当前位置:文档之家› 细胞生物学简答题及答案

细胞生物学简答题及答案

细胞生物学简答题及答案
细胞生物学简答题及答案

细胞生物学简答题及答案

1.请说明内膜系统的形成对于细胞的生命活动具有哪些重要的意义?

答:至少有六方面的意义:

①首先是内膜系统中各细胞器膜结构的合成和装配是统一进行的,这不仅提高了合成的效率,更重要的是保证了膜结构的一致性,特别是保证了膜蛋白在这些膜结构中方向的一致性。

②内膜系统在细胞内形成了一些特定的功能区域和微环境,如酶系统的隔离与衔接,细胞内不同区域形成pH值差异,离子浓度的维持,扩散屏障和膜电位的

建立等等,以便在蛋白质、脂类、糖类的合成代谢、加工修饰、浓缩过程中完成其特定的功能。

③内膜系统通过小泡分泌的方式完成膜的流动和特定功能蛋白的定向运输,这不仅保证了内膜系统中各细胞器的膜结构的更新,更重要的是保证了一些具有杀伤性的酶类在运输过程中的安全,并能准确迅速到达作用部位。

④细胞内的许多酶反应是在膜上进行的,内膜系统的形成,使这些酶反应互不干扰。

⑤扩大了表面积,提高了表面积与体积的比值。

⑥区室的形成,相对提高了重要分子的浓度,提高了反应效率。

2.纤维切割蛋白(filament-severing protein)是微丝的结合蛋白,它的主要作

用是什么?

这类蛋白能够同已经存在的肌动蛋白纤维结合并将它一分为二。由于这种蛋白能够控制肌动蛋白丝的长度,因此大大降低细胞中的粘度。经这类蛋白作用产生的

新末端能够作为生长点,促使G-肌动蛋白的装配。另外,切割蛋白可作为加帽蛋白封住肌动蛋白纤维的末端。加帽和切割蛋白的作用也是受信号调节的。

5.请简述脂锚定蛋白的来源与形成。

新合成的蛋白质除了成为跨膜蛋白或ER腔中的游离蛋白外,还会通过酰基化同ER膜上的糖脂结合,将自己锚定在ER膜上。新合成的ER蛋白被信号肽酶从ER 上切割之后,立即通过羧基端与已存在于ER膜上的糖基磷脂酰肌醇共价结合,形

成脂锚定蛋白的简化过程。形成的脂锚定糖蛋白通过进一步的运输成为质膜外侧的膜蛋白。

1.肝细胞中除线粒体合成少量蛋白质外,绝大多数的蛋白质都是在细胞质的游

离核糖体和膜结合核糖体上合成的。请您推测在肝细胞那种核糖体上合成的蛋白质占多数,是游离核糖体还是膜结合核糖体(假定细胞内所有区室的蛋白质的平均密度和寿命都是相同的)?说明您推断的依据。

答:游离核糖体合成的蛋白质的分配去向包括胞质溶胶、线粒体、过氧化物酶体、细胞核等,约占细胞体积的80%以上。而膜结合核糖体上合成的蛋白质的去向包括ER、高尔基体、溶酶体、质膜、细胞外等,只占细胞体积的20%,所以游离核糖体上合成的蛋白质起主导作用。据此,可以肯

定地说,肝细胞中游离核糖体上合成的蛋白质占游离多数。

2.线粒体内膜中的电子传递链的最主要的贡献是什么?

答:线粒体内膜中的电子传递链的最主要的贡献是建立了质子动势。

3.从不同的环境中分离到两种细菌:一种是从平均温度为~40℃的温泉中分离的,另一种是从平均温度为~4℃的冷水湖中分离的。问:

a.请推测两种细菌的细胞质膜中,哪一种具有较多的不饱和脂肪酸?

b.那一种细菌质膜中的脂肪酸链较长?

c.在27℃哪一种细菌质膜的流动性高?

答:a.从冷水湖中分离的细菌的细胞质膜具有较多的不饱和脂肪酸,

b.来自温泉细胞的质膜中含有较多长链脂肪酸。

c.在27℃,来自冷水湖细菌的膜具有较大的流动性。

4.简要说明在动物细胞的有丝分裂和胞质分裂中细胞质骨架起什么作用?如何

起作用?

答:有丝分裂需要微管装配成钫锤体,然后通过微管线性分子发动机的作用将染色体拉向两极。胞质分裂需要肌动蛋白在质膜的下方装配成收缩环,然后在肌球蛋白Ⅱ的作用下,通过收缩环的收缩将细胞质动力分开形成两个子细胞。

5.紫杉醇与秋水仙碱的作用相反。紫杉醇与微管紧密结合并使微管稳定。若将紫杉醇添加到细胞中,可促进游离微管蛋白亚基装配成微管。与之相反,秋水仙碱则阻止微管的装配。紫杉醇与秋水仙碱都是细胞分裂的毒素,都可用作抗癌剂。根据您对微管动力学的了解,说明为什么这两种药物的作用相反但都是细胞分裂的致毒剂。

答:细胞分裂取决与微管聚合与去聚合的能力。在有丝分裂期间,细胞首先将大

多数微管去聚合,然后装配成纺锤体。用紫杉醇处理细胞则防止了微管的去聚合从而阻止了有丝分裂纺锤体的形成。用秋水仙碱处理细胞则阻止了新微管的聚合,因此同样不能形成有丝分裂纺锤体。换个角度,这两种药物都破坏了微管的动态不稳定性,因此会干扰有丝分裂纺锤体正常工作,既使能够形成纺锤体也是如此。

6.假定您从线虫中分离到一些纯的蛋白质,经分析,该蛋白含有二硫键,并且其疏水区不长于5个氨基酸。根据这些特性,推测该蛋白位于线虫细胞的哪一区室?依据是什么?

答:由于该蛋白含有二硫键,它必然通过易位从胞质溶胶进入ER,并在ER腔内

进行二硫键的形成。由于该蛋白不含典型的跨膜序列,所以该蛋白不会成为膜蛋白。如果是GPI锚定蛋白,很可能在细胞表面。另外,由于该蛋白是可溶性蛋白,该蛋白存在与细胞器的腔内(ER、高尔基体等),也有可能分泌到细胞外。

1.举例说明叶绿体基质蛋白定位的机理与特点(

答案)

答:核酮糖1,5-二磷酸羧化酶(ribulose-1,5-bisphosphate carboxylase, Rubisco)是叶绿体基质中进行CO2固定的重要酶类,相对分子质量为550 kDa,总共有16个亚基,其中8个大亚基(每个相对分子质量为55kDa)含有催化位点,8个小亚基(每个相对分子质量12kDa)是全酶活性所必需的。Rubisco 的大亚基由叶绿体基因编码,而小亚基则由核基因编码,在细胞质的游离核糖体上合成后被运送到叶绿体基质中。

通过离体实验表明,小亚基前体蛋白的N-端有一段引导肽序列,长为44个氨基酸残基,运输过程也需要分子伴侣Hsc70的参与,运输到叶绿体基质后,引导肽要被切除,最后8个小亚基与叶绿体基因编码的8个大亚基结合形成全酶。

在Rubisco小亚基蛋白运输中,与通道形成和打开有关的受体蛋白有三种:Toc86主要是识别信号序列,Toc75是通道蛋白,Toc34是调节蛋白,与GTP结合后可改变Toc75的构型使通道打开。

与线粒体基质蛋白转运不同的是,叶绿体基质蛋白转运的能量仅仅是ATP,不需要电化学梯度的驱动。

2.为什么说在进行光合作用时,叶绿素分子必须组成功能单位?(答案)

答:因为在实验中发现每固定一个CO2分子(或者说每释放一分子O2)需要2500个叶绿素分子,也就是说2500个分子的叶绿素吸收的光能才能用于一分子CO2的固定,后来发现每固定一分子CO2,需要消耗8个光子,由此推算固定一个光子大约需要300个分子的叶绿素(2500÷8≈300)。

由此看来,叶绿素分子单枪匹马是不行的,必须由几百个叶绿素分子组成的功能单位才能进行光子的固定和进行光能的吸收。

3.光合作用单位是怎样将光能转变成化学能?(答案)

答:光的吸收、光能的传递和转变是由光系统完成的。

捕光复合物中的聚光色素吸收光子后,由基态变为激发态,并通过共振机制极其迅速地相互传递,最后传给反应中心的一对特殊的叶绿素分子a,这一对叶绿素分子与作为电子供体和受体的蛋白质紧紧地结合在一起。叶绿素a被激发成激发态,同时放出电子给原初电子受体(primary electron receptor),此时叶绿素a被氧化成带正电荷的氧化态,而受体被还原成带负电荷的还原型受体。氧化态的叶绿素a又可从原初电子供体处获得电子而恢复为原来的还原状态,原初电

子供体则被氧化成氧化态,这样不断地氧化还原,就不断地把电子传递给原初电子受体,原初电子受体将高能电子释放进入电子传递链,完成了光能转化为化能的过程。

4.在光合作用的光反应中,类囊体膜两侧的H+质子梯度是如何建立的?(答案)

答:在叶绿体进行的光反应中,类囊体的膜在进行电子传递的同时,会在类囊体膜两侧建立H+质子梯度。类囊体膜两

侧H+质子梯度的建立,主要有三种因素:①首先是水的光解,在释放4个电子、一分子O2的同时,释放4个H+。水的裂解是在类囊体的腔中进行的,所以水的裂解导致类囊体腔中H+浓度的增加;②Cyt b6/f复合物具有质子泵的作用,当P680将电子传递给PQ时,从基质中摄取了两个H+,形成PQH2,传递四个电子,则要从基质中摄取四个H+。当PQH2将电子传递给Cyt b6/f复合物时,两分子PQH2的四个H+全被泵入类囊体的腔,叶绿体腔中H+浓度降低的同时,类囊体腔中H+浓度进一步提高;③当电子最后传递给NADP+时,需从基质中摄取两个H+质子将NADP+还原成NADPH,这样又降低了基质中的H+质子的浓度.其结果使类囊体膜两侧建立了H+质子电化学梯度。

1.如何理解细胞膜作为界膜对细胞生命活动所起的作用?(答案)

答:界膜的涵义包括两个方面:细胞界膜和内膜结构的界膜,作为界膜的膜结构对于细胞生命的进化具有重要意义,这种界膜不仅使生命进化到细胞的生命形式,也保证了细胞生命的正常进行,它使遗传物质和其他参与生命活动的生物大分子相对集中在一个安全的微环境中,有利于细胞的物质和能量代谢。细胞内空间的区室化,不仅扩大了表面积,还使细胞的生命活动更加高效和有序。

