当前位置:文档之家› 随机过程 第4章

随机过程 第4章

随机过程  第4章
随机过程  第4章

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

第二章随机过程的基本概念

第二章随机过程的基本概念 §1随机过程及其概率分布 、随机过程概念: 一、随机过程概念: 初等概率论所研究的随机现象,基本上可以用随机变量或随机向量来描述.但在实际中有些随机现象要涉及(可列或非可列)无穷多个随机变量.

例1.某人扔一枚硬币,无限制的重复地扔下去,要表示无限多次扔的结果,我们不妨记正面为1,反面为0.第次扔的结果是一个,其分布,无限多次扔n n r vX ?{}{}1012n n P X P X ====,无限制的重复地扔,要表示无限多次扔的结果,我们不妨反面为其分布无限多次扔的结果是一个随机过程,可用一族相互独 立,,或表示.r v ?1X ,2X {},1n X n ≥

n n X 0n n 0 1 2 3 4 5 6 7 8 910 ……

例2.当固定时,电话交换站在时间内来到的呼叫次数是,记, ,其中是单位时间内平均来到的呼叫次数,而,若从变到,时刻来到的呼叫次数需用一族随机变量表 它为非降的阶,在有呼唤来到的时刻阶跃地增加,假定在任一呼唤来到的时刻不可能来到多)(0)t t ≥[0,] t r v ?()X t ()()X t P t λ λ0λ>t 0∞t {}(),[0,)X t t ∈∞()X t ,电话交换站在记,若时刻示, 是一个随机过程. 对电话交换站作一次观察可得到一条表示以前来到的呼唤曲线,它为非降的阶梯曲线,在有呼唤来到的时刻阶跃地增加,(假定在任一呼唤来到的时刻不可能来到多于一次呼唤). E t 1()x t

同理,第二次观察,得到另一条阶梯形曲线; 同理,第n 次观察,得到另一条阶梯形曲线. 2()x t ()n x t ,第二次观察,得到另一条阶梯形曲,第,得到另一条阶梯形曲 总之,一次试验得到阶梯形曲线形状具有随机性

随机过程-习题-第4章-01

4.1 设有一泊松过程(){}0,≥t t N ,求: (1)()(){}2211,k t N k t N P ==,用21t t 、的函数表示之; (2)该过程的均值和相关函数。 问该过程是否为平稳过程? (1) 解:首先, {}{}{}1111222211)()()()(,)(k t N P k t N k t N P k t N k t N P ====== 根据泊松过程的独立增量性质可知 {}{}) (1212121211221212!)()]([)()()(t t k k e k k t t k k t t N P k t N k t N P -----=-=-===λλ 于是, {}21 122! )(!)()(,)(1211122211t k k k k e k k k t t t k t N k t N P λλ----= == (2) 解:该过程的均值为 []()()t k t te e k t k t N E k k t k t k λλλλλλ=??? ? ??-==∑∑+∞=--+∞ =-110!1!)()( 根据泊松过程的独立增量过程性质可得其相关函数为(12t t >) [] ()[])] ([)]()([)]([)()()()()()(12121112121t N E t N t N E t N E t N t N t N t N E t N t N E +-=+-= 其中, )()]()([1212t t t N t N E -=-λ 12 1212)]([t t t N E λλ+= 于是,12t t >时的相关函数为 []121212 12121221)()()(t t t t t t t t t N t N E λλλλλ+=++-= 同理可得21t t >时的相关函数为 []221221)()(t t t t N t N E λλ+=

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

第2章 随机过程习题及答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5) =≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x ) () (2 - 6)?=???F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

