当前位置:文档之家› Allegro PCB SI 仿真理论知识

Allegro PCB SI 仿真理论知识

Allegro PCB SI 仿真理论知识
Allegro PCB SI 仿真理论知识

Allegro PCB SI仿真

随着微电子技术和计算机技术的不断发展,信号完整性分析的应用已经成为解决高速系统设计的唯一有效途径。借助功能强大的Cadence公司SpecctraQuest仿真软件,利用IBIS模型,对高速信号线进行布局布线前信号完整性仿真分析是一种简单可行行的分析方法,可以发现信号完整性问题,根据仿真结果在信号完整性相关问题上做出优化的设计,从而缩短设计周期。

本文概要地介绍了信号完整性(SI)的相关问题,基于信号完整性分析的PCB设计方法,传输线基本理论,详尽的阐述了影响信号完整性的两大重要因素—反射和串扰的相关理论并提出了减小反射和串扰得有效办法。讨论了基于SpecctraQucst的仿真模型的建立并对仿真结果进行了分析。研究结果表明在高速电路设计中采用基于信号完整性的仿真设计是可行的, 也是必要的。

【关键字】

高速PCB、信号完整性、传输线、反射、串扰、仿真

Abstract

With the development of micro-electronics technology and computer technology,application of signal integrity analysis is the only way to solve high-speed system design. By dint of SpecctraQuest which is a powerful simulation software, it’s a simple and doable analytical method to make use of IBIS model to analyze signal integrity on high-speed signal lines before component placement and routing. This method can find out signal integrity problem and make optimization design on interrelated problem of signal integrity. Then the design period is shortened.

In this paper,interrelated problem of signal integrity, PCB design based on signal integrity, transmission lines basal principle are introduced summarily.The interrelated problem of reflection and crosstalk which are the two important factors that influence signal integrity is expounded. It gives effective methods to reduce reflection and crosstalk. The establishment of emulational model based on SpecctraQucst is discussed and the result of simulation is analysed. The researchful fruit indicates it’s doable and necessary to adopt emulational design based on signal integrity in high-speed electrocircuit design.

Key Words

High-speed PCB、Signal integrity、Transmission lines、reflect、crosstalk、simulation

目录

第一章绪论 (5)

第二章 Candence Allegro PCB简介 (6)

2.1 高速PCB的设计方法 (6)

2.2 SpecctraQuest Interconnect Designer在高速信号印刷板设计中的应用.7

2.3 PCB板的SI仿真分析 (8)

第三章信号完整性分析概论 (12)

3.1 信号完整性(Signal Integrity)概念 (12)

3.2 信号完整性的引发因素 (12)

3.3 信号完整性的解决方案 (14)

第四章传输线原理 (15)

4.1 传输线模型 (15)

4.2 传输线的特性阻抗 (16)

第五章反射的理论分析和仿真 (19)

5.1 反射形成机理 (19)

5.2 反射引起的振铃效应 (20)

5.3 端接电阻匹配方式 (23)

5.4 多负载的端接 (28)

5.5 反射的影响因素 (29)

第六章串扰的理论分析和仿真 (34)

6.1 容性耦合电流 (34)

6.2 感性耦合电流 (35)

6.3 近端串扰 (36)

6.4 远端串扰 (38)

6.5 串扰的影响因素 (41)

第七章结束语 (46)

参考文献 (47)

致谢 (47)

附录:A/D、D/A 采样测试板原理图和PCB板图 (61)

第一章绪论

随着信息宽带化和高速化的发展,以前的低速PCB已完全不能满足日益增长信息化发展的需要,人们对通信需求的不断提高,要求信号的传输和处理的速度越来越快,相应的高速PCB的应用也越来越广,设计也越来越复杂。高速电路有两个方面的含义,一是频率高,通常认为数字电路的频率达到或是超过45MHZ至50MHZ,而且工作在这个频率之上的电路已经占到了整个系统的三分之一,就称为高速电路;二是从信号的上升与下降时间考虑,当信号的上升时小于6倍信号传输延时时即认为信号是高速信号,此时考虑的与信号的具体频率无关.高速PCB的出现将对硬件人员提出更高的要求,仅仅依靠自己的经验去布线,会顾此失彼,造成研发周期过长,浪费财力物力,生产出来的产品不稳定。

高速电路设计在现代电路设计中所占的比例越来越大,设计难度也越来越高,它的解决不仅需要高速器件,更需要设计者的智慧和仔细的工作,必须认真研究分析具体情况,解决存在的高速电路问题.一般说来主要包括三方面的设计:信号完整性设计、电磁兼容设计、电源完整性设计.

在电子系统与电路全面进入1GHz以上的高速高频设计领域的今天,在实现VLSI芯片、PCB和系统设计功能的前提下具有性能属性的信号完整性问题已经成为电子设计的一个瓶颈。从广义上讲,信号完整性指的是在高速产品中有互连线引起的所有问题,它主要研究互连线与数字信号的电压电流波形相互作用时其电气特性参数如何影响产品的性能。

传统的设计方法在制作的过程中没有仿真软件来考虑信号完整性问题,产品首次成功是很难的,降低了生产效率。只有在设计过程中融入信号完整性分析,才能做到产品在上市时间和性能方面占优势。对于高速PCB设计者来说,熟悉信号完整性问题机理理论知识、熟练掌握信号完整性分析方法、灵活设计信号完整性问题的解决方案是很重要的,因为只有这样才能成为21世纪信息高速化的成功硬件工程师。

信号完整性的研究还是一个不成熟的领域,很多问题只能做定性分析,为此,在设计过程中首先要尽量应用已经成熟的工程经验;其次是要对产品的性能做出预测和评估以及仿

真。在设计过程中可以不断积累分析能力,不断创新解决信号完整性的方法,利用仿真工具可以得到检验。

第二章:Candence Allegro PCB简介

2.1 高速PCB的设计方法

2.1.1 传统的PCB设计方法

如图2.1是传统的设计方法,在最后测试之前,没有做任何的处理,基本都是依靠设计者的经验来完成的。在对样机测试检验时才可以查找到问题,确定问题原因。为了解决问题,很可能又要从头开始设计一遍。无论是从开发周期还是开发成本上看,这种主要依赖设计者经验的方法不能满足现代产品开发的要求,更不能适应现代高速电路高复杂性的设计。所以必须借助先进的设计工具来定性、定量的分析,控制设计流程。

图2.1 图2.2

2.1.2 Cadence的PCB设计方法

现在越来越多的高速设计是采用一种有利于加快开发周期的更有效的方法。先是建立一套满足设计性能指标的物理设计规择,通过这些规则来限制PCB布局布线。在器件安装之前,先进行仿真设计。在这种虚拟测试中,设计者可以对比设计指标来评估性能。而这些关键的前提因素是要建立一套针对性能指标的物理设计规则,而规则的基础又是建立在基于模型的

仿真分析和准确预测电气特性之上的,所以不同阶段的仿真分析显得非常重要。

Cadence公司针对PCB Design Studio发布一个功能非常实用的高速电路设计及信号完整性分析的工具选件——Allegro PCB,利用这个仿真软件能够根据叠层的排序,PCB的介电常数,介质的厚度,信号层所处的位置以及线宽等等来判断某一PCB线条是否属于微带线、带状线、宽带耦合带状线,并且根据不同的计算公式自动计算出信号线的阻抗以及信号线的反射、串扰、电磁干扰等等,从而可以对布线进行约束以保证PCB的信号完整性。

在布线时利用Interconnect Designer工具设置各种约束条件,这些约束条件包括了范围广泛的物理和电气性能参数,如常见的PCB线宽,过孔数目,阻抗范围,还有峰值串扰,过冲特性,信号延时,阻抗匹配等,用仿真的结果做出在PCB中对时序、信号完整性、电磁兼容、时间特性及其他相关问题上做出最优化的设计。

Cadence软件针对高速PCB的设计开发了自己的设计流程,如图2它的主要思想是用好的仿真分析设计来预防问题的发生,尽量在PCB制作前解决一切可能发生的问题。与左边传统的设计流程相比,最主要的差别是在流程中增加了控制节点,可以有效地控制设计流程。它将原理图设计、PCB布局布线和高速仿真分析集成于一体,可以解决在设计中各个环节存在的与电气性能相关的问题。通过对时序、信噪、串扰、电源结构和电磁兼容等多方面的因素进行分析,可以在布局布线之前对系统的信号完整性、电源完整性、电磁干扰等问题作最优的设计。

2.2 SpecctraQuest Interconnect Designer在高速PCB设计中的应用

2.2.1 高速系统设计的若干问题

“高速”设计并不是只适用于以较高时钟速率运行的设计,随着驱动器的上升和下降时间缩短,信号完整性和EMC问题就会加大。如果所用片子的信号和时钟边沿速率为1至2ns或更快,即使运行在几兆赫的板子也要精心考虑。信号传递速度快的板子在设计时就要采用虚拟样板,先对系统功能进行透彻的仿真,然后决定电路图的布局布线。所谓虚拟样板是供设计者先行模拟仿真的系统模型。对模拟样板进行仿真,是为了分析信号的完整性和EMC性能,这意味着样板里必须有足够精确的器件模型。片子模型通常有两类:一类是功能级;另一类是电路/器件级,后者一般用的是Spice语言或类似Spice的语言。功能级模型用于对系统级整体设计的评估,而电路/器件模型则用于对设计内部各个零部件进行精确分析,找出难以鉴定的隐患。对这两类模型都要进行仿真,并检查器件互连及板子通路。