2.如何理解“被动运输是减少细胞与周围环境的差别,而主动运输则是努力创造差别,维持生命的活力”?(答案)

答:主要是从创造差异对细胞生命活动的意义方面来理解这一说法。主动运输涉及物质输入和输出细胞和细胞器,并且能够逆浓度梯度或电化学梯度。这种运输对于维持细胞和细胞器的正常功能来说起三个重要作用:①保证了细胞或细胞器从周围环境中或表面摄取必需的营养物质,即使这些营养物质在周围环境中或表面的浓度很低;②能够将细胞内的各种物质,如分泌物、代谢废物以及一些离子排到细胞外,即使这些物质在细胞外的浓度比细胞内的浓度高得多;③能够维持一些无机离子在细胞内恒定和最适的浓度,特别是K+、Ca2+和H+的浓度。概括地说,主动运输主要是维持细胞内环境的稳定,以及在各种不同生理条件下细胞内环境的快速调整,这对细胞的生命活动来说是非常重要的。

1.细胞有几种类型的粘着?它们之间有何不同?(答案)

答:有两种类型,四种不同的粘着方式。两种类型就是同嗜性细胞粘着和异嗜性细胞粘着,每一种类型中又有两种不同的粘着方式。同嗜性细胞粘着是指参与粘

着的两细胞都是用相同的细胞粘着分子,其中两种不同的方式是分别由钙粘着蛋白和免疫球蛋白介导的细胞粘着。异嗜性细胞粘着是指参与粘着的两细胞是用不同的细胞粘着分子介导,两种不同的方式

是免疫球蛋白超家族-整联蛋白介导的粘着、粘蛋白-选择素介导的细胞粘着。

2.紧密连接除了连接细胞外还有什么作用?意义何在?(答案)

答:紧密连接除了连接细胞之外,还有两个作用:防止物质双向渗漏,并限制了膜蛋白在脂分子层的流动,维持细胞的极性。

紧密连接能够阻止细胞外液中的物质从细胞层的一侧流向另一侧,紧密连接的这种限制对于膀胱一类器官特别重要。在膀胱中必须严格防止尿液回流到组织,另外肠道中的物质进入体液也必须仔细调节控制。这些分子从细胞层的一侧移向另一侧的惟一途径就是通过运输蛋白来精确控制。

紧密连接除了具有渗透障碍作用之外,还影响表皮细胞质膜的极性。例如,肠道表皮细胞含有不同运输蛋白位于肠道表面的细胞质膜,而位于基底面的细胞质膜含较少运输蛋白。由于脂层是流动的,只有靠紧密连接阻止膜蛋白从一侧向另一侧的扩散,从而维持着细胞的极性。

3.粘着带与粘着斑连接有什么不同?(答案)

答:主要差别是:粘着带是细胞与细胞间的粘着连接,而粘着斑是细胞与细胞外基质相连。除了这一根本区别之外,还有其他一些不同:①参与粘着带连接的膜整

合蛋白是钙粘着蛋白,而参与粘着斑连接的是整联蛋白,即细胞外基质受体蛋白;

②粘着带连接实际上是两个相邻细胞膜上的钙粘着蛋白与钙粘着蛋白的连接,而粘着斑连接是整联蛋白与细胞外基质中的粘连蛋白的连接,因整联蛋白是纤粘连蛋白的受体,所以粘着斑连接是通过受体与配体的结合;③粘着斑连接中,细胞质斑含有踝蛋白(talin),这种蛋白在其它的细胞质斑中是不存在的。

4.间隙连接的作用如何受细胞质中Ca2+和H+浓度的调节?(答案)

答:间隙连接在低Ca2+浓度时开放,此时的细胞质处于静息状态;当Ca2+浓度升高时,间隙连接的通道逐步缩小,当Ca2+浓度达到10-5M时间,通道完全关闭。提高H+浓度,也就是将细胞质中pH值从7.0降低到6.8或更低,间隙连接的通道也会关闭。间隙连接除了受Ca2+和H+调节外,还受其他的因素调节。

1.什么是G蛋白循环(G protein cycle)?与哪些蛋白相关?(答案)

答:G蛋白能够以两种不同的状态结合在细胞质膜上。一种是静息状态,即三体状态,此时的α亚基上结合的是GDP。另一种是活性状态,此时的α亚基上结合的是GTP,并且α亚基已与Gβγ亚基分开,而同某一特异蛋白结合在一起,引起信号转导。如果GTP被水解成GDP,则G蛋白又恢复成三体的静息状态,因为此时在α亚基上结合的是GDP而非GTP。G蛋白由非活性状态转变成活性状态,尔后又恢复到非活性状态的过程称为G蛋白循环。G蛋白的这种活性转变

与三种蛋白相关联:

①GTPase激活蛋白(GTPase-activating protein,GAPs)大多数G蛋白具有催化所结合的GTP水解的能力,但是这种能力在与GAPs相互作用时会大大提高,由于GAPs的作用加速了GTP的水解,因而GAPs能够缩短G蛋白介导应答的时间。

②鸟苷交换因子(guanine nucleotide-exchange factors,GEFs)与失活G蛋白结合的GDP被GTP替换后,G蛋白就会转变成活性状态。GEFs是促进GDP 从G蛋白上解离的蛋白因子,一旦GDP被释放,G蛋白很快就会与GTP结合,因为细胞中的GTP的浓度很高,所以GEFs能够激活G蛋白。

③鸟苷解离抑制蛋白(guanine nucleotide-dissociation inhibitors,GDIs) GDIs的作用是抑制结合的GDP从G蛋白释放出来,所以GDIs可保持G蛋白处于非活性状态。

2.胰高血糖素和肾上腺素是如何使靶细胞中的cAMP的浓度升高的?(答案)

答:胰高血糖素和肾上腺素作为第一信使作用于靶细胞的膜受体,通过G蛋白偶联系统激活腺苷酸环化酶,将ATP生成cAMP,主要过程包括:

G蛋白被受体激活当配体与受体结合时,引起受体构型的改变,从而提高与G蛋白的结合亲和力,这也是细胞信号分子的惟一功能。结合有配体的受体在细胞质膜的内侧面与G蛋白结合,形成受体-G蛋白复合物。与受体结合的G蛋白α亚基释放出GDP,并与GTP结合,这样就使G蛋白成为活性状态。

G蛋白被受体激活当配体与受体结合时,引起受体构型的改变,从而提高与G蛋白的结合亲和力,这也是细胞信号分子的惟一功能。结合有配体的受体在细胞质膜的内侧面与G蛋白结合,形成受体-G蛋白复合物。与受体结合的G蛋白α亚基释放出GDP,并与GTP结合,这样就使G蛋白成为活性状态。

应答的终结当与Gα结合的GTP被水解成GDP时,信号转导就会终止。因此, GTP水解的速率在某种程度上决定着信号转导的强度和时间的长短。Gα亚基具有较弱的GTPase的活性,能够缓慢地水解GTP,进行自我失活.失活可通过与GAP的作用而加速。一旦GTP水解成GDP,Gα-GDP能够重新与Gβγ复合物恢复结合,形成非活性的三体复合物。

3.细胞如何解除IP3的信号作用?(答案)

答:主要是改变IP3的结构,通过两种方式:

①IP3被水解,即IP3在5-'磷酸酶的作用下,水解为I(1,4)P2,并且进一步水解成肌醇。5'磷酸酶是一种膜结合的酶。②在胞浆的肌醇磷酸脂3-激酶的

作用下,IP3被ATP磷酸化生成肌醇-1,3,4,5-四磷酸(inositol-1,3,4,5-tetraphosphate,IP4),然后被水解成无活性的肌醇-1,3,4-三磷酸(inositol-1,3,4-trisphosphate),从而解除IP3的作用。

4.请根据信号转导作用的机理说明磷酸酶在细胞信号解除中的作用(答案)

答:磷酸酶在信号解除中具有重要作用。在许多信号转导途径中,蛋白激酶靠磷酸化作用将一些靶蛋白(酶)激活

。蛋白质的磷酸化是一种可逆的化学修饰,所以通过蛋白激酶添加的蛋白质上的磷酸基团可通过蛋白磷酸酶的作用被除去。实验表明,激酶与磷酸酶对底物的影响是相反的,当磷酸化激活底物时,可通过脱磷酸将底物失活,反之亦然。所以,磷酸酶在细胞内的作用与磷酸化酶一样重要。

据估计,人的基因组编码1000种以上的磷酸酶(激酶大约2000种),这说明磷酸酶在细胞中是非常重要的酶。如同蛋白激酶一样,某些磷酸酶是多功能的,并且能够脱去几种蛋白质中的磷酸基团。但有些磷酸酶的活性相当专一,只能将一种或两种底物中的磷酸基团脱去。象丝氨酸/苏氨酸和酪氨酸磷酸激酶一样,多数磷酸酶分为丝氨酸/苏氨酸磷酸酶和酪氨酸磷酸酶,它们只能从磷酸化的丝氨酸/苏氨酸残基或磷酸化的酪氨酸残基脱磷酸,但不能同时从这两种类型的残基上脱磷

酸。不过,有些磷酸酶既能将磷酸化的丝氨酸/苏氨酸残基上的磷酸脱去,又能从磷酸化的酪氨酸残基脱去磷酸。

1.根据3H标记的尿嘧啶和放线菌素D研究人的培养细胞前体rRNA的合成,推测出前体rRNA的加工过程,请问3H标记的尿嘧啶和放线菌素D各起什么作用?(答案)

答:3H标记的尿嘧啶是追踪RNA的,而加入放线菌素D是为了阻断RNA的合成,这样随着RNA加工的进程,rRNA分子越来越小,便于判断。如果不阻断RNA合成,新合成的45S rRNA就会干扰判断。

在上述的研究中发现,当人的细胞同3H标记的尿嘧啶共培养25分钟后,被标记rRNA的沉降系数是45S,加入放线菌素D阻断RNA的合成后,标记的45S rRNA首先转变成32S的rRNA,随着培养时间的延长,逐渐出现被标记的28S、18S的rRNA。

2.核酶是如何被发现及证实的?这一发现有什么意义?(答案)

答:1981年,Thomas Cech和他的同事在研究四膜虫的26S rRNA前体加工去除基因内含子时获得一个惊奇的发现∶内含子的切除反应发生在仅含有核苷酸和纯化的26S rRNA前体而不含有任何蛋白质催化剂的溶液中,可能的解释只能是:内含子切除是由26S rRNA前体自身催化的,而不是蛋白质。

