体发生弹性正碰时,速度互换。

推论三:完全非弹性碰撞碰后的速度相等

推论四:碰撞过程受(动量守恒)(能量不会增加)和(运动的合理性)三个条件的制约。

碰撞模型

其它的碰撞模型:

证明:完全非弹性碰撞过程中机械能损失最大。

证明:碰撞过程中机械能损失表为:△E=

2

1

m1υ12+

2

1

m2υ22―

2

1

m1u12―

2

1

m2u22

由动量守恒的表达式中得:u2=

2

1

m

(m1υ1+m2υ2-m1u1)

代入上式可将机械能的损失△E表为u1的函数为:

△E=-

2

2

1

1

2

)

(

m

m

m

m+u

1

2-

2

2

2

1

1

1

)

(

m

m

m

υ+

u1+[(

2

1m1υ12+

2

1m

2υ22)-

2

2

1

m

( m1υ1+m2υ2)2]

这是一个二次项系数小于零的二次三项式,显然:当u1=u2=

2

1

2

2

1

1

m

m

m

m

+

υ时,即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值

△E m=

2

1m1υ12+

2

1m2υ22-2

2

1

2

2

1

1

2

1

)

)(

(

2

1

m

m

m

m

m

m

+

+

+

υ

υ

历年高考中涉及动量守量模型的计算题都有:(对照图表)

v0

A

B A B

v0

v

s

M

v L

1

A

v0

3x

x

A

O

m

A

H

O

O

B

L

P C

2

L

M 2

1 N

B

一质量为M的长木板静止在光

滑水平桌面上.一质量为m的小

滑块以水平速度v0从长木板的

一端开始在木板上滑动,直到离

开木板.滑块刚离开木板时速度

为V0/3,若把此木板固定在水平

面上,其它条件相同,求滑块离

开木板时速度?

1996年全国广东(24题) 1995年全国广东(30题压轴题)

1997年全国广东(25题轴题12分)

1998年全国广东(25题轴题12分) 试在下述简化情况下由牛顿定

律导出动量守恒定律的表达

式:系统是两个质点,相互作

用力是恒力,不受其他力,沿

直线运动要求说明推导过程中

每步的根据,以及式中各符号

和最后结果中各项的意义。

质量为M的小船以速度V0行驶,船上有

两个质量皆为m的小孩a和b,分别静止

站在船头和船尾. 现小孩a沿水平方向以

速率v(相对于静止水面)向前跃入水中,1999年全国广东(20题12分) 2000年全国广东(22压轴题) 2001年广东河南(17题12分) 2002年广东(19题) 2003年广东(19、20题) 2004年广东(15、17题)

2005年广东(18题) 2006年广东(16、18题) 2007年广东(17题)

E

P P

v

E

E

2008年广东( 19题、第20题 )

子弹打木块模型:物理学中最为典型的碰撞模型 (一定要掌握)

子弹击穿木块时,两者速度不相等;子弹未击穿木块时,两者速度相等.这两种情况的临界情况是:当子弹从木块一端到达另一端,相对木块运动的位移等于木块长度时,两者速度相等. 例题:设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射

出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒: ()v m M mv +=0

从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d

对子弹用动能定理:22

012

121mv mv s f -=? …………………………………①

对木块用动能定理:222

1

Mv s f =?…………………………………………② ①、②相减得:()()

2

22022121v m M Mm v m M mv d f +=+-=

? ………………③ ③式意义:f d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =?,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相

对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

由上式不难求得平均阻力的大小:()d

m M Mmv f +=

22

至于木块前进的距离s 2,可以由以上②、③相比得出: 从牛顿运动定律和运动学公式出发,也可以得出同样的结论。试试推理。

由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:

()d m

M m

s m m M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/ 一般情况下m M

>>,所以s 2<

这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,

全过程动能的损失量可用公式:()2

2v m M Mm E k +=

?………………………④

d

m

M m

s +=

2A

N B

C

R R

D P P

3.功与能观点:

求功方法 单位:J ev=1.9×10-19J 度=kwh=3.6×106J 1u=931.5Mev

⊙力学: ①W = Fs cos θ (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度

②W= P ·t (?p=

t w =t

FS

=Fv) 功率:P = (在t 时间内力对物体做功的平均功率) P = F v

(F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率.V 为平均速度时,P 为平均功率.P 一定时,F 与V 成正比)