随机过程-习题-第4章

设有一泊松过程(){}0,≥t t N ,求: (1)()(){}2211,k t N k t N P ==,用21t t 、的函数表示之; (2)该过程的均值和相关函数。 问该过程是否为平稳过程? (1) 解:首先, {}{}{}1111222211)()()()(,)(k t N P k t N k t N P k t N k t N P ====== 根据泊松过程的独立增量性质可知 {}{}) (1212121211221212!)()]([)()()(t t k k e k k t t k k t t N P k t N k t N P -----=-=-===λλ 于是, {}21 122! )(!)()(,)(1211122211t k k k k e k k k t t t k t N k t N P λλ----= == (2) 解:该过程的均值为 []()()t k t te e k t k t N E k k t k t k λλλλλλ=??? ? ??-==∑∑+∞=--+∞ =-110!1!)()( 根据泊松过程的独立增量过程性质可得其相关函数为(12t t >) [] ()[])] ([)]()([)]([)()()()()()(12121112121t N E t N t N E t N E t N t N t N t N E t N t N E +-=+-= 其中, )()]()([1212t t t N t N E -=-λ 12 1212)]([t t t N E λλ+= 于是,12t t >时的相关函数为 []121212 12121221)()()(t t t t t t t t t N t N E λλλλλ+=++-= 同理可得21t t >时的相关函数为 []221221)()(t t t t N t N E λλ+=

随机过程-习题-第5章

5.1设有周期信号如图题5-1所示,求它相关函数和功率谱密度。 解:首先, ] [211d 1d 12/32/002/52/302/32/4/54/34/34/00ππππππωωωωωjn jn jn jn jn jn T T t jn T T t jn n e e T jn jn e e T jn e e T t e T t e T a ---------= ---=-= ? ? 于是, ?? ???? ?=-=为偶数 为奇数n n n n n a n ,0 ,)(4 )]cos(1[)(42 22πππ 所以,该信号的时间相关函数为 τ ωτ0)12(2 12)(+∞ -∞ =+∑= n j n n e a R 确定性周期信号的功率谱密度是其时间相关函数的傅氏变换,即 ) )12(()(02 12f n f a f n n +-= Φ∑ ∞ -∞ =+δ 或者

5.2 5.3 5.4设有二平稳随机过程,它们的功率谱密度分别为, (1) 2 )2(3)2()2()(2 4 2 ++= f f f f S πππξ (2) 6 )2(5)2(1)2()(2 4 2+++= f f f f S πππξ 求其相应的相关函数及其均方值。 (1) 解:因为 2)2(3)2()2()(2 4 2 ++= f f f f S πππξ 1 )2(12 )2(222+- +=f f ππ 所以,相关函数为 ||| |22 12 2)(ττξξτ--- = e e R 均方值为 2 122)0()|)(E(|2-= =ξξξR t (2) 解:因为

6)2(5)2(1)2()(2 42+++= f f f f S πππξ 2 )2(13 )2(2 2 2 +- += f f ππ 所以相关函数为: ||| |24 23 3)(ττξξτ--- = e e R 均方值为: 4 233)0()|)(E(|2-= =ξξξR t 5.5 设一平稳随机过程的功率谱密度如图题5-5所示,即, (其它频率) ) ({ )(000 f f f f f S f S ?+<

《随机过程答案》第四章习题

第四章 二阶矩过程、平稳过程和随机分析 习题完整答案,请搜淘宝 1、 设∑=-=N k k k k n U n X 1)cos(2ασ ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互 独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。 2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程, A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。 (1) 试画出此过程的样本函数,并问样本函数是否连续? (2) 试求此过程的相关函数,并问该过程是否均方连续? 3、 设}0),({≥t t X 是一实的零初值正交增量过程,且),(~)(2 t N t X σμ。令1)(2)(-=t X t Y ,0≥t 。试求过程}0),({≥t t Y 的相关函数),(t s R Y 。 4、 设有随机过程)sin(2)(Θ+=t Z t X ,+∞<<∞-t ,其中Z 、Θ是相互独立的随机 变量,)1,0(~N Z ,2/1)4/()4/(=-=Θ==ΘππP P 。问过程)(t X 是否均方可积过程?说明理由。 5、 设随机过程t Y t X t 2sin 2cos )(+=ξ,+∞<<∞-t ,其中随机变量X 和Y 独立同分 布。 (1) 如果)1,0(~U X ,问过程)(t ξ是否平稳过程?说明理由; (2) 如果)1,0(~N X ,问过程)(t ξ是否均方可微?说明理由。 6、 设随机过程});({+∞<<∞-t t X 是一实正交增量过程,并且0)}({=t X E ,及满足: {}+∞<<∞--=-t s s t s X t X E ,,)]()([2; 令:+∞<<∞---=t t X t X t Y ),1()()(,试证明)(t Y 是平稳过程。 7、 设0);sin()(≥=t Yt X t ξ,而随机变量X 、Y 是相互独立且都服从]1,0[上的均匀分布, 试求此过程的均值函数及相关函数。并问此过程是否是平稳过程,是否连续、可导? 8、 设}),({R t t X ∈是连续平稳过程,均值为m ,协方差函数为ττb X ae C -=)(,其中:R ∈τ,0,>b a 。对固定的0>T ,令?-=T ds s X T Y 01)(,证明:m Y E =}{, )]1()()[(2)(21bT e bT bT a Y Var -----=。 9、 设),,,0,0(~),(2221ρσσN Y X ,令tY X t X +=)(,以及?=t du u X t Y 0)()(,

