当前位置:文档之家› 基于石墨烯的电化学传感器及其应用

基于石墨烯的电化学传感器及其应用

基于石墨烯的电化学传感器及其应用
基于石墨烯的电化学传感器及其应用

石墨烯作为锂电池负极材料前景渺茫

石墨烯用作锂电负极产业化前景渺茫 2015-06-26 作者: 自从英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)二人因为“二维石墨烯材料的开创性实验”共同获得2010年诺贝尔物理学奖之后,任何与石墨烯有关的新闻或者研究成果都受到了人们极大的关注。最近两年,石墨烯相关“产业”在国内也是如火如荼,与石墨烯有关的数十支概念股一再被爆炒。 国际上当然也没闲着,比如一则轰动性的新闻报道宣称:西班牙Graphenano公司(一家工业规模生产石墨烯的公司)同西班牙科尔瓦多大学合作研究出全球首个石墨烯聚合材料电池,储电量是目前市场最好产品的3倍,用此电池提供电力的电动车最多能行驶1000公里,而充电时间不到8分钟。 Graphenano公司相关负责人称,虽然此电池具有各种优良的性能,但成本并不高,该电池的成本将比一般锂离子电池低77%,完全在消费者承受范围之内。 这则消息在国内被很多媒体转载报道,在新能源汽车界和锂电界引起了很大反响。最近有不少朋友询问笔者:“会做石墨烯电池吗?石墨烯电池前景如何?什么时候量产?”笔者相信,很多锂电界同仁也有类似的问题。并不是所有人都有电化学或者材料学背景,关注石墨烯电池也可能是出于不同目的,所以他们都不会问一个最基本的问题:什么是石墨烯电池? 在本文中,笔者希望能够揭开笼罩在石墨烯电池上面的神秘面纱,让大家真正了解石墨烯在电化学储能方面的应用价值,而不是被一些非专业的记者或者炒作者蒙蔽,即便真相也许并不是那么鼓舞人心。 什么是石墨烯?先来看看维基百科的定义:“石墨烯(Graphene)是一种由碳原子以sp2杂化轨道?成六角型呈蜂巢晶格的平面薄膜,只有一??碳原子厚度的二?材料。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它?缀跏峭耆?该鞯模?晃??.3%的光;导热系?蹈哌_5300W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8俜m,比铜或银更低,为世上电阻率最小的材料。”

基于石墨烯量子点的传感器在分析检测中的应用

基于石墨烯量子点的传感器在分析检测中的应用 姓名李丽娟学号 S131110042 摘要:石墨烯量子点优良的物理化学性质及石墨烯量子点边缘的羧基或者氨基基团使其易与多种有机的,聚合的,无机的或者生物种类相互作用。本文主要介绍了石墨烯量子点的制备方法以及基于(类)石墨烯量子点、(类)石墨烯材料的荧光传感器在分析检测中的应用,并详细介绍了分析检测的原理,以期为石墨烯量子点在分析检测中的应用提供相关参考与依据。 关键词:石墨烯量子点荧光检测 1 引言 最近,石墨烯获得了广泛的关注由于其独特的电子光学机械以及热学性质。大量基于石墨烯的生物传感器被开发来检测核酸,蛋白质,毒素和生物分子。石墨烯片层的形态包括它们的大小,形状以及厚度都可以有效的决定它们的性质。例如,石墨烯片层侧面尺寸小于100nm时被称为石墨烯量子点(GQDs),其许多新的化学和物理性质都是由于量子尺寸效应和边缘效应而引起的。GQDs毒性小,稳定性高,溶解性好,光致发旋光性质稳定,生物兼容性较好,使得它们在光电伏打器械,生物传感及成像上有很大的应用前景。本文着重介绍了石墨烯量子点的制备方法以及近年来基于石墨烯量子点与分析物发生作用的不同原理,如荧光共振能量转移,化学共振能量转移及石墨烯量子点表面性质的变化等来检测分析物质,并做出了展望。 2 石墨烯量子点的制备 Fei Liu等[1]成功地用化学剥离石墨纳米颗粒的方法合成了高度均匀的GQDs和GOQDs(氧化石墨烯量子点),如图1所示。该方法获得了高产率的直径在4nm 之内的单层和圆形的GQDs和GOQDs。GOQDs的表面富含各种含氧官能团,GQDs有纯粹的sp2碳晶体结构没有含氧的缺陷,因此提供了一种理想的平台来深入研究纳米尺寸的石墨烯的光致发光的起源。通过描述GQDs和GOQDs的发旋光性质,说明了GOQDs的绿色光致发光来自于含氧官能团的缺陷状态,而GQDs的蓝色发光是由高结晶结构中的内禀态所主导的。此外,GQDs中的蓝色发射显示了一个快速的复合寿命相比于GOQDs中的绿色发射的复合寿命。相比