2.2.2 SpecctraQuest interconnect Designer的性能简介

SpecctraQuest interconnect Designer是Cadence公司为了满足高速系统和板级设计需要而开发的工程设计环境。它将功能设计和物理实际设计有机的结合在一起。设计工程师能在直观的环境中探索并解决与系统功能息息相关的高速设计问题。在进行实际的布局和布线之前,SpecctraQuest Interconnect Designer使设计工程师在时间特性,信号完整性,EMI,散热及其他相关问题上作出最优化的设计。这种统一的考虑不仅在单块板的系统中得到完美体现,更能在多块板构成的系统中,包括ASIC芯片,电路板,连接电缆,插接件等之间的连接进行分析。SpecctraQuest可以接受许多第三方厂商的网络表信息,时间特性数据(例如IBIS模型),提供了强大且易用的高速设计必须考虑的参数设置环境。元件的IBIS仿真模型由元件的制造商提供,也可以自定义元件的模型。IBIS(input/output buffer information) 输入/输出缓冲器信息规范,是一个元件的标准模型信息。IBIS模型是一种基于V/I曲线的对I/O 缓冲器快速准确建摸的方法,是反映芯片驱动和接收电气特性的一种国际标准,它提供一种标准的文件格式来记录如驱动器输出阻抗、上升/下降时间及输出负载等参数,非常适合做振铃( ringing) 和串扰(crosstalk) 等高频效应的计算与仿真。

IBIS模型是用于描述I/O 缓冲信息特性的模型,一个输出输入端口的行为描述可以分解为一系列的简单的功能模块,由这些简单的功能模块就可以建立起完整的IBIS模型,包括封装所带来的寄生参数、硅片本身的寄生电容、电源或地的嵌压保护电路、门限和使能逻辑、上拉和下拉电路等。

在SpecctraQuest的参数设置环境中你可以针对不同设计要求规定不同的约束条件。这些

不同的约束条件可以通过参数分配表分配给电路板上不同的特定区域,或者分配给某一个信

号组(group),甚至具体到某一个网络。这些约束条件包括了范围广泛的物理和电气性能参数,如常见的PCB线宽,过孔数目,阻抗范围,还有峰值串扰,过冲特性,信号延时,阻抗

匹配等。SpecctraQuest内部包括SigNoise信号完整性分析工具,SigNoise能接受IBIS,Elecmodel和Quad模型,转换成其独特的设计模型化语言(DML)以完成复杂I/O结构的建模。这种结构内有可编程驱动强度缓冲器,动态上拉/下拉I/O缓冲器和动态钳位二极管。这种复

杂的I/O结构模型是纯IBIS模型难以作到的。DML语言以Spice语言为基础,把IBIS模型嵌套

在较大的宏模型中,在较大的Spice模型中有功能性IBIS模型,因此SigNoise能以快得多的速

度进行仿真,而这种速度是纯Spice模型所无法达到的。

SpecctraQuest对高速系统的信号完整性分析和波形仿真,在高速系统设计中具有指导意义。设计者可以在电路板预布局的情况下,就可以对系统特性进行仿真,而且实践证明,仿

真结果不好的布局,在完成布线后的仿真结果也不好。在进行布局的调整,完成布线后,再

进行仿真,对于效果不好的网络分析原因,再加以针对性的改进,直至得到满意的布线结果。SpecctraQuest仿真流程如下:

图2.3

第三章信号完整性分析概论

3.1 信号完整性(Signal Integrity)概念

信号完整性是指信号在信号线上的质量。信号具有良好的信号完整性是指当在需要的时候,具有所必需达到的电压电平数值。差的信号完整性不是由某一因素导致的,而是由板级设计中多种因素共同引起的。特别是在高速电路中,所使用的芯片的切换速度过快、端接元件布设不合理、电路的互联不合理等都会引起信号的完整性问题。具体主要包括串扰、反射、过冲与下冲、振荡、信号延迟等。

3.2 信号完整性的引发因素

信号完整性问题由多种因素引起,归结起来有反射、串扰、过冲和下冲、振铃、信号延

迟等,其中反射和串扰是引发信号完整性问题的两大主要因素。

3.2.1 反射(reflection)

反射和我们所熟悉的光经过不连续的介质时都会有部分能量反射回来一样,就是信号在传输线上的回波现象。此时信号功率没有全部传输到负载处,有一部分被反射回来了。在高速的PCB中导线必须等效为传输线,按照传输线理论,如果源端与负载端具有相同的阻抗,反射就不会发生了。如果二者阻抗不匹配就会引起反射,负载会将一部分电压反射回源端。根据负载阻抗和源阻抗的关系大小不同,反射电压可能为正,也可能为负。如果反射信号很强,叠加在原信号上,很可能改变逻辑状态,导致接收数据错误。如果在时钟信号上可能引起时钟沿不单调,进而引起误触发。一般布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素均会导致此类反射。另外常有一个输出多个接收,这时不同的布线策略产生的反射对每个接收端的影响也不相同,所以布线策略也是影响反射的一个不可忽视的因素。

3.2.2 串扰(crosstalk)

串扰是相邻两条信号线之间的不必要的耦合,信号线之间的互感和互容引起线上的噪声。因此也就把它分为感性串扰和容性串扰,分别引发耦合电流和耦合电压。当信号的边沿速率低于lns时,串扰问题就应该考虑了。如果信号线上有交变的信号电流通过时,会产生交变的磁场,处于磁场中的相邻的信号线会感应出信号电压。一般PCB板层的参数、信号线间距、驱动端和接收端的电气特性及信号线的端接方式对串扰都有一定的影响。在Cadence 的信号仿真工具中可以同时对6条耦合信号线进行串扰后仿真,可以设置的扫描参数有:PCB 的介电常数,介质的厚度,沉铜厚度,信号线长度和宽度,信号线的间距.仿真时还必须指定一个受侵害的信号线,也就是考察另外的信号线对本条线路的干扰情况,激励设置为常高或是常低,这样就可以测到其他信号线对本条信号线的感应电压的总和,从而可以得到满足要求的最小间距和最大并行长度。

3.2.3 过冲(overshoot)和下冲(undershoot)

过冲是由于电路切换速度过快以及上面提到的反射所引起的信号跳变,也就是信号第一个峰值超过了峰值或谷值的设定电压。下冲是指下一个谷值或峰值。过分的过冲能够引起保护二极管工作,导致过早地失效,严重的还会损坏器件。过分的下冲能够引起假的时钟或数据错误。它们可以通过增加适当端接予以减少或消除。

3.2.4 振铃(ringing)

振荡的现象是反复出现过冲和下冲。信号的振铃由传输线上过度的电感和电容引起的接

收端与传输线和源端的阻抗不匹配而产生的,通常发生在逻辑电平门限附近,多次跨越逻辑电平门限会导致逻辑功能紊乱。振铃由反射等多种因素引起的,振铃可以通过适当的端接或是改变PCB参数予以减小,但是不可能完全消除。

在Cadence的信号仿真软件中,将以上的信号完整性问题都放在反射参数中去度量。在接收和驱动器件的IBIS模型库中,我们只需要设置不同的传输线阻抗参数、电阻值、信号传输速率以及选择微带线还是带状线,就可以通过仿真工具直接计算出信号的波形以及相应的数据,这样就可以找出匹配的传输线阻抗值、电阻值、信号传输速率,在对应的PCB软件Allegro中,就可以根据相对应的传输线阻抗值和信号传输速率得到各层中相对应信号线的宽度(需提前设好叠层的顺序和各参数)。选择电阻匹配的方式也有多种,包括源端端接和并行端接等,根据不同的电路选择不同的方式。在布线策略上也可以选择不同的方式:菊花型、星型、自定义型,每种方式都有其优缺点,可以根据不同的电路仿真结果来确定具体的选择方式。

3.2.5 信号延迟(delay)

电路中只能按照规定的时序接收数据,过长的信号延迟可能导致时序和功能的混乱,在低速的系统中不会有问题,但是信号边缘速率加快,时钟速率提高,信号在器件之间的传输时间以及同步时间就会缩短。驱动过载、走线过长都会引起延时。必须在越来越短的时间预算中要满足所有门延时,包括建立时间,保持时间,线延迟和偏斜。由于传输线上的等效电容和电感都会对信号的数字切换产生延迟,加上反射引起的振荡回绕,使得数据信号不能满足接收端器件正确接收所需要的时间,从而导致接收错误。在Cadence的信号仿真软件中,将信号的延迟也放在反射的子参数中度量,有Settledelay、Switchdelay、Propdelay。其中前两个与IBIS模型库中的测试负载有关,这两个参数可以通过驱动器件和接收器件的用户手册参数得到,可以将它们与仿真后的Settledelay、Switchdelay加以比较,如果在Slow模式下得到的Switchdelay都小于计算得到的值,并且在Fast的模式下得到的Switchdelay的值都大于计算得到的值,就可以得出我们真正需要的两个器件之间的时延范围Propdelay。在具体器件布放的时候,如果器件的位置不合适,在对应的时延表中那部分会显示红色,当把其位置调整合适后将会变成蓝色,表示信号在器件之间的延时已经满足Propdelay规定的范围了。

