当前位置:文档之家› 电磁系仪表

电磁系仪表

电磁系仪表
电磁系仪表

组态软件

大作业

专业班级:电气工程及自动化14-21班姓名:闫淑娜

学号:20140272010

成绩:

目录

1 Wincc flexible软件学习 ........................................... 错误!未定义书签。

2 项目组态......................................................................... 错误!未定义书签。

2.1 项目要求 ............................................................... 错误!未定义书签。

2.2 组态过程 ............................................................... 错误!未定义书签。

3 仿真调试......................................................................... 错误!未定义书签。

3.1 调试过程 ............................................................... 错误!未定义书签。

3.2 功能实现 ............................................................... 错误!未定义书签。

4 总结................................................................................. 错误!未定义书签。

1 Wincc flexible软件学习

人机界面装置是操作人员与PLC之间双向沟通的桥梁,很多工业被控对象要求控制系统具有很强的人机界面功能。人机界面装置一般安在控制屏上,必须能够适应恶劣的现场环境,其可靠性必须与PLC 的可靠性相同。

人机界面(Human Machine Interface)又称人机接口,简称为HMI。从广义上说,HMI泛指计算机(包括PLC)与操作人员交换信息的设备。在控制领域,HMI一般特指用于操作人员与控制系统之间进行对话和相互作用的专用设备。

人和机器的硬接触和软触,此结合面不仅包括点线面的直接接触,还包括远距离的信息传递与控制的作用空间。人机结合面是人机系统中的中心一环节,主要由安全工程学的分支学科安全人机工程学去研究和提出解决的依据,并过安全工程设备工程学,安全管理工程学以及安全系统工程学去研究具体的解决方法手段措施安全人机学。它实现信息的内部形式与人类可以接受形式之间的转换。凡参与人机信息

交流的领域都存在着人机界面。大量运用在工业与商业上,简单的区分为“输入”(Input)与“输出”(Output)两种,输入指的是由人来进行机械或设备的操作,如把手、开关、门、指令(命令)的下达或保养维护等,而输出指的是由机械或设备发出来的通知,如故障、警告、操作说明提示等,好的人机接口会帮助使用者更简单、更正确、更迅速的操作机械,也能使机械发挥最大的效能并延长使用寿命,而市面上所指的人机接口则多界狭义的指在软件人性化的操作接口上。

人机界面的分类

现在的人机界面几乎都是用液晶显示屏,小尺寸的人机界面只能显示数字和字符,称为文本显示器,大一点的可以显示点阵组成的图形。

1.文本显示器

文本显示器(Text Display,TD)是一种廉价的单色操作员界面,一般只能显示几行数字,字母,符号和文字(如图1-1)。

2.操作员面板

西门子的操作员面板(Operator Panel)简称为OP,它使用液晶显示器和薄膜按键,有的操作员按键多达数十个,操作员面板的面积大,直观性较差。图1-2是西门子的操作员面板OP207,其显示器的对角线尺寸为5.7英寸。

3.触摸屏

西门子的触摸面板(Touch Panel)简称为TP,一般俗称为触摸屏,触摸屏是人机界面的发展方向。可以由用户在触摸屏的的画面上设置具有明确意义和提示信息的触摸式按键。触摸屏的面积小,使用直观方便。

2 项目组态

2.1 项目要求

1.建一个初始画面,按钮画面多个,各个画面以初始画面为中心,采用星形结构。在线模拟运行时,用鼠标交替点击“启动”按钮和“停止”按钮,看到2号设备的指示灯交替点亮。按下“点动”与松开“点动”1号设备亮灭。

【根据实际情况选择按钮个数】

【具上所述,完成所有功能】

2.建一个按钮画面完成加减常数,送数,使用文本列表的功能。+5、

-5使电动机启动和停止。

3.仿真调试

3.1调试过程

在模拟项目之前,首先创建、保存和编辑项目。单击WinCC flexible工具栏中的运行仿真按钮,启动模拟器,开始离线模拟运行。编译错误是会出现红色文字。应更正错误后,才能模拟运行。

3.2功能实现

按下点动按钮1号设备实现点动,2号设备实现启动与停止,还要实现切换功能。按+5、-5启动实现加减常数和启动电动机的功能,按数值1、2实现送数功能。

4总结

这学期我们学习了人机界面与触摸屏的工作原理和应用技术,通过大量的实例,深入浅出地介绍了使用组态软件WinCC flexible对西门子的入机界面进行组态和模拟调试的方法,包括对变量、画面、动画、报警、用户管理、数据记录、趋势图、配方、报表、运行脚本和以太网通信的组态方法,以及文本显示器的组态和使用方法。本书介绍了在控制系统中应用人机界面的工程实例,并讲解了用WinCC flexible对人机界面的运行进行离线模拟和在线模拟的方法,以及用WinCC flexible和STEP 7中的仿真软件来模拟人机界面和S7-300/400组成的控制系统的运行的方法。我很高兴选择了这门课,通过本次学习我知道了我的知识面还很窄,我又学到了一门新技术。

磁电式 电磁式 电动式仪表的定义 原理

磁电式、电磁式、电动式仪表的定义、原理 1 什么是磁电式仪表? 磁电式仪表广泛地应用于直流电压和电流的测量,如与各种变换器配合,在交流及高频测量中也得到较广泛的应用,因此在电气测量指示仪表中占有极为重要的地位。 2 磁电式仪表是由哪几部分构成的? 磁电式仪表是由固定的磁路系统和可动部分组成的。仪表的磁路系统是在永久磁铁1的两极,固定着极掌2。两极掌之间是圆柱形铁心3。圆柱形铁心固定在仪表的支架上,用来减小磁阻,并在极掌和铁心之间的气隙中形成沿圆柱形表面均匀辐射的磁场,其磁感应强度处处相等,方向与圆柱形表面垂直。处在这个磁场中的可动线圈4是用很细的漆包线绕制在铝框架上的。框架的两端分别固定着半轴,半轴上的另一端通过轴尖支承于轴承中。指针6安装在前半轴上。当可动线圈4通入电流时,在磁场的作用下便产生转动力矩,使指针随着线圈一起转动。线圈中通过的电流越大,产生的转动力矩也越大,因此指针转动的角度也大。 反作用力矩可以由游丝、张丝或悬丝产生。当采用游丝时,还同时用它来导人和导出电流,如图4-1(b)所示。因此装设了两个游丝,它们的螺旋方向相反。仪表的阻尼力矩则由铝框产生。高灵敏度仪表为减轻可动部分的重量,通常采用无框架动圈,并在动线圈中加短路线圈,以产生阻尼作用。 磁电式仪表按磁路形式又分为内磁式、外磁式和内外磁式三种,如图4-2所示。内磁式的结构是永久磁铁在可动线圈的内部。外磁式的结构是永久磁铁在可动线圈的外部。内外磁式的结构是在可动线圈的内外都有永久磁铁,