碳纳米材料在电化学传感器中的应用

碳纳米材料在电化学传感器中的应用研究 摘要由于碳纳米材料具有良好的力学、电学及化学性能而被人们广泛研究,特别是对于具有大比表面积、高的电导率和良好生物相容性的碳纳米管、碳纳米纤维和石墨烯更是研究的热点。这些新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域,特别是在电化学领域中显示出其独特的优势。本文主要阐述了碳纳米材料在电化学传感器领域的应用。 关键词碳纳米管石墨烯电化学传感器 1电化学传感器概述 电化学传感器主要由两部分组成:识别系统;传导或转换系统。 识别系统与待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,电化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。电化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。 最早的电化学传感器可以追溯到 20 世纪 50 年代,当时用于氧气监测。到了 20 世纪80 年代中期,小型电化学传感器开始用于检测 PEL 范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。 2 碳纳米材料——碳纳米管和石墨烯 随着科学技术的进步,研究者发现空间尺寸在0.1-100 nm之间的物质拥有很多宏观状态下没有的特性[1]。我们把这些具有一定功能性、三维空间尺寸至少有一维介于0.1-100 nm 之间的一类物体统称为纳米材料。它是由纳米微粒、原子团簇、纳米丝、纳米管、纳米薄膜或由纳米粒子组成的块体。由于具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的量子尺寸效应[2, 3]、体积效应[4]、表面效应[5]和量子隧道效应[6]等特性,纳米材料在光学、热学、催化、光化学以及敏感特性等方面具有一系列特殊的性质,因此它具备其它一般材料所没有的优越性能,可广泛应用于电子、医药、化工、生物、军事、航空航天等众多领域,在整个新材料的研究应用方面占据着核心的位置。 碳是一种非金属元素,位于元素周期表的第二周期IV A族。作为地球上最容易得到的元素之一,碳元素以多种形式广泛存在于大气和地壳之中。碳单质很早就被人认识和利用,它在常温下的化学性质比较稳定,不溶于水、稀酸、稀碱和有机溶剂。利用现代科技的不同制备方法,我们可以制备出不同独特空间结构和特异性能的碳纳米材料,其中包括零维的富勒烯、一维的碳纳米管、二维的石墨烯和三维的石墨或金刚石。依靠独特的空间结构和优异的化学性能,它们可以应用于各个领域中。接下来我们主要介绍一下碳纳米管和石墨烯。 2.1碳纳米管 CNTs是1991 年日本电镜学家Iijima在高分辨透射电子显微镜下检验石墨电弧中产生

石墨烯基气体传感器的原理及应用

石墨烯基气体传感器的原理及应用 石墨烯中原子之间以sp2键连接在一起,室温下的电子传输有0.3um,是很高的电子迁移率,再加上每个原子因为平铺二维结构都显露在表面,作为气体传感器的气敏材料时,吸附气体分子会引起电子迁移率的变化,根据电阻既电信号的改变,可以测出气体浓度。由此可看出石墨烯材料在气体传感器中的应用可广泛发展。 石墨烯在气体传感器中主要应用于电阻型,这都得益于其高电导率、表面丰富容易修饰的功能集团等优异性能。电阻型气体传感器原型如图5,简单制作流程为:选取适合的绝缘陶瓷作为衬底,在陶瓷表面或附着或生长出石墨烯或者石墨烯-复合材料,接着将引出的电极接到检测电路中即可。 图5 电阻型气体传感器原型示意图【26】 制备石墨烯的方法中,剥离、CVD生长及氧化还原制出的石墨烯材料广泛应用于气体传感器,以下将主要介绍以石墨烯为基底单纯做气体传感器元件的相关原理及过程。 表2 石墨烯及气体传感器对不同气体的测量【26】

2.1 剥离石墨烯气体传感器 机械剥离及化学剥离所得的石墨烯产量较低,少于其他半导体复合材料。此类石墨烯价带为零或接近于零,故其电导率会随表面吸附的少量分子发生明显的变化,其敏感度也相对于宽带隙半导体更高。在最开始的时候,都是用此类方式得到制作气敏传感器的石墨烯材料。此类方式所得的石墨烯还能对不同气体分子产生响应【27,28】,如图6所示。加工石墨烯时,往往先将石墨烯片附着或放置于惰性衬底,然后通过金属热蒸发、电子束蒸发或刻蚀等物理方法在其两端制作电极。 机械剥离法:在HOPG表面运用氧等离子束刻蚀出宽20微米至2毫米、深5微米的槽面,压制于附有光致抗蚀剂的硅或二氧化硅基底。经过焙烧,用透明胶带反复剥离出多余石墨片。而剩在硅晶片上的石墨薄片浸泡于丙酮中,超声清洗,得到厚度小于10纳米片层。最终在原子力显微镜下挑选出厚度仅为几个单原子层厚度的石墨烯片层。这种方法虽可得到微米尺寸的石墨烯片,但由于其产量低,不适合大面积生产及应用。但随后,此方法得到研究并升级,成为制备石墨烯重要方法之一。Novoselov等人【4】用这种方法验证了单层石墨烯可独立存在。MEYER将机械剥离得到的含有单层石墨烯的硅晶片置于刻蚀过的金属架上,用酸腐蚀,成功制备了金属支架支撑的悬空单层石墨烯。他们经研究发现单层石墨烯是平面上有一定高度的褶皱。Schleberger等人【29】将常用二氧化硅基底换为其他绝缘晶体基底(SrTiO3/TiO3/AlO3和CaF2等)制备出厚度远远小于二氧化硅基底制得的石墨烯。该方法还有助于进一步研究石墨烯与基底的相互作用。