动能: E K =m

2p mv 2122

= 重力势能E p = mgh (凡是势能与零势能面的选择有关)

③动能定理:外力对物体所做的总功等于物体动能的变化(增量)

公式: W 合= W 合=W 1+ W 2+…+W n = ?E k = E k2 一E k1 = 1212

2212

mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功)

⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用: ⑶既为物体所受合外力的功。

④功是能量转化的量度(最易忽视)主要形式有: “功是能量转化的量度”这一基本概念含义理解。

⑴重力的功------量度------重力势能的变化

物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理。

与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关. 除重力和弹簧弹力做功外,其它力做功改变机械能; 这就是机械能定理。 只有重力做功时系统的机械能守恒。 ⑵电场力的功-----量度------电势能的变化 ⑶分子力的功-----量度------分子势能的变化

⑷合外力的功------量度-------动能的变化;这就是动能定理。 ⑸摩擦力和空气阻力做功W =fd 路程?E 内能(发热)

⑹一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,

也就是系统增加的内能。f ?d=Q (d 为这两个物体间相对移动的路程)。

⊙热学: ΔE=Q+W (热力学第一定律) ⊙电学: W AB =qU AB =F 电d E =qEd E

? 动能(导致电势能改变)

W =QU =UIt =I 2Rt =U 2t/R Q =I 2Rt

E=I(R+r)=u 外+u 内=u 外+Ir P 电源t =uIt+E 其它 P 电源=IE=I U +I 2Rt

⊙磁学:安培力功W =F 安d =BILd ?内能(发热) d R

V L B Ld R BLV B 2

2==

⊙光学:单个光子能量E =h γ 一束光能量E 总=Nh γ(N 为光子数目)

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

初中物理知识点总结(最新最全)

初中物理知识点总结(大全) 第一章声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱; (3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。 8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章物态变化知识归纳 1. 温度:是指物体的冷热程度。测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。 2. 摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。 3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。 体温计:测量范围是35℃至42℃,每一小格是0.1℃。 4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 5. 固体、液体、气体是物质存在的三种状态。

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高中物理知识点总结

高中物理知识点总结 The Standardization Office was revised on the afternoon of December 13, 2020

?? ? ???? ? ??,仍不发生加光强,增加照射时率可以于射光频率增加效应发生子逸出射光强度大压越大能大电射光频率大生光电间2.增发生截止频大入1.光电不能饱和光电流大→多光电→光子数目多→2.入遏止电→子的最大初动光→光子能量大→1.入效应能发 (Ra) 和镭(Po)钋n H E )(E 101 10 10位素、发现正电子、放射性同居里夫妇) 发现中子(粒子轰击铍核查德威克)发现质子(粒子轰击氮核卢瑟福原子核具有复杂结构 天然放射现象发现贝克勒尔谱 解释了氢原子的线状光)跃迁假设()定态假设(能量不连续)轨道假设(轨道不连续氢原子结构玻尔原子的核式结构 荷原子内部有集中的正电少数大角度偏转原子内大部分是空的大部分直线穿过粒子散射(金箔)卢瑟福电荷是量子化的 与质量 测出了电子电量油滴实验密立根测出了电子比荷结构 原子是可以再分有复杂发现电子阴极射线汤姆孙实物粒子波动性德布罗意光电效应光子说爱因斯坦解释黑体辐射能量量子化普朗克→→→→→→→? ??? ??? ??? ????==?→??? ???→→→?? ?→?? ? ??→= →→→-=→→→→-ααλναλνhc h e e p h W h k ?? ? ??用只跟临近核子有核力作核力是短程力强相互作用的一种表现 核力