磁场较强,可使仪表的结构尺寸更为紧凑。 3 磁电式仪表是如何工作的? 磁电式仪表是根据载流导体在磁场中受力的原理,即电动机原理而制成的。磁电式仪表测量机构产生力矩的原理如图4-3所示。 4.什么是电磁式仪表? 电磁式仪表是测量交流电流与电压最常见的一种仪表。它具有结构简单、过载能力强、造价低廉以及可交直流两用等一系列优点,因此电磁式仪表在电力工程,尤其是固定安装的测量中得到了广泛的应用。 5.电磁式仪表与磁电式仪表有何不同? 电磁式仪表与磁电式仪表是两种不同类型的仪表。它们有很多不同之处,突出的表现在性能、结构和表盘上。 从表盘上就可区分开这两种仪表。除它们的图形符号不同外,磁电式电流表和电压表的刻度基本上是均匀的,而电磁式仪表的刻度则由密变疏。 从性能上看,磁电式仪表反映的是通过它的电流的平均值,因此它的直接被测量只能是直流电流或电压;而电磁式仪表反映的是通过它的电流的有效值,因此,不加任何转换,电磁式仪表就可用于直流、交流,以至非正弦电流、电压的测量。但其测量灵敏度和精度都不及磁电式仪表高,而功耗却大于磁电式仪表。 结构和工作原理的不同是两种仪表的根本区别。虽然它们都分为固定和可动两大部分,但其具体组成内容不同。磁电式仪表的固定部分是永久磁铁,用来产生均匀、恒定的磁场;可动部分的核心是一线圈,被测电流流经线圈时,利用通电导线在磁场中受力的原理(即电动机原理),实现可动部分的转

交通检测器的种类及其优缺点

交通检测器的种类及其优缺点 检测器的概述 目前国内外在交通检测系统或交通信息采集系统中,大量应用了电磁传感技术、超声传感技术、雷达探测技术、视频检测技术、计算机技术、通信技术等高新科学技术。相应地,交通信息检测器主要有:电感环检测器(环型感应线圈)、超声波检测器、红外检测器、雷达检测器、视频检测器等。 交通检测器以车辆为检测目标,检测车辆的通过或存在状况,对于异常交通流信息如拥堵、事故等也能进行实时监测,也检测路上车流的各种参数,如车流量、车速、车型分类、占有率、排队等,其作用是为控制系统提供足够的信息以便进行最优的控制。 检测器的分类 检测器种类很多,其工作原理大致可分为两类:○ 1检测能使某种开关触点闭合的机械力;○ 2检测因车辆的运动或存在引起的能量变化。压力检测器就是利用机械力检测的例子,而利用能量变化进行检测则有环形线圈检测器超声波检测器等等。 按照能否检测静止车辆来分,检测器可分为两类。有些检测器如环形线圈、磁强计检测器能检测存在于检测区域的静止或运动的车辆,这类检测器称为存在型检测器;而另一类检测器只能检测运动通过检测区域的车辆,这类检测器称作通过型检测器。 检测器还可以检测和交通有关的环境条件,以便在出现有害的环境条件时能够对交通进行控制或提出警告。 常用检测器的原理及优缺点介绍 超声波检测器 工作原理:根据光沿直线传播的原理,当光遇到障碍物时就会被反射回来,同理当超声波遇到障碍物(车辆)时就会产生一反射波,反射波传送回接收端,根据时间差就可以判断是否有车辆通过。正常情况下,没有车辆时超声波返回到超声波检测器用的时间比有车辆通过时用的时间要长,当接收到反射波的事件变短就可以判断出车辆通过。 超声波车辆检测器的工作原理可分为两种:传播时间差法和多普勒法。 (1) 传播时间差法 这是一种将超声波分割成脉冲射向路面并接收其反射波的方法。当有车辆时,超声波会经车辆提前返回,检测出超前于路面的反射波,就表明车辆存在或通过。 如图3-3a 所示,若超声波探头距地面高度为H ,车辆高度为h ,波速v ,发自探头的超声波脉冲的反射波从路面和车辆返回的时间分别为t 和t ’,则: t =v H 2 t ’=()v h H -2(3-13) 可见时间t ’与车辆高度h 向对应。这个特点即用来判别车辆存在,也可用于估计车高。从图3-3b 还可看出,调整启动脉冲的启动时间和宽度,能够限制输出信号发生的时间t ’的

电磁式仪表的结构和工作原理

电磁式仪表的结构和工作原理 电磁系仪表是一种交直流两用的测量仪表,其测量机构主要由通过电流的固定线圈和处于固定线圈内的可动软磁铁芯组成,可分为吸引型、排斥型和排斥-吸引型三种基本类型。下面介绍吸引型的测量机构工作原理。 吸引型测量机构如图1 所示。它是扁平型的固定线圈和可动的软磁铁芯所组成。扁线圈中的中间有一条窄缝。在可动部分的转轴上,还固定有指针、游丝、平衡锤和阻尼片。当被测量的电流通过固定线圈时,在线圈的窄缝中就产生磁场。在磁场的电磁力作用下,软磁铁芯被吸入线圈的窄缝,带动可动部分偏转,当偏转到的转动力矩与游丝的反作用力矩平衡时,指针就稳定下来。 当被测量电流的方向改变时,则磁场方向及铁芯被磁化的极性也同时改变,所以相互之间的吸引作用仍保持不变,也就是转动力矩的方向不变,由此可知转动力矩的方向与电流方向的变化无关,因此电磁系仪表能用于交流电路的测量。 在交流电路中,固定线圈的磁场使可动体发生偏转的电磁能量为 2 12 W Li = 式中i 为通过线圈的电流,L 为线圈的电感。此时电磁能量是用来产生转矩的,测量机构的瞬时转动力矩为 212t dW dL M i dt d α= = 可动部分的平均转矩为 ∫ ∫ = = T T t p dt i T d dL dt M T M 0 20 1211 α 式中, 20 21I dt i T T =∫ (I 是交流电流的有效值)。因此电磁系仪表的转动力矩为 2212p f dL M I K I d α = = 式中f K 表示频率为f 时仪表的系数。 若电磁系仪表用于直流电路时,则转矩为 20I K M = 1—线圈 2—固定线圈 3—可动铁芯 4—磁屏蔽 5磁感应阻尼片 图1 电磁系线圈测量机构