为了证明这一发现,他们将编码26S rRNA前体DNA克隆到细菌中并且在无细

胞系统中转录成26S rRNA前体分子。结果发现这种人工制备的26S rRNA前体分子在没有任何蛋白质催化剂存在的情况下,切除了前体分子中的内含子。这种现象称为自我剪接(self-splicing),这是人类第一次发现RNA具有催化化学反应的活性,具有这种催化活性的RNA称为核酶。

这一发现之后不久,在酵母和真菌的线粒体mRNA和tRNA前体加工、叶绿体的tRNA和rRNA前体加工、某些细菌病毒的mRNA前体加工中都发现了自我剪接现象。Thomas Cech因发现了核酶而获得1989年诺贝尔化

学奖。

核酶的发现在生命科学中具有重要意义,在进化上使我们有理由推测早期遗传信息和遗传信息功能体现者是一体的,只是在进化的某一进程中蛋白质和核酸分别执行不同的功能。核酶的发现为临床的基因治疗提供了一种手段,具有重要的应用前景。

3.多聚核糖体形成的意义何在?(答案)

答:同一条mRNA被多个核糖体同时翻译成蛋白质,大大提高了蛋白质合成的速率,更重要的是减轻了细胞核的负荷,减少了基因的拷贝数,也减轻了细胞核进行基因转录和加工的压力。

4.真核细胞中核糖体的合成和装配过程如何?(答案)

答:整个过程相当复杂,首先要合成与核糖体装配有关的蛋白质,这些蛋白质包括核糖体结构蛋白和与前体rRNA加工有关的酶。它们都是在细胞质的游离核糖体上合成,然后迅速集中到细胞核并在核仁区参与核糖体亚基的装配。

而组成核糖体亚基的18S rRNA、5.8S rRNA和28S rRNA基因则是在核仁中边转录边参与核糖体亚基的装配,5S rRNA却是在细胞核质中转录后运送到核仁中参与核糖体亚基的装配。

装配过程中,45S RNA、5S RNA同蛋白质形成80S RNA颗粒,然后80S颗粒被降解成大小两个颗粒,大颗粒为55S,含有32S和5S两种RNA,小颗粒含有20S的前体rRNA。然后,小颗粒中的20S RNA前体被快速降解成18S的rRNA,并运送到细胞质中,即是成熟的核糖体小亚基。55S大颗粒中的32S RNA 被加工形成28S和 5.8S两种rRNA并与5S rRNA装配成成熟的大亚基后,被运送到细胞质中,这个过程比较慢。如果这时有mRNA同小亚基结合的话,大亚基即可结合上去形成完整的核糖体,并进行蛋白质的合成。

1.线粒体基质蛋白是如何定位的?(答案)

答:运输过程是:前体蛋白在游离核糖体合成释放之后,在细胞质分子伴娘Hsp70的帮助下解折叠,然后通过N-端的转运肽同线粒体外膜上的受体蛋白识别,并在受体(或附近)的内外膜接触点(contact site)处利用ATP水解产生的能量

驱动前体蛋白进入转运蛋白(protein translocator)的运输通道,然后由电化学梯度驱动穿过内膜,进入线粒体基质。在基质中,由mHsp70继续维持前体蛋白的解折叠状态。然后在Hsp60的帮助下,前体蛋白进行正确折叠,最后由转运肽酶切除导向序列,成为成熟的线粒体基质蛋白。

2.过氧化物酶体是怎样进行氧浓度调节的?有什么意义?(答案)

答:过氧化物酶体中的氧化酶都是利用分子氧作为氧化剂,催化下面的化学反应:

RH2+O2---------→R+H2O2

这一反应对细胞内氧的水平有很大的影响。例如在肝细胞中,有20%的氧是由过氧化物酶体消耗的,其余的在线粒体中消耗。在过氧化物酶体中氧化产生的能量以产热的方式消

耗掉,而在线粒体中氧化产生的能量贮存在ATP中。线粒体与过氧化物酶体对氧的敏感性是不一样的,线粒体氧化所需的最佳氧浓度为2%左右,增加氧浓度,并不提高线粒体的氧化能力。过氧化物酶体与线粒体不同,它的氧化率是随氧张力增强而成正比地提高。因此,在低浓度氧的条件下,线粒体利用氧的能力比过氧化物酶体强,但在高浓度氧的情况下,过氧化物酶体的氧化

反应占主导地位,这种特性使过氧化物酶体具有使细胞免受高浓度氧的毒性作用。

3.过氧化物酶体是怎样被发现的?涉及哪些技术关键?(答案)

答:过氧化物酶体是de Duve和他的同事发现的,发现的过程很简单,但是实验的设计却给我们以极大的启发。

de Duve和他的同事通过梯度离心分离到溶酶体之后,通过对溶酶体酶的研究,发现至少有一种酶与溶酶体酶的性质不同:尿酸氧化酶不是酸性水解酶,尽管这种酶在离心分部时与溶酶体的酶相似。进一步研究发现在差速离心中,尿酸氧化酶与溶酶体的酶的沉降行为稍有不同,这些发现促使de Duve决心对该酶探个究竟,因为他猜测该酶有可能来自其他的细胞器。

通过等密度梯度离心技术,de Duve等终于获得尿酸氧化酶是一种新细胞器的酶的线索。通过蔗糖密度梯度离心,发现尿酸氧化酶存在的密度区是1.25g/cm3,而线粒体和溶酶体分别是1.19g/cm3和1.20g/cm3-1.24g/cm3,由于密度差异太小,而溶酶体自身的密度范围又很宽,如何将尿酸氧化酶与溶酶体的酶分开?他们根据一次偶然的实验观察,设计了一个很好的方法:用一种去垢剂Triton WR1339注射小鼠,这种去垢剂在细胞内主要积累在溶酶体中,并使溶酶体的浮力密度降低到1.1-1.14g/cm3,这样就可以将尿酸氧化酶与溶酶体和线粒体分开。

离心后部分收集尿酸氧化酶样品,经分析,收集的尿酸氧化酶的样品中还含有过

氧化物酶和D-氨基酸氧化酶,后来发现的几种酶都与H2O2的形成和分解有关,由于新发现的细胞器与过氧化氢有关,故此命名为过氧化物酶体。

通过酸性磷酸酶和过氧化氢酶的释放实验也证明过氧化物酶体与溶酶体是两种不同的细胞器。首先分离能够释放酸性磷酸酶和过氧化氢酶的膜结合细胞器,然后用去垢剂(毛地黄皂苷)破坏细胞器使之释放酸性磷酸酶和过氧化氢酶。如果这两种酶定位于同一种细胞器中,那么只要该细胞器破裂就会同时释放出这两种酶,实验结果是要加十倍量的去垢剂才能释放过氧化氢酶,这就说明溶酶体和过氧化物酶体是两种不同的细胞器,两种细胞器的膜对去垢剂的耐受性是不同的。

1.生物膜是怎样合成的?可能的机理是什么?(答案)

答:关于膜的合成,曾提出两个模型:一个自装配模

型(spontaneous self-assembly),即膜是由蛋白、脂和糖自动组装的,但与体外实验结果不符。因为用纯化的脂和蛋白在体外装配时总是形成脂质体,这种脂质体与活细胞膜的一个根本区别是:脂质体的结构总是对称的,而活细胞中膜结构则是不对称的。

第二个是不断更新模型,该模型认为膜的合成通过不断地将脂和蛋白插入已有的膜,即由已有膜的生长而来。这一模型比较符合细胞膜结构的动态性质,

由于细胞的胞吞和胞吐作用以及小泡运输,使膜处于动态平衡状态,这样膜也就不必重新合成,而是在原有的基础上不断更新。

膜的合成涉及脂、蛋白和糖的来源问题。

膜脂有两种来源:①通过磷脂转运蛋白,如线粒体、叶绿体、过氧化物酶体等细胞器膜中的脂就是靠这种方式运送的。②通过出芽和膜融合,如ER通过出芽形成分泌小泡运送蛋白质时,膜脂也随之运送到高尔基体,并通过高尔基体形成分泌小泡将膜脂运送到细胞质膜。由于内质网与核膜相连,通过细胞分裂和核膜重建,ER上合成的膜脂也就转移到核膜。原核生物没有内质网,它的磷脂是在质膜上合成并由类似于真核生物的转位蛋白调整磷脂在膜上的分布。

关于膜脂的不对称性分布,有几种可能的方式∶一种是磷脂交换蛋白对磷脂的运输和插入是选择性的;第二种解释是热动力学驱使磷脂的不对称分布,因为

膜两侧的环境不同。另外在ER膜中有翻转酶(flippase),在新的磷脂合成之后,通过翻转酶的作用也会造成磷脂的不对称分布。

膜蛋白有整合蛋白和外周蛋白。用水泡性口炎病毒(vesicular stomatitis virus,VSV)作为模式系统研究了细胞膜整合蛋白和外周蛋白的形成途径,发现膜整合蛋白是通过内膜系统经小泡转运到质膜上的,而外周蛋白则是在游离核糖体上合成,并以可溶的形式释放到胞质溶胶中。然后再与细胞质膜的胞质溶胶面结合,成为外周蛋白。糖则是在内质网和高尔基体腔中通过对蛋白的修饰添加的。最后在与质膜融合时,通过外翻,糖的部分位于细胞质膜的外侧。这就是为何几乎所有质膜上的糖蛋白的糖都是朝向细胞外的原因。