《随机过程》第五章习题

第五章 平稳过程的谱分析 习题 1、 设有一线性系统,其输入为零均值白高斯噪声)(t n ,其功率谱密度为 2 0N ,系统的冲激响应为: ???<≥=-0 ,00,)(t t e t h t α 此线性系统的输出为)(t ξ。令:)()()(T t t t --=ξξη,其中0>T 为一常数,试求过程)(t η的一维概率密度函数。 2、 设)(t s 为一确定性信号,在),0(T 内具有能量?=T s dt t s E 02)(,)(t n 为一零均值的白高 斯过程,其相关函数为:)(2 )(0τδτN R n =。令:?+=T dt t n t s t s 01)]()()[(η,?=T dt t n t s 02)()(η。试求: (1) 给定一常数γ,求概率}{1γη>P ; (2) 给定一常数γ,求概率}{2γη>P 。 3、 设有一非线性系统,其输入为零均值平稳实高斯过程,其协方差函数为: ταξτ-=Pe C )( 其中0>P 为一常数。系统的输出为: ?= T dt t T 02)(1ξζ 试求: (1) 输出均值:}{ζE ; (2) 输出方差:}{ζD ; (3) 设2 }]{[}{ζζE D y =,T x α=,画出y 对x 的关系简图。 4、 设有一线性系统,输入输出分别为)(t ξ和)(t η,其中输入过程)(t ξ为零均值平稳实高斯过程,它的相关函数为:)0()(2>=-αστταξξe R 。系统的单位冲激响应为: ???<≠>≥=-0000)(t , αβ,β,t ,e t h t β 若)(t ξ在-∞=t 时接入系统,试求:

第四章随机过程

(已经编辑到115页2008-3-20) 第四章随机过程 (电子版:盛艳霞OCR,编辑张学文2007.12 -2008.01) 1. 随机过程的概念及其分布律 原书91-132页90

第四章随机过程 为了从统计角度研究气象要素随时间和空间的变化,最好是利用近数十年发展起来的一个统计数学分支----随机过程和随机场理论。为研究气象信息随时间和空间的分布也要对随机过程有所了解。针对如上情况我们在这一章对随机过程的有关概念、性质和在气象上的个别应用作简要介绍。 1、随机过程的概念及其分布律 孤立的研究各点的气压、温度或风等气象要素时,我们把它看成随机变量(矢量)。这时可以分析它的期望值、方差、概率分布等等。 然而当把不同时刻的同一点的气压、温度或风连贯起来看时,这就是一连串的随机变量(矢量)。它们以时间为参数而有所变化。随机变量随某一参数(这里指时间)的变化给人们以过程的概念。所以就把随机变量随参数值的变化而变化的过程这一总体称为随机过程。 当掷骰子时,骰子出现的点数是随机变量。某次“3”点向上,就说这一次随机变量取值为3。而我们所谓的随机变量远不仅只有一个“3”,而应理解为很多次点子数的集合。同样地,随机过程一词也是指一个总体集合,而不是仅指某一时段的变量取值。例如说“春季北京的气温是一个随机过程”,则是指很多很多年的每年春季北京的气温的变化过程这个总体而言的。如1978年北京春季气温的变程仅是总体中的一个个例。它在随机过程中的地位和骰子为“3”点在随机变量中原书91-132页91