电磁场仪器(七个)解读

N 频 有关电磁场的仪器·学案 一、速度选择器 【例1】如图所示,一个电子经加速电压U 1后得到一定的速度,然后进入正交的电场和磁场,电子沿直线经过经过偏转极板后从右边S 板中央孔穿出,已知磁场强度为B ,上下极板间距为d (电子质量为m ,带电量为-e ). 问: (1)水平极板间的电场强度为多少? (2)若电场强度不变,调节B 的大小,使得电子恰好从水平极板的下边缘射出打在S 板上,问 打在板上前的速度是大小? 二、质谱仪 【例2】(2001年高考理综卷)如图是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导入图中所示的容器A 中,使它受到电子束轰击,失去一个电子变成正一价的离子。离子从狭缝S 1以很小的速度进入电压为U 的加速电场区(初速不计),加速后,再通过狭缝S 2、S 3射入磁感应强度为B 的匀强磁场,方向垂直于磁场区的界面PQ 。最后,离子打到感光片上,形成垂直于纸面而且平行于狭缝S 3的细线。若测得细线到狭缝S 3的距离为d ,导出离子的质量m 的表达式。 【变式1】如图为质谱仪原理示意图,电荷量为q 、质量为m 的带正电的粒子从静止开始经过电势差为U 的加速电场后进入粒子速度选择器。选择器中存在相互垂直的匀强电场和匀强磁场,匀强电场的场强为E 、方向水平向右。已知带电粒子能够沿直线穿过速度选择器,从G 点垂直MN 进入偏转磁场,该偏转磁场是一个以直线MN 为边界、方向垂直纸面向外的匀强磁场。带电粒子经偏转磁场后,最终到达照相底片的H 点。可测量出G 、H 间的距离为l 。带电粒子的重力可忽略不计。求: (1)粒子从加速电场射出时速度v 的大小。 (2)粒子速度选择器中匀强磁场的磁感应强度B 1(3)偏转磁场的磁感应强度B 2的大小。 B 3S P Q S

常用电工仪表的分类、基本组成及工作原理

1.常用电工仪表的分类 电气测量指示仪表种类繁多,分类方法也很多,了解电气渊量指示式仪表的分类,有助于认识它们所具有的特性,对学习电气测金指示式仪表的概况有一定的帮助。 下面介绍几种常见的电气测量指示仪表的分类方法。 (1)按工作原理分有磁电系、电磁系、感应系、静电系等。 (2)按被侧电量的名称分有电流表(安培表、毫安表和微安表)、电压表(伏特表、毫伏表)、功率表、电能表、功率因数表、频率表、兆欧表以及其他多种用途的仪表,如万用表等。 (3)按被测电流的种类分有直流表、交流表、交直流两用表。 (4)按使用方式分有开关式与便携式仪表。开关板式仪表通常固定安装在开关板或某一装置.七,一般误差较大,价格也较低,适用于一般工业测量。便携式仪表误差较小(准确度较高),价格较贵,适于实验室适用。 (5)按仪表的准确度分有0.1,0.2,0.5,1.0,1.5,2.5,5.0共七个等级。 此外.按仪表对电磁场的防御能力可分为Ⅰ,Ⅱ,Ⅲ,Ⅳ四级;按仪表使用条件分为A,B,C三组。 2.电工仪表的基本组成和工作原理 电工指示仪表的基本工作原理都是将被测电量或非电量变换成指示仪表活动部分的偏转角位移量。被测量往往不能直接加到测量机构上,一般需要将被测量转换成测量机构可以测量的过渡量.这个把被测量装换为过渡量的组成部分叫测量线路。把过渡量按某一关系转换成偏转角的机构叫测量机构。测量机构有活动部分和固定部分组成,它是仪表的核心。如图A1所示,电工指示仪表一般有测量线路和测量机构这两个部分组成。 测量机构的主要作用是产生使仪表的指示器偏转的转动力矩,以及使指示器保持平衡和迅速稳定的反作用力矩及阻尼力矩。 测量线路把被测电量或非电量转换为测量机构能直接测量的电量时,测量机构活动部分在偏转力矩的作用下偏转。同时测量机构产生反作用力矩的部件所产生的反作用力矩也作用在活动部件上,当转动力矩与反作用力矩相等时,可动部分便停止下来。由于可动部分具有惯性,以至于其达到平衡时不能迅速停止下来,而是在平衡位置附近来回摆动。测量机构中的阻尼装笠产生的阻尼力矩使指针迅速停止在平衡位置上,指出被测量的大小,这也就是电工指示仪表的基本工作原理。

(完整版)电磁式仪表与磁电式仪表区别

电磁式仪表与磁电式仪表有何不同? 添加时间:2015-08-12 来源:艾特贸易网| 阅读量:1170 答:电磁式仪表与磁电式仪表是两种不同类型的仪表。它们有很多不同之处,突出表现在性能、结构和表盘上。 (1)从表盘上就可区分开这两种仪表。除了图形符号不同外,磁电式电流表和电压表的刻度基本上是均匀的,而电磁系仪表的刻度则由密变疏。 (2)从性能上看,磁电式仪表反映的是通过它的电流的平均值,因此只能用其直接测量直流电流或电压;而电磁式仪表反映的是通过它的电流的有效值,因此,不加任何转换,电磁式仪表就可用于直流、交流,以至非正弦电流、电压的测量,但其测量灵敏度和精度都不及磁电式仪表高,而功耗却大于磁电式仪表。 (3)结构和工作原理的不同是两种仪表的根本区别。虽然它们都分为固定和可动两大部分,但其具体组成内容不同。 磁电式仪表的固定部分是永久磁铁,用来产生均匀、恒定的磁场;可动部分的核心是一组线圈,被测电流流经线圈时,利用通电导线在磁场中受力的原理(即电动机原理),实现可