3.3 信号完整性的解决方案

随着各种PCB仿真软件的出现,通过仿真指导布局来解决信号完整性问题成为行之有效的途径。首先在电路设计方案中,设计者可有多种选择,并能通过设计同步切换输出数量,

各单元的最大dI/dt和dV/dt等工作来控制信号的完整性,也可为高扇出功能块,如时钟驱动器选择使用差分信号。在布线过程中,可以通过在SpecctraQues中设置约束条件来使布线符合规定条件,以得到对于延迟的准确预测。对电路进行电路仿真 这在现代高速PCB板设计中显得尤为重要,而且它具有的最大优点是显而易见,给设计师科学、准确和直观的设计结果,便于及时更改与纠正,缩短了设计时间,降低了成本设计者应对相关因素作出估计,建立合理的模型。随着时钟频率的增加,这将成为一项关键的确认和验证步骤。在现

代高速PCB设计中, 保持信号完整性对设计者来说越来越富有挑战性。

号完整性要求。

第四章传输线原理

简单的说,传输线是由两条有一定长度的导线组成。如信号在走线上的传输时间大于电平跳变上升/下降时间的一半,则该走线判定为传输线。

4.1 传输线模型

平行传输线如下图所示:

图4.1

信号路径和返回路径所在的传输线不可能是理想的导体,因此它们都有有限的电阻,电阻的大小由传输线的长度和横截面积决定。任何传输线都可以划分为一系列串接线段。同样的在传输线之间的介质也不可能是理想的绝缘体,漏电流总是存在的,可以用单位长度传输线的漏电流来衡量。

如果AB导线间的电压不随时间而变化,在AB导线就会存在静态电场。由静电学原理可知,由静电场产生的电压为:

∫?=dl E V

如果两导线上带有等量、极性相反的自由电荷,根据库仑定律,导线间的静电场为: 24r

Q E πε= Q 是自由电荷量,ε是介电常数,r 是导线间距。传输线上的电荷以及其间的电压构成了电容:

V

Q C = 由于电容量会随传输线的长度线性增加,在分析中运用传输线的单位长度电容。 导线中的电流会在周围产生磁场,由安培定律有:

∫=?I dl H 由毕奥-沙伐尔定律有:

34r

r Idl dB πμ×= H 是磁场强度,B 是磁通密度,μ是磁导率。

如果导线间的磁通量随时间变化,传输线上就会产生感应电压,由法拉第定律有: dt

di L dt d V ==φ 综上所述,传输线模型段由串联电阻和电感、并联电容组成,如下图:

图4.2

从电路分析的角度讲,以上三种结构安排是等价的,实际的传输线模型由无数多个短线段组成,短线段的长度趋于零。由一系列短传输线段组成的传输线模型如下:

图4.3

4.2 传输线的特性阻抗

考虑短线段上的电阻和电感,其阻抗为:

)(L j R l Z s ω+=

同样的综合电容和电导,其阻抗为:

)

(11C j G l Y Z P P ω+== 在下图中假设传输线的长度无限大,每一小段传输线的阻抗是相等的,即:

n Z Z Z Z =???===321

图4.4

对于均与传输线,当信号在上面传输时,在任何一处所受到的瞬态阻抗是相同的,称之为传输线的特性阻抗。所以上图可以简化为下图:

图4.5

由上面的讨论可知传输线的输入阻抗和特性阻抗必然相等,即:

0Z Z in =

由上图的电路结构知:

000Z Z Z Z Z Z Z P

P s in =++

= 求解上式得:

2

420P S S S Z Z Z Z Z +±= 根据S Z 和P Z 的定义,可得:

C

j G L j R L j R l L j R l Z ωωωω++++±+=4)(212)(220 因为l 很小,所以上式可以简化为:

P S Z Z C

j G L j R Z =++=ωω0 在低频情况下,比如信号频率小于1KHz 时,特性阻抗为:

G

R Z =0 当信号频率很高,比如大于100MHz 时,L ω和C ω远大于R 和G ,所以上式进一步简化为:

C

L Z =0

第五章 反射的理论分析和仿真

如果信号沿互连线传播时所受的瞬态阻抗发生变化,则一部份信号将被反射,另一部份信号发生失真并继续传播下去。

5.1 反射形成机理

信号沿传输线传播时,其路径上的每一步都有相应的瞬态阻抗,无论是什么原因使瞬态阻抗发生了变化,信号都将产生反射现象,瞬态阻抗变化越大,反射越大。

图5.1

信号到达瞬态阻抗不同的两个区域的交界面时,在导体中只存在一个电压和一个电流回路,边界处不可能出现电压不连续,否则此处有一个无限大的电场;也不可能出现电流不连续,否则此处有一个无限大的磁场,所以交界面的电压和电流一定连续,则有:

21V V =,21I I =

而由欧姆定律知:

111/Z V I =,222/Z V I =

当交界面两侧的阻抗不同时,以上四个关系不可能同时成立,这就说明在交界面上必然有反射回发射端的电压,以平衡交界面两端不匹配的电压和电流。

入射信号电压i V 向着分界面传播,而传输信号电压t V 远离分界面而传播,入射电压穿越分界面时,产生反射电压r V ,则有:

t r i V V V =+

相应的当入射电流i I 穿越分界面时,反射电流r I 和传输电流t I 的关系为:

t r i I I I =?

按照欧姆定律,每个区域中的电压与电流的关系为:

1/Z I V i i =,1/Z I V r r =,2/Z I V t t =

通过换算可以得到:

1212/Z Z Z Z V V i r +?=,1

22*2/Z Z Z V V i t += 由此可以看出,缩小1Z 和2Z 的差值,有利于减小反射电压,在实际运用中,通过给传输线端接匹配阻抗来实现。

在典型的数字系统中,驱动器的输出阻抗通常小于PCB 互联信号线的特征阻抗,而PCB 互联信号线的特征阻抗也总是小于接收器的输入阻抗。这种阻抗的不连续性就会导致设计系统中信号反射的出现。

5.2反射引起的振铃效应

5.2.1 由电路谐振产生的振铃效应

在研究由反射引起的振铃效应前,先讨论由电路谐振引起的振铃效应。在时钟速度高达10MHz 的数字系统中,振铃(Ringing )现象是设计中的显著问题。传导系统对输入信号的响应,在很大程度上取决于系统的尺寸是否小于信号中最快的电气特性的有效长度,反之亦然。电气特性的有效长度由它的持续时间和传播延迟决定,即l=Tr/D (Tr =上升时间,ps ;D=延迟,ps/in )。如果走线长度小于有效长度的1/6,该电路表现为集总系统,如果系统对输

入脉冲的响应是沿走线分布的,称之为分布系统。

图5.2

对于不同长度的印制板布线,有不同的处理方法。一般来说,长度小于2英寸的走线的电气特性更像集总参数的LC 电路;长度大于8英寸的走线的电气特性更像分布参量的传输线电路。为了消除以振铃噪声,对于不同长度的走线有不同的处理措施,这些措施和印制版走线的等效电路模型有关。

印制版的走线类似于谐振电路,由板上的铜铂提供电感,负载提供电容,同时铜铂依其长度有分布电感存在。下图即为其简化模型:

图5.3

在此模型中C 为Source 驱动 源的负载管脚的分布电容,该电路模型为一LC 谐振电路,如果其电感量为L ,电容为C ,则其谐振频率为:

LC f π21

=

振铃噪声大致正比于谐振周期和时钟沿上升/下降时间的比值。当走线很短时,电感量和分布电容量都很小,这样谐振频率很高,谐振周期很短,振铃的幅度亦很小。当走线长度增加时,电感量和分布电容量都加大,谐振周期变长,振铃幅度也加大,此时对电路的正常工作会产生较大的影响。如下图所示:

图5.4

减小振铃噪声的一种有效手段是在电路中串联一个小电阻,此时电路模型变为下图:

图5.5

显然,该电阻为谐振电路提供了阻尼,该阻尼电阻能显著减小振铃幅度,缩短振铃震荡时间,同时几乎不影响电路速度。在工程使用上,该电阻通常为25欧姆。

理论上,电平从高到低跳变和从低到高跳变都会引起振铃,但是在典型的TTL电路中,从高到低的电平跳变引起的振铃现象更为显著。这是因为相对于从低到高的电平跳变,CMOS和TTL的输出级在从高到低的跳变时有更强的驱动能力,同时其等效的输出阻抗更小,一般只有3-10欧姆,这样就不能为谐振回路提供强的阻尼,所以从高到低的跳变引起的振铃较剧烈,对电路的影响也较大。同时TTL电平对高低门限有不同耐受程度:典型的逻辑信号在高电平时有3.5V,而在低电平时为0.2V,而高低电平门限为1.4V,所以在从低到高的跳变产生的振铃必须有(3.5-1.4=2.1V)的幅度才会产生数据错误;而从高到低的振铃幅度只要有(1.4-0.2=1.2V)就会产生数据错误。

对长度小于2英寸,线宽10mil的走线进行仿真,发射端为74LCX16374芯片NO.23引脚,接收端为Virtex_ⅡNO.D2引脚,激励为100MHZ的方波,如下图所示:

图5.6

在不加阻尼电阻、加入阻尼电阻R=25ohm 、R=50ohm 、R=100ohm 的情况下得到的仿真结果如下表:

表5.1 阻尼电阻R/ohm R=0 R=25

R=50 R=100 OvershootHigh/mv 3932.53

3616.68 3300.00 3247.76 OvershootLow/mv -791.906

-501.719 -21.5026 25.1391

仿真波形对比如下:

图5.7

从上图可看出,在接收端波无阻尼电阻时波形有明显的振铃效应存在,为了减小振铃效应,在发射端与接收端之间加入阻尼电阻后,振铃效应有明显的改善,随着R 的增大,振铃的幅度和次数逐渐减少,对于波形的改善有一定效果。

5.2.2 反射引起的振铃效应

驱动源总存在内阻,内阻对进入传输线的初始电压有重要影响。当反射波最终到达源端时,将此内阻作为瞬态阻抗,它的值决定了反射波再次反射回远端的情况。

进入传输线的实际电压是由源电压及内阻和传输线组成的分压器共同决定的,设源电压为0V ,内阻为0R ,传输线的特性阻抗为0Z ,则进入传输线的实际电压为:

000*R Z Z V V i += 由此可见减小电源的内阻有利于提高电源的利用率,在实际运用中,驱动源内阻都远

小于传输线特性阻抗,而负载的输入阻抗一般都大于传输线的特性阻抗,这样就会导致在源端出现负反射,在负载端出现正反射,反射波在源端和负载端来回反射就会引起振铃现象,与电路谐振所产生的振铃效应相比,其本质上是有区别的。

当走线很长时,由反射引起的振铃是很严重的,对走线长度为10in的传输线进行仿真,得到如下波形:

图5.8

由图可以看出,由于阻抗不匹配,在阻抗突变界面上产生多次反射,源端波形和接收端波形均遭受到了不同程度的畸变。

5.3 端接电阻匹配方式

匹配阻抗的端接有多种方式,包括并联终端匹配,串联终端匹配,戴维南终端匹配,AC终端匹配,肖特基二极管终端匹配。

5.3.1 并联终端匹配

并联终端匹配是最简单的终端匹配技术:通过一个电阻R将传输线的末端接到地或者接到V CC上。电阻R的值必须同传输线的特征阻抗Z0匹配,以消除信号的反射。如果R同传输线的特征阻抗Z0匹配,不论匹配电压的值如何,终端匹配电阻将吸收形成信号反射的能量。终端匹配到V CC可以提高驱动器的源的驱动能力,而终端匹配到地则可以提高电流的吸收能力。

并联终端匹配技术突出的优点就是这种类型终端匹配技术的设计和应用简便易行,在这种终端匹配技术中仅需要一个额外的元器件;这种技术的缺点在于终端匹配电阻会带来直流功率消耗。另外并联终端匹配技术也会使信号的逻辑高输出电平的情况退化。将TTL输出终端匹配到地会降低V OH的电平值,从而降低了接收器输入端对噪声的免疫能力。

图5.9

对长走线进行并联终端匹配后仿真,波形如下:

图5.10

5.3.2 串联终端匹配

串联终端匹配技术,也称之为后端终端匹配技术,不同于其它类型的终端匹配技术,是源端的终端匹配技术。串联终端匹配技术是在驱动器输出端和信号线之间串联一个电阻。驱动器输出阻抗R0以及电阻R值的和必须同信号线的特征阻抗Z0匹配。对于这种类型的终端匹配技术,由于信号会在传输线、串联匹配电阻以及驱动器的阻抗之间实现信号电压的分配,因而加在信号线上的电压实际只有一半的信号电压。

而在接收端,由于信号线阻抗和接收器阻抗的不匹配,通常情况下,接收器的输入阻抗更高,因而会导致大约同样幅度值信号的反射,称之为附加的信号波形。因而接收器会马上看到全部的信号电压(附加信号和反射信号之和),而附加的信号电压会向驱动端传递。然而不会出现进一步的信号反射,这是因为串联的匹配电阻在接收器端实现了反射信号的终端匹配。

串联终端匹配技术的优点是这种匹配技术仅仅为系统中的每一个驱动器增加一个电阻元件,而且相对于其它的电阻类型终端匹配技术来说,串联终端匹配技术中匹配电阻的功耗是最小的,而且串联终端匹配技术不会给驱动器增加任何额外的直流负载,也不会在信号线与地之间引入额外的阻抗。

由于许多的驱动器都是非线性的驱动器,驱动器的输出阻抗随着器件逻辑状态的变化而变化,从而导致串联匹配电阻的合理选择更加复杂。所以,很难应用某一个简单的设计公式

为串联匹配电阻来选择一个最合适的值。

图5.11

对长走线进行串联终端匹配后仿真,波形如下:

图5.12

5.3.3戴维南终端匹配

戴维南终端匹配技术或者也叫做双电阻终端匹配技术,采用两个电阻来实现终端匹配,R1和R2的并联组合要求同信号线的特征阻抗Z0匹配。R1的作用是帮助驱动器更加容易地到达逻辑高状态,这通过从VCC向负载注入电流来实现。与此相类似,R2的作用是帮助驱动器更加容易地到达逻辑低状态,这通过R2向地释放电流来实现。

戴维南终端匹配技术的优势在于在这种匹配方式下,终端匹配电阻同时还作为上拉电阻和下拉电阻来使用,因而提高了系统的噪声容限。戴维南终端匹配技术同样通过向负载提供额外的电流从而有效地减轻了驱动器的负担,另外这种终端匹配技术还能够有效地抑制信号过冲。

戴维南终端匹配的一个缺点就是无论逻辑状态是高还是低,在V CC到地之间都会有一个常量的直流电流存在,因而会导致终端匹配电阻中有静态的直流功耗。这种终端匹配技术同样也要求两个匹配电阻之间存在一定的比例关系,同时也存在额外的到电源和地的线路连接。负载电容和电阻(Z0、R1和R2的并联组合)会对信号的上升时间产生影响,提升驱动器的输出电压。

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级 题目基于SIMULINK的基带传输系统的仿真姓名学号 指导教师胡娟 2014年6月27日

1任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功率谱进行估计。假设接收定时恢复是理想的。 2基带系统的理论分析 1.基带系统传输模型和工作原理 数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。系统工作过程及各部分作用如下。 g T(t) n 定时信号 图 1 :数字基带传输系统方框图 发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。 基带传输系统的信道通常采用电缆、架空明线等。信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。 接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。 抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n},然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。 2.基带系统设计中的码间干扰和噪声干扰以及解决方案

系统建模与仿真

一、基本概念 1、数字正弦载波调制 在通信中不少信道不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使得载波的这些参量随基带信号的变化而变化,即所谓数字正弦载波调制。 2、数字正弦载波调制的分类。 在二进制时, 数字正弦载波调制可以分为振幅键控(ASK)、移频键控(FSK)和移相键控(PSK)三种基本信号形式。如黑板所示。 2、高斯白噪声信道 二、实验原理 1、实验系统组成 2、实验系统结构框图

图 1 2FSK信号在高斯白噪声信道中传输模拟框图 各个模块介绍p12 3、仿真程序 x=0:15;% x表示信噪比 y=x;% y表示信号的误比特率,它的长度与x相同FrequencySeparation=24000;% BFSK调制的频率间隔等于24KHz BitRate=10000;% 信源产生信号的bit率等于10kbit/s SimulationTime=10;% 仿真时间设置为10秒SamplesPerSymbol=2;% BFSK调制信号每个符号的抽样数等于2 for i=1:length(x)% 循环执行仿真程序 SNR=x(i);% 信道的信噪比依次取中的元素 sim('project_1');% 运行仿真程序得到的误比特率保存在工作区变量BitErrorRate中 y(i)=mean(BitErrorRate); end hold off% 准备一个空白的图 semilogy(x,y);%绘制的关系曲线图,纵坐标采用对数坐标 三、实验结论

图 4 2FSK信号误比特率与信噪比的关系曲线图 系统建模与仿真(二) ——BFSK在多径瑞利衰落信道中的传输性能 一、基本概念 多径瑞利衰落信道 二、实验原理 1、实验系统组成

配电系统物理仿真平台--北京丹华昊博电力科技有限公司

配电系统物理仿真平台 一、概述 由于电力系统暂态及稳态的复杂性,在进行理论研究的同时也必须进行试验研究,二者缺一不可。电力系统的试验可以在原型上进行,也可以在模型上进行,电力系统的物理模拟试验是电力系统研究的重要方法。目前配网自动化全面建设,无论是理论还是实际运行,都存在许多问题,各种配网自动化设备都需要试验、检测,配电系统物理仿真平台就是解决这些问题的重要方法。 北京丹华昊博电力科技有限公司结合杨以涵教授30年小电流接地选线研究心得,率先与华北电力大学合作,建成国家重点试验室——“1:1 10kV高压物理模拟试验室”,又与中国电力科学研究院合作,建成配电系统物理仿真平台——动模测试系统(原型测试系统PRS)。目前两套系统在配电系统物理仿真平台建设和配电网接地故障模拟试验领域,均处于领先水平。 二、配电系统物理仿真平台 配电系统物理仿真平台能够真实再现电力系统的各种运行工况、能够真实模拟电力系统设备和线路的运行情况,为电力用户提供全方位的培训、仿真、研发平台,为配网自动化设备的检测提供了全新的解决方案。 配电系统物理仿真平台具备的功能主要包括:配电系统参数模拟、配电系统运行数据模拟、配电系统故障模拟、配网自动化设备测试、状态监视、数据采集、图形显示、事件告警、数据统计、录波分析等。 目前,仿真平台主要有3类,分别为380V配电系统物理仿真平台、10kV配电系统物理仿真平台和RTDS数字仿真平台,三种平台的对比如表 1所示。 表 1仿真平台对比表

