当前位置:文档之家› 北理工信号与系统实验(4)资料

北理工信号与系统实验(4)资料

北理工信号与系统实验(4)资料
北理工信号与系统实验(4)资料

实验4 LTI 系统的频域分析

一、 实验目的

1. 加深对LTI 系统频率响应基本概念的掌握和理解

2. 学习和掌握LTI 系统频率特性的分析方法

二、 实验原理

1. 连续时间系统的频率响应

系统的频率响应定义为系统单位冲激响应h(t)的傅里叶变换,即

()()j H h e d ωτωττ+∞

--∞

=?若LTI 连续时间系统的单位冲激响应为h(t),输入信号为

x(t),根据系统的时域分析可知系统的零状态响应为(t)x(t)h(t)y =*,对等式两边分别求傅里叶变换,根据时域卷积定理可以得到()X()H()Y ωωω=。

因此,系统的频率响应还可以由系统的零状态响应和输入的傅里叶变换之比

得到H()Y()/X()ωωω=。

H()ω反映了LTI 连续时间系统对不同频率信号的响应特性,是系统内在固有

的特性,与外部激励无关。H()ω又可以表示为()H()=|H()|e j θωωω,其中|H()|ω称为系统的幅度响应,()θω称为系统的相位响应。

当虚指数信号e j t ω作用于LTI 系统时,系统的零状态响应y(t)仍为同频率的虚指数信号,即y(t)=e H()j t ωω。

对于由下述微分方程描述的LTI 连续时间系统(n)

(m)0

(t)(t)N

M

n m n m a y b x ===∑∑,其频

率响应H(j )ω可以表示为有理多项式

1110

1

110

(j )(j )...j ()()()(j )(j )...j M M M M N N N N b b b b Y H X a a a a ωωωωωωωωω----++++==++++ MATLAB 的信号处理工具箱提供了专门的函数freqs ,用来分析连续时间系统的频率响应,该函数有下列几种调用格式:

[h,w]=freqs(b,a) 计算默认频率范围内200个频率点上的频率响应的取样值,这200个频率点记录在w 中。

h=freqs(b,a,w) b 、a 分别为表示H(j )ω的有理多项式中分子和分母多项式的系数向量,w 为频率取样点,返回值h 就是频率响应在频率取样点上的数值向量。 [h,w]=freqs(b,a,n) 计算默认频率范围内n 个频率点上的频率响应的取样值,这n 个频率点记录在w 中。

freqs(b,a,…) 这种调用格式不返回频率响应的取样值,而是以对数坐标的方式绘出系统的幅频响应和相频响应。 2. 离散时间系统的频率响应

LTI 离散时间系统的频率响应定义为单位抽样响应h(t)的离散时间傅里叶变换。(e )(n)e j j n H h +∞

Ω

-Ω-∞=∑对于任意输入信号x(n),输入与输出信号的离散时间傅

里叶变换有如下关系Y(e )H(e )X(e )j j j ΩΩΩ=因此,系统的频率响应还可以表示为

H(e )=Y(e )/X(e )j j j ΩΩΩ

当系统输入信号为(n)e j n x Ω=时,系统的输出

(n k)

y(n)e

(n)(k)e (e )j n

j j n j k h e

h H +∞

ΩΩ-ΩΩ=-∞

=*=

=∑

虚指数信号通过LTI 离散时间系统后信号的频率不变,信号的幅度由系统频率响应的幅度值确定,所以H(e )j Ω表示了系统对不同频率信号的衰减量。

一般情况下离散系统的频率响应H(j )ω是复值函数,可用幅度和相位表示。

()H(e )=|H(e )|e j j j θΩΩΩ,其中|H(e )|j Ω称为系统的幅度响应,()θΩ称为系统的相位响应。若LTI 离散系统可以由如下差分方程描述0

(n )(n )N

M

i j i j a y i b x j ==-=-∑∑,其频

率响应H(e )j Ω可以表示为有理多项式

0101e ...e (e )(e )(e )e ...e j jM j j M j j jN N b b b Y H X a a a -Ω-Ω

ΩΩ

Ω-Ω-Ω

+++==

+++

MATLAB 的信号处理工具箱提供了专门的函数freqz ,用来分析离散时间系统的频率响应,该函数有下列几种调用格式:

[H,w]=freqz(b,a,n) b 、a 分别为有理多项式分子中和分母多项式的系数向量,返回值H 是频率响应在0到pi 范围内n 个频率等分点上的数值向量,w 包含了这n 个频率点。

[H,w]=freqz(b,a,n,`whole`)计算0~2πn 个频率点上的频率响应的取样值,这n 个频率点记录在w 中。

H=freqz(b,a,w) w 为频率取样点,计算这些频率点上的频率响应的取样值。 freqz (b,a,…) 这种调用格式不返回频率响应的取样值,而是直接绘出系统的幅频响应和相频响应。

三、 实验内容

1.已知一个RLC 电路构造的二阶高通滤波器,其中F C H L C

L

R 05.0,4.0,2=== (1)计算该电路系统的频率响应及高通截止频率 解:由电路图

50)(10)()(11111

11)()()(2

2++=+++==ωωωωωωωj j j C j L j R L

j R t x t y H 高通截止频率为 7.07 (2)利用MATLAB 绘制幅度响应和相位响应曲线,比较系统的频率特性与理论计算的结果是否一致。 解:

b=[1 0 0]; a=[1 10 50]; [H,w]=freqs(b,a); subplot(211); plot(w,abs(H));

set(gca,'xtick',[0;10]);

set(gca,'ytick',[0 0.4 0.707 1]); xlabel('\omega(rad/s)');

ylabel('Magnitude'); title('|H(j\omega)|'); grid on ; subplot(212); plot(w,angle(H));

set(gca,'xtick',[0;10]); xlabel('\omega(rad/s)'); ylabel('Phase');

title('|phi(\omega)|'); grid on ;

010

0.4

0.707

1

ω(rad/s)M a g n i t u d e

|H(j ω)|

10

0123

4ω(rad/s)

P h a s e

|phi(ω)|

由图像,系统的频率特性与理论计算的结果一致。 2.已知一个RC 电路

(1)对不同的RC 值,用MATLAB 画出系统的幅度响应曲线|H()|ω,观察实验结果,分析RC 电路具有什么样的频率特性(高通、低通、带通或带阻)?系统的频率特性随着RC 值的改变,有何变化规律?