动部分的转动。磁电式仪表的结构如图1.2所示。 图1.2 磁电式仪表的测量结构示意图 电磁式仪表的固定部分是被测电流流经的线圈,有电流通过即可形成较强的磁场;可动部分的核心是一片可被及时磁化的软磁性材料(如铁片、坡莫合金等),利用被磁化的动铁片与通电线圈(或被磁化的静铁片)磁极之间的作用力,实现可动部分的偏转。 由于电磁式仪表构造简单、成本低廉,在电工测量中获得了广泛的应用,尤其是开关板式交流电流表、电压表,基本上都采用这种仪表。 图1.3 电磁式仪表的测量机构示意图 电磁式仪表的结构如图1.3所示,根据测量机构的结构形式不同,分为扁线圈吸引型和圆线圈排斥型两种。

各种流量计的优缺点及适合的介质

各种流量计的优缺点及适合的介质 一、电磁流量计 1、优点 (1)电磁流量计可用来测量工业导电液体或浆液。 (2)无压力损失。 (3)测量范围大,电磁流量变送器的口径从2.5mm到2.6m。 (4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。 2、缺点 (1)电磁流量计的应用有一定的局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。另外在高温条件 下其衬里需考虑。 (2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度, 不同流体介质具有不同的密度,而且随温度变化。如果电磁流量计转换器不 考虑流体密度,仅给出常温状态下的体积流量是不合适的。 (3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。在安装变送器时, 从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。 安装地点不能有振动,不能有强磁场。在安装时必须使变送器和管道有良好 的接触及良好的接地。变送器的电位与被测流体等电位。在使用时,必须排 尽测量管中存留的气体,否则会造成较大的测量误差。 (4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一 定厚度,可能导致仪表无法测量。 (5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。如100mm口径仪表内径变化1mm会带来约2%附加误差。 (6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。为了准确测量流量, 必须消除各种干扰信号,有效放大流量信号。应该提高流量转换器的性能, 最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择 励磁方式和频率,可以排除同相干扰和正交干扰。但改进的仪表结构复杂, 成本较高。 (7)价格较高。 二、超声波流量计 1、优点 (1)超声波流量计是一种非接触式测量仪表,可用来测量不易接触、不易观察的流体流量和大管径流量。它不会改变流体的流动状态,不会产生压力损失,且 便于安装。 (2)可以测量强腐蚀性介质和非导电介质的流量。

磁电系仪表

《电工仪表与测量》 大作业 专业名称:电气工程及其自动化 班级:电气工程及其自动化14-21班 学号: 20140272011 姓名:张人方 指导教师:邵媛媛 日期: 2015年6月3日

目录 一、磁电系仪表的结构 二、磁电系仪表的工作原理 三、磁电系仪表应用 四、测量电路举例 五、磁电系仪表测量误差的主要来源及补偿方法 六、参考书目、资料 七、总结学习心得 格式要求: 1.正文用宋体:小四 2.行间距:单倍行距 3.标题:黑体,三号,加黑 4.段间距设置:段前0.5 行,段后0 6.正文内容主要涉及到所讲过的各个系别仪表的基本结构、工作原理等基础知识;以及应用和发展趋势等,可以简单涉及相关的设计方面内容;测量电路举例必须有具体测量电路图,电路功能描述等。

电磁系仪表 磁电系仪表在电气测量指示仪表中找有极其重要的地位,广泛应用于直流电流和电压的测量。如果和整流元件配合,可以用于交流电流和电压的测量;与变换器配合,可以测量交流功率、频率、相位以及温度压力等;此外,它还广泛用作电子仪器中的指示器。 一、磁电系仪表的结构 磁电系仪表根据磁路形式的不同,分为内磁式,外磁式和内外结合式三种结构。 外磁式的永久磁铁在可动线圈的外面,主要结构如图1(a)所示,它包括固定部分和可动部分: 图1 磁电系仪表的结构 a)外磁式 b)内磁式 1-永久磁铁 2-极掌 3-铁芯 4-可动线圈 5-转轴 6-平衡锤 7-指针8-游丝 9-空气间隙 10-磁轭 固定部分:永久磁铁、极掌和固定在支架上的圆柱形铁芯 可动部分由绕在铝框架上的可动线圈、前后两根半轴、与转轴相连的指针平衡锤以及游丝组成。当可动部分发生转动时,游丝变形产生与转动方向相反的反作用力矩。另外,游丝还具有把电流导入可动线圈的作用。 内磁式是将永久磁铁做成圆柱形并放在可动线圈之内,它既是铁芯又是磁铁。为

高中物理20种电磁学仪器

高中物理20 种电磁学仪器 1. 电视机原理 1. 电视机的显像管中,电子束的偏转是用磁偏转技术实现的. 电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示. 磁场方向垂直于圆面. 磁场区的中心为O,半径为r. 当不加磁场时,电子束将通过O点而打到屏幕的中心M点. 为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度 B 应为多少? 解析:如图所示,电子在磁场中沿圆弧ab 运动,圆心为O,半径为R,以v 表示电子进入磁= 场时的速度,m、e 分别表示电子的质量和电荷量,则 1 2 eU mv 2 evB 2 mv R 又有tan 2 r R 由以上各式解得: B 1 2mv r e tan 2 2. 电磁流量计 2. 电磁流量计广泛应用于测量可导电液体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积).为了简化,假设流量计是如图所示的横截面为长方形的一段管道.其中空部分的长、宽、高分别为图中的a、b、c.流量计的两端与输送流体的管道相连接(图中虚线).图中流量计的上下两面是金属材料,前后两面是绝缘材料.现于流量计所在处加磁感应强度 B 的匀强磁场,磁场方向垂直前后两面.当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为() A. I c bR B a B. I b aR B c

C. I cR a B b D. I R bc B a 2. 质谱仪 3. 如图是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导 入图中所示的容器 A 中,使它受到电子束轰击,失去 一个电子变成正一价的分子离子。分子离子从狭缝s1 以很小的速度进入电压为U 的加速电场区(初速不 计),加速后,再通过狭缝s2、s3 射入磁感强度为 B 的匀强磁场,方向垂直于磁场区的界面PQ。最后,分 子离子打到感光片上,形成垂直于纸面而且平行于狭 缝s3 的细线。若测得细线到狭缝s3 的距离为d,试 导出分子离子的质量m的表达式。 解析:以m、q 表示离子的质量电量,以v 表示离子从狭缝s2 射出时的速度,由功能关系可得 射入磁场后,在洛仑兹力作用下做圆周运动,由牛顿定律可得 式中R为圆的半径。感光片上的细黑线到s3 缝的距离d=2R 解得 4. 磁流体发电 3. 磁流体发电是一种新型发电方式,图1 和图 2 是其工作原理示意图。图1 中的长方体是发电导管,其中空部分的长、高、宽分别为l 、a、b,前后两个侧面是绝缘体,上下两个 侧面是电阻可略的导体电极,这两个电极与负载电阻R1相连。整个发电导管处于图 2 中磁