释放能量 质量亏损比结合能变大小的核(聚变)较轻的核结合成中等大小的核(裂变)较重的核分解成中等大质量亏损会释放能量它的核子质量之和原子核的质量小于组成质量亏损最大 平均每个核子质量亏损最大中等大小的核比结合能定 比结合能越大的核越稳核子数 结合能 )比结合能(平均结合能能越大核子越多的原子核结合子所需的能量把原子核分解成自由核结合能→→??? →→→→=→→波粒二象性 实验基础 表现 光的波动性 干涉和衍射 ①光是一种概率波,即光子在空间各点出现的可能性大小(概率)可用波动规律来描述 ②大量的光子在传播时,表现出波的性质 光的粒子性 光电效应、康普顿效应 ①当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子的性质 ②少量或个别光子清楚地显示出光的粒子性 波动性和 粒子性的 对立、统一 ①大量光子易显示出波动性,而少量光子易显示出粒子性 ②波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强 光电效应规律 图像名称 图线形状 由图线直接(间接)得到的物理量 光电效应实验原理图 ①光照的一端为阴极 ②阴极接外电源负极时为正向电源 ③光电子逸出向阳极运动,构成闭合回路,出现光电流,说明发生了光电效应。电流为电子运动反方向。 规律: 1.频率高的光发生光电效应,频率低的不一定发生。 2.改变电压,电流不一定变化。 3.改变电源极性,电流不一定消失。 4.光电效应瞬间产生。 最大初动能E k 与入射光频率ν的关系图线 ①(截止)极限频率:图线与ν轴交点的横坐标νc ②逸出功:图线与E k 轴交点的纵坐标的值W 0=|-E |=E ③逸出功与(截止)极限频率νc 的关系是W 0=hνc ④普朗克常量:图线的斜率k =h 颜色相同、强度不同的光,光电流与电压的关系 ①遏止电压U c :图线与横轴的交点 ②饱和光电流I m :电流的最大值 ③最大初动能:E km =eU c 颜色不同时,同金属板的光电效应,光电流与电压的关系 ①遏止电压U c1>U c2 ②饱和光电流 ③最大初动能E k1=eU c1,E k2=eU c2 ④U c 越大照射光频率越高

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结 高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍;

五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质 六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)3、该公式适用于一切电场;4、点电荷的电场强度公式:E=kQ/r2 七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强; 八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。1、电场线不是客观存在的线;2、电场线的形状:电场线起于正电荷终于负电荷;G:\用锯木屑观测电场线.DAT(1)只有一个正电荷:电场线起于正电荷终于无穷 远;(2)只有一个负电荷:起于无穷远,终于负电荷;(3)既有正电荷又有负电荷:起于正电荷终于负电荷;3、电场线的作用:1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;4、电场线的特点:1、电场线不是封闭曲线;2、同一电场中的电场线不向交; 九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;1、匀强电场的电场线是一簇等间距的平行线;2、平行板电容器间的电是匀强电场;场

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

苏教版初中物理知识点归纳

初中物理知识点总结 第一章声现象知识归纳 1 、声音得发生:由物体得振动而产生。振动停止,发声也停止。 2.声音得传播:声音靠介质传播。真空不能传声。通常我们听到得声音就是靠空气传来得。 3.声速:在空气中传播速度就是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音得三个特征:音调、响度、音色。(1)音调:就是指声音得高低,它与发声体得频率有关系。(2)响度:就是指声音得大小,跟发声体得振幅、声源与听者得距离有关系。 6.减弱噪声得途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间得声波:超声波:频率高于20000Hz得声波;次声波:频率低于20Hz得声波。 8. 超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波得特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度得次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中得火山爆发、海啸地震等,另外人类制造得火箭发射、飞机飞行、火车汽车得奔驰、核爆炸等也能产生次声波。 第二章物态变化知识归纳 1、温度:就是指物体得冷热程度。测量得工具就是温度计, 温度计就是根据液体得热胀冷缩得原理制成得。 2、摄氏温度(℃):单位就是摄氏度。1摄氏度得规定:把冰水混合物温度规定为0度,把一标准大气压下沸水得温度规定为100度,在0度与100度之间分成100等分,每一等分为1℃。 3.常见得温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。 体温计:测量范围就是35℃至42℃,每一小格就是0、1℃。 4、温度计使用:(1)使用前应观察它得量程与最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱得上表面相平。 5、固体、液体、气体就是物质存在得三种状态。 6、熔化:物质从固态变成液态得过程叫熔化。要吸热。 7、凝固:物质从液态变成固态得过程叫凝固。要放热、 8、熔点与凝固点:晶体熔化时保持不变得温度叫熔点;。晶体凝固时保持不变得温度叫凝固点。晶体得熔点与凝固点相同。 9、晶体与非晶体得重要区别:晶体都有一定得熔化温度(即熔点),而非晶体没有熔点。 10、熔化与凝固曲线图:

初物理知识点总结-初二物理知识点总结图

初物理知识点总结:初二物理知识点总结图 随着新课标改革事业的不断推进和发展,对初中物理教学也产生了巨大的影响。下面是X为你整理的初物理知识点总结,一起来看看吧。 初物理知识点总结(一) 1、分子动理论的内容是:(1)物质由分子组成的,分子间有空隙;(2)一切物体的分子都永不停息地做无规则运动;(3)分子间存在相互作用的引力和斥力。 2、分子是原子组成的,原子是由原子核和核外电子组成的,原子核是由质子和中子组成的。质子带正电,电子带负电。 3、汤姆逊发现电子(1897年);卢瑟福发现质子(1919年);查德威克发现中子(1932年);盖尔曼提出夸克设想(1961年)。 4、机械能:动能和势能的统称。运动物体的速度越大,质量越大,动能就越大。物体质量越大,被举得越高,重力势能就越大。 5、势能分为重力势能和弹性势能。 6、弹性势能:物体由于发生弹性形变而具的能。物体的弹性形变越大,它的弹性势能就越大。 7、自然界中可供人类大量利用的机械能有风能和水能。

8、内能:物体内部所有分子做无规则运动的动能和分子势能的总和叫内能。(内能也称热能) 9、物体的内能与温度有关:物体的温度越高,分子运动速度越快,内能就越大。 10、改变物体的内能两种方法:做功和热传递,这两种方法对改变物体的内能是等效的。物体对外做功,物体的内能减小,温度降低;外界对物体做功,物体的内能增大,温度升高。 13、热量的计算:①Q吸=cm(t-t0)=cm△t升(Q吸是吸收热量,单位是焦耳;c是物体比热,单位是:焦/(千克/℃);m 是质量;t0是初始温度;t是后来的温度。 ②Q放=cm(t0-t)=cm△t降1.热值(q):1千克某种燃料完全燃烧放出的热量,叫热值。单位是:焦耳/千克。 2燃料燃烧放出热量计算:Q放=qm;(Q放是热量,单位是:焦耳;q是热值,单位是:焦/千克;m是质量,单位是:千克。 14、光直线传播的应用 可解释许多光学现象:激光准直,影子的形成,月食、日食的形成、小孔成像等 15、光线 光线:表示光传播方向的直线,即沿光的传播路线画一直线,并在直线上画上箭头表示光的传播方向(光线是假想

高中物理知识点汇总

高考物理基本知识点汇总 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0gR 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 3. 传动装置中,特点是:同轴上各点ω相同,A ω=C ω,轮上边缘各点v 相同,v A =v B 4. 同步地球卫星特点是:①_______________,②______________ ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度3.1km/s 。 5. 万有引力定律:万有引力常量首先由什么实验测出:F =G 2 2 1r m m ,卡文迪许扭秤实验。 6. 重力加速度随高度变化关系: 'g =GM/r 2

说明:为某位置到星体中心的距离。某星体表面的重力加速度。 r g G M R 02 = g g R R h R h ' () = +2 2 ——某星体半径为某位置到星体表面的距离 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度'g =2 r GM 、r mv r GMm 2 2 = 、v = r GM 、 r mv r GMm 2 2 = =m ω2R =m (2π/T )2R 当r 增大,v 变小;当r =R ,为第一宇宙速度v 1=r GM =gR gR 2 =GM 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向______________ ②竖直方向____________________ ③合运动______________________ ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 相位,求?y t x y t gT v S T v x v t v v y gt v gt S v t g t v v g t tg gt v tg gt v tg tg == =====+=+== =2 0002 02 2 24 0222 00 1214 21 2αθα θ ⑥在任何两个时刻的速度变化量为△v =g △t ,△p =mgt ⑦v 的反向延长线交于x 轴上的x 2处,在电场中也有应用 10. 从倾角为α的斜面上A 点以速度v 0平抛的小球,落到了斜面上的B 点,求:S AB