解:电路的频率响应为111

1

)()

()(+=+==

RC j R C

j C j t x t y H ωωωω syms r c k ; r=input('r='); c=input('c='); k=r*c; b=[1]; a=[k 1];

[H,w]=freqs(b,a); subplot(211); plot(w,abs(H));

set(gca,'xtick',[0,10]);

set(gca,'ytick',[0 0.4 0.707 1]); xlabel('\omega(rad/s)'); ylabel('Magnitude'); title('|H(j\omega)|'); grid on ; subplot(212); plot(w,angle(H));

set(gca,'xtick',[0,10]); xlabel('\omega(rad/s)'); ylabel('Phase');

title('|phi(\omega)|'); grid on ;

010

0.4

0.707

1

ω(rad/s)M a g n i t u d e

|H(j ω)|

010

-1.5

-1-0.5

0ω(rad/s)

P h a s e

|phi(ω)|

r=10 c=0.1

010

0.4

0.7071

X: 1.012Y: 0.703

ω(rad/s)M a g n i t u d e

|H(j ω)|

010

-1.5

-1-0.5

0ω(rad/s)

P h a s e

|phi(ω)|

0.4

0.7071

X: 0.1012Y: 0.703

ω(rad/s)M a g n i t u d e

|H(j ω)|

-1.5

-1-0.5

0ω(rad/s)

P h a s e

|phi(ω)|

(2)系统输入信号(t)cos(100t)cos(3000t),t 0~0.2s x =+=,该信号包含了一个低频分量和一个高频分量。试确定适当的RC 值,滤除信号中的高频分量,并绘出滤波前后的时域信号波形及系统的频率响应曲线。 解: b=[1];

a=[0.0015 1]; h=tf(b,a);

[H,w]=freqz(b,a); t=0:0.001:0.2;

x=cos(100*t)+cos(3000*t);plot(t,x); lsim(h,x,t);plot(w,abs(H)); xlabel('\omega(rad/s)'); ylabel('Magnitude'); title('|H(j\omega)|'); grid on ;

RC=0.0015

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-2-101

20

0.5

1

1.5

2

2.5

3

3.5

0.998

0.99911.001

1.002

1.003ω(rad/s)

M a g n i t u d e

|H(j ω)|

Linear Simulation Results

Time (seconds)

A m p l i t u d e

RC=0.001

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-2-101

20

0.5

1

1.5

2

2.5

3

3.5

0.998

0.99911.001

1.002

1.003ω(rad/s)

M a g n i t u d e

|H(j ω)|

Linear Simulation Results

Time (seconds)

A m p l i t u d e

3.已知离散系统的系统框图

(1)写出M=8时系统的差分方程和系统函数

解:差分方程:y(n)=x(n)+x(n-1)+x(n-2)+x(n-3)+x(n-4)+x(n-5)+x(n-6)+x(n-7) 系统函数:8

7

6

5

4

3

2

1

11

)(--------++++++++=

z

z z z z z z z z H

(2)利用MATLAB 计算系统的单位抽样响应 b=[1 1 1 1 1 1 1 1 1]; a=[1];

impz(b,a,-10:10);

-10

-8

-6

-4

-2

024

6

8

10

00.10.20.30.40.50.60.7

0.80.91n (samples)

A m p l i t u d e

Impulse Response

(3)试利用MATLAB 绘出其系统零极点分布图、幅频和相频特性曲线,并分析该系统具有怎样的频率特性。

解:系统的极点分布图程序及图像如下:

b=[1 1 1 1 1 1 1 1 1]; a=[1];

zplane(b,a,-10:10);

-1

-0.5

00.5

1

-1

-0.8-0.6-0.4-0.200.20.4

0.60.818

Real Part

I m a g i n a r y P a r t

系统的幅频和相频特性曲线如下:

b=[1 1 1 1 1 1 1 1 1]; a=[1];

[H,w]=freqz(b,a); subplot(211); plot(w/pi,abs(H)); xlabel('\omega(\pi)'); ylabel('Magnitude'); title('|H(e^j^\Omega)|'); grid on ; subplot(212);

plot(w/pi,angle(H)/pi); xlabel('\omega(\pi)'); ylabel('Phase(\pi)'); title('\theta(\Omega)'); grid on ;

00.10.20.30.4

0.50.60.70.80.91

5

10

ω(π)M a g n i t u d e

|H(e j Ω)|

00.10.20.30.4

0.50.60.70.80.91

-1

-0.50

0.5ω(π)

P h a s e (π)

θ(Ω)