电化学法制备石墨烯及其导电特性

Vol.33高等学校化学学报No.82012年8月 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 1804~1808电化学法制备石墨烯及其导电特性 朱龙秀,李英芝,赵 昕,张清华 (东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海200051) 摘要 采用电化学方法将石墨层电解剥离,得到分散于电解质溶液的结构较为完整的石墨烯.用透射电子显微镜和拉曼光谱分析了石墨烯的形貌和结构,利用四探针法测定了石墨烯导电特性.实验数据和理论拟合结果表明,当100K

石墨烯传感器研究进展

石墨烯传感器的研究进展 摘要 本文论述了石墨烯电化学和生物传感器的研究进展,包括石墨烯的直接电化学基础、石墨烯对生物小分子的电催化活性、石墨烯酶传感器、基于石墨烯薄膜 和石墨烯纳米带的实用气体传感器(可检测O 2、CO和NO 2 )、石墨烯DNA传 感器和石墨烯医药传感器(可用于检测扑热息痛)。 2004年,英国曼彻斯特大学AndreK.Geim等以石墨为原料,通过微机械力剥离法得到一系列叫作二维原子晶体的新材料———“石墨烯(Graphene)”。 石墨烯是碳纳米材料家族的新成员,具有二维层状纳米结构,室温下相当稳定。由于在石墨烯中碳原子呈sp2杂化,贡献剩余一个p轨道上的电子形成了大π键,π电子可以自由移动,使石墨烯具有优良的导电性、新型的量子霍尔效应以及独特的超导性能。石墨烯对一些酶呈现出优异的电子迁移能力,并且对一些小分子(如H2O2、NADH)具有良好的催化性能,使其适合做基于酶的生物传感器,即葡萄糖传感器和乙醇生物传感器。在电化学中应用的石墨烯大部分都是由还原石墨烯氧化物得到的,也称为功能化石墨烯片或者化学还原石墨烯氧化物,这种物质通常有较多的结构缺陷和官能团,在电化学应用上具有优势。 碳是电化学分析和电催化领域应用最广的材料。例如,碳纳米管在生物传感器、生物燃料电池和质子交换膜(PEM)燃料电池方面有着良好的性能。基于石墨烯的电极在电催化活性和宏观尺度的导电性上比碳纳米管更有优势。因此,在电化学领域,石墨烯就有了大展身手的机会。石墨烯在电化学传感器上的应用有以下优点:①体积小,表面积大;②灵敏度高;③响应时间快;④电子传递快; ⑤易于固定蛋白质并保持其活性;⑥减少表面污染的影响。 1石墨烯的电化学基础 为了更好地了解碳材料在电化学领域的应用,有必要研究决定碳电极的几种重要参数的基本电化学行为,即电化学位窗口、电子迁移速率、氧化还原电位等。 ZhouMing等报道称石墨烯在0.1mol/LPBS(pH为7.0)中具有大约2.5V的电化学电位窗口,这与石墨、玻碳、甚至掺杂硼的金刚石电极相似,但是,从交流阻抗谱来看,石墨烯对电荷迁移的阻力比石墨和玻碳电极对电荷迁移的阻力小。 Tang等通过氧化还原电对的循环伏安法研究了石墨烯的电子迁移行为,如具有良好氧化还原峰的3-/4-和3+/2+。在循环伏安法中所有阴阳两极的峰值电流都与扫描速率的平方根呈线性关系,表明石墨烯电极的氧化还原过程主要是由扩散控制的。在CVs(循环伏安法)中,石墨烯中一个电子迁移的氧化还原电对的峰值电位差(ΔEp)非常低,很接近于59mV的理想值,比玻碳电极的小很多;另外,3-/4-的峰值电位差为61.5~73mV