细胞生物学期末复习简答题及答案

细胞生物学期末复习简答题及答案 五、简答题 1、细胞学说的主要容是什么?有何重要意义? 答:细胞学说的主要容包括:一切生物都是由细胞构成的,细胞是组成生物体的基本结构单位;细胞通过细胞分裂繁殖后代。细胞学说的创立参当时生物学的发展起了巨大的促进和指导作用。 其意义在于:明确了整个自然界在结构上的统一性,即动、植物的各种细胞具有共同的基本构造、基本特性,按共同规律发育,有共同的生命过程;推进了人类对整个自然界的认识;有力地促进了自然科学与哲学的进步。 2、细胞生物学的发展可分为哪几个阶段? 答:细胞生物学的发展大致可分为五个时期:细胞质的发现、细胞学说的建立、细胞学的经典时期、实验细胞学时期、细胞生物学时期。 3、为什么说19世纪最后25年是细胞学发展的经典时期? 答:因为在19世纪的最后25年主要完成了如下的工作: ⑴原生质理论的提出;⑵细胞分裂的研究;⑶重要细胞器的发现。这些工作大推动了细胞生物学的发展。 1、病毒的基本特征是什么? 答:⑴病毒是“不完全”的生命体。病毒不具备细胞的形态结构,但却具备生命的基本特征(复制与遗传),其主要的生命活动必需在细胞才能表现。⑵病毒是彻底的寄生物。病毒没有独立的代和能量系统,必需利用宿主的生物合成机构进行病毒蛋白质和病毒核酸的合成。⑶病毒只含有一种核酸。⑷病毒的繁殖方式特殊称为复制。 2、为什么说支原体是目前发现的最小、最简单的能独立生活的细胞生物? 答:支原体的的结构和机能极为简单:细胞膜、遗传信息载体DNA与RNA、进行蛋白质合成的一定数量的核糖体以及催化主要酶促反应所需要的酶。这些结构及其功能活动所需空间不可能小于100nm。因此作为比支原体更小、更简单的细胞,又要维持细胞生命活动的基本要求,似乎是不可能存在的,所以说支原体是最小、最简单的细胞。 1、超薄切片的样品制片过程包括哪些步骤? 答案要点:固定,包埋,切片,染色。 2、荧光显微镜在细胞生物学研究中有什么应用? 答案要点:荧光显微镜是以紫外线为光源,照射被检物体发出荧光,在显微镜下观察形状及所在位置,图像清晰,色彩逼真。 荧光显微镜可以观察细胞天然物质经紫外线照射后发荧光的物质(如叶绿体中的叶绿素能发出血红色荧光);也可观察诱发荧光物质(如用丫啶橙染色后,细胞中RNA发红色荧光,DNA发绿色荧光),根据发光部位,可以定位研究某些物质在细胞的变化情况。 3、比较差速离心与密度梯度离心的异同。 答案要点:二者都是依靠离心力对细胞匀浆悬浮液中的颗粒进行分离的技术。差速离心是一种较为简便的分离法,常用于细胞核和细胞器的分离。因为在密度均一的介质中,颗粒越大沉降越快,反之则沉降较慢。这种离心方法只能将那些大小有显著差异的组分分开,而且所获得的分离组分往往不很纯;而密度梯度离心则是较为精细的分离手段,这种方法的关键是先在离心管中制备出蔗糖或氯化铯等介质的浓度梯度并将细胞匀浆装在最上层,密度梯度的介质可以稳定沉淀成分,防止对流混合,在此条件下离心,细胞不同组分将以不同速率沉降并形成不同沉降带。 4、为什么电子显微镜不能完全替代光学显微镜? 答案要点:电子显微镜用电子束代替了光束,大大提高了分辨率,电子显微镜相对光学显微镜是个飞跃。

医学细胞生物学试题及答案(四)

题库—医学细胞生物学 第六章细胞质与细胞器 【教案目的与要求】 一、掌握 . 内膜系统的概念。 . 内质网的形态结构及类型;粗面内质网的主要功能;信号肽假说的主要内容。. 高尔基复合体的超微结构及主要功能。 . 溶酶体的形态特征及其形成过程。 . 线粒体的超微结构及其相关的生物学功能。 . 线粒体的半自主性。 二、熟悉 . 滑面内质网的主要功能。 . 高尔基复合体与膜流活动。 . 膜流中膜囊泡的类型以及各自参与的物质定向运输方式。 . 溶酶体的类型;溶酶体的主要功能。 . 线粒体形态、数目及分布与其类型和功能状态有关。 . 线粒体有相对独立的遗传体系。 . 核编码蛋白质的线粒体转运。 三、了解 . 游离核糖体和附着核糖体及二者合成蛋白质的差别。 . 核糖体上与蛋白质合成密切相关的活性部位。 . 蛋白质的糖基化方式。 .线粒体的特点,胞质蛋白和母系遗传的概念。 . 线粒体参与介导细胞死亡。

一、单选题 . 矽肺与哪一种细胞器有关() A.高尔基体 .内质网.溶酶体.微体.过氧化物酶体 . 以下哪些细胞器具有极性() A.高尔基体 .核糖体 .溶酶体 .过氧化物酶体 .线粒体. 粗面型内质网上附着的颗粒是() A. .核糖体Ⅱ衣被蛋白 .粗面微粒体 . 肝细胞中的脂褐质是() A.衰老的高尔基体 B.衰老的过氧化物酶 C.残体() D.脂质体 E.衰老的线粒体 . 人体细胞中含酶最多的细胞器是() A.溶酶体.内质网.线粒体.过氧化物酶体.高尔基体 .下列哪种细胞器是非膜性细胞器() A.线粒体 .核糖体 .高尔基体 .溶酶体 .过氧化物酶体 .下列哪项细胞器不是膜性细胞器() A.溶酶体.内质网.染色体.高尔基复合体.过氧化物酶体.下列哪种细胞器具双层膜结构() A.线粒体 .内质网 .高尔基体 .溶酶体 .过氧化物酶体 .由两层单位膜构成的细胞器是() A.溶酯体.内质网.核膜 .微体 .高尔基复合体 .粗面内质网和滑面内质网的区别是() A.粗面内质网形态主要为管状,膜的外表面有核糖体 B.粗面内质网形态主要为扁平囊状,膜的外表面有核糖体 C.滑面内质网形态主要为扁平囊状,膜上无核糖体 D.粗面内质网形态主要为扁平囊状,膜的内表面有核糖体 E.以上都不是 .下列核糖体活性部位中哪项具有肽基转移酶活性?() A.因子因子位位位和位 . 组成微管的管壁有多少条原纤维() A. .10 .下列核糖体活性部位中哪个是接受氨酰基的部位() A.因子因子位位 .以上都不是 .在肽键形成时,肽酰基所在核糖体的哪一部位?() A.供体部位 .受体部位 .肽转移酶中心酶部位 .以上都是.下列哪一种结构成分不是高尔基复合体的组成部分:() A.扁平囊.小囊泡.大囊泡.微粒体.以上都是 .除了细胞核外,含有分子的细胞器是() A.线粒体.内质网.核糖体.溶酶体 .高尔基复合体 .高尔基复合体的小泡主要来自于() A. .以下哪个结构与核膜无关() A.内外两层膜 .基粒 .核孔复合体 .核纤层 .以上都不对.以下有关微管的叙述,哪项有误?()

(完整版)医学细胞生物学常用简答题详细答案.docx

细胞生物学复习-简答题 第三章真核细胞的基本结构 膜的流动性和不对称性极其生理意义 流动性:膜蛋白和膜脂处于不断运动的状态。主要由膜脂双层的动态变化引起,质膜的流动性由膜脂和蛋白质的分子运动两个方面组成。 膜质分子的运动:侧向移动、旋转、翻转运动、左右摆动 膜蛋白的运动:侧向移动、旋转 生理意义: 1、质膜的流动性是保证其正常功能的必要条件。如物质跨膜运输、细胞信息传递、细胞识别、细胞免疫、细胞 分化以及激素的作用等等都与膜的流动性密切相关。 2、当膜的流动性低于一定的阈值时,许多酶的活动和跨膜运输将停止。 不对称性:质膜的内外两层的组分和功能有明显的差异,称为膜的不对称性。 膜脂、膜蛋白和糖在膜上均呈不对称分布,导致膜功能的不对称性和方向性,即膜内外两层的流动性不同,使物 质传递有一定方向,信号的接受和传递也有一定方向 生理意义: 1、保证了生命活动有序进行 2、保证了膜功能的方向性 影响膜流动性的因素 1、胆固醇:相变温度以上,会降低膜的流动性;相变温度以下,则阻碍晶态形成。 2、脂肪酸链的饱和度:不饱和脂肪酸链越多,膜流动性越强。 3、脂肪酸链的长度:长链脂肪酸使膜流动性降低。 4 、卵磷脂 / 鞘磷脂:比例越高则膜流动性越增加(鞘磷脂粘度高于卵磷脂)。 5、膜蛋白:镶嵌蛋白越多流动性越小 6、其他因素:温度、酸碱度、离子强度等 细胞外被作用 1、保护、润滑作用:如消化道、呼吸道和生殖道的上皮细胞的糖萼 2、决定抗原 3、许多膜受体是糖蛋白或糖脂蛋白,参与细胞识别、应答、信号传递 RER和 SER的区别 存在细胞形状结构功能 RER在蛋白质合成囊状或扁平膜上含有特殊的参与蛋白质合成和修 旺盛的细胞中囊状,核糖核糖体连接蛋饰加工(糖基化,酰 发达。体和 ER 无白,可与核糖体基化,二硫键形成, 论在结构上60S 大亚基上的氨基酸的羟化,以及 还是功能上糖蛋白连接新生多肽链折叠成三 都不可分割级结构) SER在特化的细胞泡样网状结脂类和类固醇激素合 中发达构,无核糖成场所。 体附着肝细胞 SER解毒

细胞生物学简答题整理

1.简述G蛋白偶联受体所介导的信号通路的异同G蛋白偶联受体所介导信号通路分为三类: ①激活离子通道;②激活或抑制腺苷酸环化酶,以cAMP 为第二信使;③激活磷脂酶C ,以IP3 和DAG 作为双信使 激活离子通道: 当受体与配体结合被激活后,通过偶联G蛋白的分子开关作用,调控跨膜离子通道的开启和关闭,进而调节靶细胞的活性。 激活或抑制腺苷酸环化酸的cAMP信号通路: 细胞外信号(激素,第一信使)与相应G蛋白偶联的受体结合,导致细胞内第二信使cAMP的水平变化而引起细胞反应的信号通路。腺苷环化酶调节胞内cAMP的水平,cAMP被环腺苷酸磷酸二酯酶降解清除。 cAMP信号通路主要是通过活化cAMP依赖性蛋白激酶A (PKA) ,激活靶酶开启基因表达,从而表现出不同的效应。蛋白激酶A 由2个催化亚基和2个调节亚基组成,cAMP的结合可改变调节亚基的构象,释放催化亚基产生活性。 蛋白激酶A被激活后,一方面通过对底物蛋白的磷酸化,引起细胞对胞外信号的快速反应;另一方面,其催化亚基可进入细胞核,磷酸化cAMP应答元件结合蛋白 (CREB) 的丝氨酸残基。磷酸化的CREB蛋白被激活,它作为基因转录的调节蛋白识别并结合到靶细胞的cAMP应答元件 (CRE) 启动靶基因的转录,引起细胞缓慢的应答反应。 cAMP信号通路中的缓慢反应过程:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→ cAMP→ cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。 cAMP是由腺苷酸环化酶 (adenylyl cyclase,AC) 催化合成的,腺苷酸环化酶为跨膜12次的糖蛋白,在Mg2+或Mn2+存在下能催化ATP生成cAMP;细胞内的环腺苷酸磷酸二酯酶 (PDE) 可降解cAMP生成5’-AMP,导致细胞内cAMP水平