3. 已知一离散时间LTI 系统的频率响应H(e )j Ω,输入信号为

(n)cos(0.3n)0.5cos(0.8n)x ππ=+。试分析正弦信号0sin(t)Ω通过频率响应为

H(e )

j Ω的离散时间系统的响应,并根据分析结果计算系统对于x(n)的响应y(n),用MATLAB 绘出系统输入与输出波形。

观察实验结果,分析系统具有什么样的频率特性(高通、低通、带通或带阻)?从输入输出信号上怎么反映出系统的频率特性? 解:

n=0:1:50;

x=cos(0.3*pi*n)+0.5*cos(0.8*pi*n); y=sinc(0.5*pi*n);z=conv(x,y); subplot(211); stem(x,'filled'); axis([0 50 -2 2]); subplot(212); stem(x,'filled'); axis([0 50 -2 2]);

05101520253035404550

-2

-101

205101520253035404550

-2

-101

2

四、 实验总结

通过本次实验,掌握和理解了LTI 系统频率响应的基本概念,学习和掌握了LTI 系统频率特性的MATLAB 分析方法。实验中,需要先计算系统的频率响应

1110

1110(j )(j )...j ()()()(j )(j )...j M M M M N N N N b b b b Y H X a a a a ωωωωωωωωω----++++==

++++,然后再根据实际参数通过MATLAB 函数绘制出系统的幅度响应和相位响应曲线。由于没有提前计算出频率响应表达式,所以实验开始时耽误了一些时间,计算之后速度便提了上来,顺利完成了实验。通过实验对MATLAB 的掌握程度和熟练度皆有提升,以后的实验会更加顺利。

信号与系统实验题目及答案

第一个信号实验的题目 1实现下列常用信号 (1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =?---; (5)0.5()4cos(),010t f t e t t π-=?= 2连续信号的基本运算与波形变换 已知信号2 2,2 1 ()33 t t f t ? -+-≤≤?=???,试画出下列各函数对时间t 的波形: (1)()f t -(2)(2)f t -+(3)(2)f t (4)1 (1)2 d f t dt +(5)(2)t f d ττ-∞-? 3连续信号的卷积运算 实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。 4连续系统的时域分析 (1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为 2()2()t f t e u t -=时,该系统的零状态响应()y t 。 (2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出 该系统的冲激响应和阶跃响应的波形。 实验一答案: (1)(5)u t +在MATLAB 软件的输入程序及显示波形如下:

(2)(1)t δ-在MATLAB 软件的输入程序及显示波形如下: (3)cos(3)sin(2)t t +在MATLAB 软件的输入程序及显示波形如下: (4)()[(1)(2)]f t t u t t u t t =?---在MATLAB 软件的输入程序及显示波形如下: (5)0.5()4cos(),010t f t e t t π-=?=在MATLAB 软件的输入程序及显示波形如下:

信号与系统实验报告1

学生实验报告 (理工类) 课程名称:信号与线性系统专业班级:M11通信工程 学生学号:1121413017 学生姓名:王金龙 所属院部:龙蟠学院指导教师:杨娟

20 11 ——20 12 学年第 1 学期 金陵科技学院教务处制 实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求

实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:常用连续信号的表示 实验学时: 2学时 同组学生姓名: 无 实验地点: A207 实验日期: 11.12.6 实验成绩: 批改教师: 杨娟 批改时间: 一、实验目的和要求 熟悉MATLAB 软件;利用MATLAB 软件,绘制出常用的连续时间信号。 二、实验仪器和设备 586以上计算机,装有MATLAB7.0软件 三、实验过程 1. 绘制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?=; 2. 绘制指数信号at Ae t (f =),其中A=1,0.4a -=; 3. 绘制矩形脉冲信号,脉冲宽度为2; 4. 绘制三角波脉冲信号,脉冲宽度为4;斜度为0.5; 5. 对上题三角波脉冲信号进行尺度变换,分别得出)2t (f ,)2t 2(f -; 6. 绘制抽样函数Sa (t ),t 取值在-3π到+3π之间; 7. 绘制周期矩形脉冲信号,参数自定; 8. 绘制周期三角脉冲信号,参数自定。 四、实验结果与分析 1.制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?= 实验代码: A=1;

信号与系统实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MA TLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MA TLAB 再多了解一些。 MA TLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MA TLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MA TLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MA TLAB的基本应用,学会应用MA TLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MA TLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MA TLAB的有关知识,以便更好地完成实验,同时实验中也可利用MA TLAB的help命令了解具体语句以及指令的使用方法。

《信号与系统》实验四

信息科学与工程学院《信号与系统》实验报告四专业班级电信09-班姓名学号实验时间2011 年月日指导教师陈华丽成绩

0≤n 的幅频特性曲线,由此图可以确

1.对连续信号)()sin()(0t u t Ae t x t a Ωα-=(128.444=A ,πα250=,πΩ2500=)进行理想采样,可得采样序列500) ()sin()()(0≤≤==-n n u nT Ae nT x n x nT a Ωα。图1给出了)(t x a 的幅频特性曲线,由此图可以确 定对)(t x a 采用的采样频率。分别取采样频率为 1KHz 、300Hz 和200Hz ,画出所得采样序列)(n x 的幅频