电磁式仪表的特点

电磁式仪表有什么样的特点? 磁电式仪表广泛应用于直流电压和电流的测量,由固定的磁路系统和可动部分组成的。作为一种广泛应用的仪表,它有哪些特点呢? (1) 磁电式仪表既可测量交流,又可测量直流。当动片、静片选用优质坡莫合金为导磁材料时,可以制成交直流两用仪表。 (2) 磁电式仪表结构简单、价格低廉。由于测量机构的活动部分不通过电流,其过载能力大,制造成本也低。 (3) 磁电式仪表有指示滞后现象。例如,当测量缓慢增加的直流时,电磁式仪表给出的指示值偏低;当测量缓慢减少的直流时,仪表给出的指示值又偏高。这均是由于电磁式仪表的结构中,含有具有磁滞特性的铁磁材料所造成的。滞后现象的存在,一方面使电磁式仪表的准确度降低,另一方面因交直流下的磁化过程不同,促使交流的电磁式仪表不宜在直流下应用,但不等于不能用。对于铁芯不是坡莫合金材料的电磁式仪表,拿去测量直流电时,不仅指示值不稳定,而且误差将增大10%左右。 (4) 磁电式仪表与磁电式仪表相比较,受外磁场影响大。因为电磁式仪表的磁场是由固定线圈流过被测电流所形成的,其磁场较弱,又几乎全部处在空气之中,虽然采取了相应的防止外磁场影响的措施,但还是比磁电式仪表受外磁场的影响严重得多。 (5) 磁电式仪表受频率影响。电磁式电压表是由固定线圈通过电流建立磁场的,为了能测量较高的电压,而又不使测量机构超过容许的电流值,它的固定线圈的匝数较多,内阻较大,感抗也较大,并随频率的变化而变化,因此影响了仪表的准确度。所以,电磁式仪表只适用子频率在800Hz以下的电路中。 (6) 磁电式仪表标尺刻度不够均匀。因电磁式仪表的偏转角是随被测直流电流的平方或被测交变电流有效值的平方而改变,故标尺刻度具有平方律的特性。当被测量较小时,分度很密,读数困难又不准确,一般用于测量精度要求不高的场所。当测量较大时,则分度较疏,读数容易又准确。 (7)电磁式仪表可以测量非正弦交流电路中的电流或电压的有效值。但当非正弦电流或电压的谐波频率过高时,受频率影响将带来较大的误差。 (8) 磁电式仪表与磁电式仪表相比较,电磁式仪表的灵敏度低,功耗大。 (9)电磁式仪表的测量机构,可以用来制成不同用途的比率表、相位表和同步指示器等。 由上述技术特性看出,电磁式仪表虽然存有一些缺点,但由于其结构简单、造价低廉、过载能力强等优点,在电力系统中,常用的安装式交流电流表和交流电压表几乎全是电磁式仪表,应用相当广泛。

磁电系仪器仪表测量机构与工作原理

编辑版word 磁电系仪器仪表测量机构与工作原理 磁电系仪表是电子仪器仪表的一种,磁电系仪表主要用于直流电流和电压的测量,与整流器配合之后,也可用于交流电流和电压的测量。其优点是:准确度和灵敏度高、功耗小、刻度均匀等。缺点是:过载能力差。该仪表主要由磁电系测量机构和测量线路组成。 1.测量机构和工作原理 磁电系仪表测量机构主要由固定部分和可动部分组成,如图3-1-1。固定部分由马蹄形永久磁铁、极掌和圆柱形铁心等组成表头的磁路系统。固定于表壳上的圆柱形铁心处于两极掌之间,并与两极掌形成辐射均匀的环形磁场。可动部分由绕在矩形铝框架上的可动线圈、与铝框相连的两个半轴以及固定在半轴上的指针、游丝等组成。整个可动部分经两半轴支承在轴承上,线圈则位于环形磁场中。 当电流I 经游丝流入可动线圈后,通电线圈在永久磁铁的磁场中受到电磁力,产生电磁转矩M ,使可动线圈发生偏转,转矩M ∝I 。同时与可动线圈固定在一起的游丝因动圈的偏转而发生变形,从而产生反作用力矩F M ,F M 与指针的偏转角成正比,即F M ∝α。 当M =F M 时,可动部分将不再转动而停留在平衡位置,此时偏转角与输入电流的关系为α∝I 。 如果在仪表盘上直接按电流值刻度,则仪表标尺上的刻度是均匀等份的,而且指针偏转方向与电流方向有关。当电流反向时,可动线圈的偏转也随之反向。 如果可动线圈通入交流电,在电流方向变化时转矩M 的方向也随之变化。若电流变化的频率小于可动部分的固有振动频率,指针将会随电流方向的变化而左右摆动;若电流变化的频率高于可动部分的固有振动频率,指针偏转角将与一个周期内转矩的平均值有关。由于一个周期内的平均驱动转矩为零,所以指针将停留在零位不动。可见,磁电系仪表只能直接测量直流电,而不能测量交流电。若要测量交流电,则必须配上整流装置构成整流系仪表。 2.电流的测量 磁电系仪表可直接作为电流表使用。但由于被测电流要流过截面积极细、允许流过很小电流(<1mA )的游丝和可动线圈,所以最大量程只能是微安或毫安级。为了扩大量程,可在测量机构上并联低值电阻即分流器,如图3-1-2所示。 此时流过表头的电流0I 只是被测电流X I 的一部分,两 者的关系是0 44 0R R R I I A A X +? =。多量程电流表由几个 不同阻值的分流器构成,并通过量程转换开关分别与表头并联。需要扩大的量程越大,分流器的电阻越小。图 图3-1-2 多量程电流表接线图 马蹄形永久磁铁圆柱形铁心极掌 铝框及 可动线圈 游丝 指针 I I 10 5080 图3-1-1 磁电系仪表测量机构