石墨烯的制备及电化学性能研究

目录 摘要............................................................................................................................ I Abstract ......................................................................................................................... I I 1 引言 (1) 1.1 石墨烯的制备 (2) 1.1.1 机械剥离法 (2) 1.1.2 电化学剥离法 (2) 1.1.3 化学气相沉积法 (3) 1.2 石墨烯电极材料的制备 (5) 1.3 石墨烯电极材料电化学性能测试 (5) 2 实验部分 (6) 2.1 实验试剂 (6) 2.2 实验仪器 (6) 2.3 RHAC和GQDs的制备 (6) 2.4 RHAC-GQDs的制备 (6) 2.5 电极制备和电池组装 (7) 3 结果和讨论 (8) 3.1 分析了RHAC的比表面积和孔隙结构 (8) 3.2 GQDs的拉曼光谱和荧光光谱分析 (8) 3.3 红外光谱分析 (8) 3.4 XRD分析 (8) 3.5 扫描电镜分析 (9) 3.6 循环伏安法测试分析 (9) 3.7 恒流充放电试验分析 (9) 3.8 电化学阻抗分析 (10) 4 结论与展望 (12) 4.1 结论 (12) 4.2 主要创新点 (12) 4.3 展望 (12) 参考文献 (13) 致谢............................................................................................ 错误!未定义书签。

石墨烯在离子液体电解液中的电化学行为

石墨烯在离子液体电解液中的电化学行为 阎兴斌1,*,刘文文1,2,郎俊伟1, 薛群基1 1中国科学院兰州化学物理研究所,甘肃省兰州市天水中路18号,730000 2中国科学院研究生院,北京市石景山区玉泉路19号(甲),100049 *Email: xbyan@https://www.doczj.com/doc/9f18417991.html, 石墨烯因其具有极好的导电率和超高的比表面积而被广泛研究用做超级电容器的电极材料。然而其能量密度还需进一步提高。电解液是影响电容器性能的关键因素之一,适合的电解液对提高超级电容器的性能具有重要的作用。已有报道,利用离子液体作为石墨烯超级电容器的电解液可以提高其能量密度。然而,石墨烯在离子液体中的电化学行为还有待于进一步研究。 本文运用电化学等测试技术详细研究了有机溶剂、咪唑类离子液体阳离子烷基链和阴离子官能团、离子液体浓度、离子液体温度,以及离子液体在石墨烯中的插层现象等对石墨烯超级电容器性能的影响[1]。实验结果表明:石墨烯电极在EMIMBF4/DMF电解液中具有优异的电容行为,同时其电容行为受阳离子烷基链的长度、阴离子官能团和离子液体摩尔浓度等因素影响。实验结果还发现,石墨烯-EMIMBF4电解液体系在-20℃-60℃温度范围内都具有较好的电容性能。 关键词:石墨烯;离子液体;烷基链;温度;超级电容器 参考文献 [1] Liu, W.W.; Yan, X.B.; Lang, J.W.; Xue Q.J. J. Mater. Chem., 2011, 21: 13205. Electrochemical behavior of graphene sheets in the ionic liquid electrolyte Xingbin Yan1,* Wenwen Liu1,2, Junwei Lang1,Qunji Xue1 1Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui road (M.), Lanzhou, 730000 2Graduate School of Chinese Academy of Sciences, 19 Yuquan road, Beijing, 100049 Graphene has been widely studied as the electrode material of supercapacitors due to its excellent electrical conductivity and ultra-high surface area. However, its energy density still needs to improve compared with other energy cells. The electrolyte is one of the key factors affecting the capacitor performance. Thus, it is of great significance to develop new type electrolytes to increase the energy density of supercapacitors. Ionic liquids have been reported as the electrolytes in graphene supercapacitors owing to its excellent performance, but the electrochemical behavior of graphene in ionic liquid electrolytes needs to be further studied. In this work, the effects of organic solvents, the cation alkyl chain of imidazolium ionic liquid, the anionic functional groups of imidazole ionic liquids, ionic liquid molar concentration and temperature, and the intercalation of ionic liquids on the supercapacitive of graphene sheets have been investigated by electrochemical test techniques. The results show that graphene electrode has a good capacitive behavior in EMIMBF4/DMF electrolyte, and its capacitance has been affected by the cation alkyl chain length, the anionic functional groups, and the molar concentration. Moreover, the graphene electrode has the excellent performance in EMIMBF4 electrolyte at the operating temperature ranging from -20 ℃ to 60 ℃.

