当前位置:文档之家› 多路温度采集系统设计

多路温度采集系统设计

多路温度采集系统设计
多路温度采集系统设计

学号11780128

天津城建大学

信息处理系统综合设计

设计说明书

多路温度采集系统设计

起止日期:2014 年12 月29 日至2015 年1 月23 日

学生姓名卫瑞鑫

班级11信科1班

成绩

指导教师(签字)

计算机与信息工程学院

2015年1月23日

天津城建大学

课程设计任务书

2014 —2015 学年第一学期

计算机与信息工程学院电子信息科学与技术专业 1 班级

课程设计名称:信息处理系统综合设计

设计题目:多路温度采集系统设计

完成期限:自2014 年12 月29 日至2015 年 1 月23 日共 4 周

设计依据、要求及主要内容(可另加附页):

一、课程设计的目的

通过对课程设计任务的完成,使学生掌握单片机控制系统硬件设计和基本的编程方法,了解温度测量的工作原理,既巩固所学的基础理论知识,又为学生日后从事开发设计奠定基础。

二、课程设计的内容及要求

选择合适的器件,了解温度测量的工作原理,进行温度测量系统的软、硬件设计,要完成

1、单片机最小系统设计。

2、多路温度采集、显示电路设计。

3、编写温度测量程序。

4、书写设计说明书。

三、参考资料:

1、何立民. MCS-51单片机应用系统设计. [M] 北京航天航空大学出版社

2、张开如. 自动控制原理. [M]北京大学出版社.

3、赵新民. 智能仪器设计基础[M]哈尔滨工业大学出版社

指导教师(签字):

系主任(签字):

批准日期:2014 年12 月18日

目录

第1章设计原理 (1)

1.1 设计原理 (1)

1.2系统方案 (1)

第2章硬件电路的设计 (2)

2.1 硬件电路整体设计 (2)

2.2 单片机的介绍 (2)

2.2.1单片机的功能 (2)

2.2.2 单片机内部结构 (2)

2.3最小系统设计 (3)

2.4显示电路 (4)

2.5 传感器接口电路 (5)

第3章系统程序设计 (7)

3.1 程序整体设计思路 (7)

3.2设计总流程 (8)

3.3读取温度流程 (9)

3.4系统延时设计 (9)

3.5 显示温度程序设计 (9)

3.6读温度程序设计 (10)

第4章设计结果及分析 (11)

4.1设计结果 (11)

4.2结果分析 (12)

总结 (13)

参考文献 (14)

附录一 (15)

附录二 (26)

第1章设计原理

1.1 设计原理

本次课程设计是以STC12C5A60S2作为主控芯片,设计利用LCD1602实现时间和多路(8路)温度信息显示。主要是实现两部分的功能:一是利用多个DS18B20温度传感器提供温度信息,单片机分别读取各传感器温度信息并显示;二是扩展DS12C887外围电路,实现时间信息显示。

本系统采用的是八个温度传感器DS18B20,在出厂时,每一个DS18B20都有它自身的编号并且是每一个都是不同的,这就为这个系统的成功实现提供了可能。由于DS18B20是单总线结构,只有一条数据线与单片机相连,它的数据传输只能是一位一位的,唯一序列号的存在就使单片机能够通过这组序列号识别是哪个传输的温度,这样就相当于把八个温度传感器编号为1和2,3,4,5,6,7,8,通过多路开关CD4051,接入单片机,单片机就能识辨出来是哪个传出来的温度,然后经运算处理后在LCD1602上显示出来,根据屏幕显示时间的不同,我们就能识别不同地方的温度,这就是总体的设计思路。

1.2系统方案

采集模块控制模块显示模块

图1 系统框图

第2章硬件电路的设计

2.1 硬件电路整体设计

硬件电路是实现各项功能的基础,如果硬件电路设计不好,即使程序编的再好,方案再合理也不可能实现,所以硬件电路设计是至关重要的。本系统用到的硬件主要有STC12C5A60S2单片机,LCD1602液晶显示器,DS12C887时钟芯片以及两个DS18B20温度传感器。将它们通过导线按照原理连接好线,这样基本的硬件电路就完成了,硬件电路如附录二图所示。