三、380V配电系统物理仿真平台 1.系统规模 1)实验室要求:长10m,宽4m,面积40m2; 2)实验室分配:独立使用; 3)模拟35kV/10kV变电站1座、主变1台、10kV线路6条,系统如图 1所示; 4)户内柜体式,配置6面柜体,配置后台监控系统,按变电站规范设计,所有操作分远 方和就地,设备布置如图 2所示。 图 1380V配电系统物理仿真平台系统图 2.系统参数 1)系统供电电源:三相、380V、100A、50Hz; 2)系统电压:380V; 3)系统满负荷工作电流:10A; 4)线路短路电流(多匝线圈):800、1600A;

动力学模型

月球软着陆控制系统综合仿真及分析(课程设计) 在月球探测带来巨大利益的驱使下,世界各国纷纷出台了自己的探月计划,再一次掀起了新一轮探月高潮。在月球上着陆分为两种,一种称为硬着陆,顾名思义,就是探测器在接近月球时不利用制动发动机减速而直接撞击月球。另一种称为软着陆,这种着陆方式要求探测器在距月面一定高度时开启制动系统,把探测器的速度抵消至零,然后利用小推力发动机把探测器对月速度控制在很小的范围内,从而使其在着陆时的速度具有几米每秒的数量级。显然,对于科学研究,对探测器实施月球软着陆的科学价值要大于硬着陆。 1月球软着陆过程分析 目前月球软着陆方式主要有以下两种方式: 第一种就是直接着陆的方式。探测器沿着击中轨道飞向月球,然后在适当的月面高度实施制动减速,最终使探测器软着陆于月球表面。采用该方案时,探测器需要在距离目标点很远时就选定着陆点,并进行轨道修正。不难发现,该方法所选的着陆点只限于月球表面上接近轨道能够击中的区域,所以能够选择的月面着陆点的区域是相当有限的。 第二种方法就是先经过一条绕月停泊轨道,然后再伺机制动下降到月球表面,如图17-1所示。探测器首先沿着飞月轨道飞向月球,在距月球表面一定高度时,动力系统给探测器施加一制动脉冲,使其进入一条绕月运行的停泊轨道;然后根据事先选好的着陆点,选择霍曼变轨起始点,给探测器施加一制动脉冲,使其进入一条椭圆形的下降轨道,最后在近月点实施制动减速以实现软着陆。 主制动段 开始点 图17-1 月球软着陆过程示意图 与第一种方法相比,第二种方法有以下几个方面较大的优越性: 1)探测器可以不受事先选定着陆点的约束,可以在停泊轨道上选择最佳的着陆点,具有很大的选择余地。

多物理场仿真软件技术参数

多物理场仿真软件技术参数 一、技术规格要求(*必须满足) 1. 软件的功能需求 1.1 使用有限元算法。 1.2 具有多物理场(三个及以上)一次性同时求解的直接耦合功能。 1.3 图形化用户界面,预置前处理、求解器,以及后处理功能。 1.4 具有App 开发器。 1.5 具有热传递仿真功能。 1.6 具有结构力学仿真功能。 1.7 具有CFD 仿真功能。 1.8 具有与Excel 的双向调用功能。 1.9 具有几何建模功能。 1.10 具有半导体仿真功能。 1.11 具有波动光学仿真功能。 1.12 具有材料库功能。 1.13 具有案例模型。 2. 基本功能 2.1 所有数值计算均基于有限元方法。 2.2 任意指定多物理场耦合,并且可以一次性同时求解的直接耦合功能。 2.3 提供前处理器、求解器和后处理器。 2.4 提供图形化自定义偏微分方程接口(系数型、广义型、弱解型),不需要用户编写程序就可以求解自己的方程,并可以与预置的物理场接口耦合。 2.5 可以导入/导出数组文件、表格、文件等。 2.6 自带网格剖分功能,可以智能或者手动剖分网格,创建结构化和非结构化网 格。 3. 半导体仿真功能 3.1 可以仿真分析双极晶体管、金属半导体场效应晶体管 (MESFET)、金属氧化物半导 体场效应晶体管 (MOSFET)、绝缘栅双极晶体管 (IGBT)、肖特基二极管和 P-N 结等。 3.2 可以分析包含光跃迁来模拟诸如太阳能电池、发光二极管(LED) 以及光电二 极管等一系列器件。 3.3 可以求解电子和空穴的浓度以及伏安特性曲线。 4. 波动光学仿真功能 4.1 提供专用的工具来模拟线性和非线性光学介质中的电磁波传播,实现精确的元件仿 真和光学设计优化。 4.2 可以在光学结构中进行频域或时域的高频电磁波仿真。 4.3 可以进行特征频率模式分析、频域和时域电磁仿真。例如计算传输和反射系数。 5. 材料库功能 5.1 材料库中包含 2500 种材料的数据,包括化学元素、矿物、金属合金、热绝缘材料、半导体和压电材料等。 5.2 不仅可以绘制和检查这些函数的定义,而且还可以进行添加或更改。也可以在其他 依赖材料属性函数的物理场耦合中调用这些函数。 6. 几何建模功能 * * * * * * * * * * * * * * * * * * * * *

计算机模拟仿真技术在航空航天中的应用

计算机模拟仿真技术在航空航天中的应用 在本文开篇,我先粗略介绍一下计算机仿真模拟技术。 计算机仿真是应用电子计算机对系统的结构、功能和行为以及参与系统控制的人的思维过程和行为进行动态性比较逼真的模仿。它是一种描述性技术,是一种定量分析方法。通过建立某一过程和某一系统的模式,来描述该过程或该系统,然后用一系列有目的、有条件的计算机仿真实验来刻画系统的特征,从而得出数量指标,为决策者提供有关这一过程或系统得定量分析结果,作为决策的理论依据。(选自百度百科计算机仿真摘要) 仿真是对现实系统的某一层次抽象属性的模仿。人们利用这样的模型进行试验,从中得到所需的信息,然后帮助人们对现实世界的某一层次的问题做出决策。仿真是一个相对概念,任何逼真的仿真都只能是对真实系统某些属性的逼近。仿真是有层次的,既要针对所欲处理的客观系统的问题,又要针对提出处理者的需求层次,否则很难评价一个仿真系统的优劣。(选自百度百科) 计算机仿真模拟的原理是依靠计算机的迭代运算, 所以这是一门依靠计算机技术所衍生的一门有着实际意 义的学科,它与我们的生活息息相关。计算机仿真模拟技 术在科学技术、军事、国民经济、汽车、电子行业、体育、 交通运输、金融、管理、航空航天方面都有广泛的应用。 它的研究范围小到原子,大到宇宙,可以说在现实生活中 应用极为广泛。 传统的仿真方法是一个迭代过程,即针对实际系 统某一层次的特性(过程),抽象出一个模型,然后假 设态势(输入),进行试验,由试验者判读输出结果和 验证模型,根据判断的情况来修改模型和有关的参数。 如此迭代地进行,直到认为这个模型已满足试验者对 客观系统的某一层次的仿真目的为止。 模型对系统某一层次特性的抽象描述包括:系统的组成;各组成部分之间的静态、动态、逻辑关系;在某些输入条件下系统的输出响应等。根据系统模型状态变量变化的特征,又可把系统模型分为:连续系统模型——状态变量是连续变化的;离散(事件)系统模型——状态变化在离散时间点(一般是不确定的)上发生变化;混合型——上述两种的混合。 随着专门用于仿真的计算机——仿真机的出现,计算机仿真技术日趋成熟,现在已经趋于完善。随计算机技术的飞速发展,在仿真机中也出现了一批很有特色的仿真工作站、小巨机式的仿真机、巨型机式的仿真机。80年代初推出的一些仿真机,SYSTEM10和SYSTEM100就是这类仿真机的代表。 为了建立一个有效的仿真系统,一般都要经历建立模型、仿真实验、数据处理、分析验证等步骤。为了构成一个实用的较大规模的仿真系统,除仿真机外,还需配有控制和显示设备。 本文将主要从航空航天方面对计算机仿真模拟进行探讨。 航空技术是从上世纪60年代前苏联发射第一颗人造卫星开始,人类开始了对太空的探索。

系统建模与仿真项目驱动设计报告

系统建模与仿真项目驱动设计报告 学院:电气工程与自动化学院 专业班级:自动化143班 学号:2420142928 学生姓名:李荣 指导老师:杨国亮 时间:2016年6月10号