特性)( j e X 。并观察是否存在频谱混叠。 源程序: % 产生序列x(n) n=0:50; A=444.128; a=50*sqrt(2.0)*pi; T=1/1000; % T 分别取1/1000、1/300、1/200 w0=50*sqrt(2.0)*pi; x=A*exp(-a*n*T).*sin(w0*n*T); %函数f 的表达式 subplot(1,2,1),stem(n,x) title('理想采样序列 fs=1000Hz') % 绘制x(n)的幅度谱 k=-250:250; W=pi/125*k; X=x*(exp(-j*pi/125)).^(n'*k); % 由公式计算DTFT magX=abs(X); subplot(1,2,2),plot(W,magX) title('理想采样序列的幅度谱') 结果图

fs=300HZ fs=200HZ

信号与系统实验报告一

1. 实验原理 2. 设描述连续时间系统的微分方程为: ) ()()()()()()()(01) 1(1) (01)1(1)(t f b t f b t f b t f b t y a t y a t y a t y a m m m m n n n n +'+++=+'+++---- 则可用向量a 和b 表示该系统,即 ],,,,[011a a a a a n n -= ],,,,[011b b b b b m m -= 注意,向量a 和b 的元素一定要以微分方程时间求导的降幂次序排列,且缺项要用0补齐。 如微分方程 )()()(2)(3)(t f t f t y t y t y +''=+'+'' 表示该系统的向量为 ]2 3 1[=a ]1 0 1[=b (1)求解冲激响应:impulse()函数 impulse()函数有以下四种调用格式: ① impulse(b,a) 该调用格式以默认方式绘制由向量a 和b 定义的连续时间系统的冲激响应的时域波形。 ② impulse(b,a,t) 该调用格式绘制由向量a 和b 定义的连续时间系统在t ~0时间范围内的冲激响应的时域波形。 ③ impulse(b,a, t1:p:t2) 该调用格式绘制由向量a 和b 定义的连续时间系统在21~t t 时间范围内,且以时间间隔 p 均匀抽样的冲激响应的时域波形。 ④ y=impulse(b,a,t1:p:t2) 该调用格式并不绘制系统冲激响应的波形,而是求出由向量a 和b 定义的连续时间系统在21~t t 时间范围内以时间间隔p 均匀抽样的系统冲激响应的数值解。 (2)求解阶跃响应:step()函数 step()函数也有四种调用格式: ① step(b,a) ② step(b,a,t) ③ step(b,a, t1:p:t2) ④ y=step(b,a,t1:p:t2) 上述调用格式的功能与impulse()函数完全相同。 (3)求解零状态响应:lsim()函数 lsim()函数有以下二种调用格式:

信号与系统实验2

实验报告 实验二连续时间系统的时域分析 一、实验目的: 1、掌握用Matlab进行卷积运算的数值方法和解析方法,加深对卷积积分的理解。 2、学习利用Matlab实现LTI系统的冲激响应、阶跃响应和零状态响应。 二、实验内容及步骤 实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

1、 编写程序Q2_1,完成)(1t f 与)(2t f 两函数的卷积运算。 2、 编写程序Q2_2,完成)(1t f 与)(2t f 两函数的卷积运算。 3、编写程序Q2_3。利用程序Q2_1,验证卷积的相关性质。 (a) 验证性质:)()(*)(t x t t x =δ (b) 验证性质: )()(*)(00t t x t t t x -=-δ 4、编写程序Q2_4。某线性时不变系统的方程为 )(8)(2)(6)(5)(t f t f t y t y t y +'=+'+'', (a)系统的冲激响应和阶跃响应。 (b)输入()()t f t e u t -=,求系统的零状态响应)(t y zs 。 三. 实验结果 一: dt=0.01 t1=0:dt:2 f1=0.5*t1 t2=0:dt:2 f2=0.5*t2 f=dt*conv(f1,f2) t=0:0.01:4 plot(t,f);axis([-1 5 0 0.8])

二: dt=0.01 t=-3:dt:3 t1=-6:dt:6 ft1=2*rectpuls(t,2) ft2=rectpuls(t,4) y=dt*conv(ft1,ft2) plot(t1,y) axis([-4 4 0 5]) 以上两题出现错误点:(1)最开始模仿例1的写法用function [f,k]=sconv,总提示出现 错误 (2)t0+t2 ≤ t ≤ t1+t3 不大能理解的运用个特点,在编写的时候总是被忽略。导致t和t1设置的长度总出错。 三: (a) dt=0.01 t=0:dt:2 t0=0 t1=0:dt:2t2=0:dt:2

信号与系统实验四

信号与系统实验实验四:周期信号的傅里叶级数 小组成员: 黄涛13084220 胡焰焰13084219 洪燕东13084217

一、实验目的 1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 3、掌握用傅里叶级数进行谐波分析的方法。 4、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。 二、预习内容 1、周期信号的傅里叶级数分解及其物理意义。 2、典型信号傅里叶级数计算方法。 三、实验原理 1. 信号的时间特性与频率特性 信号可以表示为随时间变化的物理量,比如电压)(t u 和电流)(t i 等,其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。 信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。 无论是信号的时间特性还是频率特性都包含了信号的全部信息量。 2. 信号的频谱 信号的时间特性和频率特性是对信号的两种不同的描述方式。根据傅里叶级数原理,任意一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间),(11T t t +内表示为 ()∑∞ =Ω+Ω+=10sin cos )(n n n t n b t n a a t f 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 A 0t A n 0A 0t (a)(b) Ω(c)ωΩ 5Ω3Ω Ω3Ω5 3. 信号的时间特性与频率特性关系 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在幅度--频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。 4. 信号频谱的测量 在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛

北京理工大学信号与系统实验实验报告

实验1 信号的时域描述与运算 一、实验目的 1. 掌握信号的MATLAB表示及其可视化方法。 2. 掌握信号基本时域运算的MA TLAB实现方法。 3. 利用MA TLAB分析常用信号,加深对信号时域特性的理解。 二、实验原理与方法 1. 连续时间信号的MATLAB表示 连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。 从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。例如一个正弦信号可以表示如下: >> t=0:0.01:10; >> x=sin(t); 利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。 如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。例如对于上述正弦信号,可以用符号对象表示如下: >> x=sin(t); >> ezplot(X); 利用ezplot(x)命令可以绘制上述信号的时域波形 Time(seconds) 图1 利用向量表示连续时间信号

t 图 2 利用符号对象表示连续时间信号 sin(t) 2.连续时间信号的时域运算 对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。 1)相加和相乘 信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。 2)微分和积分 对于向量表示法表示的连续时间信号,可以通过数值计算的方法计算信号的微分和积分。这里微分使用差分来近似求取的,由时间向量[N t t t ,,,21?]和采样值向量[N x x x ,,,21?]表示的连续时间信号,其微分可以通过下式求得 1,,2,1,|)('1-?=?-≈ +=N k t x x t x k k t t k 其中t ?表示采样间隔。MA TLAB 中用diff 函数来计算差分 k k x x -+1。 连续时间信号的定积分可以由MATLAB 的qud 函数实现,调用格式为 quad ('function_name',a,b) 其中,function_name 为被积函数名,a 、b 为积分区间。

信号与系统实验三

信号与系统实验实验三:信号的卷积 小组成员: 黄涛13084220 胡焰焰13084219 洪燕东13084217

一、实验目的 1. 理解卷积的物理意义; 2. 掌握运用计算机进行卷积运算的原理和方法; 3. 熟悉卷积运算函数conv的应用; 二、预习内容 1. 卷积的定义及物理意义; 2. 卷积计算的图解法; 3. 卷积的应用 三、实验原理说明 1.卷积的定义 连续时间和离散时间卷积的定义分别如下所示: 2.卷积的计算 由于计算机技术的发展,通过编程的方法来计算卷积积分和卷积和已经不再是冗繁的工作,并可以获得足够的精度,因此信号的时域卷积分析法在系统分析中得到了广泛的应用。 卷积积分的数值运算可以应用信号的分段求和来实现,即: 数值运算只求当时的信号值,则由上式可以得到: 上式中实际上就是连续信号等间隔均匀抽样的离散序列的卷积和,当足够小的时候就是信号卷积积分的数值近似。因此,在利用计算机计算两信号卷积积分时,实质上是先将其转化为离散序列,再利用离散卷积和计算原理来计算。 3.卷积的应用 3.1 求解系统响应 卷积是信号与系统时域分析的基本手段,主要应用于求解系统响应,已知一LTI系统的单位冲激响应和系统激励信号则系统响应为激励与单位冲激响应的卷积。 需要注意的是利用卷积分析方法求得的系统响应为零状态响应。 3.2 相关性分析 相关函数是描述两个信号相似程度的量。两信号之间的相关函数一般称之为互相关函数或者互关函数,定义如下: 若是同一信号,此时相关函数称为自相关函数或者自关函数: 对于相关函数与卷积运算有着密切的联系,由卷积公式与相关函数比较得: 可见,由第二个信号反转再与第一个信号卷积即得到两信号的相关函数。 4.涉及的Matlab函数 4.1 conv函数 格式w = conv(u,v),可以实现两个有限长输入序列u,v的卷积运算,得到有限冲激响应系统的输出序列。输出序列长度为两个输入序列长度和减一。 四、实验内容 给定如下因果线性时不变系统: y[n]+0.71y[n-1]-0.46y[n-2]-0.62y[n-3=0.9x[n]-0.45x[n-1]+0.35x[n-2]+0.002x[n-3] (1)不用impz函数,使用filter命令,求出以上系统的单位冲激响应h[n]的前20个样本; clc; N = 0:19;

北京理工大学信号与系统实验报告2 LTI系统的时域分析

实验2 LTI 系统的时域分析 (基础型实验) 一. 实验目的 1. 掌握利用MATLAB 对系统进行时域分析的方法。 2. 掌握连续时间系统零状态响应、冲击响应和阶跃响应的求解方法。 3. 掌握求解离散时间系统响应、单位抽样响应的方法。 4. 加深对卷积积分和卷积和的理解。掌握利用计算机进行卷积积分和卷积和计算的方法。 二. 实验原理与方法 1. 连续时间系统时域分析的MATLAB 实现 1) 连续时间系统的MA TLAB 表示 LTI 连续系统通常可以由系统微分方程描述,设描述系统的微分方程为: (N)(N 1)(M)(M 1)1010(t)(t)...(t)b (t)b (t)...b (t)N N M M a y a y a y x x x ----++=++ 则在MATLAB 中可以建立系统模型如下: 1010[b ,b ,...,b ];a [a ,a ,...,a ];sys tf(b,a); M M N N b --=== 其中,tf 是用于创建系统模型的函数,向量a 和b 的元素是以微分方程求导的降幂次序来排列的,如果有缺项,应用0补齐,例如由微分方程 2''(t)y'(t)3y(t)x(t)y ++= 描述的系统可以表示为: >> b=[1]; >> a=[2 1 3]; >> sys=tf(b,a); 而微分方程由 ''(t)y'(t)y(t)x''(t)x(t)y ++=- 描述的系统则要表示成 >> b=[1 0 -1]; >> a=[1 1 1]; >> sys=tf(b,a); 2) 连续时间系统的零状态响应 零状态响应指系统的初始状态为零,仅由初始信号所引起的响应。MATLAB 提供了一个用于求解零状态响应的函数lism ,其调用格式如下: lism (sys,x,t )绘出输入信号及响应的波形,x 和t 表示输入信号数值向量及其时间向量。 y= lism (sys,x,t )这种调用格式不绘出波形,而是返回响应的数值向量。 3) 连续时间系统的冲激响应与阶跃响应