初中物理知识点汇总

认识物理 一、物理学研究的内容:现象、规律及产生原因。 包括:声、光、热、电、力等。分别概括知识点、举例子,并说明中考的重点难点。 二、物理学的特点 1、有趣 2、是一门以观察、实验为基础的自然科学 3、和现实生活联系最密切的学科 三、如何学好物理:1、勤于观察、勤于动手 2、勤于思考、重在理解 3、联系实际、联系社会 第一章声现象 第一节声音的产生与传播 一、声音的产生 ⑴声音是由物体振动产生的。 举例:人—声带振动;风—空气振动;下雨刷刷声—液体振动;风吹树叶振动、电线振动发出声音;蚊子翅膀振动;敲鼓—鼓面振动;弹琴—琴弦振动;婵—腹部发生器;鸟—鸣管等等。 青蛙的发音器官为声带。有些雄蛙口角的两边还有能鼓起来振动的外声囊,声囊产生共鸣,使蛙的歌声雄伟、洪亮雨后,汇成一片大合唱,有一定规律,有领唱、合唱、齐唱、伴唱等多种形式,能吸引较多的雌蛙前来。 固体、液体、气体都可以振动而发声,“风声、雨声、读书声,声声入耳”,其中的“声”分别是由气体、液体和固体的振动而发出的声音 ⑵声音的产生应注意的几个问题: ①一切正在发声的物体都在振动。 ②“振动停止,发声也停止”不能叙述为“振动停止,声音也消失”,因为原来发出的声音仍继续传播并存在。 ③振动一定发声,但发出的声音人不一定能听到。 ⑶声音的保存:振动可以发声,如果将发声的振动记录下来,需要时再让物体按照记录下来的振动规律去振动,就会发出和原声相同的声音。 声音记录的分类:1、机械振动:唱片(唱针振动)2、磁记录:磁带 3、光记录:光盘、DVD 二、声音的传播 ⑴声源:发声的物体叫声源又叫发声体。 ⑵介质:能传播声音的物质。声音的传播需要介质。举例子气体、液体、固体作为介质的例子。 ①介质分类:气体、液体、固体(固体传声效果好,能量损失少,举例子)②真空不能传声

高一物理力学 知识点归纳

高一上物理期末知识点复习 专题一:运动学 【知识要点】 1.质点(A ) (1)没有形状、大小,而具有质量的点。 (2)质点是一个理想化的物理模型,实际并不存在。 (3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体 上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。 2.参考系(A ) (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系 3.路程和位移(A ) (1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。 (2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到 末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。 (3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与位移的 大小才相等。图1-1中质点轨迹ACB 的长度是路程,AB 是位移S 。 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说 某人从O 点起走了50m 路,我们就说不出终了位置在何处。 4、速度、平均速度和瞬时速度(A ) B A B C 图1-1

高一物理知识点总结

高一上物理期末考试知识点复习提纲 1.质点(A )(1)没有形状、大小,而具有质量的点。 (2)质点是一个理想化的物理模型,实际并不存在。 (3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的 形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体 分析。 2.参考系(A )(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系 3.路程和位移(A ) (1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。 (2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初 位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。 (3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与 位移的大小才相等。图1-1中质点轨迹ACB 的长度是路程,AB 是位移S 。 ( 4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O 点起走了50m 路,我们就说不出终了位置在何处。 4、速度、平均速度和瞬时速度(A ) (1)表示物体运动快慢的物理量,它等于位移s 跟发生这段位移所用时间t 的比值。即v=s/t 。速度是矢 量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s )米/秒。 (2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t 内 的位移为s, 则我们定义v=s/t 为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。 (3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻 附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率 5、匀速直线运动(A ) (1) 定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。 根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路 程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。 (2) 匀速直线运动的x —t 图象和v-t 图象(A ) (1)位移图象(x-t 图象)就是以纵轴表示位移,以横轴表示时间而作出的反映物体运动规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条直线。 (2)匀速直线运动的v-t 图象是一条平行于横轴(时间轴)的直线,如图2-4-1所示。 由图可以得到速度的大小和方向,如v 1=20m/s,v 2=-10m/s,表明一个质点沿正方向以20m/s 的速度运动,另一个反方向以10m/s 速度运动。 B A B C 图1-1

高二物理知识点归纳高二物理知识点总结

高二物理知识点归纳高二物理知识点总结【导语】以下是大的高二物理知识点总结,欢迎大家阅读! 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体;

二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.6×10-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0×109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质 六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;1、定义式:E=F/q;E是电场强度;F 是电场力;q是试探电荷;2、电场强度是矢量,电场中某一点的场强

相关主题
文本预览
相关文档 最新文档