基于石墨烯的光学生物传感器的研究进展_高原

DOI :10.3724/SP.J.1096.2013.20747基于石墨烯的光学生物传感器的研究进展 高原 1李艳2苏星光*2(电子科学与工程学院集成光电子国家重点实验室1,吉林大学化学学院2,长春130012)摘要近年来,随着石墨烯研究热潮的兴起,将石墨烯用于生物及化学检测的工作也日益增多。本文着重介绍了基于石墨烯及氧化石墨烯(GO )的光学生物传感器,特别是基于石墨烯的荧光共振能量转移(FRET ) 传感器以及比色法传感器的设计思想和传感特性。 关键词石墨烯;氧化石墨烯;生物传感器;荧光共振能量转移;评述 2012-07-17收稿;2012-09-30接受 本文系国家自然科学基金(Nos.2127506, 21075050)资助项目*E-mail :suxg@jlu.edu.cn 1引言 石墨烯是一种由纯碳原子的六元环平面结构构成的二维材料 [1],是零维的富勒烯、一维的碳纳米管(CNTs )以及三维石墨结构的构筑基元[2]。它具有非常大的理论比表面积、很高的杨氏模量[3]、超高的光学透过率、优良的导热性[4]和导电性,并能够通过电子转移实现荧光猝灭。目前,人们已将基于石 墨烯的材料广泛应用于诸多领域,如吸附剂 [5]、催化剂[6]、药物载体[7]等。石墨烯具有的奇特性质,使 得其能够满足高灵敏性传感器设计的需求,并已用于构建光学[8]、电化学[9]及场效应传感器[10,11]、细胞标记[12]及实时监测[13]等。本文介绍了基于石墨烯材料的光学生物传感器的研究进展,重点评述了基于石墨烯基的荧光共振能量转移(FRET )以及比色法传感器。 2基于石墨烯的荧光共振能量转移传感器 荧光共振能量转移(FRET )是能量由供体荧光团经无辐射途径转移给受体荧光团,并引起供体荧 光猝灭和受体荧光增强的光学现象, 是测量活体及体外纳米尺度距离及变化的有效手段。近年来,人们致力于开发基于石墨烯材料的FRET 传感器, 将其用于生物及化学检测。FRET 传感器主要由3部分构成:供体、受体(猝灭剂)及供受体之间的桥联媒介。在基于石墨烯的FRET 传感器中,石墨烯及其衍生物既可以作为供体,又可作为受体。一方面,石墨烯由于其结构特点,能够同时猝灭发射波长或结构不同的多种荧光团的荧光,是一种通用的猝灭剂;另一方面,石墨烯及其衍生物经过一定的化学处理,可以产生荧光信号,可作为荧光供体。基于石墨烯的FRET 生物传感器依托于一些生物分子构建的桥联基, 用于调节供体荧光团和受体之间的距离,从而引起荧光的变化。其中,DNA 、蛋白质、多肽等生物分子均 可以作为桥联基。 2.1以石墨烯作为猝灭剂 在报道的基于石墨烯材料的FRET 传感器中,以石墨烯材料作为猝灭剂的居多。氧化石墨烯(GO )是石墨烯的一种重要衍生物,是化学还原法制备石墨烯的前驱体,在石墨烯片层结构的边缘和表面带有 多种含氧基团, 如羧基、羟基、环氧基等。正是由于这些含氧基团的存在,使其较石墨烯具有更好的水溶性,可以应用于生物体系中。石墨烯及GO 由于其大面积的共轭结构,可以作为能量受体猝灭多种有机染料及量子点的荧光,是一种广适性的荧光猝灭剂。与传统的猝灭剂相比,石墨烯材料具有更高的猝灭 效率,使FRET 传感器具有背景低、信噪比高、可多重检测的显著特点 [14 16]。2.1.1基于DNA 联接研究表明,石墨烯能区分多种DNA 分子结构,包括ssDNA ,dsDNA 以及茎环 结构等[17,18]。石墨烯及GO 由于其结构特点,对带有裸露的环状结构的化合物具有强烈的吸附能力。第41卷 2013年2月分析化学(FENXI HUAXUE )特约来稿Chinese Journal of Analytical Chemistry 第2期174 180

电化学传感器的应用及发展前景

苏州大学研究生考试答卷封面 考试科目:仪器分析考试得分:________________院别:材料与化学化工学部专业:分析化学 学生姓名:饶海英学号: 033 授课教师: 考试日期: 2012 年 1 月 10 日

电化学传感器的应用研究 摘要:随着电分析技术的发展,电化学传感技术越来越成为生命科学、临床诊断和药学研究的重要手段之一。本文主要介绍了电化学发光免疫传感器,电化学DNA 传感器、电化学氧传感器、纳米材料电化学传感器的基本概念、原理,以及这些传感器在各领域的应用。 关键词:电化学传感器免疫传感器传感器 电化学传感技术的核心是传感器。传感器能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路所组成,是将一种信息能转换成可测量信号(一般指电学信号)的器件。传感器可分为物理传感器、化学传感器和生物传感器三大类。本文以化学传感器尤其是电化学传感器进行研究。 电致化学发光(Electrogenerated chemiluminescence),也称电化学发光(Electrochemiluminescence),简称ECL,是通过电极对含有化学发光物质的体系施加一定的电压或通过一定的电流,电极氧化还原产物之间或电极氧化还原产物与体系其它共存物质之间发生化学反应并生成某种不稳定的中间态物质,该物质分解而产生的化学发光现象。电致化学发光技术是电化学与化学发光相结合的检测技术,该技术既集成了发光与电化学分析技术的优点,又具有二者结合产生的可控性、选择性、重现性好、灵敏度高、检测限低及动力学响应范围宽等新优势[ 1~3 ]。 电化学传感器可分为以下几个类型。①吸附型:通过吸附方式将修饰物质结合在电极表面得到的修饰电极为吸附型化学修饰电极。可以制备单分子层和多分子层。根据吸附作用力的不同,又可分为平衡吸附型、静电吸附型、LB膜型、SA 膜型、涂层型。②共价键合型:在电极的表面通过键合反应把预定功能团接在电极表面而得到的化学修饰电极为共价型化学修饰电极。常用基体电极有碳电极、玻碳电极、金属和金属氧化物电极。③聚合物型:利用聚合反应在电极表面形成修饰膜的电极。制备方式有氧化还原沉积、有机硅烷缩合、等离子聚合、电化学聚合等。④其他类型:无机物修饰电极,如普鲁士蓝修饰电极、粘土修饰电极、