的地位是相当的。我们把这一条春季气温曲线称为这个随机过程的一个“现实”这样一个随机过程实际上是由无数具有同一的统计属性的现实组成的。 图4.1是乌鲁木齐冬季1月份的四年的气温曲线。它们就代表了1月气温这个随机过程的四个现实。而这一随机过程应为无数条这种曲线组成。如以T示表气温,y代表年代,d 代表日期,则一个随机过程可以表示为 T=T(y,d) (4.1) 图4.1 乌鲁木齐1月份气温曲线、 式中y有固定值时,例如y=1963年,则得到随机过程的一个现实。如d取固定值(如d=1)则T表示不同年份的这一天(元旦)的气温。这时同一d值不同y值的气温实为一随机变量。时常把这同一的时间d叫作“截口”。所以一个随机过原书91-132页92

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述 首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当 12,,n t h t h t h T +++∈…,时,n 维随机变量 (X(1t ),X(2t ),…,X(t n )) 和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。 在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。 但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。 定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即 〈X (t )〉=1lim ()2T T T X t dt T -→∞ ? 存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。 定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X t X t τ(+)也是连续平稳随机过程,〈()X t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即 ()X t X t τ(+)=1lim (+)()2T T T X t X t dt T τ-→∞ ? 若〈()X t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

随机过程期末复习题

随机过程期末复习题库(2015) 一、填空题 1.对于具有常数均值的二阶矩过程,为宽平稳过程当且仅当二元函 数只与有关, 而与和无关。 2.对于具有常数均值的二阶矩过程,为宽平稳过程当且仅当二元函 数只与有关, 而与和无关。 3.设随机变量服从泊松分布,且,则 2 . 4.已知随机变量的二阶矩存在,且的矩母函数为,则. 5.已知随机变量的二阶矩存在,且的特征函数为,则 . 6.设是平稳序列,其协方差函数为,请给出的均值具有遍 历性的一个充分条件:. 7.设是平稳过程,其协方差函数为,请给出的均值具有遍历性 的一个充分条件:. 8.已知平稳过程的均值,协方差函数为,则该过程的自相关函数 . 9.设为两个随机事件,,则 0.6 . 10.设为二随机变量,,则 2 . 11.已知随机变量的矩母函数为,则服从的分布是参数为的 泊松分布. 12.是二维正态分布,即,. 13.设随机变量的数学期望均存在,则. 14.为随机事件,随机变量的数学期望存在,则 . 15.在强度为的泊松过程中,相继事件发生的间隔时间是相互独立的随机变量,且服从均 值为的同一指数分布. 16.设是强度为的泊松过程,表示第个事件发生的时刻,则的分布函 数为. 17.设是强度为的泊松过程,表示第个事件发生的时刻,则. 18.设是强度为的泊松过程,表示第个事件发生的时刻,则

. 解由定理3.2.3,在已知的条件下,事件发生的个时刻的条件联合分布函数与个在区间上相互独立同均匀分布的随机变量的顺序统计量的联合分布函数相同.故对,有 从而, 19.是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔.则. 解题思路:注意到与独立,且同服从参数为的指数分布即得. 20.设,是速率为的泊松过程. 则对于, . 21.设,是速率为的泊松过程. 对于, . 解对于,有 增量与独立 22.是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔.则对,. 解题思路:注意到与独立,且同服从参数为的指数分布即得. 23.设是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔,则. 24.设是强度为的泊松过程,表示第个事件发生的时刻,则 . 25.设是强度为的泊松过程,表示第个事件发生的时刻,则服从参 数为和的分布. 26.非齐次泊松过程,其强度函数为,则 . 解对于,有

第四章 平稳随机过程

第四章 平稳随机过程 第一节 平稳过程的概念 一、两类平稳过程 1.严平稳过程 定义1 设 为随机过程,如果对任意正整数n 及任意 , 及任意实数τ, T t t t n ∈+++τττ,,,21 ,可使n 维随机变量 与())(,),(),(21τττ+++n t X t X t X 有相同的分布,即 的n 维分布函数Fn 满足: ),,,;,,,(),,,;,,,(21212121τττ+++=n n n n n n t t t x x x F t t t x x x F 对一切 ,2,1,=i x i 成立 则称 为严平稳过程,(强平稳过程,狭义平稳过程)。 定理1设 为严平稳过程,如果对任意 ,则有 证:首先利用柯西—许瓦兹不等式 可以证明 ,即自相关函数存在。 又由于 为严平稳过程,故对任意 有相同的分布, 所以