仿真技术是一门利用物理模型或数学模型模拟实际环境进行科学实验的技术,具有经济、可靠、实用、安全、灵活和可多次重复使用的优点。 本文中将使用Matlab软件实现一个简单的控制系统仿真演示,可实现对一些连续系统的数字仿真、连续系统按环节离散化的数字仿真、采样控制系统的数字仿真以及系统的根轨迹、伯德图、尼克尔斯图和奈氏图绘制。 本设计完成基本功能的实现,基于Matlab的虚拟实验仿真的建立和应用,培养了我们的兴趣,提高了我们的实践能力。 关键字:Matlab;系统数字仿真;根轨迹;伯德图。

第一章概述 (4) 1.1 设计目的 (4) 1.2 设计要求 (4) 1.3设计内容 (4) 第二章 Matlab简介 (6) 2.1 Matlab的功能特点 (6) 2.2 Matlab的基本操作 (6) 第三章控制系统仿真设计 (8) 3.1 控制系统的界面设计 (8) 3.2 控制系统的输入模型设计 (9) 3.3 欧拉法的Matlab实现 (12) 3.4 梯形法的Matlab实现 (14) 3.5 龙格-库塔法的Matlab实现 (15) 3.6 双线性变换法的Matlab实现 (16) 3.7 零阶保持器法的Matlab实现 (17) 3.8 一阶保持器法的Matlab实现 (18) 3.9 系统PID控制的Matlab实现 (19) 3.10 系统根轨迹的绘制 (21) 3.11系统伯德图的绘制 (22) 3.12系统尼克尔斯图的绘制 (23)

模拟仿真软件介绍

模拟仿真软件介绍 模拟仿真技术发展至今,用于不同领域、不同对象的模拟仿真软件林林总总,不可胜数,仅对机械产品设计开发而言,就有机构运动仿真软件,结构仿真软件,动力学仿真软件,加工过程仿真软件(如:切削加工过程仿真软件、装配过程仿真软件、铸造模腔充填过程仿真软件、压力成型过程仿真软件等),操作训练仿真软件,以及生产管理过程仿真软件,企业经营过程仿真软件等等。这里仅以一种微机平台上的三维机构动态仿真软件为例,介绍模拟仿真软件的结构和功能。 DDM(Dynamic Designer Motion)是DTI(Design Technology International)公司推出的、工作于AutoCAD和MDT平台上的微机全功能三维机构动态仿真软件,包含全部运动学和动力学分析的功能,主要由建模器、求解器和仿真结果演示器三大模块组成(见图1)。 1.DDM建模器的功能 1)设定单位制。 2)定义重力加速度的大小和方向。 3)可以AutoCAD三维实体或普通图素(如直线、圆、圆弧)定义运动零件。 4)可以定义零件质量特性:

图1 DDM仿真软件模块结 ①如果将三维实体定义为零件,可以自动获得其质量特性。 ②如果用其他图素定义零件,则可人工设定质量特性。 5)可以定义各种铰链铰链用于连接发生装配关系的各个零件,系统提供六种基本铰链和两种特殊铰链。 基本铰链: ①旋转铰——沿一根轴旋转。 ②平移铰——沿一根轴移动。 ③旋转滑动铰——沿一根轴旋转和移动。 ④平面铰——在一个平面内移动并可沿平面法线旋转。 ⑤球铰——以一点为球心旋转。 ⑥十字铰——沿两根垂直轴旋转。 特殊铰链:

电力系统建模及仿真课程设计

某某大学 《电力系统建模及仿真课程设计》总结报告 题目:基于MATLAB的电力系统短路故障仿真于分析 姓名 学号 院系 班级 指导教师

摘要:本次课程设计是结合《电力系统分析》的理论教学进行的一个实践课程。 电力系统短路故障,故障电流中必定有零序分量存在,零序分量可以用来判断故障的类型,故障的地点等,零序分量作为电力系统继电保护的一个重要分析量。运用Matlab电力系统仿真程序SimPowerSystems工具箱构建设计要求所给的电力系统模型,并在此基础上对电力系统多中故障进行仿真,仿真波形与理论分析结果相符,说明用Matlab对电力系统故障分析的有效性。实际中无法对故障进行实验,所以进行仿真实验可达到效果。 关键词:电力系统;仿真;短路故障;Matlab;SimPowerSystems Abstract: The course design is a combination of power system analysis of the theoretical teaching, practical courses. Power system short-circuit fault, the fault current must be zero sequence component exists, and zero-sequence component can be used to determine the fault type, fault location, the zero-sequence component as a critical analysis of power system protection. SimPowerSystems Toolbox building design requirements to the power system model using Matlab power system simulation program, and on this basis, the power system fault simulation, the simulation waveforms with the theoretical analysis results match, indicating that the power system fault analysis using Matlab effectiveness. Practice can not fault the experiment, the simulation can achieve the desired effect. Keywords: power system; simulation; failure; Matlab; SimPowerSystems - 1 - 目录 一、引言 ............................................ - 3 -

汽车动力学仿真模型的发展

!汽车动力学发展历史简介 汽车动力学是伴随着汽车的出现而发展起来的 一门专业学科。人们很早就认识到“$%&’()*+”转向和应用弹性悬架可使乘客感到更加舒适等基本原 理[,],但那只是一种感性的认识。在各国学者的不懈 努力下,这门学科逐渐发展成熟。-’.’/在,00#年1)’%23举行的题为“车辆平顺性和操纵稳定性”的会议上发表的论文,对,00"年以前汽车动力学的发 展做了较为全面的总结[ !],见表,。近年来汽车动力学又有了进一步发展,大量的高水平学术论文和经典的汽车动力学专著相继被发表,而且开发出许多专为汽车动力学研究建立模型的软件,如美国密西根大学开发的$456%*(、$45678)等商业软件。汽车是一复杂的连续体系统,要想对其进行动力特性的预测和优化需建立经合理简化的抽象汽车模型,以达到缩短产品开发周期、保证整车性能指标和降低产品成本的目的。 "汽车动力学模型的发展 汽车动力学从严格意义上来讲包括对一切与车 辆系统相关运动的研究,然而最为核心的是平顺性和操纵稳定性这两大领域,一般认为平顺性主要研究影响车身的垂向跳跃、俯仰、侧倾振动的因素,而操纵稳定性主要研究车辆的横向、横摆和侧倾运动。建模时一般假设平顺性和操纵稳定性之间无偶合关系。 "#!汽车平顺性模型 在汽车平顺性的早期研究阶段,限于当时数学、 力学理论、计算手段及试验方法,把系统简化成集中质量—弹簧—阻尼模型,如图,所示。 图,整车集中质量—弹簧—阻尼模型 此类模型一般先以函数的形式给出其动能!和势能"以及表达系统阻尼性质的物理量耗散能 !的表达式: 【摘要】汽车动力学包括对一切与车辆系统相关运动的研究,其最核心的是平顺性和操纵稳定性这两大领域。在简要说明了汽车动力学发展过程的基础上介绍了平顺性和操纵稳定性两大领域的模型发展过程。平顺性模型主要经过集中质量—弹簧—阻尼模型、有限元模型和动态子结构模型阶段;而操纵稳定性模型从低自由度线性模型、非线性多自由度模型发展到多体模型。最后提出了汽车动力学仿真模型的发展动向。 主题词:汽车动力学模型发展 中图分类号:9:;,<,文献标识码:$ 文章编号:,"""=#>"#(!""#)"!=""",=": $%&%’()*%+,(-.%/01’%$2+3*0140*5’3,0(+6(7%’ ?2*+.@’8A?2*+.B8+.2*8AC48D*8/8+AB8*D6+.E’8 (B8/8+9+8F’(785G ) 【89:,;31,】H’28%/’IG+*)8%7754I8’7*//)6F’)’+57(’/’F*+556F’28%/’7G75’)*+I 857%6(’8752’5J6E8’/I76E (8I’K *L8/85G *+I 2*+I/8+.75*L8/85G<1+52’M*M’(AI’F’/6M8+.M(6%’776E )6I’/76E F’28%/’(8I’*L8/85G *+I 2*+I/8+.75*L8/85G *(’8+K 5(6I4%’I *E5’(I’F’/6M)’+5%64(7’6E F’28%/’IG+*)8%78778)M/G 8+5(6I4%’I