石墨烯性质-表面等离子体

1 石墨烯电子能带结构所带来的性质 石墨烯是零带系半导体,其能带结构在K空间成对顶的双锥形,费米面在迪拉克点之上,石墨烯为n型,费米面在狄拉克点以下为p型。由于其能带结构的特殊性,在狄拉克点处的电子态密度很低,对于费米面在狄拉克点附近的高质量石墨烯,通过简单的掺杂或用栅压调控,就可以使其费米面有很大幅度的移动,从而很容易用人工的方法制作出石墨烯的p-n结结构。而该结构是太阳能电池材料所必需的条件。 2、石墨烯对红外光的高透过性 石墨烯对光的透过率可达到97.7%以上,使其成为太阳能电池电极材料的很好选择。现在太阳能电池的透过效率不好原因是太阳能电池上层电极对太阳光中的红外部分吸收十分严重,而红外部分又是太阳光能量的一个集中区,所以影响了下方的光伏材料获得的光的强度。而石墨烯对红外的透过性非常好,用石墨烯带作为太阳能电极材料,可大幅度提高转化效率。 3、石墨烯中的高载流子迁移率 石墨烯中的电子的迁移率大约是硅的100倍,而电导率是与迁移率和载流子浓度乘积成正比,而材料的透光性能又通常和载流子浓度成反比。一般材料如果对光的透过性很好,那么它的载流子浓度就很低,而通常迁移率也很低,从而导电率也很差,这也是目前为什么太阳能透明电极没有很好性能的原因。而石墨烯这种新材料,它的载流子迁移率如此之高,即使在载流子浓度很低时(透光性很好),也能保证两者乘积很客观,有很好的导电性。这也进一步解释了石墨烯适合用于太阳能电池电极的原因。 4、石墨烯中的光激发电子-空穴对的产生消失时间 石墨中的电子式狄拉克电子,速度接近光速三分之一,室温下传导电子比任何其他已知导体要快,所以被光激发出的电子-空穴对可以快速形成电流,同理在撤去光源后也可以迅速消失。基于石墨烯的光伏器件对光的响应目前在实验室中已达到THz,成为超快光电探测器的候选材料 5、石墨烯的热载流子效应 石墨烯可以对光产生不同寻常的反应,在室温和普通光照射下,就可以发生热载流子效应,产生电流。当光照在石墨烯上时,可以产生两个具有不同电气特