2.2 单片机的介绍

2.2.1单片机的功能

(1)8位CPU·4kbytes程序存储器(ROM) (52为8K)

(2)128bytes的数据存储器(RAM) (52有256bytes的RAM)

(3)32条I/O口线·111条指令,大部分为单字节指令

(4)21个专用寄存器

(5)2个可编程定时/计数器·5个中断源,2个优先级(52有6个)

(6)一个全双工串行通信口

(7)外部数据存储器寻址空间为64kB

(8)外部程序存储器寻址空间为64kB

(9)逻辑操作位寻址功能·双列直插40PinDIP封装

(10)单一+5V电源供电

CPU:由运算和控制逻辑组成,同时还包括中断系统和部分外部特殊功能寄存器;RAM:用以存放可以读写的数据,如运算的中间结果、最终结果以及欲显示的数据;ROM:用以存放程序、一些原始数据和表格;I/O口:四个8位并行I/O口,既可用作输入,也可用作输出T/C:两个定时/记数器,既可以工作在定时模式,也可以工作在记数模式;五个中断源的中断控制系统;一个全双工UART(通用异步接收发送器)的串行I/O口,用于实现单片机之间或单片机与微机之间的串行通信;片内振荡器和时钟产生电路,石英晶体和微调电容需要外接。最佳振荡频率为6M—12M。

2.2.2 单片机内部结构

①.一个8 位的中央处理器 CPU(又称为微处理器)

②有 128字节的片内数据存储器RAM。

③.4KB片内程序存储器ROM或EPROM

④.片内 18个特殊功能寄存器(SFR)

⑤.4个8位的并行输入输出I/O口(PIO)

⑥.1个串行口I/O(SIO/UART)完成单片机与其他微机的之间的串行通信

⑦.2/3个16位定时器/计数器(TIMER/COUNTER)

⑧.可处理 5个中断源,两级可程序优先级的中断系统

图2单片机的内部结构图

2.3最小系统设计

最小的单片机系统如图所示,由复位电路,振荡电路和单片机3个部分组成。复位电路给单片机提供完整可靠的复位信号,用以保证单片机在复位后能够进入完全的复位状态。

图3最小系统电路图

2.4显示电路

工业字符型液晶,能够同时显示16x02即32个字符。(16列2行)。 1602液晶也叫1602字符型液晶,它是一种专门用来显示字母、数字、符号等的点阵型液晶模块。它由若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用,正因为如此所以它不能很好地显示图形(用自定义CGRAM,显示效果也不好)。1602LCD是指显示的内容为16X2,即可以显示两行,每行16个字符液晶模块(显示字符和数字)。市面上字符液晶大多数是基于HD44780液晶芯片的,控制原理是完全相同的,因此基于HD44780写的控制程序可以很方便地应用于市面上大部分的字符型液晶。

图4 LCD-1602连线图

2.5 传感器接口电路

DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

技术性能描述

①、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

②、测温范围-55℃~+125℃,固有测温误差(注意,不是分辨率,这里之前是错误的)1℃。

③、支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。

④、工作电源: 3.0~5.5V/DC (可以数据线寄生电源)

⑤、在使用中不需要任何外围元件

⑥、测量结果以9~12位数字量方式串行传送

⑦、不锈钢保护管直径Φ6

⑧、适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温

⑨、标准安装螺纹 M10X1, M12X1.5, G1/2”任选

⑩、PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。

图5 DS18B20连线图

2.6 多路开关

CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时

使用,从而使得通常在单组电源供电条件下工作的 CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。 . 使用十六进制代码就可以对CD4051进行操作了。比如说P1=0X07,这样CD4051就选择的是7号(二进制111)通道了。如果在八个通道输入一模拟量,在输出端将输出什么,输入什么是自己设定。

第3章系统程序设计

3.1 程序整体设计思路

全部控制程序实际上分为若干模块:LCD-1602显示程序,DS18B20温度传感器读序列码程序,DS18B20读取温度程序以及DS12C887时钟显示程序。在已有程序的基础上添加的主要由两部分:DS18B20读序列码程序和两个DS18B20温度显示程序。