信号与系统实验DOC

信号与系统实验讲义 雷明东编 重庆文理学院 电子电气学院 2014年10月

实验注意事项 1、不准迟到早退,开始做实验前需要签字; 2、在离开实验室前,要整理好实验设备、桌椅、收拾好垃圾后,待老师检查完毕,方可离开实验室; 3、做实验期间不准大声喧哗,如有问题需举手示意; 4、不准在无老师授权的情况下随意拆卸实验设备; 5、在每次做新实验前,需交前个实验的实验报告。

实验一 常用信号的分类和观察 一 实验目的: 1、观察和了解常见信号的波形和特点。 2、理解相关信号参数的作用和意义。 3、掌握信号的FFT 变换。 3、熟练掌握示波器的使用。 二 实验原理: 描述信号的基本方法是写出它的数学表达式,此表达式是时间的函数,绘出函数的图像称为信号的波形。 对于各种信号,可以从不同的角度分类。如分成确定性信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号等。 常见信号除了包括正弦波)sin()(0φω+=t A t x 、指数函数信号t Ke t x α=)(、抽样函数信号t t A t x /)(sin )(=、高斯函数信号τ/)(t Ke t x -=、方波、三角波、锯齿波,还包括一些直流信号。 三 预习练习: 1、预习有关信号的分类和描述。 2、理解信号的函数表达式和相关参数的意义。 四 实验内容及步骤: 1、 根据实验箱上函数信号发生器模块的提示选择相应的信号波形代码。 01:正弦波 02:方波 03:锯齿波 04:三角波

05:阶梯波 06:衰减指数信号 07:高斯函数信号 08:抽样函数信号 09:抽样脉冲 10:调幅信号 11:扫频信号 2、用示波器测量信号,读取信号的幅度和频率,并用坐标纸记录信号波形; 在信号与系统实验箱上的电源模块用电压表(或万用表)与示波器来观 测电源信号的特点,并测量电源的幅度。 3、在示波器上观测扫频信号的波形特征,大致画出扫频信号的波形。 4、利用示波器中的FFT函数,来观看信号的FFT变换形式。 5、用频谱分析仪观测各个信号的频谱(选做)。 五实验仪器: 1、信号系统实验箱(函数信号发生器模块) 2、双踪示波器 六实验报告内容: 1、根据实验测量所得数据,绘制各个信号的波形图。 2、绘制各个波形的FFT变换波形。 3、写出相应的函数表达式与频域变换表达式。 4、用示波器直流档观测函数信号的波形特点,并说明原因(提示:本函数发生器所产生的信号均由单片机AT89C51产生)。

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

信号与系统实验报告

中南大学 信号与系统试验报告 姓名: 学号: 专业班级:自动化 实验一 基本信号的生成 1.实验目的 ● 学会使用MATLAB 产生各种常见的连续时间信号与离散时间信号; ● 通过MATLAB 中的绘图工具对产生的信号进行观察,加深对常用信号的 理解; ● 熟悉MATLAB 的基本操作,以及一些基本函数的使用,为以后的实验奠 定基础。 2.实验内容 ⑴ 运行以上九个例子程序,掌握一些常用基本信号的特点及其MATLAB 实现方法;改变有关参数,进一步观察信号波形的变化。 ⑵ 在 k [10:10]=- 范围内产生并画出以下信号: a) 1f [k][k]δ=; b) 2f [k][k+2]δ=; c) 3f [k][k-4]δ=; d) 4f [k]2[k+2][k-4]δδ=-。

源程序: k=-10:10; f1k=[zeros(1,10),1,zeros(1,10)]; subplot(2,2,1) stem(k,f1k) title('f1[k]') f2k=[zeros(1,8),1,zeros(1,12)]; subplot(2,2,2) stem(k,f2k) title('f2[k]') f3k=[zeros(1,14),1,zeros(1,6)]; subplot(2,2,3) stem(k,f3k) title('f3[k]') f4k=2*f2k-f3k; subplot(2,2,4) stem(k,f4k) title('f4[k]') ⑶ 在 k [0:31]=范围内产生并画出以下信号: a) ()()k k 144f [k]sin cos π π=; b) ()2k 24f [k]cos π =; c) ()()k k 348f [k]sin cos π π=。 请问这三个信号的基波周期分别是多少? 源程序: k=0:31; f1k=sin(pi/4*k).*cos(pi/4*k); subplot(3,1,1) stem(k,f1k) title('f1[k]') f2k=(cos(pi/4*k)).^2; subplot(3,1,2) stem(k,f2k) title('f2[k]') f3k=sin(pi/4*k).*cos(pi/8*k); subplot(3,1,3) stem(k,f3k) title('f3[k]') 其中f1[k]的基波周期是4, f2[k]的基波周期是4, f3[k]的基波周期是16。