电磁学仪器

常见电磁仪器 一.速度选择器 1.如图所示的平行板器件中.电场强度E和磁感应强度B相互垂直,具有 不同水平速度的带电粒子从P孔射入后发生偏转的情况不同。利用这种装置能 把具有某一特定速度的粒子选择出来,所以叫做速度选择器。若正离子(不计 重力)以水平速度射入速度选择器,则 A正离子从P孔射入后,能沿着图示虚线路径通过速度选择器 B正离子从Q孔射入后,能沿着图示虚线路径通过速度选择器 C仅改变离子的电性,负离子从P孔射入后,不能沿图示虚线路径通过速度选择器 D仅改变离子的电量,正离子从P孔射入后,不能沿图示虚线路径通过速度选择器 2.如图所示为一速度选择器,也称为滤速器的原理图。K为电子枪,由枪中沿 KA方向射出的电子,速率大小不一。当电子通过方向互相垂直的均匀电场和 磁场后,只有一定速率的电子能沿直线前进,并通过小孔S。设产生匀强电场 的平行板间的电压为300 V,间距为5 cm,垂直纸面的匀强磁场的磁感应强度 为0.06 T,问: (1)磁场的指向应该向里还是向外? (2)速度为多大的电子才能通过小孔S? 二.磁流体发电机 1.磁流体发电是一项新兴技术,它可以把物体的内能直接转化为电能。下 图是磁流体发电机的装置:A、B组成一对平行电极,两极间距为d,内有 磁感强度为B的匀强磁场,现持续将一束等离子体(即高温下电离的气体, 含有大量带正电和带负电的带电粒子,而整体呈中性)垂直喷射入磁场,A、 B两板间便产生电压。A、B板哪一个是发电机的正极________每个离子的 速度为v,电量大小为q,稳定时,磁流体发电机的电动势E=________ 2.如图是磁流体发电机原理示意图.设平行金属板间距为d,发电通道长为a、 宽为b,其间有匀强磁场,磁感应强度为B,导电流体的流速为v,电阻率为, 负载电阻为R,导电流体从一侧沿垂直磁场且与极板平行方向射入极板间,求: (1)该发电机产生的电动势;(2)负载R上的电流I; (3)求磁流体发电机总功率p;(4)为了使导电流体以恒定的速度v通过磁 场,发电通道两端需保持一定的压强差△p。试计算△p。 三.电磁流量计 1.电磁流量计的原理图如图所示,横截面为长方形的一段管道,其中空部分 的长、宽、高分别为图中的a、b、c.流量计的两端与输送液体的管道相连 接(图中的虚线).图中流量计的上下两面是金属材料,前后两面是绝缘材 料.现于流量计所在处加磁感应强度为B的匀强磁场,磁场方向垂直于前 后两面.当导电液体稳定地流过流量计时,在管道外将流量计上、下表面分 别与一串接了电阻R的电流表的两端连接,I表示测得的电流值.已知流体的电阻率为ρ,不计电流表的内阻,求得流量(流量等于单位时间内流过的体积)

磁电式电磁式电动式仪表的定义原理

磁电式电磁式电动式仪 表的定义原理 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

磁电式、电磁式、电动式仪表的定义、原理 1 什么是磁电式仪表 磁电式仪表广泛地应用于直流电压和电流的测量,如与各种变换器配合,在交流及高频测量中也得到较广泛的应用,因此在电气测量指示仪表中占有极为重要的地位。 2 磁电式仪表是由哪几部分构成的 磁电式仪表是由固定的磁路系统和可动部分组成的。仪表的磁路系统是在永久磁铁1的两极,固定着极掌2。两极掌之间是圆柱形铁心3。圆柱形铁心固定在仪表的支架上,用来减小磁阻,并在极掌和铁心之间的气隙中形成沿圆柱形表面均匀辐射的磁场,其磁感应强度处处相等,方向与圆柱形表面垂直。处在这个磁场中的可动线圈4是用很细的漆包线绕制在铝框架上的。框架的两端分别固定着半轴,半轴上的另一端通过轴尖支承于轴承中。指针6安装在前半轴上。当可动线圈4通入电流时,在磁场的作用下便产生转动力矩,使指针随着线圈一起转动。线圈中通过的电流越大,产生的转动力矩也越大,因此指针转动的角度也大。 反作用力矩可以由游丝、张丝或悬丝产生。当采用游丝时,还同时用它来导人和导出电流,如图4-1(b)所示。因此装设了两个游丝,它们的螺旋方向相反。仪表的阻尼力矩则由铝框产生。高灵敏度仪表为减轻可动部分的重量,通常采用无框架动圈,并在动线圈中加短路线圈,以产生阻尼作用。 磁电式仪表按磁路形式又分为内磁式、外磁式和内外磁式三种,如图4-2所示。内磁式的结构是永久磁铁在可动线圈的内部。外磁式的结构是永久磁铁在可动线圈的外部。内外磁式的结构是在可动线圈的内外都有永久磁铁,磁场较强,可使仪表的结构尺寸更为紧凑。 3 磁电式仪表是如何工作的 磁电式仪表是根据载流导体在磁场中受力的原理,即电动机原理而制成的。磁电式仪表测量机构产生力矩的原理如图4-3所示。 4.什么是电磁式仪表 电磁式仪表是测量交流电流与电压最常见的一种仪表。它具有结构简单、过载能力强、造价低廉以及可交直流两用等一系列优点,因此电磁式仪表在电力工程,尤其是固定安装的测量中得到了广泛的应用。 5.电磁式仪表与磁电式仪表有何不同 电磁式仪表与磁电式仪表是两种不同类型的仪表。它们有很多不同之处,突出的表现在性能、结构和表盘上。 从表盘上就可区分开这两种仪表。除它们的图形符号不同外,磁电式电流表和电压表的刻度基本上是均匀的,而电磁式仪表的刻度则由密变疏。 从性能上看,磁电式仪表反映的是通过它的电流的平均值,因此它的直接被测量只能是直流电流或电压;而电磁式仪表反映的是通过它的电流的有效值,因此,不加任何转换,电磁式仪表就可用于直流、交流,以至非正弦电流、电压的测量。但其测量灵敏度和精度都不及磁电式仪表高,而功耗却大于磁电式仪表。 结构和工作原理的不同是两种仪表的根本区别。虽然它们都分为固定和可动两大部分,但其具体组成内容不同。磁电式仪表的固定部分是永久磁铁,用来产生均匀、恒定的磁场;可动部分的核心是一线圈,被测电流流经线圈时,