B设计说明:该系统是依据DS18B20的单总线结构,对它初始化后发送读序列码指令(0x33h),然后DS18B20会一位一位的将其内部ROM中的64位序列码发送到单片机接收口,然后单片机将序列码储存在数组中,发向LCD-1602的数据控制口,经过代码转换,在屏幕上显示出一个温度传感器的序列码,这样读序列码的程序就算完成了。接下来就进行两个温度的显示,首先将用读序列码程序读出的两组序列码存入两个数组中,然后现将温度传感器复位,接着发送匹配指令(0x55),把上面的序列码发送到ROM进行匹配,这相当于给两个温度传感器编号,等编完号后再次匹配命令和序列码,这样就确定温度传感器,紧接着读取各个温度传感器的温度值,并让其先是在指定位置,这样温度显示程序基本就算完成了。

3.2设计总流程

开始

系统初始化

i=0

18B20是否存

调温度显示模块

错误

显示温度

i+1

自动延时

i<8

图 6 流程图

3.3读取温度流程

开始

初始化

DS18B20是否存

ROM 操作指令

存储操作命

读取温度值

返回

Y

N

图7 读取温度流程图

3.4系统延时设计

MCS-51的工作频率为12MHZ ,机器周期与主频有关,机器周期是主频的12倍,所以一个机器周期的时间为12*(1/12MHZ )=1us 。我们可以知道具体每条指令的周期数,这样我们就可以通过指令的执行条数来确定1秒的时间,但同时由于单片机的运行速度很快其他的指令执行时间可以忽略不计。 延时子程序模块:

/********************************************************* *延时n 微秒程序

**********************************************************/ void DelayXus(WORD n) {

while(--n); }

3.5 显示温度程序设计

/********************************************************* *显示温度程序

**********************************************************/

void crt_wendu(BYTE line,column)

{

read_wendu();

ah=temperature[1]<<4;

ah&=0xf0;

al=temperature[0]>>4;

al&=0x0f;

ah=ah|al;

al=temperature[0]&0x0f;

if ((ah&0x80)!=0)

{

if (al==0)

{

ah=~ah;ah=ah+1;

}

else

{

ah=~ah;al=~al;al=al+1;al&=0x0f;

}

wen_val=ah*(-1.0)+al*(-0.0625);

}

else

{

wen_val=ah*1.0+al*0.0625;

}

set_display_place(line,column);

crt_r(wen_val,1);

write_data(0x20);

}

本程序是根据一个8位可以存储两个数字的特点,通过留取高四位的数据,并将其右移四位,这样就取出高四位的数,然后再将原数的低四位取出,这样存在一个8位存储器中的两个数就被取出来,然后依次取出后面的数,这样序列码就会被全部取出来。

3.6读温度程序设计

/*********************************************************

*读取温度程序

**********************************************************/

void read_wendu()

{

BYTE i;

DS1820_Reset(); //复位

DS1820_WriteData(0xcc); //跳过ROM 命令

DS1820_WriteData(0x44); //温度转换命令

DS1820_Reset(); //复位

DS1820_WriteData(0xcc); //跳过ROM 命令

DS1820_WriteData(0xbe); //读DS1820 温度暂存器命令

for (i=0;i<2;i++)

{

t emperature[i]=DS1820_ReadData(); //采集温度

}

DS1820_Reset(); //复位,结束读数据

}

第4章设计结果及分析4.1设计结果

下面是程序调试出来的结果:

图82路调试结果

图9 3路调试结果

4.2结果分析

根据设计思路焊接硬件电路,接线,编程,调试软件,终于正确输出了结果,通过延时八路都可以一一显示,但是有个缺点就是传输的距离比较近,很遗憾,当时设计的时候忽略了这点,以后一定在设计时

注意。

总结

经过一段时间的不断学习和努力,在于老师的谆谆教导下,在其他老师及同学们的热心帮助与指导下,多路温度采集系统设计的课程设计即将结束,基本完成了老师所规定的各项工作任务。