医学细胞生物学试题及答案(六)

细胞生物学试题题库第五部分 简答题 1. 根据光镜与电镜的特点,观察下列结构采用那种显微镜最好?如果用光镜(暗视野、相差、免疫荧显微镜) 那种最有效?为什么? 2. 细胞是生命活动的基本单位,而病毒是非细胞形态的生命体,如何理解二者之间的关系? 3. 为什么说支原体是最小、最简单的细胞? 4. 原核细胞与真核细胞差别是后者有细胞器,细胞器结构的出现有什么优点?(至少2点) 5. 简述动物细胞与植物细胞之间的主要区别。 6. 简述动物细胞、植物细胞、原生动物应付低渗膨胀的主要方式? 7. 简述单克隆抗体的主要技术路线。 8. 简述钠钾泵的工作原理及其生物学意义。 9. 受体的主要类型。 10. 细胞的信号传递是高度复杂的可调控过程,请简述其基本特征。 11. 简述胞饮作用和吞噬作用的主要区别。 12. 细胞通过分泌化学信号进行通讯主要有哪几种方式? 13. 简要说明G蛋白偶联受体介导的信号通路的主要特点。 14. 信号肽假说的主要内容。 15. 简述含信号肽的蛋白在细胞质合成后到内质网的主要过程。 16. 简述蛋白质糖基化修饰中N-连接与O-连接之间的主要区别。 17. 溶酶体膜有何特点与其自身相适应? 18. 简述A.TP合成酶的作用机制。 19. 化学渗透假说的主要内容。 20. 内共生学说的主要内容。 21. 线粒体与叶绿体基本结构上的异同点。 22. 细胞周期中核被膜的崩解和装配过程。 23. 核孔复合体的结构模型。 24. 染色质的多级螺线管模型。 25. 染色体的放射环模型。 26. 细胞内以多聚核糖体的形式合成蛋白质,其生物学意义是什么? 27. 肌肉收缩的机制。 28. 纤毛的运动机制。 29. 中心体周期。 30. 简述C.D.K1(MPF)激酶的活化过程。 31. 泛素化途径对周期蛋白的降解过程。 32. 人基因组大约能编码5万个基因,而淋巴细胞却能产生约107-109个不同抗体分子,为什么? 33. 细胞学说的主要内容。 34. 溶酶体膜有何与其自身功能相适应的特点? 35. 何为信号肽假说的? 36. 核孔复合体的结构模型。 37. 胞饮作用和吞噬作用的区别。 38. 为什么说线粒体和叶绿体是半自主性细胞器? 39. 简述核被膜的主要功能 40. 简述减数分裂的意义

细胞生物学名词解释和简答题版

第四章P16提要第一段;细胞生物学概念,研究的主要内容 研究细胞基本生命活动规律的科学称为细胞生物学。它是以细胞为研究对象,从细胞的显微水平、亚显微水平、分子水平等三个层次,主要研究细胞和细胞器的结构和功能、细胞增殖、分化、衰老与凋亡,细胞信号转导、细胞基因表达与调控,细胞起源与进化等。二、细胞生物学的主要研究内容1 细胞核、染色体以及基因表达的研究2生物膜与细胞器的研究3生物膜与细胞器的研究4 细胞增殖及其调控5 细胞分化及其调控6 细胞的衰老与凋亡7细胞的起源与进化8 细胞工程P46提要真核结构:1生物膜体系以及生物膜为基础构建的各种独立的细胞器2.遗传信息表达的结构体系3细胞骨架体系 P80提要,普通光学显微镜结构和性能参数 1、光学显微镜的组成主要分为光学放大系统,为两组玻璃透镜:目镜和物镜;照明系统:光源、折光镜、聚光镜;机械和支架系统,主要保证光学系统的准确配置和灵活调控。光学显微镜的分辨率是最重要的性能参数,它由光源的波长、物镜的镜口角和介质折射率三个因素决定。 2、荧光显微镜是以紫外光为光源,电子显微镜则是以电子束为光源。 3、倒置显微镜与普通光学显微镜的不同在于物镜和照明系统的位置颠倒。

一、名词解释 外在膜蛋白:外在膜蛋白为水溶性蛋白质,靠离子键或其他较弱的键与膜表面的膜蛋白分子或膜脂分子结合,因此只要改变溶液的离子强度甚至提高温度就可以从膜上分离下来,但膜结构并不被破坏。 内在膜蛋白:内在膜蛋白是通过与之共价相连的脂分子插入膜的脂双分子中,从而锚定在细胞质膜上。与脂肪酸结合的内在膜蛋白多分布在质膜内侧,与糖脂相结合的内在膜蛋白多分布在质膜外侧。 生物膜:镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用生物膜,也是与许多能量转化和细胞内通讯有关的重要部位,同时,生物膜上还有大量的酶结合位点。细胞、细胞器和其环境接界的所有膜结构的总称。 二、简答题 1、生物膜的结构和功能,影响生物膜流动性的因素 生物膜的基本结构与作用 (1)具有极性头部和非极性尾部的磷脂分子在水相中具有自发形成封闭的膜系统的性质,以疏水性非极性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,尚未发现在生物膜结构中起组织作用的蛋白。 (2)蛋白分子以不同的方式镶嵌在脂双分子中或结合在其表面,蛋白的类型,蛋白分布的不对称性及其与脂分子的协同作用赋予生物膜具有各自的特性与功能。

医学细胞生物学试题及答案大全03

医学细胞生物学试题及答案 第一章细胞生物学与医学 一、名词解释 1. 细胞生物学(cell biology: 2. 医学细胞生物学(medical cell biology: 二、问答题 1. 简述细胞生物学的主要研究内容。 2. 如何理解细胞的“时空”特性? 3. 细胞学说是怎样形成的? (eukaryotic cell:拟核(nucleoid:质粒 细胞体积守恒定律 二、问答题2. 比较真核细胞的显微结构和亚显微结构。3. 细胞的生命现象表现在哪些方面? 第五章细胞膜及其表面 一、名词解释

1. 生物膜(biological membrane 2. 脂质体(liposome 3. 糖脂(glycolipid 和糖蛋白(glycoprotein 4. 内在蛋白质(integral protein 和周边蛋白质(peripheral protein 6. 细胞表面(cell surface 8. 糖萼(glycocalyx 9. 细胞连接(cell junction 11. 穿膜运输(transmembrane transport 和膜泡运输(transport by vesicle formation 12. 胞吞作用(endocytosis 、胞饮作用(pinocytosis 和胞吐作用(exocytosis 13. 低密度脂蛋白(low density lipoprotein, LDL 14. 受体(receptor 和配体(ligand 1 5. 细胞识别(cell recognition 1 6. G 蛋白受体(G receptor和G 蛋白(G protein 1 7. 信号转导(signal transduction 1 8. 二、问答题 1. 组成细胞膜的化学物质主要有哪些? 2. 3. 5. 细胞膜的理化特性有哪些? 12. 细胞是如何识别的?细胞的识别有何生物学意义? 13. 简述G 蛋白的结构和作用机制。 14.cAMP 、IP3、DAG 和Ca 2+等第二信使分属于哪些信号传导通路?是如何产生的?有何生物学功能? 第六章细胞质和细胞器 一、名词解释

医学细胞生物学考试题库(1)

医学细胞生物学08级考试题库 一、名词解释(gyxj): 1、主动运输:是载体蛋白介导的物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧进行的跨膜运输方式,要消耗能量。 2、易化扩散:一些亲水性的物质不能以简单扩散的方式通过细胞膜,但它们在载体蛋白的介导下,不消耗细胞的代谢能量,顺物质浓度或电化学梯度进行转运。 3、内在膜蛋白:其主体部分穿过细胞膜脂双层,分为单次跨膜,多次跨膜和多亚基跨膜蛋白三种类型。 4、脂锚定蛋白:这类膜蛋白位于膜的两侧,很像外周蛋白,但与其不同的是脂锚定蛋白以共价键与脂双层内的脂分子结合。 5、肽键:是一个氨基酸分子上的羧基与另一个氨基酸分子上的氨基经脱水缩合形成的化学键。 6、蛋白质二级结构:是在蛋白质一级结构基础上形成的,是由于肽链主链内的氨基酸残基之间有规则地形成氢键相互作用的结果。 7、转录:基因转录是遗传信息从DNA流向RNA 的过程,即将DNA分子上的核苷酸序列转变为RNA分子上核苷酸序列的过程。 8、蛋白质一级结构:是指蛋白质分子中氨基酸的排列顺序。 9、膜泡运输:大分子和颗粒物质运输时并不直接穿过细胞膜,都是由膜包围形成膜泡,通过一些列膜囊泡的形成和融合来完成的转运过程。 10、吞噬体:细胞摄取较大的固体颗粒或或分子复合物,在摄入这类颗粒物质时,细胞膜凹陷或形成伪足,将颗粒包裹后摄入细胞,吞噬形成的膜泡称为吞噬体。 11、胞饮体:质膜内凹陷形成一个小窝,包围液体物质而形成。 12、受体介导的内吞作用:是细胞通过受体介导摄取细胞外专一性蛋白质或其它化合物的过程。 13、细胞外被:在大多数真核细胞表面有富含糖类的周缘区,被称为细胞外被。 14、胞质溶胶:是均匀而半透明的液体物质,其主要成分是蛋白质。 15、细胞内膜系统:是细胞内那些在结构、功能及其发生上相互密切关系的膜性结构细胞器之总称。 16、N-连接糖基化:发生在粗面内质网中的糖基化主要是寡糖与蛋白质天冬酰胺残基侧链上氨基基团的结合,所以亦称之为N-连接糖基化。 17、初级溶酶体:是指通过其形成途径刚刚产生的溶酶体。 18、次级溶酶体:当初级溶酶体经过成熟,接受来自细胞内、外的物质,并与之发生相互作用时,即成为次级溶酶体。 19、自噬溶酶体:作用底物是来自于细胞自身的各种组分,或者衰老、残损和破碎的细胞器。 20、吞(异)噬性溶酶体:作用底物是源于细胞外来的物质。 21、细胞呼吸:在细胞内特定的细胞器(主要是线粒体)内,在O2的参与下,分解各种大分子物质,产生CO2 ;与此同时,分解代谢所释放出的能量储存于ATP中。22、呼吸链:由一系列能够可逆地接受或释放H+和e_ 的化学物质在内膜上有序的排列成相关联的链状。