磁电系仪表的结构和工作原理

磁电系仪表的结构和工作原理 磁电系仪表的基本测量机构由固定部分和可动部分组成,如图1所示,其特点是由一个或几个永久磁铁和一个或几个载流线圈所构成的磁场能量来推动可动部分偏转。可动部分的转动力矩中由永久磁铁与载流线圈的磁场相互作用产生的。磁电系测量机构根据可动部分是载流线圈还是永久磁铁,可分为动圈式和动磁式两类。在动圈式仪表中根据永久磁铁安装的位置不同,又分为三种:外磁式、内磁式和内外磁相结合三种形式。固定的磁路由马蹄形永久磁铁、磁轭、极掌和圆柱形铁芯组成,在它们之间的空隙内,形成强辐射状的均匀磁 场。安装在气隙中的动框,是一个用绝缘细导线绕制成的矩形线圈。动框上下的侧面固定着带轴尖的轴尖座,轴尖支撑在轴承的凹槽中,使可动部分可以在气隙中转动。两对游丝的盘旋方向相反,内端与轴固定,外端固定的支架上。游丝不仅产生阻尼力矩,而且是电流引入和引出线。轴上的平衡锤可用来调节可动部分的机械平衡,使可动部分的重心在转轴上。 磁电系仪表的作用原理是以永久磁铁间隙中的磁场与载流线圈相互作用为基础。当可动线圈中有电流通过时,根据左手定理,在可动线圏的两个侧边上将产生如图2所示的 1F 和2F BNIl F F F ===21 式中,B 为空气隙中的磁感应强度,N 为线圈的匝数,I 为通过线圈的电流,l 为线圈中受力边的长度,若在线圈上产生的转动力矩为M ,则 SBNI bBNIl bF F b F b M ===+= 212 2 式中,b 为线圈非受力边的长度,即线圈的宽度;S 为线圈的有效面积,即bl S = 在转矩的作用下,使可动部分转动。此时仪表的游丝被扭转而产生一个反作用力矩M α。当偏转角随着测量电流I 增大时,游丝的反作用力矩也增大,因此有 M D αα=? 式中,D 为游丝反矩系数,α为指针的偏转角。当转动力矩与反作用力矩相等时,表 头上的指针就静止在稳定的偏转位置,此时有 1.永久磁铁 2.磁轭 3. 极掌 4.圆柱形铁芯 5.动框 6.游丝 7.平衡锤 8.磁分路 9.指针 图1 磁电系测量机构 1.永久磁铁 2.圆柱形磁铁 3.可动线圈 图2磁电作用原理

各种液位计优缺点

常用液位计方式有以下几种:连通器式液位计、超声波液位计、电容式液位计、雷达液位计、磁性浮子液位计、磁致伸缩型液位计、静压式液位计、伺服式液位计;测量物位的有超声波物位计和放射性物位计等。从测量原理上来说可以分为接触式测量与非接触式测量、压力式原理测量等。下面就介绍上述的各种液位计的功能与缺点。 1、连通器式液位计: 应用最普通的玻璃液位计结构简单、价廉、直观,适于现场使用: 缺点:易破损,内表面沾污,造成读数困难,不便于远传和调节。 2、超声波液位计: 是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。无机械可动部分,可靠性高,安装简单、方便,属于非接触测量,且不受液体的粘度、密度等影响精度比较低。 缺点:超声波液位计测试容易有盲区。不可以测量压力容器,不能测量易挥发性介质。 3、电容式液位计: 采用测量电容的变化来测量液面的高低的。它是一根金

属棒插入盛液容器内,金属棒作为电容的一个极,容器壁作为电容的另一极。两电极间的介质即为液体及其上面的气体。由于液体的介电常数ε1和液面上的介电常数ε2不同,比如:ε1>ε2,则当液位升高时,两电极间总的介电常数值随之加大因而电容量增大。反之当液位下降,ε值减小,电容量也减小。所以,可通过两电极间的电容量的变化来测量液位的高低。 缺点:电容液位计的灵敏度主要取决于两种介电常数的差值,而且,只有ε1和ε2的恒定才能保证液位测量准确,因被测介质具有导电性,所以金属棒电极都有绝缘层覆盖。被测液体的介电常数不稳定会引起误差。电容式液位计一般用于调节池、清水池测量。(注:液化气是否会对测量造成影响未知待确定) 4、雷达液位计: 采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下:D=CT/2(D:雷达液位计到液面的距离C:光速T:电磁波运行时间) 雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。不需要传输媒介,不受大气、蒸气、槽内挥发雾影响的特点,能用于挥发介质的液位测量。采用

磁场几种仪器经典(速度选择器、电磁流量计等)

电磁场的应用 一、速度选择器 1.如图所示的平行板器件中.电场强度 E 和磁感应强度 B 相互垂直,具有不同水平速度的带电粒子从 P 孔射入后发生偏转的情况不同。利用这种装置能把具有某一特定速度的粒子选择出来,所以叫做速度选择器。 现有一束带正电粒子(电量为q ,质量为m )从P 孔进入,要使其能从Q 孔离开,粒子的速度应满足怎样的条件? 如果是一束带负电的粒子,从P 孔进入,要使其能从Q 孔离开,粒子的速度应满足怎样的条件? 如果让粒子从Q 孔进入,能否从P 孔离开? 2.如图,水平放置的平行金属板a 、b 带有等量异种电荷,b 板带正电,两板间有垂直于纸面向里的匀强磁场,若一个带正电的液滴在两板间做直线运动,其运动方向是:( ) A .沿竖直方向向下 B .沿竖直方向向上 C .沿水平方向向左 D .沿水平方向向右 3.在图中实线框所围的区域内同时存在匀强磁场和匀强电场.一负离子(不计重力)恰好能沿直线MN 通过这一区域.则匀强磁场和匀强电场的方向不可能为下列哪种情况( ) A 、匀强磁场和匀强电场的方向都水平向右 B 、匀强磁场方向竖直向上,匀强电场方向垂直于纸面向里 C 、匀强磁场方向垂直于纸面向里,匀强电场方向竖直向下 D 、匀强磁场方向垂直于纸面向外,匀强电场方向竖直向下 二.质谱仪: 1.图1是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导入图中所示的容器A 中,使它受到电子束轰击,失去一个电子变成正一价的离子。离子从狭缝s 1以很小的速度进入电压为U 的加速电场区(初速不计),加速后,再通过狭缝s 2、s 3射入磁感应强度为B 的匀强磁场,方向垂直于磁场区的界面PQ 。最后,离子打到感光片上,形成垂直于纸面而且平行于狭缝s 3的细线。若测得细线到狭缝s 3的距离为d 。试求离子的质量m 的表达式。 2.如图带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E 。平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2,平板S 下方有强度为B 0的匀强磁场。下列表述不正确的是( ) A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过狭缝P 的带电粒子的速率等于E/B D .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小 a b B