本次设计的多路温度采集系统设计是一种分布式的温度测量系统,它可以远程对温度实现测量和监控,广泛应用于电力工业、煤矿、森林、火灾、高层建筑等场合。系统采用单总线技术,按照DS18B20的通信协议,由主机向DS18B20发送命令,读取DS18B20转换的温度,从而实现对多个环境的温度的测量。

本文介绍了用单片机AT89C51控制DS18B20以及,着重分析各单元电路的设计,以及各电路与单片机的接口技术。本文是采用模块化的方式进行叙述,对各模块的设计进行了比较详细地阐述。

经过这一次课程设计,我学了不少的知识,学会了怎样查阅资料和利用工具书,通过这次课程设计,我更加深刻地认识到只有将书本与具体的实践相结合,才会有真正的收获,才能巩固自已的所学,认识到自己的不足。

在此我非常感谢我的指导老师于明老师从一开始就耐心的安排我们的进度,和之后多次提醒我们一些重要的注意事项,以及让我对单片机原理这门课程有了更深刻的认识,让我对独立做课程设计有了信心,同时我还要感谢我的同学们,感谢他们帮助,这次课程设计才能顺利完成。

参考文献

[1]张毅刚.单片机原理及应用第二版.高等教育出版社,2010.(5)

[2]王为青,邱文勋. 51单片机开发案例精选[J].人民邮电出版社,2001,(5):45-47

[3]张鑫,华臻,陈书谦. 单片机原理及应用[J].电子工业出版社,2008(5)

[4]张洪润,张亚凡.单片机原理及应用[J]. 清华大学出版社,2005,(4)

[5]黄智伟.凌阳单片机课程设计指导[J]. 北京航空航天大学出版社,2007,(6)

[6]蒋辉平,周国雄. 基于Proteus的单片机系统设计与仿真实例[M].机械工业出版社,2009

[7]张毅坤. 单片微型计算机理及接口技术[M].陕西:西安电子科技大学出版社,2000.7

[8]雷丽文.微机原理与原理及应用[M].西安电子科技大学出版社,1998

[9]余锡存,曹国华.单片机原接口技术[M].北京:电子工业出版社,1997

附录一#include "reg51.h"

#include"absacc.h"

#include"math.h"

typedef unsigned char BYTE;

typedef unsigned int WORD;

/* 液晶12864口地址*/

#define wr_com XBYTE[0xC000] //写命令

#define wr_data XBYTE[0xC100] //写数据

#define rd_com XBYTE[0xC200] //读命令

#define rd_data XBYTE[0xC300] //读数据

/* DS12887口地址*/

#define DS_A XBYTE[0x100A] //寄存器A

#define DS_B XBYTE[0x100B] //寄存器B

#define DS_C XBYTE[0x100C] //寄存器C

#define Years XBYTE[0x1009] //年

#define Month XBYTE[0x1008] //月

#define Day XBYTE[0x1007] //日

#define Week XBYTE[0x1006] //星期

#define Hour XBYTE[0x1004] //时

#define Minute XBYTE[0x1002] //分

#define Second XBYTE[0x1000] //秒

BYTE ah,al,CH;

WORD o;

char temperature[2]; //存放温度数据

float wen_val;

sbit DS1820_DQ= P1^7; //单总线引脚

sbit CD_A= P1^0; //CD4051 A

sbit CD_B= P1^1; //CD4051 B

sbit CD_C= P1^2; //CD4051 C

sbit k1= P1^3; //K1 按键

sbit k2= P1^4; //K2 按键

void DS18B20_Init() ; //DS18B20 初始化

bit DS1820_Reset(); //DS1820 复位

void DS1820_WriteData(BYTE wData); //写数据到DS1820 BYTE DS1820_ReadData(); //读数据

void read_wendu();

void DelayXus(WORD n);

void IintUart();

void InitADC();

void SendData(BYTE dat);

void GetADCResult(BYTE ch);

void Delay(WORD n);

void Delay2(WORD n);

void ShowResult(BYTE ch);

void lcd_init(void); // lcd初始化

void write_cmd(BYTE cmd); // lcd写命令

//void write_string(unsigned char *s); // 写字符串

void write_data(BYTE dat) ; // 写数据

void set_display_place(BYTE line,column);

void write_string_lcd(BYTE line,column,unsigned char *string);

void write_data_lcd(BYTE line,column,dat);

void crti(unsigned long dat);

void crt_r(float x,BYTE N);