石墨烯修饰电极电化学性能

石墨烯修饰电极的电化学性能 石墨烯(Graphene>是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建零维富勒烯、一维碳纳M管、三维石墨等其他碳质材料的基本单元,具有许多优异而独特的物理、化学和机械性能,在微纳电子器件、光电子器件、新型复合材料以及传感材料等方面有着广泛的应用前景,基于石墨烯的相关研究也成为目前电化学领域的热点研究领域之一。 本论文围绕石墨烯的不同修饰电极条件,结合电化学基础研究,开展了石墨烯及其相关的电化学性能研究。具体内容归纳如下: (1>将石墨烯与具有良好导电性能的聚苯胺(PANI>复合,研究了石墨烯/聚苯胺复合物修饰电极的电化学性能。利用石墨烯与聚苯胺之间电子给体与电子受体的相互作用,实现了聚苯胺在中性甚至强碱性溶液中的电化学活性,并利用红外光谱、拉曼光谱和紫外光谱进行了可能的机理探讨。石墨烯/聚苯胺复合物材料在中性溶液里的电化学活性,在生物传感领域具有可能的应用空间。同时,在不同pH溶液里的电化学活性也为石墨烯/聚苯胺复合物材料在pH传感中提供了可能的应用空间。 (2>将石墨烯与具有电绝缘性能的凡士林混合,研究了石墨烯/凡士林膜电极的电化学性能。循环伏安测试表明:采用10.0 mg/mL、5.0 mg/mL和1.0 mg/mL的石墨烯/凡士林修饰电极可以依次得到常规尺寸电极、亚微尺寸电极和微尺寸的纳M电极阵列,并且通过简单混合所制备的石墨烯/凡士林膜电极具有良好的电化学活性和稳定性。作为新型碳材料的膜电极,石墨烯/凡士林膜电极在基础电化学研究和应用中具有一定的潜在价值。 (3>将石墨烯组装在具有完全电绝缘性能的硫醇自组装膜电极上,研究了石墨烯/硫醇自组装膜电极的电化学性能。交流阻抗数据表明,随着组装时间的增加,石墨烯/硫醇自组装膜电极的电化学阻抗逐渐降低,表明石墨烯在硫醇自组装膜上是一个可控的组装过程。循环伏安测试还表明,石墨烯的组装时间是120 min和5 min时,可以分别得到常规尺寸和微尺寸纳M电极阵列的石墨烯/硫醇自组装膜电极,而且对抗坏血酸、多巴胺、尿酸具有较好的电催化活性。同时,为了探讨可能的实验机理,我们讨论了电子传递的可能原因以及影响自组装膜电极双电层结构的两个因素。结果表明随着硫醇中碳链长度的增加,电子传递速率逐渐降低,氧化还原峰电位的差值逐渐增大。不同碳材料的电子转移速率呈现为:石墨烯>多孔碳>石墨。这种采用简单而有效的方法制备的石墨烯/硫醇自组装膜电极,在电化学理论研究和实际应用中具有较好的前景。 超级电容器是一种绿色、新型的储能元件,因为其高效、无污染的优良特性,符合“低碳”经济的发展要求,受到了人们的高度重视。超级电容器的核心是电极材料。 新兴的石墨烯二维单层原子碳材料因具有大的比表面积、优异的导电性、高的机械强度,被认为是理想的超级电容器电极材料。化学方法制备的氧化石墨烯具有良好的成膜性,可用于制备“石墨烯纸”并进而应用于无支撑电极。 此外,氧化石墨烯上丰富的含氧官能团可用于锚定金属纳M粒子,形成石墨烯复合材料。本论文围绕石墨烯薄膜制备、修饰和电化学电容性质开展研究工作,发展了石墨烯/碳纳M管复合薄膜的溶液铸造制备方法,提出了水热还原制备石墨烯基复合薄膜的途径,并研究了所制备材料的电容性能,取得了以下的研究成果:1.利用氧化石墨烯良好的成膜性,通过溶液铸造方法,制备了氧化石墨烯薄膜和氧化石墨烯/碳纳M管复合薄膜。 然后通过200℃退火,得到了相应的石墨烯薄膜、石墨烯/碳纳M管薄膜。这种薄膜通过石墨烯层间相互作用结合,例如π-π堆积,以及范德华力等,因而能够在各种极性电解液中稳定存在。复合薄膜的比电容在70~110 F/g,并且因为其表面仍然存在着部分含氧官能团的作用,显示了一定的赝电容的特性,表明其作为超级电容器电极的潜质。2.通过抽虑法制备了氧化石墨烯/碳纳M管复合薄膜。在水热条件下,氧化石墨烯被水还原并实现自组装,重新构建成具有π-π堆积的网络状三维结

石墨烯常用计量单位及简介

石墨烯 一、常用的计量单位及含义 纯度(Purity): wt% 【“wt%”是重量含量百分数(%);wt是英文weight的简写。】 比表面积SSA(Special Surface Area): m2/g 【比表面积是指单位质量物料所具有的总面积。单位是m2/g,通常指的是固体材料的比表面积,例如粉末、纤维、颗粒、片状、块状等材料。】 电导率(Conductivity):S/m 【电导率,物理学概念,也可以称为导电率。在介质中该量与电场强度E之积等于传导电流密度J。对于各向同性介质,电导率是标量;对于各向异性介质,电导率是张量。生态学中,电导率是以数字表示的溶液传导电流的能力。单位以西门子每米(S/m)表示。电导率是用来描述物质中电荷流动难易程度的参数。】 振实密度(Tap Density): mg/mL 【振实密度是指在规定条件下容器中的粉末经振实后所测得的单位容积的质量。振实密度或者说体积密度(在一些工业领域称为松装密度)定义为样品的质量除以它的体积,这一体积包括样品本身和样品孔隙及其样品间隙体积。堆积密度对于表征催化剂、发泡材料、绝缘材料、陶瓷、粉末冶金和其它工业生产品都是必要的。】 片径(Scale):microns/μm 灰分(ASH):wt% 【无机物,可以是锻烧后的残留物也可以是烘干后的剩余物。但灰分一定是某种物质中的固体部分而不是气体或液体部分。在高温时,发生一系列物理和化学变化,最后有机成分挥发逸散,而无机成分(主要是无机盐和氧化物)则残留下来,这些残留物称为灰分。】 体积电阻率(Volume Resistivity):Ω?m 【体积电阻率,是材料每单位体积对电流的阻抗,用来表征材料的电性质。通常体积电阻率越高,材料用做电绝缘部件的效能就越高。通常所说的电阻率即为体积电阻率。,ρv=R v S/h式中,h是试样的厚度(即两极之间的距离);S是电极的面积,ρv的单位是Ω·m(欧姆·米)】 中值粒径D(50):4-6μm【D50:一个样品的累计粒度分布百分数达到50%时所对应的粒径。它的物理意义是粒径大于它的颗粒占50%,小于它的颗粒也占50%,D50也叫中位粒径或中值粒径。D50常用来表示粉体的平均粒度。】 方阻(方块电阻):Ω/sq【在一长为l,宽w,高d(即为膜厚),此时L=l,S=w*d,故R=ρ*l/(w*d)=(ρ/d)*(l/w)。方块电阻R=ρ/d令l=w于是R=(ρ/d),其中ρ为材料的电阻率,此时的R为方阻。蒸发铝膜、导电漆膜、印制电路板铜箔膜等薄膜状导电材料,衡量它们厚度的最好方法就是测试它们的方阻。什么是方阻呢?方阻就是方块电阻,指一个正方形的薄膜导电材料边到边“之”间的电阻,方块电阻有一个特性,即任意大小的正方形边到边的电阻都是一样的,不管边长是1米还是米,它们的方阻都是一样,这样方阻仅与导电膜的厚度等因素有关】 迁移率(Mobility):cm2/V·s 【指单位电场强度下所产生的载流子平均漂移速度。它的单位是厘米2/(伏·秒)。迁移率代表了载流子导电能力的大小,它和载流子(电子或空穴)浓度决