再由s 、t 的任意性可知 又对任意 及任意τ,使 T t s ∈++ττ,,有 ))(),(())(),((ττ++t X s X t X s X 与同分布,于是 []) ,()()()]()([),(ττττ++=++==t s R t X s X E t X s X E t s R X X )(),0(s t R s t R s X X ---=记令τ 2.宽平稳过程 定义2 设有随机过程 ,且对任意t , ,如果 ) (),()(ττμX X X R t t R t =+=常数 则称 为宽平稳过程(弱平稳过程,广义平稳过程)。 以后涉及的平稳过程均指宽平稳过程。 严平稳过程与宽平稳过程的关系:严平稳过程不一定是宽平稳过程,宽平稳过程也不一定是严平稳过程,但对于二阶矩过程,严平稳过程就是宽平稳过程。正态过程的严平稳性与宽平稳性是等价的。 二、平稳过程的数字特征 设 为平稳过程,且 ,则 )]([t X E X =μ为常数,称其为均值。 )]()([)(ττ+=t X t X E R X 为其τ的一元函数, (自相关函数) )]([22t X E X =ψ为常数,(均方值)

随机过程-习题-第4章-02

4.17 4.18 4.19 设有图题4-19所示的电路,其中W 0(t )为输入的随机过程,W 0(t )为标准维纳过程(即4.18中的z (t ),且其1=β);其输出为)(t ξ=W 0(t )-W 0(t -1)。求)(t ξ的均值和相关函数。 图题4-19 解:由于W 0(t )为标准维纳过程,则E [W 0(t )]=0。因此 0)]1()([)]([00=--=t W t W E t E ξ )(t ξ的相关函数为 )]}1()()][1()({[),(2020101021----=t W t W t W t W E t t R ξ ) (t W

假设t 1t 2-1时,[t 1-1, t 1]和[t 2-1, t 2]是两个交叠的区间。分别用A ,B ,C 表示区间[t 1-1,t 2-1]、[t 2-1,t 1]和[t 1,t 2]。于是 )] (1[)1,min(2)1()]1()([2)]1([)]([} )]1()({[] [][][][][][][]E[)] )(E[(),(1221212010220120220102221t t t t t t t W t W E t W E t W E t W t W E B E C E B E B E C E A E B E A C B B A t t R --=---+=---+=--==+++=++=ββββξ 即 ???? ?<<-=1 ||,0 1|||] |1[),(21τττβξt t R 其中,12t t -=τ。 4.20 定义)1()(20-=-t t e W e t αασξ。其中,σ、α均为常数,0,0>>ασ,)(0?W 代表标准维纳过程,称)(t ξ为Ornstein-Uhlenbeck 过程,求)(t ξ的均值和相关函数。 解:显然,均值为 )]1([)]([20-=-t t e W E e t E αασξ 其中,)(0?W 为标准维纳过程,其均值为0。于是 0)]1([20=-t e W E α 相关函数为 )]1()1([)]()([),(21212020)(22121--==+-t t t t e W e W E e t t E t t R αααξσξξ 由于标准维纳过程的相关函数为

随机过程第5章

第五章 离散参数Markov 链 5.1 Markov 链的基本概念 1.Markov 链和转移概率矩阵 定义5-1 考虑只取有限个或可数个值的随机过程 {},0,1,2,n X n = . 把过程所取可能值的全体称为它的状态空间,记之为E ,通常假{}0,1,2,E = . 若n X i =就说“过程在时刻n 处于状态i ”. 若对任意状态011,,,(,n 0)n i i i i j -≥ 及任意的有 11111001(|,,,,)(|) n n n n n n n P X j X i X i X i X i P X j X i +--+======== 这样的随机过程称为Markov 链. 假设每当过程处于状态i ,则在下一个时刻将处于状态j 的概率是固定的ij p ,即对任意时刻n ,有1 (|)n n ij P X j X i p +===,称过程具有齐次性.