/**********************************************************

*DS18B20 初始化

*函数名称:DS1820_WriteData()

*说明:本初始化程序可以不要,因为18B20 在出厂时就被配置为12 位精度了

**********************************************************/

void DS18B20_Init()

{

DS1820_Reset();

DS1820_WriteData(0xCC); // 跳过ROM

DS1820_WriteData(0x4E); // 写暂存器

DS1820_WriteData(0x20); // 往暂存器的第三字节中写上限值

DS1820_WriteData(0x00); // 往暂存器的第四字节中写下限值

DS1820_WriteData(0x7F); // 将配置寄存器配置为12 位精度

DS1820_Reset();

}

/**********************************************************

*DS1820 复位及存在检测(通过存在脉冲可以判断DS1820 是否损坏)

*函数名称:DS1820_Reset()

*说明:函数返回一个位标量(0 或1)flag=0 存在,反之flag=1 不存在

**********************************************************/

bit DS1820_Reset()

{

bit flag;

DS1820_DQ = 0; //拉低总线

DelayXus(480); //延时480 微秒,产生复位脉冲

DS1820_DQ = 1; //释放总线

DelayXus(80); //延时80 微秒对总线采样

flag = DS1820_DQ; //对数据脚采样

DelayXus(400); //延时400 微秒等待总线恢复

return (flag); //根据flag 的值可知DS1820 是否存在或损坏,可加声音告警提示DS1820 故障

}

/**********************************************************

*写数据到DS1820

*函数名称:DS1820_WriteData()

**********************************************************/

void DS1820_WriteData(BYTE wData)

{

BYTE i;

for (i=8;i>0;i--)

{

D S1820_DQ = 0; //拉低总线,产生写信号

D elayXus(4); //延时4us

D S1820_DQ = wData&0x01; //发送1 位

D elayXus(60); //延时60us,写时序至少要60us

D S1820_DQ = 1; //释放总线,等待总线恢复

w Data>>=1; //准备下一位数据的传送

}

}

/**********************************************************

*从DS1820 中读出数据

*函数名称:DS1820_ReadData()

**********************************************************/

BYTE DS1820_ReadData()

{

BYTE i,TmepData;

for (i=8;i>0;i--)

{

T mepData>>=1;

D S1820_DQ = 0; //拉低总线,产生读信号

D elayXus(4); //延时4us

D S1820_DQ = 1; //释放总线,准备读数据

D elayXus(8); //延时8 微秒读数据

i f (DS1820_DQ == 1)

{TmepData |= 0x80;}

D elayXus(60); //延时60us

D S1820_DQ = 1; //拉高总线,准备下一位数据的读取.

}

return (TmepData);//返回读到的数据

}

/*********************************************************

*延时n微秒程序

**********************************************************/

void DelayXus(WORD n)

{

while(--n);

}

/*********************************************************

*读取温度程序

**********************************************************/

void read_wendu()

{

BYTE i;

DS1820_Reset(); //复位

DS1820_WriteData(0xcc); //跳过ROM 命令

DS1820_WriteData(0x44); //温度转换命令

DS1820_Reset(); //复位

DS1820_WriteData(0xcc); //跳过ROM 命令

DS1820_WriteData(0xbe); //读DS1820 温度暂存器命令

for (i=0;i<2;i++)