北京理工大学信号与系统实验 实验2 LTI系统的时域分析

实验2 LTI 系统的时域分析 一、实验目的 1.掌握利用MATLAB 对系统进行时域分析的方法。 2.掌握连续时间系统零状态响应、冲激响应和阶跃响应的求解方法。 3.掌握求解离散时间系统响应、单位抽样响应的方法。 4.加深对卷积积分和卷积和的理解。掌握利用计算机进行卷积积分和卷积和计算的方法。 二、实验原理 1、连续时间系统时域分析的MATLAB 实现 1) 连续时间系统的MATLAB 表示 设LTI 因果系统的微分方程一般式为: ) ()()()()()()()(0'1)1(1)(0'1)1(1)(t x b t x b t x b t x b t y a t y a t y a t y a m m m m n n n n ++++=++++---- 则在MATLAB 里,可以建立系统模型如下: b =[b M ,b M?1,…,b 0]; a =[a N ,a N?1,…,a 0] sys =tf (b ,a ); 2)连续时间系统的零状态响应 零状态响应指系统的初始状态为0,仅由输入信号所引起的响应。MATLAB 提供了lsim(sys,x,t)表示求解零状态响应。他不绘出波形,而是返回响应二等地数值向量。 3)连续时间系统的冲激响应与阶跃响应。 MATLAB 提供了impulse 函数来求指定时间范围内,由模型sys 描述的连续时间系统的单位冲击响应。 函数step 用于求解单位阶跃响应。 2、离散时间系统时域分析的MATLAB 实现 1)离散时间系统的MATLAB 表示。 LTI 离散系统通常可以由系统差分方程描述;差分方程为: 0101()(1)...()()(1)...() N M a y n a y n a y n M b x n b x n b x n N +-++-=+-++- 则在MATLAB 里,可以建立系统模型如下: b =[b M ,b M?1,…,b 0]; a =[a N ,a N?1,…,a 0] 2)离散时间系统对任意输入的响应。 Matlab 提供了求LTI 离散系统响应的专用函数filter ,该函数用于求取由差分方程所描述的离散时间系统在指定时间范围内对输入序列所产生的响应。其基本调用格式为: y =filter (b ,a ,x ) 3)离散时间系统的单位抽样响应。 Matlab 提供impz 函数来求解指定时间范围内,由向量b 和a 描述的离散时间系统的单位抽样响应。 3、卷积和与卷积积分 1)离散时间序列的卷积和:

信号与系统实验报告

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

华南理工大学信号与系统实验,电信学院

实验三 利用DFT 分析连续信号频谱 一、实验目的 应用离散傅里叶变换(DFT),分析模拟信号x (t )的频谱。深刻理解利用DFT 分析模拟信号频谱的原理,分析过程中出现的现象及解决方法。 二、 实验原理 连续周期信号相对于离散周期信号,连续非周期信号相对于离散非周期信号,都可以通过时域抽样定理建立相互关系。因此,在离散信号的DFT 分析方法基础上,增加时域抽样的步骤,就可以实现连续信号的DFT 分析。 三、实验内容 1. 利用FFT 分析信号)(e )(2t u t x t -=的频谱。 (1) 确定DFT 计算的各参数(抽样间隔,截短长度,频谱分辨率等); 答:选取fm=25Hz 为近似的最高频率,则抽样间隔T=)2/(1m f =0.02s 选取6=p T s 进行分析,则截短点数为N==T T p /300 采用矩形窗,确定频域抽样点数为512点。 Matlab 函数如下:%对连续信号x=e(-2t)分析 fsam=50;Tp=6; N=512; T=1/fsam; t=0:T:Tp; x=exp(-2*t); X=T*fft(x,N); subplot(2,1,1);plot(t,x); xlabel('t');title('时域波形 N=512');legend('理论值'); w=(-N/2:N/2-1)*(2*pi/N)*fsam; y=1./(j*w+2); subplot(2,1,2);plot(w,abs(fftshift(X)),w,abs(y),'r-.'); title('幅度谱 N=512');xlabel('w'); legend('理论值','计算值',0); axis([-10,10,0,1.4])

信号与系统实验(新)

信号与系统实验 实验1 阶跃响应与冲激响应 一、实验目的 1、观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并 研究其电路元件参数变化对响应状态的影响; 2、掌握有关信号时域的测量方法。 二、实验原理说明 实验如图1-1所示RLC串联电路的阶跃响应与冲激响应的电路连接图,图1

用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。 三、实验内容 1、阶跃响应波形观察与参数测量 设激励信号为方波,其幅度为1.5V 峰峰值,频率为500Hz 。 实验电路连接图如图1-1(a )所示。 ① 连接如图1-1所示 ② 调整激励源信号为方波,调节频率旋钮,使f=500Hz ,调节幅度旋钮, 使信号幅度为1.5V 。(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节) ③ 示波器CH1接于TP909,调节滑动变阻器,使电路分别工作于欠阻尼、 临界和过阻尼三种状态,并将实验数据填入表格1-1中。 ④ TP908为输入信号波形的测量点,可把示波器的CH ·接于TP908上,便 于波形比较。 表1-1 注:描绘波形要使三状态的X 轴坐标(扫描时间)一致。 2、冲激响应的波形观察 冲激信号是由阶跃信号经过微分电路而得到。 实验电路如图1—1(b )所示。 参数测量 波形观察 欠阻尼状态 临界状态 过阻尼状态 状态 参数测量 R< Tr= Ts= δ= R= Tr= R>

①将信号输入接于P905。(频率与幅度不变); ②将示波器的CH1接于TP906,观察经微分后响应波形(等效为冲激激 励信号); ③连接如图1-1(b)所示 ④将示波器的CH2接于TP909,调整滑动变阻器,使电路分别工作于欠 阻尼、临界和过阻尼三种状态 ④观察TP909端三种状态波形,并填于表1-2中。 表1-2 表中的激励波形为在测量点TP906观察到的波形(冲激激励信号)。 四、实验报告要求 1、描绘同样时间轴阶跃响应与冲激响应的输入、输出电压波形时, 要标明信号幅度A、周期T、方波脉宽T1以及微分电路的τ值。 2、分析实验结果,说明电路参数变化对状态的影响。 五、实验设备 双踪示波器 1 台 信号系统实验箱 1台 上升时间t r :y(t)从0.1到第一次达到0.9所需时间。 峰值时间t p :y(t)从0上升y max 所需的时间。 调节时间t s :y(t)的振荡包络线进入到稳态值的% 5 误差范围所需的时间。 激励波形 响应波形 欠阻尼状态临界状态过阻尼状态