各常用电磁无损检测方法原理,应用,优缺点比较

一普通涡流检测 1原理 涡流检测是以电磁感应为基础,通过测定被检工件内感生涡流的变化来无损地评定导电材料及其工件的某些性能,或发现其缺陷的无损检测方法。当载有交变电流的试验线圈靠近导体试件时,由于线圈产生的交变磁场的作用感应出涡流,涡流的大小,相位及流动形式受到试件性能和有无缺陷的影响,而涡流产生的反作用又使线圈阻抗发生变化,因此,通过测定线圈阻抗的变化,就可以推断被检试件性能的变化及有无缺陷的结论。 2发展 1涡流现象的发现己经有近二百年的历史。奥斯特(Oersted、安培(Ampere ) , 法拉弟(Faraday、麦克斯韦(Maxwell)等世界著名科学家通过研究电磁作用实 验,发现了电磁感应原理,建立了系统严密的电磁场理论,为涡流无损检测奠定 了理论基础[l]。1879年,体斯(Hughes)首先将涡流检测应用于实际一一判断不 同的金属和合金,进行材质分选。自1925年起,在美国有不少电磁感应和涡流检测仪获得专利权,其中,Karnz直接用涡流检测技术来测量管壁厚度;Farraw首次 设计成功用于钢管探伤的涡流检测仪器。但这些仪器都比较简单,通常采用60Hz , 110V的交流电路,使用常规仪表(如电压计、安培计、瓦特计等),所以其工作 灵敏度较低、重复性较差。二战期间,多个工业部门的快速发展促进了涡流检测 仪器的进步。涡流检测仪器的信号发生器、放大器、显示和电源装置等部件的性 能得到了很大改进,问世了一大批各种形式的涡流探伤仪器和钢铁材料分选装置,较多地应用于航空及军工企业部门。当时尚未从理论和设备研制中找到抑制干扰 因素的有效方法,所以,在以后很长一段时间内涡流检测技术发展缓慢。 直到1950年以后,以德国科学家福斯特(Foster)博士为代表提出了利用阻

常用仪器设备考试题

成都成华珍君仁济医院 常用仪器设备考试题 一、单选题 1.在为患者进行心电监测前,除应对患者周围情况和光照情况进行评估外,还应评( ) A、有无电磁波干扰 B、患者的意识状态 C、操作者的心理状态 D、有无声音干扰 2.为保持电极与皮肤表面接触良好,应先( )患者皮肤 A、消毒 B、清洁 C、润滑 D、润湿 3.使用心电监测前,对患者情况的评估内容包括( ) A、病情 B、意识状态 C、皮肤情况 D、以上都是 4.为患者进行心电监测时要对患者做哪些指导() A、不要自行移动或摘除电极片 B、避免在监测仪附近使用手机 C、皮肤瘙痒及时通知医务人员 D、以上都是 5.男性,24岁,一月来心悸、多汗,体检心率110次/分,心律规则,心脏不大,无杂音,此患者心率快最可能的是() A、窦性心动过速 B、室上性心动过速 C、房扑 D、房颤 6.男性,35岁患风湿性心脏病多年,近感心悸,体检心率120次/分,心律完全不齐,心音强弱不一,脉率80次/分,最可能的心律失常是() A、窦性心律不齐 B、房扑 C、房颤 D、室性期前收缩 7.女性,16岁,近2周偶然发现心律不齐,心电图检查为室性心律,在同一导联上最大的P-P间期与最小的P-P间期相差大于0.12秒,最可能出现失常的心律是()A、窦性心律不齐 B、房性期前收缩 C、室性期前收缩 D、Ⅱ°房室传导阻滞 8.女性,72岁,一周来晕厥两次,作心电图P波与QRS波群两者互不相关,P波频率为80次/分,QRS波群频率为45次/分,规整诊断为() A、Ⅲ°房室传导阻滞 B、室性心动过速 C、Ⅱ°房室传导阻滞 D、室性期前收缩 9.患者,65岁,近来心悸,心电图可以提前出现正常的QRS波群,其前P波形态与窦性P波略不相同,代偿不完全,诊断为() A、房性期前收缩 B、室性期前收缩 C、室上性心动过速 D、Ⅱ度Ⅰ型房室传导阻滞 10.下列哪项心律失常应给与处理,除了()

液位计种类及其优缺点

液位计种类及其优缺点 现在市场上的液位计主要有以下7种,每种液位计的原理、优缺点如下: 1、磁性浮子液位计 原理:根据浮力原理和磁性耦合作用研制而成。当被测容器中的液位升降时,液位计本体管中的磁性浮子也随之升降,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示器,驱动红、白翻柱翻转,当液位上升时翻柱由白色转变为红色,当液位下降时翻柱由红色转变为白色,指示器的红白交界处为容器内部液位的实际高度,从而实现液位清晰的指示。 优点:可以做到高密封,防泄漏和适用于高温、高压、耐腐蚀的场合。对高温、高压、有毒、有害、强腐蚀介质更显其优越性。 缺点:与介质直接接触,浮球密封要求要严格,不能测量粘性介质。磁性材料如退磁易导致液位计不能正常工作。 2、磁性翻板(柱)式液位计 原理:同磁性浮子液位计。 优点:同磁性浮子液位计。 缺点:翻板容易卡死,造成无法远传指示。磁性材料如退磁易导致液位计不能正常工作。 3、电磁波雷达液位计(导波雷达液位计) 原理:雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接

收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下:D=CT/2(D:雷达液位计到液面的距离C:光速T:电磁波运行时间)雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 优点:不需要传输媒介,不受大气、蒸气、槽内挥发雾影响的特点,能用于挥发介质的液位测量。采用非接触式测量,不受槽内液体的密度、浓度等物理特性的影响。 缺点:价格昂贵。仪表需要设置的参数较多,一旦出现问题,通常很难查出是什么原因造成的。如果天线本身不慎沾上介质会报错。如有结晶结冰现象会报错,需加热保温处理,并清理天线。最初安装需要是空仓,即空料位。 4、超声波液位计 原理:超声波液位计是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。 优点:无机械可动部分,可靠性高,安装简单、方便,属于非接触测量,且不受液体的粘度、密度等影响。 缺点:精度比较低,测试容易有盲区。不可以测量压力容器,不能测量易挥发性介质。 5、电容式液位计 原理:采用测量电容的变化来测量液面的高低的。它是一根金属

相关主题
文本预览
相关文档 最新文档