称矩阵 0001 0201011121012j j i i i ij p p p p p p p p P p p p p ?? ??????=???????? 是一步转移概率矩阵,简称为转移矩阵. 由ij p 的定义可知,这是一种带有平稳转移概 率的Markov 链,也称作时间齐次Markov 链或简称时齐次Markov 链.我们研究的均为齐次马氏链. 2.例题 例5-1(直线上的随机游动) 考虑在直线上整数点上运动的粒子,当它处于位置j 时,向右转移到j+1的概率为p ,而向左移动到j-1的概率为q=p-1,又设时刻0时粒子处在原点,即00X =.于是粒子在时刻n 所处的位置{}n X 就是一个Markov 链,且具有转移概率

随机过程第五章

1.定义: 时间连续、状态离散的马尔科夫过程。 设随机过程()() ,0X t t ≤,状态空间{}0,1,...I =,若对任意的110.....n t t +≤<< 121,,...,n i i i I +∈及有 ()()()()()111111,...,n n n n n n n n p X t i X t i X t i p X t i X t i ++++======???????? 则称其为连续时间马尔科夫链。 马尔可夫过程的任意有限维分布函数均可用它的初始分布和二维条件分布函数来确定。 转移概率: 在s 时刻处于状态i ,经过时间t 后转移到状态j 的概率: ()()()() ,ij p s t p X t s j X s i =+== 齐次转移概率: ()(),ij ij p s t p t =(转移概率与起始时刻s 无关,只与时间间隔t 有关) 转移概率矩阵: ()(){} ,,,0ij P t p t i j I t =∈≤. 2.齐次马尔科夫过程的性质: ()()()()()0; 1;ij ij ij ik kj j I k I p t p t p t s p t p s ∈∈>==+=∑∑; ()()()P s t P s P t += 3.转移概率的正则性条件: ()0 1,lim 0,ij t i j p t i j →=?=? ≠? 过程刚进入某状态不可能立即又跳跃到另一状态。 4.初始概率 ()()() 00,i i p p p X i i I ===∈ 5.绝对概率 ()()() ,,0j p t p X t j j I t ==∈≤ ()()()()()()()()()()()()()11211112110;1;; ; ..........; n n j j j i ij j I i I j i ij i I n n i ii i i i i n n i I p t p t p t p p t p t p t p p X t i X t i p p t p t t p t t ττ-∈∈∈-∈>===+====--∑∑∑∑ 6.初始分布(),i p i I ∈ 7.绝对分布()() ,,0j p t j I t ∈≤ 8.停留时间的概率:

《随机过程》第4章离散部分习题及参考答案

湖南大学本科课程《随机过程》第4章习题及参考答案 主讲教师:何松华 教授 30.设X(n)为均值为0、方差为σ2的离散白噪声,通过一个单位脉冲响应为h(n)的线性时不变离散时间线性系统,Y(n)为其输出,试证: 2[()()](0)E X n Y n h σ=,22 20 ()Y n h n σσ ∞ ==∑ 证:根据离散白噪声性质,2 2 0()[()()]()0 X m R m E X n m X n m m σσδ?==+==? ≠? ()()()()()m Y n X n h n X n m h m ∞ ==?=-∑ 220 [()()]{()()()][()()]() ()()()()(0) m m X m m E X n Y n E X n X n m h m E X n X n m h m R m h m m h m h σδσ∞∞ ==∞∞ ===-=-===∑∑∑∑ 1212122 2 11220 2 1 2 1 2 212100 00 [()]{()()()()] [()()]()()[()()]() Y m m m m m m E Y n E X n m h m X n m h m E X n m X n m h m h m m m h m h m σσ δ∞∞ ==∞∞∞∞ ======--= --=-∑∑∑∑∑∑ (对于求和区间内的每个m 1,在m 2的区间内存在唯一的m 2=m 1,使得21()0m m δ-≠) 12 2 2110 ()()()m n h m h m h n σ σ ∞ ∞ ====∑∑(求和变量置换) 31.均值为0、方差为σ2的离散白噪声X(n)通过单位脉冲响应分别为h 1(n)=a n u(n)以及h 2(n)=b n u(n)的级联系统(|a|<1,|b|<1),输出为W(n),求σW 2。 解:该级联系统的单位脉冲响应为 12121 1 1 00()()()()()()() 1(/)() 1/n m m m m m n n n n n n m m n n m m h n h n h n h n m h m a u n m b u m b b a a b a b a a u n a b a a b ∞ ∞ -=-∞=-∞+++-===?= -=---?? ==== ?--?? ∑ ∑∑∑ 参照题30的结果可以得到

相关主题
文本预览
相关文档 最新文档