计算机模拟仿真实例

模拟仿真过程(400mm正方形钢板厚度为1mm中心有15半径为 1mm的圆形孔)。 (一)采用Delauney三角形网格划分建模 1.首先在软件中打开几何分网选项添加点(四点坐标分别为0 0 0,10 0 0,10 10 0,0 10 0),再添加 圆弧,以第一个点为圆心作出半径为1mm的四分之一圆,用直线连接点形成封闭图形。 2.选择自动分网预处理中的曲线布种子点,将分段数改为10并选择直线,再将分段数改为20并 选择圆弧。 3.打开自动分网中的平面实体,选择Delauney三角形网格划分并全选图形。 4.打开几何特性菜单栏,点击新建结构分析,在弹出的菜单中选择平面实体中的平面应力,输入厚 度参数(本例中为1),并在对象一栏中,点击添加单元并全选。 5.打开材料特性—新建—标准,填写泊松比、杨氏模量等参数。 6.打开边界条件—位移约束—x向位移,输入0并选择左侧一栏的单元。 7.重复操作使下方一栏的单元位移为0。 8.打开边界条件—单元边受力,选择上方一栏的单元边,输入压力为-10N,完成建模。 (二)采用前沿法网格划分建模 1.首先在软件中打开几何分网选项添加点(四点坐标分别为0 0 0,10 0 0,10 10 0,0 10 0),再添加 圆弧,以第一个点为圆心作出半径为1mm的四分之一圆,用直线连接点形成封闭图形。 2.选择自动分网预处理中的曲线布种子点,将分段数改为10并选择直线,再将分段数改为20并 选择圆弧。 3.打开自动分网中的平面实体,选择前沿法三角形网格划分并全选图形。 4.打开几何特性菜单栏,点击新建结构分析,在弹出的菜单中选择平面实体中的平面应力,输入厚 度参数(本例中为1),并在对象一栏中,点击添加单元并全选。 5.打开材料特性—新建—标准,填写泊松比、杨氏模量等参数。 6.打开边界条件—位移约束—x向位移,输入0并选择左侧一栏的单元。 7.重复操作使下方一栏的单元位移为0。 8.打开边界条件—单元边受力,选择上方一栏的单元边,输入压力为-10N,完成建模。

《生产物流系统建模和仿真》课程设计报告

《生产物流系统建模与仿真》课程设计 2012-2013学年度第一学期 姓名孙会芳 学号 099094090 班级工093 指导老师暴伟霍颖

目录 一、课程任务书 (3) 1.题 目............................................................... (3) 2.课程设计内容 (3) 3.课程设计要求 (4) 4.进度安排 (4) 5.参考文献 (4) 二、课程设计正文 (5) 1、题目 (5) 2、仿真模型建立 (5) (1)实体元素定义 (5) (2)元素可视化的设置 (6) (3)元素细节设计 (8) (4 ) 模型运行和数据.................................................................. . (10) (5)模型代码 (12) (6)模型改进 (16) 3.实验感想 (17)

三、参考文献 (18) 《生产物流系统建模与仿真》课程设计任务书 1. 题目 离散型流水作业线系统仿真 2. 课程设计内容 系统描述与系统参数: (1)一个流水加工生产线,不考虑其流程间的空间运输。 (2)两种工件A,B分别以正态分布和均匀分布的时间间隔进入系统,A进入队列Q1, B进入队列Q2,等待检验。(学号最后位数对应的仿真参数设置按照下表进行) (3)操作工人labor1对A进行检验,每件检验用时2分钟,操作工人labor2对B进行检验,每件检验用时2分钟。 (4)不合格的工件废弃,离开系统;合格的工件送往后续加工工序,A的合格率为65%,B的合格率为95%。 (5)工件A送往机器M1加工,如需等待,则在Q3队列中等待;B送往机器M2加工,如需等待,则在Q4队列中等待。 (6)A在机器M1上的加工时间为正态分布(5,1)分钟;B在机器M2上的加工时间为正态分布(8,1)分钟。

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度无约束的机械系统的动力学问题,进行车辆的“质量-弹簧-阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的诞生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973 年,美国密西根大学的N.Orlandeo 和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR 刚性积分算法,采用稀疏矩阵技术提高计算效率。1977年,美国Iowa 大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC(1990). 随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体 计算技术结合起来,发展了实时仿真技术。

2018年高考仿真模拟物理试题新课标全国卷(一)

2018年高考仿真模拟物理试题新课标全国卷(一)

2018年高考仿真模拟试题(新课标全国卷) 物理(一) 第一部分选择题 一、选择题:共8小题,每题6分。在给出的四 个选项中,第1~5题只有一个符合题目要求,第6~8题有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分。 1.如图所示是研究光电效应的电路图,阴极K 和阳极A是密封在真空玻璃管中的两个电极,如果用频率、强度不同的光分别照射阴极K,则下列关于实验现象的说法正确的是 A.电子从金属表面逸出的过程中需要克服金属的逸出功 B.当入射光的频率和强度一定时,光电流大小与A、K之间的电压成正比 C.保持入射光的强度不变,改变入射光的频率,遏止电压不变

为P,发电厂的输出电压为 1 U,升压变压器原、副线圈的匝数比为k∶1,输电线的电阻为R,若在发电厂的输出电压和输电线的电阻均不变的情况下输电,则下列说法正确的是 A.升压变压器副线圈的电压为 1 kU B.输电线上损失的功率为2 2 2 1 k P R U C.降压变压器副线圈的负载减少时,发电厂的输出功率增大 D.仅将升压变压器原、副线圈的匝数比变 为k n ,输电线上损失的功率将变为原来的 1 n 4.双星系统是存在于宇宙中的一种稳定的天体 运动形式。如图所示,质量为M的恒星和质量为m的行星在万有引力作用下绕二者连线上的C点做匀速圆周运动。已知行星的轨道半径为a,引力常量为G,不考虑恒星和行星的大小以及其他天体的影响,则

A.恒星与C点间的距离为M a m B.恒星的运行速度为m GM M m a C.若行星与恒星间的距离增大,则它们的 运行周期减小 D.行星和恒星轨道半径的三次方和运行周期的平方成反比 5.如图所示的电路中,电源电动势为2 V,内 阻r=0.5 Ω,电阻 R=1.5 Ω,电阻2R=2 Ω,电 1 阻 R=3 Ω,滑动变阻器4R接入电路的阻值为 3 2 Ω,电容器的电容C=1.0 μF,电阻 R与电 3容器间的导线记为d,单刀双掷开关S与触点1连接,下列说法正确的是 A.如果仅将 R的滑片向上滑动,1R消耗的功 4 率减少 B.如果仅将4R的滑片向上滑动,电源的输出功率增加 C.如果仅将4R的滑片向上滑动,电容器两极板间的电势差减小

基于MATLAB的数字模拟仿真..

基于MATLAB的数字模拟仿真 摘要:本文阐述了计算机模拟仿真在解决实际问题时的重要性,并较为系统的介绍了使用计算机仿真的原理及方法。对于计算机模拟仿真的三大类方法:蒙特卡罗法、连续系统模拟和离散事件系统模拟,在本文中均给出了与之对应的实例及基于MATLAB模拟仿真的相关程序,并通过实例深入的分析了计算机模拟解决实际问题的优势及不足。 关键词:计算机模拟;仿真原理;数学模型;蒙特卡罗法;连续系统模拟;离散事件系统模拟 在实际问题中,我们通常会面对一些带随机因素的复杂系统,用分析方法建模常常需要作许多简化假设,这样进行处理过后的模型与我们面临的实际问题可能相差很远,以致求解得到答案根本无法应用,这时,计算机模拟几乎成为唯一的选择。本文通过对计算机模拟仿真进行系统地介绍,寻求利用模拟仿真来解决问题的一般方法,并深入探讨了这些方法的长处和不足。我们定义一些具有特定的功能、相互之间以一定的规律联系的对象所组成的总体为一个系统,模拟就是利用物理的、数学的模型以系统为问题解决对象,来类比、模仿现实系统及其演变过程,以寻求过程规律的一种方法。模拟的基本思想是建立一个实验的模型,这个模型包含所研究系统的主要特点,这样做的目的就是通过对这个实验模型的运行,获得所要研究系统的必要信息。另外,系统的运行离不开算法,仿真算法是将系统模型转换成仿真模型的一类算法,在数字仿真模型中起核心和关键作用。 1、所谓计算机仿真 计算机仿真是利用计算机对一个实际系统的结构和行为进行动态演示,以评价或预测该系统的行为效果。它是解决较复杂的实际问题的一条有效途径。针对一个确定的系统,根据运行的相似原理,利用计算机来逼真模仿研究对象(研究对象可以是真实的系统,也可以是设想中的系统),计算机仿真是将研究对象进行数学描述,建模编程,且在计算机中运行实现。 对比于物理模拟通常花费较大、周期较长,且在物理模型上改变系统结构和系数都较困难的诸多缺陷,计算机模拟不怕破坏、易修改、可重用,有更强的系统适应能力。但是计算机模拟也有缺陷,比如受限于系统建模技术,即系统数学模型不易建立、程序调试复杂等。 计算机仿真可以用于研制产品或设计系统的全过程中,包括方案论证、技术指标确定、设计分析、生产制造、试验测试、维护训练、故障处理等各个阶段。 2、计算机仿真的目的 对于一个系统,是否选择进行计算机模拟的问题,基于判断计算机模拟与非计算机模拟方法孰优孰劣的问题。归纳以下运用计算机模拟的情况: (1)在一个实际系统还没有建立起来之前,要对系统的行为或结果进行分析研究时,计算机仿真是一种行之有效的方法。 (2)在有些真实系统上做实验会影响系统的正常运行,这时进行计算机模拟就是为了避免给实际系统带来不必要的损失。如在生产中任意改变工艺参数可能会导致废品,在经济活动中随意将一个决策付诸行动可能会引起经济混乱。 (3)当人是系统的一部分时,他的行为往往会影响实验的效果,这时运用系统进行仿真研究,就是为了排除人的主观因素的影响。