{

t emperature[i]=DS1820_ReadData(); //采集温度

}

DS1820_Reset(); //复位,结束读数据

}

/*********************************************************

多路温度采集系统

小型多路温控采集系统设计一.系统说明

本系统采用51单片机作为控制器,控制温度采集及显示。 温度传感器选用DS18B20,其单总线的通信方式可以减少系统的线路连接。DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路。内温范围-55℃~+125℃,在-10~+85℃时精度为±℃可编程的分辨率为9~12位,对应的可分辨温度分别为℃、℃、℃和℃,可实现高精度测温。 同时本系统选用LCD1602作为显示器件,能够同时显示16x02即32个字符(16列2行)。其显示清晰,并可以显示阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,满足了系统要求。 二.系统电路图 三、程序流程图 四、程序解读 注:程序分两部分。可以先用程序二读出各个器件的序列号,再将序列号填入程序一的SN[4][8]数组中,若要加入更多的器件可以扩大数组,并在程序中增加读显的循环次数。 1.程序一:已知各个器件序列号读取温度 #include<> #define uchar unsigned char #define uint unsigned int uchar TMP[4]; 0”1”0c1”2”3”4”序二:读取DS18B20序列号程序 注:读ROM时,只能有一个器件与单片机通信。可以逐个相连来读出其ROM #include<> #define uchar unsigned char #define uint unsigned int uint sn[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x10}; sbit DQ=P3^7;//ds18b20与单片机连接口 sbit RS=P3^0; sbit RW=P3^1; sbit EN=P3^2; void delay1ms(unsigned int ms)//延时1毫秒(不够精确的)

多路温度采集系统设计与实现

学校代码:11517 学号:201150712117 HENAN INSTITUTE OF ENGINEERING 毕业设计(论文) 题目多路温度采集系统设计与实现 学生姓名高宇照 专业班级电气工程及其自动化1121 学号201150712117 系(部)电气信息工程学院 指导教师(职称) 张秋慧(讲师) 完成时间2012 年 5 月13日

目录 摘要................................................................................................... I ABSTRACT ........................................................................................... II 1 前言 . (1) 1.1 背景介绍 (1) 1.2 研究设计意义及目的 (1) 1.3 发展情况 (2) 1.4 本设计主要内容 (3) 2 设计任务及方案论证 (4) 2.1 设计任务 (4) 2.2 设计方案的论证 (4) 2.3系统框图设计 (6) 3 多路温度采集系统硬件电路设计 (7) 3.1系统模块及模块介绍 (7) 3.1.1 系统整体模块控制 (7) 3.1.2 模块介绍及原理 (7) 3.2 系统基本硬件组成设计 (14) 3.2.1微机芯片工作电路设计 (14) 3.2.2 温度采集电路设计 (15) 3.2.3LCD1602的显示设计 (17) 3.2.4 报警电路的设计 (18) 3.2.5 电源部分的设计 (19) 3.3 系统设计的电路结构图 (21) 4 系统的软件设计 (22) 4.1 主程序设计 (22) 4.2 子程序设计 (23) 5 系统调试与性能分析 (27) 5.1 系统调试 (27) 5.2 性能分析 (29) 结论 (31) 致谢 (32)

单片机温度采集系统

课程设计 课程设计名称:温度采集装置 班级:数控技术0901 学号: 课程设计时间:2011.12.5—12.11

目录 1 设计任务 (2) 2 确定设计方案 (3) 2.1 温度传感器—AD22100K (3) 2.2 A/D转换器—ADC0809 (4) 2.3 单片机的选择—80C51 (6) 2.4 显示器接口—LED动态显示接口 (8) 3 硬件电路的设计 (10) 3.1 温度传感器与A/D转换器的接口电路 (10) 3.2 A/D转换器与89C51的接口电路 (10) 3.3 89C51与显示器间的接口电路 (11) 3.4 晶振电路和复位电路的设计 (12) 4 软件设计 (13) 4.1温度采集的主程序流程图 (13) 4.2 程序清单 (15) 5 心得体会 (20) 附录 (21) 温度采集装置 1、设计任务

设计一个温度采集系统,要求按1路/s的速度顺序检测8路温度点,测温范围为+20℃~+100℃,测量精度为±1%。要求用5位数码管显示温度,最高位显示通道号,次高位显示“—”,低三位显示温度值。 2、设计方案 2.1 温度传感器—AD22100K AD22100K是有信号调节的单片温度传感器,工作温度范围为-50~+150,信号调节不需要调节电路、缓冲器和线性化电路,简化了系统设计。输出温度与电压和电源电压的乘积(比率测量)成比例。输出电压摆幅为0.25V(对应-50℃)和4.75V(对应150℃),用5V单电源工作。 2.1.1 AD22100K的引脚图如2.1.1 图2.1.1 AD22100K的引脚图 注:1.V电源 4.GND接地 2.U输出 3、5~8 NC不连接