细胞生物学简答题整理

1.简述G蛋白偶联受体所介导的信号通路的异同 G蛋白偶联受体所介导信号通路分为三类: ①激活离子通道;②激活或抑制腺苷酸环化酶,以cAMP 为第二信使;③激活磷脂酶C ,以IP3 和DAG 作为双信使 激活离子通道: 当受体与配体结合被激活后,通过偶联G蛋白的分子开关作用,调控跨膜离子通道的开启和关闭,进而调节靶细胞的活性。

激活或抑制腺苷酸环化酸的cAMP信号通路: 细胞外信号(激素,第一信使)与相应G蛋白偶联的受体结合,导致细胞内第二信使cAMP的水平变化而引起细胞反应的信号通路。腺苷环化酶调节胞内cAMP的水平,cAMP被环腺苷酸磷酸二酯酶降解清除。 cAMP信号通路主要是通过活化cAMP依赖性蛋白激酶A (PKA) ,激活靶酶开启基因表达,从而表现出不同的效应。蛋白激酶A 由2个催化亚基和2个调节亚基组成,cAMP的结合可改变调节亚基的构象,释放催化亚基产生活性。 蛋白激酶A被激活后,一方面通过对底物蛋白的磷酸化,引起细胞对胞外信号的快速反应;另一方面,其催化亚基可进入细胞核,磷酸化cAMP应答元件结合蛋白(CREB) 的丝氨酸残基。磷酸化的CREB 蛋白被激活,它作为基因转录的调节蛋白识别并结合到靶细胞的cAMP应答元件(CRE) 启动靶基因的转录,引起细胞缓慢的应答反应。 cAMP信号通路中的缓慢反应过程:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→ cAMP→ cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。

cAMP是由腺苷酸环化酶 (adenylyl cyclase,AC) 催化合成的,腺苷酸环化酶为跨膜12次的糖蛋白,在Mg2+或Mn2+存在下能催化ATP生成cAMP;细胞内的环腺苷酸磷酸二酯酶 (PDE) 可降解cAMP生成5’-AMP,导致细胞内cAMP水平下降。因此,细胞内cAMP的浓度受控于腺苷酸环化酶和PDE的共同作用)。 cAMP信号调控系统由质膜上的5种成分组成:刺激型激素受体(Rs)、抑制型激素受体(Ri)、刺激型G蛋白(Gs)、抑制型G蛋白(Gi)、腺苷酸环化酶(E)。Gs和Gi的β、γ亚基相同,而α亚基不同决定了对激素对腺苷酸环化酶的作用不同。 Gs的调节作用:当细胞没有受到激素刺激时,Gs处于非活化状态,G蛋白的亚基与GDP结合,此时腺苷酸环化酶没有活性;当激素配体与Rs受体结合后,导致受体构象改变,暴露出与Gs结合的位点,配体-受体复合物与Gs结合,Gs的亚基构象改变,排斥GDP 结合GTP,使G蛋白三聚体解离,暴露出的亚基与腺苷酸环化酶结合,使酶活化,催化ATP环化为cAMP。随着GTP水解使亚基恢复原来的构象并导致与腺苷酸环化酶解离,终止腺苷酸环化酶的活化作

新乡医学院医学细胞生物学简答题

新乡医学院医学细胞生物 学简答题 The following text is amended on 12 November 2020.

供基础医学院临床17、20班参考使用医学细胞生物学简答题集锦 第一章绪论 1.简述细胞生物学形成与发展经历的阶段(1)细胞的发现与细胞学说的建立:最早发现细胞并命名为cell,施莱登和施旺建立细胞学说。 (2)细胞学的经典时期:细胞学说的建立掀起了对多种细胞广泛的观察和描述的热潮,主要的细胞器和细胞分裂活动相继被发现。 (3)实验细胞学时期:人们广泛的应用实验的手段研究细胞的特性、形态结构和功能。 (4)分子生物学的兴起和细胞生物学的诞生:各个学科相互渗透,人们对细胞结构与功能的研究达到了新的高度。 第二章细胞的统一性与多样性 1.比较原核细胞和真核细胞的差别 第三章细胞膜与细胞表面 1.细胞膜的流动性有什么特点,膜脂有哪些 运动方式,影响膜脂流动性的因素有哪些 (1)膜脂既具有分子排列的有序性,又有 液体的流动性;温度对膜的流动性有明显的 影响,温度过低,膜脂转变为晶态,膜脂分 子运动受到影响,温度升高,膜恢复到液晶 态,此过程称为相变。(2)膜脂的运动方 式有:侧向扩散、旋转运动、摆动运动、翻 转运动,其中翻转运动很少发生,侧向扩散 是主要运动方式。(3)影响流动性的因 素:脂肪酸链的长短和饱和程度,胆固醇的 双重调节作用,卵磷脂/鞘磷脂比值越大膜 脂流动性越大,膜蛋白与周围脂质分子作用 也会降低膜流动性。此为环境因素(如温 度)也会影响膜的流动性,温度在一定范围 内升高,流动性增强。 2.简述膜蛋白的种类及其各自特点,并叙述 膜的不对称性有哪些体现 (1)膜蛋白分为膜外在蛋白、膜内在蛋白、 脂锚定蛋白。 膜外在蛋白属于水溶性蛋白,分布在膜的 两侧,与膜的结合松散,一般占20%-30%; 膜内在蛋白属于双亲性分子,嵌入、穿 膜,是膜功能的主要承担者,与膜结合紧 密,占70%-80%。 脂锚定蛋白通过共价键与脂分子结合,分 布在膜两侧,含量较低。

医学细胞生物学复习题

医学细胞生物学 一、名词解释 1、联会复合体:在联会的同源染色体之间,沿纵轴方向,存在一种特殊的结构,即联会 复合体,发生在减数第一次分裂前期的偶线期。 2、细胞分化:在个体发育中,来自同一受精卵的同源细胞在不同发育阶段,不同环境下 逐渐衍生为在形态结构,功能和蛋白质合成等方面都具有稳定性差异的细胞的过程称为细胞分化。 3、X 染色质:上皮细胞等的间期核,用碱性染料染色后,在人的女性细胞靠近核膜处可 观察到有一个长圆形的小体,为X染色质。这是由于女性两条染色体中有一条非活性,而异常凝缩而成的。 4、马达蛋白:马达蛋白是指为细胞内组分的运动提供动力,使它们能够沿着骨架蛋白向 不同方向运动的一类蛋白。 5、协助扩散:依赖于转运蛋白的才能完成的物质运输方式称为协助转运,也称协助扩散。 协助扩散可分为离子通道和载体两种方式,前者负责运输离子,后者负责运输单糖,氨基酸,脂肪酸等极性物质。 6、细胞学说:由施莱登和施万创立,包括①所有生物体都是由细胞构成的;②细胞是构 成生物体的基本单位;③所有细胞都来自于已有细胞。 7、生物膜:细胞质内的膜系统与细胞质膜统称为生物膜。生物膜具有共同的结构特征和 各自高度专一的功能,以保证生命活动的高度有序化和高度自控性。 8、糖萼:糖蛋白,蛋白聚糖和糖脂的糖分子侧链在细胞表面形成细胞被,又称糖萼。 糖萼的主要功能是保护细胞,兼有润滑作用,还具有识别功能,eg人类ABO血型与糖脂的结构有关。 9、核小体:染色质的基本结构是核小体,由DNA双链包装而成,是染色质的一级结构。 10. 细胞凋亡:细胞凋亡,又称程序性细胞死亡,是多细胞生物在发生,发展过程中,为 调控机体发育,维护内环境稳定,而出现的主动死亡过程。 11. 灯刷染色体:灯刷染色体是普遍存在于鱼类,两栖类等动物卵母细胞中的一类形似灯 刷的特殊巨大染色体,长度超过1m m,是未成熟的卵母细胞进行第一次减数分裂时停留在双线期的染色体,大部分DNA以染色粒形式存在,没有转录活性,而侧环是RNA

华师细胞生物学简答题(个人复习总结)

1、何谓成熟促进因子(MPF)?包括哪些主要成分?如何证明某一细胞提取液含有MPF? 成熟促进因子是指M期细胞中存在的促进细胞分裂的因子,是由两个不同亚基组成的异质二聚体,其一为调节亚基,有周期蛋白组成;其二为催化亚基,是丝氨酸/苏氨酸型蛋白激酶,其活性有懒于周期蛋白,故称为周期依赖性蛋白激酶。可以通过蛙卵细胞质移植实验证实MPF。成熟蛙卵细胞的细胞质可以诱导未成熟的蛙卵细胞提前进入成熟期。 2、简述微管、微丝和中间纤维的主要异同点?(顺序为微管、微丝、中间纤维) 直径:22nm、7nm、10nm;基本构件:α、β—微管蛋白,肌动蛋白,中间纤维丝蛋白;相对分子量(乘10的3次):50,43,40~200;结构:13根原丝围成的α—螺旋中空管状,双股α—螺旋,多级螺旋;极性:有,有,无;单体蛋白库:有,有,无;踏车现象:有,有,无;特异性药物:秋水仙素、长春花碱,细胞松弛素B、鬼笔环肽,无;运动相关蛋白:驱动蛋白、动力蛋白,肌球蛋白,无;主要功能:细胞运动、胞内运输、支持作用,变形运动、形状维持、胞质环流、胞质分裂环的桶状结构,骨架作用、细胞连接、信息传递;细胞分裂:纺锤体,无,包围纺锤体。 3、为什么将内质网比喻“开放的监狱”? KDEL信号序列为内质网驻守信号,如果内质网驻守蛋白被错误的包装进了COPII,并运输到顺面高尔基体,高尔基体膜上存在KDEL识别受体,能识别错误运输来的内质网驻守蛋白,并形成COP I小泡,将内质网驻守蛋白运输返回内质网。 4、在研究工作中分离得到一个与动物减数分裂直接相关的基因A,如果想由此获得该基因的单克隆抗体,请简要叙述实验方案及其实验原理。 英国科学家Milstein和Kohler因提出单克隆抗体而获得1984年诺贝尔生理学或医学奖。它是将产生抗体的单个B淋巴细胞同肿瘤细胞杂交,获得既能产生抗体又能无线增值的杂种细胞,并一次生产抗体的技术。其原理是:B淋巴细胞能够产生抗体,但在体外不能进行无限分裂;而肿瘤细胞虽然可以在体外进行无限传代,但不能产生抗体。将这两种细胞融合后得到的杂交瘤细胞具有两种亲本细胞的特性。 实验方案:a、表达基因A的蛋白,免疫小老鼠,获得免疫的淋巴细胞;b、将经过免疫的小老鼠的淋巴细胞与Hela细胞融合;c、利用选择培养基对融合细胞进行培养筛选,只有真正融合的细胞才能继续生长;d、融合细胞的培养,抗体的纯化。 5、微管是体内膜泡运输的导轨,请分析体内膜泡定向运输的机制? 微管是有极性的,微管的马达蛋白(动力蛋白和驱动蛋白)运输小泡也是单向的。动力蛋白向微管的负极运输小泡,驱动蛋白向微管的正极运输小泡。,另外,起始膜泡上有V-SNARE,靶膜上有T-SNARE。V-SNARE与T-SNARE选择性识别并定向融合。这两种因素共同导致了膜泡的定向运输。 6、简述细胞周期蛋白B的结构特点和动态调控机制?