【CN109930133A】一种用于气敏传感的石墨烯氧化锆复合材料的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910219144.9 (22)申请日 2019.03.21 (71)申请人 西南大学 地址 400715 重庆市北碚区天生路2号 (72)发明人 韩英佳 张啟明 彭小燕  (74)专利代理机构 重庆缙云专利代理事务所 (特殊普通合伙) 50237 代理人 王翔 (51)Int.Cl. C23C 16/511(2006.01) C23C 16/513(2006.01) C23C 16/517(2006.01) C23C 16/26(2006.01) C23C 16/40(2006.01) (54)发明名称 一种用于气敏传感的石墨烯氧化锆复合材 料的制备方法 (57)摘要 本发明的目的是提供一种用于气敏传感的 石墨烯氧化锆复合材料的制备方法,通过把氧化 锆颗粒放置在等离子体反应的区域,且无需控制 加热温度;把甲烷或其他有机化合物引入到反应 体系中,在氢等离子作用下适当增加碳的含量, 从而在氧化锆颗粒上快速制备石墨烯阵列的目 的,此种方法可直接利用在氧化锆颗粒基底上制 备石墨烯,从而得到大比表面积的石墨烯包覆的 氧化锆复合材料,该结构大大提高了石墨烯的表 面载流子浓度。为实现碳包覆氧化锆复合材料制 备提供了一个简洁的方法。权利要求书1页 说明书4页 附图1页CN 109930133 A 2019.06.25 C N 109930133 A

权 利 要 求 书1/1页CN 109930133 A 1.一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于,包括以下步骤: 1〕将氧化锆颗粒和泡沫镍一起放置于所述微波等离子体化学气相沉积装置中; 2〕将真空度控制在150-200毫巴; 3〕通入工作气体载入碳源至等离子发生区域; 4〕开启微波等离子体化学气相沉积装置的电源,无需控制加热温度; 5〕反应完成,获得氧化锆石墨烯复合材料。 2.根据权利要求1所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:步骤1〕中,氧化锆颗粒为50-200纳米。 3.根据权利要求1所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:步骤3〕中,所述工作气体选自氢气或氩气中的一种或多种。 4.根据权利要求3所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:步骤3〕中,所述碳源为甲烷及含有SP3或SP2碳原子的有机化合物。 5.根据权利要求1或3所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:步骤3〕中,所述碳源选自甲烷、甲醇、乙醇或甲酸甲酯中的一种或多种。 6.根据权利要求1或5所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:步骤3〕中,微波等离子反应设备(6)包括微波源(5)、置于微波源(5)内的保护管(7)、进气管路(10)和出气管路(3); 所述进气管路(10)与保护管(7)的进气端(8)连接,所述出气管路(3)与保护管(7)的出气端连接(4),所述进气管路(10)和出气管路(3)上分别设置有控制阀I(9)和控制阀II(2),所述进气管路(10)或出气管路(3)上设置有气压计; 所述的氧化锆颗粒置于保护管(7)中; 抽真空前,关闭控制阀I(9)和控制阀II(2); 抽真空后,打开控制阀I(9)和控制阀II(2);工作气体进入进气管路(10)中,从出气管路(3)排出尾气(1)。 7.根据权利要求5或6所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:反应管的直径为20mm~50mm。 8.根据权利要求1或5所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:微波功率为500w~1kW。 9.根据权利要求1或5所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:工作气体的流速为100~200sccm;碳源气体的流速为10~100sccm。 10.根据权利要求1所述的一种用于气敏传感的石墨烯氧化锆复合材料的制备方法,其特征在于:氧化锆颗粒基底上石墨烯沉积生长时间为0.1~1小时。 2

相关主题
文本预览
相关文档 最新文档