北京理工大学信号与系统实验报告6 离散时间系统的z域分析

实验6 离散时间系统的z 域分析 (综合型实验) 一、实验目的 1) 掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。 2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。 3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1. z 变换 序列(n)x 的z 变换定义为(z)(n)z n n X x +∞ -=-∞ = ∑ (1) Z 反变换定义为11(n)(z)z 2n r x X dz j π-= ? (2) MATLAB 中可采用符号数学工具箱ztrans 函数和iztrans 函数计算z 变换和z 反变换: Z=ztrans(F)求符号表达式F 的z 变换。 F=iztrans(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数 离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换 (z)(n)z n n H h +∞ -=-∞ = ∑ (3) 此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到 (z)(z)/X(z)H Y = (4) 由(4)式描述的离散时间系统的系统时间函数可以表示为 101101...(z)...M M N N b b z b z H a a z a z ----+++=+++ (5) 3. 离散时间系统的零极点分析 MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。 此外还可采用MATLAB 中zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数的调用格式为: zplane(b,a) b 、a 为系统函数分子分母多项式的系数向量(行向量) zplane(z,p) z 、p 为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。 系统的频率响应取决于系统函数的零极点,根据系统的零极点分布情况,可以通过向量法分析系统的频率响应。

信号与系统实验

序列号:__ 信号与系统实验报告 课程名称信号与系统 学院信息工程学院 年级班别电子信息工程1班 学号 3116002166 学生姓名陈俊杰 指导教师黄国宏 2018年6月15日

目录 实验二LTI系统的响应 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容 (3) 四、程序清单及实验结果 (4) 五、实验总结 (13) 实验三连续时间信号的频域分析 一、实验目的 (14) 二、实验原理 (14) 三、实验内容 (17) 四、程序清单及实验结果 (17) 五、实验总结 (25) 实验五连续信号与系统的S域分析 一、实验目的 (26) 二、实验原理 (26) 三、实验内容 (27) 四、程序清单及实验结果 (28) 五、实验总结 (36)

实验二 LTI 系统的响应 一、实验目的 1. 熟悉连续时间系统的单位冲激响应、阶跃响应的意义及求解方法 2. 熟悉连续(离散)时间系统在任意信号激励下响应的求解方法 3. 熟悉应用MATLAB 实现求解系统响应的方法 二、实验原理 1.连续时间系统 对于连续的LTI 系统,当系统输入为f (t ),输出为y (t ),则输入与输出之间满足如下的线性常系数微分方程:() ()00()()n m i j i j i j a y t b f t ===∑∑,当系统输入为单位冲激信号δ(t )时产生的零状态响应称为系统的单位冲激响应,用h(t)表示。若输入为单位阶跃信号ε(t )时,系统产生的零状态响应则称为系统的单位阶跃响应,记为g(t),如下图所示。 系统的单位冲激响应h (t )包含了系统的固有特性,它是由系统本身的结构及参数所决定的,与系统的输入无关。我们只要知道了系统的冲激响应,即可求得系统在不同激励下产生的响应。因此,求解系统的冲激响应h(t )对我们进行连续系统的分析具有非常重要的意义。 在MATLAB 中有专门用于求解连续系统冲激响应和阶跃响应, 并绘制其时域波形的函数impulse( ) 和step( )。如果系统输入为f (t ),冲激响应为h(t),系统的零状态响应为y (t ),则有:()()()y t h t f t =*。 若已知系统的输入信号及初始状态,我们便可以用微分方程的经典时域求解方法,求出系统的响应。但是对于高阶系统,手工计算这一问题的过程非常困难和繁琐。 在MATLAB 中,应用lsim( )函数很容易就能对上述微分方程所描述的系统的响应进行仿真,求出系统在任意激励信号作用下的响应。lsim( )函数不仅能

信号与系统实验四 答案

实验四 基于窗函数的FIR DF 的设计 提示: 1. Matlab 中提供了很多常用的窗函数,其中一些窗函数的调用形式为: 矩形窗:w=boxcar(N) 三角形窗:w=bartlett(N) 汉宁窗:w=hanning(N) 哈明窗:w=hamming(N) 布莱克曼窗:w=blackman(N) 其中,输入参数N 表示窗口的长度,返回的变量w 是一个长度为N 的列向量,表示窗函数在这N 点的取值。 2. b=fir1(N,Wc,'ftype',Window) fir1函数用来设计FIR 滤波器。其中N 为滤波器的阶数;Wc 是截止频率,其取值在0~1之间,它是以π为基准频率的标称值,设计低通和高通滤波器时,Wc 是标量,设计带通和带阻滤波器时,Wc 是1×2的向量;设计低通和带通滤波器时,无需 'ftype',当ftype=high 时,设计高通滤波器,当ftype=stop 时,设计带阻滤波器;Window 表示设计滤波器所采用的窗函数类型,Window 的长度为N+1,若Window 缺省,则fir1默认使用哈明窗;b 对应设计好的滤波器的系数h(n),即单位冲激响应,h(n)的长度为N+1。 需注意)(n h 的长度与滤波器的阶数间的关系。FIR 滤波器的系统函数可表示为: ∑-=-=1 )()(N n n z n h z H )(n h 的长度为N ,而滤波器的阶数为1-N 阶。 3. 求数字滤波器的频率响应 h=freqz(b,a,w) 其中,b 和a 分别为系统函数)(z H 的分子多项式和分母多项式的系数。对于FIR 滤波器,此处的b 即为h(n),a 可看作1。 实验题目: 1. 分别用矩形窗和哈明窗设计FIR 低通滤波器,设窗宽11=N ,截止频率rad c πω 2.0=,要求绘出两种窗函数设计的滤波器幅频曲线,并进行比较。

相关主题
文本预览
相关文档 最新文档