新乡医学院医学细胞生物学简答题

供基础医学院临床17、20 班参考使用医学细胞生物 学简答题集锦 第一章绪论 1.简述细胞生物 学形成与发展 经历的阶段 (1)细胞的发现与细胞学说的建立:R.Hook最早发现细胞并命名为cell,施莱登和施旺建立 细胞学说。 (2)细胞学的经典 时期:细胞学说的 建立掀起了对多种 细胞广泛的观察和 描述的热潮,主要 的细胞器和细胞分 裂活动相继被发现。 (3)实验细胞学时期:人们广泛的应 用实验的手段研究 细胞的特性、形态 结构和功能。 (4)分子生物学的 兴起和细胞生物学 的诞生:各个学科 相互渗透,人们对 细胞结构与功能的 研究达到了新的高度。 第二章细胞的统 一性与多样性 1.比较原核细胞和 细胞表面 1.细胞膜的流动性 有什么特点,膜脂 有哪些运动方式, 影响膜脂流动性的 因素有哪些? (1)膜脂既具有分 子排列的有序性, 又有液体的流动性; 温度对膜的流动性 有明显的影响,温 度过低,膜脂转变 为晶态,膜脂分子 运动受到影响,温 度升高,膜恢复到 液晶态,此过程称 为相变。(2)膜脂 的运动方式有:侧 向扩散、旋转运动、 摆动运动、翻转运 动,其中翻转运动 很少发生,侧向扩 散是主要运动方式。 (3)影响流动性的 因素:脂肪酸链的 长短和饱和程度, 胆固醇的双重调节 作用,卵磷脂/鞘磷 脂比值越大膜脂流 动性越大,膜蛋白 与周围脂质分子作 用也会降低膜流动 性。此为环境因素 (如温度)也会影 响膜的流动性,温 度在一定范围内升 高,流动性增强。 2.简述膜蛋白的种 类及其各自特点, 并叙述膜的不对称 性有哪些体现 (1)膜蛋白分为膜 外在蛋白、膜内在 蛋白、脂锚定蛋白。 膜外在蛋白属于 水溶性蛋白,分布 在膜的两侧,与膜 的结合松散,一般 占20%-30%; 膜内在蛋白属于 双亲性分子,嵌入、 穿膜,是膜功能的 主要承担者,与膜 结合紧密,占 70%-80%。 脂锚定蛋白通过 共价键与脂分子结 合,分布在膜两侧, 含量较低。 (2)膜的内外两侧 结构和功能有很大 差异,称为膜的不 对称性,这种不对 称决定了膜功能的 方向性。 膜脂:磷脂和胆 固醇数目分布不均 匀,糖脂仅分布于 脂双层的非胞质面。 膜蛋白:各种膜蛋 白在质膜中都有一 定的位置。膜糖类: 糖链只分布于质膜 外表面。 3.比较说明单位膜 模型与液态镶嵌模 型有哪些不同点 单位膜是细胞膜 和胞内膜等生物膜 在电镜下呈现的三 夹板式结构,内外 两层为电子密度较 高的暗层,中间是 电子密度低的明层, “两暗夹一明”的

细胞生物学试题完整版

细胞生物学试题完整版 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

细胞生物学试题 一、选择题:单项18题(每题1分,共18分) 1.最小最简单的细胞是: (B) A.病毒; B。支原体;C。细菌 D。红细胞 2.下列不属于微丝作用的是( C )。 A、肌肉收缩 B、参与细胞质运动及细胞移动 C、形成有丝分裂器 D、维持微绒毛的形状 E、形成胞质分裂环 3.动物细胞膜中的脂双层结构具有流动性与下列哪一种物质关系最密切? ( B) A、磷脂 B、胆固醇 C、糖脂 D、膜蛋白 4.形成细胞骨架的是( C )。 A、微管蛋白、木质素和驱动蛋白 B、微管、肌球蛋白和微丝 C、微丝、中间纤维和微管 D、肌动蛋白、肌球蛋白和中间丝 5.使用哪种显微镜可获得三维图像( A )。 A、扫描电子显微镜 B、透射电子显微镜 C、荧光显微镜 D、光学显微镜 6.动物细胞在细胞膜外缺少坚硬的细胞壁,但许多细胞仍然保持细胞的非球体状态,其原因是 ( B ) A 细胞膜上的蛋白质分子可以流动 B 微管起着支持作用 C 基质充满细胞维持着形态 D 磷脂双分子层的骨架作用 7.物质能逆着它的浓度梯度转运穿过膜是因为 ( A )

A 某些膜蛋白是依赖于ATP的载体分子 B 某些膜蛋白起通道作用,经过通道特异分子能进入细胞 C 脂类双分子层可透入许多小分子 D 脂类双分子层是疏水的 8.建立分泌单克隆抗体的杂交瘤细胞是通过下列技术构建的: (A) A 细胞融合; B 核移植; C 病毒转化; D 基因转移 9.下列细胞膜的构造,哪一项无法协助不易通透细胞膜的小分子进入细胞内?( D ) A 离子通道 B 载体蛋白 C 离子泵 D 受体 10.下列哪一项不是Na+—K+离子泵作用的结果( B )。 A、细胞中Na+浓度降低 B、氨基酸通过协助扩散的方式进入细胞 C、质子浓度梯度的形成 D、K+在细胞中的浓度提高 11.通过选择法或克隆形式从原代培养物或细胞系中获得的具有特殊性质或标志的细胞群体称作(B ) A、细胞系 B、细胞株 C、细胞库 D、其它 12.所有膜蛋白都具有方向性,其方向性在什么部位中确定: (C) A.细胞质基质;B 高尔基体;C 内质网;D质膜 13.微管蛋白在一定条件下,能装配成微管,其管壁由几根原纤维构成: (C) A.9; B 11; C 13; D 15; 14.膜蛋白高度糖基化的细胞器是: (A) A.溶酶体;B 高尔基休;C 过氧化物酶体; D 线粒体

医学细胞生物学试题及答案大全01

细胞生物学习题及答案 第一章 名词解释: 医学细胞生物学: 是指用细胞生物学的原理和方法研究人体细胞的结构、功能、生命活动规律及其疾病关系的科学。 细胞学说: 是指Schleiden和Schwann提出的:所有都生物体由细胞构成。细胞是生命体结构和功能的 简答题: 比较真核细胞与原核细胞的异同 原核细胞 细胞壁有,主要成分肽聚糖 细胞膜有 细胞器 核糖体70S(50S+30S) 染色体单个DNA组成(环状) 运动简单原纤维和鞭毛 有 转录在细胞核内 翻译在细胞质内 有丝分裂,减数分裂 分子量可达到上万或更多的 螺旋结构。其主要特点是:DNA分子的碱基均位于双链的内侧,通过氢键相连,且遵循碱基互补配对原则。 蛋白质二级结构: 在一级结构的基础上,通过氢键在氨基酸残基之间的对应点连接,使蛋白质结构发生曲折的结构。有三种类型:a螺旋结构:肽链以右手螺旋盘绕成空心的筒状构象。b折叠片层:一条肽链回折而成的平行排列构象。三股螺旋:是胶原的特有构象,由原胶原的三条多肽链共同铰接而成。 第五章1-5节

名词解释 单位膜:细胞膜在光镜下呈三层式结构,内外两层为密度高的暗线,中间层为密度低的亮线,这种“两暗一明”的结构为单位膜。 液态镶嵌模型: 1.细胞膜由流动的脂双层和镶嵌在其中的蛋白质构成。 2.磷脂分子脂双层以疏水的尾部相对,极性头部朝向两面组成的生物膜骨架。 3.蛋白质或镶嵌在脂双层的表面、或镶嵌在其中、或横跨脂双层,体现了蛋白质分布的不对称性。 该模型强调了膜的流动性和不对称性。 被动运输: 物质顺浓度梯度运输, 主动运输: 物质逆浓度梯度运输, 能量,分为离子泵、伴随运输(协同运输)。 易化扩散: 进出细胞, 通过膜囊 运输 具有选 Na-K ATP酶,具有载体和酶的活性。由a.b 两个大小亚单位组成,大的a亚单位为该酶的催化部分,其细胞质端有ATP和Na+的结合位点,外端有K+和乌本苷的结合位点,通过反复磷酸化和去磷酸化进行活动。该酶在Na+、K+、Mg2+同时存在的情况下才能被激活,催化水解A TP,为Na+、K+的对向运输提供能量。 简答题 1、简述细胞膜液态(流动)镶嵌模型的分子结构及特性。 细胞膜由流动的脂双层和镶嵌在其中的蛋白质构成。 蛋白质镶嵌在脂双层的表面、或镶嵌在其中、或横跨脂双层,具有分布的不对称性。 磷脂分子脂双层的疏水尾部相对,其极性头部朝向两面组成的生物膜骨架。