系统建模与仿真设计报告一

设计一产生十种不同分布的独立的随机数 一、设计内容及要求 任务:产生十种不同分布的独立的随机数,并进行检验。 要求:对随机数进行的统计性检验包括频率检验、参数检验、独立性检验。 二、设计环境及工具 Windows7、MatlabR2010b 三、设计思想及方法 (1) 在对雷达系统进行仿真时,首当其冲的问题就是对电磁环境 的仿、真。其中无用的电磁信号包括三大类,即杂波、噪声和干扰,在模拟仿真时相比于有用的电磁信号也是不可或缺的。其所谓的仿真就是在已知随机变量的统计特性及其参数的情况下,研究如何在计算机上产生服从给定统计特性和参数的随机变量。 (2) 在雷达、导航、声呐、通信和电子对抗等系统中,应用最多 的概率统计模型还是正态分布或高斯分布、指数分布、瑞利分布、莱斯分布或广义瑞利分布、韦尔分布、对数-正态分布、m分布、拉普拉斯分布、复合k分布等。 (3) 在这些随机总体中畸形随机抽样,实际上都是以[0,1]区间上 的均匀分布随机总体为基础的。原则上讲,只要已知[0,1]区间上的均匀分布随机数序列,总可以通过某种方法(数学方法)来获得某已知分布的简单子样。只要给定的均匀分布随机数列满足均匀

且相互独立打的要求,经过严格的数学变换或者严格的数学方法,所产生的任何分布的简单子样都会满足具有相同总体分布和相互独立的要求。 四、设计过程及结果 本次设计的十种随机数包括均匀分布、高斯分布、指数分布、广 义指数分布、瑞利分布、广义瑞利分布、韦尔分布、拉普拉斯分布、柯西分布和2χ分布,使用Matlab 完成设计并给出具体的参数,代码附在最后。 1.均匀分布 已知随机变量ε在[0,1]区间上服从均匀分布,则有概率密度函数 1,01 ()0,x f x ≤≤?=?? 其他 其分布函数为 0,0F(),01 x x x x x

跨学科物理系统建模和仿真工具Simscape.

——跨学科物理系统建模和仿真工具 Simscape 是在 Simulink 基础上的扩展工具模块,用来建立多种不同类型物理系统的建模并进行仿真,例如由机械传动,机构,液压和电气元件构成的系统。Simscape 可以广泛应用于汽车业,航空业,国防和工业装备制造业。 Simscape 同SimMechanics , SimDriveline , SimHydraulics 和 SimPowerSystems 一起,可以支持复杂的不同类型(多学科物理系统混合 建模和仿真。 ?使用统一环境实现多种类型物理系统建模和仿真, 包括机械, 电气和液压系统; ?使用基本物理建模单元构造模型, 并提供了建模所需的模块库和相关简单数学运算单元; ?用户可自己指定参数和变量的单位,模块内部自动实行单位转换和匹配; ?具有连接不同类型物理系统的桥接模块; ?具备扩展产品所建模型的全权仿真和受限编辑功能, 单独运行仿真时无需SimMechannics , SimDriveline 和 SimHydraulics 的产品使用许可。强大功能

在 Simscape 的环境中,用户的建模过程如同装配真实的物理系统。 Simscape 采用物理拓扑网络方式构建模型:每一个建模模块都对应一个实际的物理元器件,例如油泵、马达或者运算放大器;模块之间的连接线代表元件之间装配和能量传递关系。这种建模方式直观的表现出物理系统的组成结构, 而不是用晦涩的数学方程。Simscape 根据模型所表达的系统组成关系, 自动构造出可以计算系统动态特性的数学方程。这些方程可同其他 Simulink 模型一起结合运算。 Simscape 的建模库提供超过 24个电气建模单元, 15个液压建模单元, 23个机械建模单元;这些单元之间可以互相连接,联合建模。这些基本的单元也可以组合起来,构造更加复杂的器件模型。 Simscape 模型中的 Sensor 模块用来测量机械量(力 /力矩,速度,液压量 (压力,流量或电气量(电压,电流,测量输出的信号量可以输出给标准的 Simulink 模块处理。 而 Source 模块能够将标准的 Simulink 信号转换成同等量值的上述物理信号。Sensor 和 Source 模块的使用将 Simulink 控制算法模型同 Simscape 物理网络拓扑模型有机的结合起来, 可实现闭环控制算法开发。 Simscape 的基础建模单元库支持从基本的建模单元组合定制模型元件。?机械系统建模

三维人体动态计算机模拟及仿真系统

三维人体动态计算机模拟及仿真系统 (一) LifeMOD生物力学数字仿真软件 1. 简介 LifeMOD 生物力学数字仿真软件是在 MSC.ADAMS 基础上,进行二次开发,用以研究人体生物力学特征的数字仿真软件,是当今最先进、最完整的人体仿真软件。LifeMOD 生物力学数字仿真软件可用于建立任何生物系统的生物力学模型。这种仿真技术可使研究人员建立各种各样的人体生物力学模型,模拟和仿真人体的运动,并深入地了解人体动作背后的力学特性以及动作技能控制规律。鉴于LifeMOD 生物力学数字仿真软件的强大功能,它成功地应用于生物力学、工程学、康复医学等多个领域。 2. 厂商 美国BRG(Biomechanics Research Group)公司具有超过20年的与世界顶级研究机构和商业机构的成功合作历史,包括体育器材生产商、整形外科、人体损伤研究机构、高校和研究院所、政府机构、医疗器械生产商以及空间技术研究机构,在生物力学、工程学、康复医学等许多行业中有卓越的名誉。 3. 型号 LifeMOD 2008.0.0 4. 功能 LifeMOD 生物力学数字仿真软件的功能强大、先进而且普遍适用。 LifeMOD 生物力学数字仿真软件可用于建立任何生物系统的生物力学模型。这种仿真技术可使研究人员建立各种各样的人体生物力学模型;这些模型既能够再现现实的人体运动,也能够按照研究者的意愿预测非现实的人体运动;通过人体动作的模拟和仿真,计算出人体在运动过程中的运动学和动力学数据,从而使研究者能够深入地了解人体动作背后的力学特性以及动作技能控制规律。 在体育领域,利用LifeMOD的个性化建模和强大的计算能力,不但可以将运动员的比赛和训练情况进行再现并分析运动学、动力学特征,而且能够根据运动员各自的生理特征来进行不同情况的仿真,进行优化分析,进而达到优化运动员技术的目的,从而指导和帮助运动训练。 5. 软件特性 LifeMOD 生物力学数字仿真软件是创建成熟、可信的人体模型的工具。它具有以下特性: ● 快速生成人体模型。能在不到一分钟的时间里完成人体模型的创建。● 完整的骨骼/皮肤/肌肉模型。具有骨骼、皮肤、肌肉的人体模型与受试 对象是成比例的。 ● 可根据研究需要,建立不同精度的人体模型。(简单的是19环节18关

生产系统建模与仿真课程设计

1. 设计分析 1.1问题描述 系统由四台加工中心、五个托盘和装夹工具、一套搬运轨道和小车、一个 工件装夹区组成,其布局如图1所示。系统所包含的主要时间类别及大致时间 如下: (1) 工件安装时间。是指待加工工件装夹并固定在托盘上的时间,由于模具工 件均为长方体,因此,该时间比较稳定,大约 2mi ns 左右。 (2) 小车等待时间。工件安装完成后,如机床都在工作状态,则小车需等待有 机床完成 工作后,开始运出待加工工件。该等待时间不是固定的值,需要计算 得出。 (3) 机床等待时间。当有多个机床处于空置状态时,由于运输容量的限制,有 的机床就 处于空置等待状态,该状态所经历的时间,就是该机床的等待时间。 (4) 工件运出时间。将已安装好工件的托盘,从安装区运出至数控设备。大约 2mi ns 。 (5) 更换托盘时间。将设备上装载已加工好的零件的托盘与小车上装载待加工 工件的托 盘进行更换。大约需要1min 。 (6) 工件运回时间。更换托盘后,将载有已加工好的工件的托盘运回安装区, 并卸载。 大约需要3mins 。 图1系统布局图 1.2设计内容 1任务队列如表1所示,计算该队列条件下的任务总完成时间、四台设备各自 的设备等待 搬运 轨道 小车

时间,绘制四台设备的工序图。 2对任务队列进行排序优化,阐述优化的思路和方法,计算优化后的任务总完成时间、四台设备各自的设备等待时间,绘制四台设备的工序图。 表1设计案例参数表(单位:分钟) 1.3设计中的主要因素及系统分析 在本次的设计条件中,系统中共有20个任务,每个任务的加工时间是不相等的,而且只有一套运输设备,各个设备的功能完全一致。所以制约的加工的最大因素便是运输的制约。按照原始的顺序,进行加工,画出原始工序图。 再对原始任务工序图进行分析,并数据计算。计算出20个任务的总加工时间, 各个设备的等待时间,小车的等待时间。分析我们所得的数据结果,找出制约整个工序的主要问题所在,并进行改善。 在这个系统中共有20个加工时间各不相同的任务,按照顺序移动的方式来进行加工。在分析之前我们需先进行以下假设: (1)加工开始前,五个托盘分别位于四台加工中心及装夹区; (2)小车运出至每台加工中心的时间相等,运回至每台加工中心的时间也 相等。 (3)系统运行中不会出现故障等影响加工时间的意外 (4)小车一次只能进行一次托盘更换,最多只能运回一个工件,也最多只能运出

相关主题
文本预览
相关文档 最新文档