新乡医学院 医学细胞生物学 简答题

供基础医学院临床17、20班参考使用 医学细胞生物学简答题集锦 第一章绪论 1.简述细胞生物学形成与发展经历的阶段 (1)细胞的发现与细胞学说的建立:R、Hook最早发现细胞并命名为cell,施莱登与施旺建立细胞学说。 (2)细胞学的经典时期:细胞学说的建立掀起了对多种细胞广泛的观察与描述的热潮,主要的细胞器与细胞分裂活动相继被发现。 (3)实验细胞学时期:人们广泛的应用实验的手段研究细胞的特性、形态结构与功能。 (4)分子生物学的兴起与细胞生物学的诞生:各个学科相互渗透,人们对细胞结构与功能的研究达到了新的高度。 第二章细胞的统一性与多样性 1、比较原核细胞与真核细胞的差别 1、细胞膜的流动性有什么特点,膜脂有哪些运动方式,影响膜脂流动性的因素有哪些? (1)膜脂既具有分子排列的有序性,又有液体的流动性;温度对膜的流动性有明显的影响,温度过低,膜脂转变为晶态,膜脂分子运动受到影响,温度升高,膜恢复到液晶态,此过程称为相变。(2)膜脂的运动方式有:侧向扩散、旋转运动、摆动运动、翻转运动,其中翻转运动很少发生,侧向扩散就是主要运动方式。(3)影响流动性的因素:脂肪酸链的长短与饱与程度,胆固醇的双重调节作用,卵磷脂/鞘磷脂比值越大膜脂流动性越大,膜蛋白与周围脂质分子作用也会降低膜流动性。此为环境因素(如温度)也会影响膜的流动性,温度在一定范围内升高,流动性增强。 2、简述膜蛋白的种类及其各自特点,并叙述膜的不对称性有哪些体现 (1)膜蛋白分为膜外在蛋白、膜内在蛋白、脂锚定蛋白。 膜外在蛋白属于水溶性蛋白,分布在膜的两侧,与膜的结合松散,一般占20%-30%; 膜内在蛋白属于双亲性分子,嵌入、穿膜,就是膜功能的 主要承担者,与膜结合紧密,占70%-80%。 脂锚定蛋白通过共价键与脂分子结合,分布在膜两侧,含 量较低。 (2)膜的内外两侧结构与功能有很大差异,称为膜的不对称 性,这种不对称决定了膜功能的方向性。 膜脂:磷脂与胆固醇数目分布不均匀,糖脂仅分布于脂双 层的非胞质面。膜蛋白:各种膜蛋白在质膜中都有一定的位 置。膜糖类:糖链只分布于质膜外表面。 3、比较说明单位膜模型与液态镶嵌模型有哪些不同点 单位膜就是细胞膜与胞内膜等生物膜在电镜下呈现的三 夹板式结构,内外两层为电子密度较高的暗层,中间就是电 子密度低的明层,“两暗夹一明”的结构叫做单位膜,单位 膜仅能部分反映生物膜的结构特点。 流动镶嵌模型强调膜的流动性与膜蛋白分布的不对称性 以及蛋白质与脂双层的镶嵌关系。认为膜蛋白与膜脂均能 产生侧向运动,膜蛋白有的在膜表面、有的嵌入或横跨脂双 分子层。该模型能解释膜的多种性质,但不能说明具有流动 性的细胞膜在变化过程中如何维持膜的相对完整。 第四章细胞连接、细胞黏附与细胞外基质 1、什么就是细胞连接,细胞连接有哪些类型 细胞表面可与其它细胞或细胞外基质结合的特化区称为 细胞连接。分为紧密连接、黏着链接与通讯连接。 紧密连接的特点就是细胞膜之间连接紧密无空隙,一般 位于上皮细胞间。 黏着链接中,与肌动蛋白纤维相关的有黏着带:分布于上 皮细胞,黏着斑:分布于上皮细胞基部;与中间丝有关的有 桥粒:分布于心肌与上皮,半桥粒:分布于上皮细胞基底部。 通讯连接分为缝隙连接与突触,缝隙连接几乎存在于所 有类型的细胞之间,突触仅存在于可兴奋细胞之间用来传 到兴奋。 2.什么就是细胞外基质,叙述细胞外基质的组成 细胞外基质就是指由细胞分泌到细胞外间充质中的蛋 白质与多糖类大分子所构成的网络结构。 (1)纤维成分:如胶原、弹性蛋白。胶原就是细胞外基质最 基本成分之一,就是动物体内含量最丰富的蛋白,刚性及抗 张力强度最大。 (2)糖胺聚糖与蛋白聚糖:透明质酸就是唯一不发生硫酸化 的糖胺聚糖,就是增殖细胞与迁移细胞的细胞外基质的主 要成分,透明质酸向外膨胀产生压力,使结缔组织具有抗压 的能力;蛋白聚糖见于所有结缔组织与细胞外基质及许多 细胞的表面,可与多种生长因子结合,可视为细胞外的激素 富集与储存库,有利于激素分子进一步与细胞表面受体结 合,完成信号转导。 (3)层粘连蛋白与纤连蛋白:层粘连蛋白就是个体细胞外基 质中出现最早的蛋白,对基膜的组装起到关键作用。纤连蛋 白主要介导细胞黏着,也能促进巨噬细胞与其它免疫细胞 迁移到受损部位。 3、叙述黏着带与黏着斑的区别 粘着带就是细胞与细胞间的粘着连接,而粘着斑就是 细胞与细胞外基质相连。 ①参与粘着带连接的膜整合蛋白就是钙粘着蛋白,而 参与粘着斑连接的就是整联蛋白,即细胞外基质受体蛋白; ②粘着带连接实际上就是两个相邻细胞膜上的钙粘着 蛋白与钙粘着蛋白的连接,而粘着斑连接就是整联蛋白与 细胞外基质中的粘连蛋白的连接,因整联蛋白就是纤粘连 蛋白的受体,所以粘着斑连接就是通过受体与配体的结合; 第五章小分子物质的跨膜运输 1、以Na+-K+泵为例说明细胞膜的主动转运过程 Na+-K+泵又称Na+-K+ATP酶,由α与β两个亚基组成,均为 穿膜蛋白。在α亚基的外侧(朝向胞外)有两个K+的结合位 点,内测有3个Na+的结合位点与一个催化ATP水解的位点。 工作中,细胞内的Na+与大亚基上的Na+位点相结合,同时 ATP分子被催化水解,大亚基改变空间构象,使3个Na+排除 胞外,同时K+与α亚基外侧面相应位点结合,α亚基空间结 构恢复原状,将2个K+输入细胞,完成循环,每次循环消耗 一个ATP分子,3个Na+出胞,2个K+入胞。 第六章胞质溶胶、蛋白酶体与核糖体 1、核糖体有几种,合成的蛋白质在功能上有什么不同 核糖体分为游离核糖体与附着核糖体。 分布于细胞质基质中的核糖体就是游离核糖体,主要合 成细胞本身所需的结构蛋白。附着在内质网膜与核膜表面 的就是附着核糖体,主要合成外输性蛋白质。 第七章内膜系统与囊泡运输 1、内质网有哪些类型,在细胞中的作用就是什么 内质网主要由脂类与蛋白质组成,就是单层膜结构,分为 粗面内质网与光面内质网。 粗面内质网主要呈囊状,表面有核糖体附着,主要功能就 是合成、加工修饰、分选转运一些蛋白质,提供核糖体附着 的支架。 光面内质网不合成蛋白质,就是脂类合成与转运的场所, 并参与糖原的代谢,就是细胞解毒的场所(肝细胞),SER特 化成肌质网可作为肌细胞储存钙离子的场所。 2、叙述高尔基体的组成,及主要功能 高尔基体就是一种膜性囊泡复合体,由扁平囊泡、小囊 泡、大囊泡组成。 高尔基体就是细胞内蛋白质运输分泌的中转站,就是胞 内物质加工合成的主要场所,参与糖蛋白的加工合成、蛋白 质的水解加工、胞内蛋白质分选与膜泡定向运输的枢纽。 3、简述分泌蛋白的运输过程 ①核糖体阶段:合成并转运分泌蛋白;②内质网阶段:运 输并粗加工分泌蛋白;③细胞质基质运输阶段:分泌蛋白以 小泡的形式脱离粗面内质网并移向高尔基复合体与其结合; ④高尔基体加工修饰:分泌蛋白进一步在高尔基复合体内 进行加工,并以囊泡的形式释放到细胞质基质;⑤储存与释 放:释放时,囊泡浓缩发育为分泌泡,与质膜融合,释放到体 外。 4、以肝细胞吸收LDL为例,说明受体介导的胞吞作用的过 程 肝细胞需要利用胆固醇合成生物膜时,细胞合成LDL受 体并分散嵌入细胞膜,当LDL与受体结合后,细胞膜向内凹 陷形成有被小窝。LDL受体集中在有被小窝内不断内陷,进 入细胞,脱离细胞膜形成有被小泡。 有被小泡脱去网格蛋白被摸与其它囊泡融合形成内体, 内体内LDL与受体分离,受体返回细胞膜,LDL被溶酶体酶 降解。如果游离胆固醇过多,LDL受体与胆固醇就会暂停合 成,这就是一个反馈调节的过程。 5、叙述信号肽假说的内容 新合成的蛋白质分子N端含有一段信号肽,该信号肽一 经合成可被胞质中的信号识别颗粒(SRP)识别并结合,通过 信号肽的疏水性引导新生肽跨脂双分子层进入内质网腔或 直接整合在内质网膜中。 信号肽具有决定蛋白质在胞内去向或定位的作用。 第八章线粒体 1、为什么说线粒体就是一个半自主性的细胞器? 线粒体有自己的DNA(即mtDNA),存在线粒体核糖体,通 过自己的蛋白质合成系统可以进行mtDNA的复制转录翻 译。 然而mtDNA的信息量少,只能合成近10%的线粒体蛋白, 绝大多数线粒体蛋白质仍依靠核基因组进行编码,再转运 进线粒体中;构成线粒体的蛋白质合成系统的许多酶仍依 靠核基因编码合成。 故线粒体就是一种半自主性细胞器。 2、线粒体的半自主性有哪些体现 线粒体有自己的mtDNA,就是动物细胞质中唯一含有DNA 的细胞器。有自己的核糖体与蛋白质合成系统,供mtDNA 复制转录翻译。遗传密码相较其它细胞有差异。有自己的 物质转运系统,指导线粒体蛋白运输进线粒体,不与细胞质 交换DNA与RNA,也不输出蛋白质。 3、画图显示线粒体的结构,并表明各部分名称(答案略) 4、说明线粒体基粒的结构组成与功能 基粒又称ATP酶复合体,由头部、柄部、基部组成; 头部又称偶联因子F1,具有酶的活性,能催化ADP磷酸化 生成ATP;柄部就是一种对寡霉素敏感的蛋白质,能抑制 ATP的合成;基部又称偶联因子F0,起到连接F1与内膜的作 用。 5、叙述化学渗透假说的内容 线粒体内膜就是完整的、封闭的,内膜中的电子传递链就 是一个主动转移氢离子的体系,电子传递过程像一个质子 泵,将氢离子从内膜基质泵至膜间隙,由于膜对氢离子不通 透,形成膜两侧的浓度差,质子顺浓度梯度回流并释放出能 量,驱动结合在内膜上的ATP合酶,催化ADP磷酸化合成 ATP。 第九章细胞骨架 1、何谓细胞骨架?细胞骨架有哪些类型与功能? 细胞骨架就是指真核细胞质中的蛋白质纤维网架体系, 细胞骨架的多功能性依赖于三种蛋白质纤维,分别为微管、

相关主题
文本预览
相关文档 最新文档