多路温度采集器设计

J I A N G S U U N I V E R S I T Y 《嵌入式项目应用实践》 恭喜你 学院名称:计算机科学与通信工程学院 班级:计院的孩子 小组成员:雷锋 教师姓名:你猜猜 2016年 5 月 10日

一.实验题目 多路温度采集系统的设计。 二.实验要求 a)使用PROTEUS 8和ARDUINO IDE 进行硬件电路设计和MCU程序设 计 b)使用ALTIUM DXP 进行PCB版图设计 c)三个人一组,完成项目。每组交一份报告,一份PPT并答辩。 1.使用PROTEUS 8和ARDUINO IDE 进行硬件电路设计和MCU程序设计: 将三种温度采集的温度值显示在屏幕上,同时利用串口输出温度值。 d)分别使用LM35、DS18B20、MAX6657器件进行温度采集,使用ARDUINO 设计MCU程序。 e)时用拨动开关进行温度来源选择,开关导通时,对应LED点亮,采到的 温度要输出到液晶屏和串口。即最多可以同时显示3个器件采集的温度,最少1个。当一个都没选时,用蜂鸣器提示。 f)设计时可能数字引脚不够,此时,A0可以做为14脚处理,A1做为15 脚,以此类推。 2.使用ALTIUM DXP进行PCB版图设计 a)在DXP中绘制原理图。 b)注意:DXP中没有MAX6675芯片,需自己创建原理图元件和PCB封装。 c)液晶屏用合适的接线座替代或自行设计。 d)增加电源变压器插座(假设输入为8V)和LM7805稳压芯片将电压稳定在 5V,并做为系统供电。 e)进行PCB版图设计,即进行PCB层数设置、元件布局和布线。设计时要 考虑线宽、布线规定、防噪声设计等。 f)注意:元件位置要合理,便于用户使用。

基于单片机的多路温度采集系统毕业设计(论文)外文翻译

华南理工大学学院 本科毕业设计(论文)外文翻译 外文原文名Structure and function of the MCS-51 series 中文译名MCS-51系列的功能和结构 学院电子信息工程学院 专业班级自动化一班 学生黎杰明 学生学号 3 指导教师吴实 填写日期2016年3月10日 页脚.

外文原文版出处:《association for computing machinery journal》1990, V ol.33 (12), pp.16-ff 译文成绩:指导教师(导师组长)签名: 译文: MCS-51系列的功能和结构 MSC-51系列单片机具有一个单芯片电脑的结构和功能,它是英特尔公司的系列产品的名称。这家公司在1976年推出后,引进8位单芯片的MCS-48系列计算机后于1980年推出的8位的MCS-51系列单芯片计算机。诸如此类的单芯片电脑有很多种,如8051,8031,8751,80C51BH,80C31BH等,其基本组成、基本性能和指令系统都是相同的。8051是51系列单芯片电脑的代表。 一个单芯片的计算机是由以下几个部分组成:(1)一个8位的微处理器(CPU)。(2)片数据存储器RAM(128B/256B),它只读/写数据,如结果不在操作过程中,最终结果要显示数据(3)程序存储器ROM/EPROM(4KB/8KB).是用来保存程序一些初步的数据和切片的形式。但一些单芯片电脑没有考虑ROM/EPROM,如8031,8032,80C51等等。(4)4个8路运行的I/O接口,P0,P1,P2,P3,每个接口可以用作入口,也可以用作出口。(5)两个定时/计数器,每个定时方式也可以根据计算结果或定时控制实现计算机。(6)5个中断(7)一个全双工串行的I/UART(通用异步接收器I口/发送器(UART)),它是实现单芯片电脑或单芯片计算机和计算机的串行通信使用。(8)振荡器和时钟产生电路,需要考虑石英晶体微调能力。允许振荡频率为12MHz,每个上述的部分都是通过部数据总线连接。其中CPU是一个芯片计算机的核心,它是计算机的指挥中心,是由算术单元和控制器等部分组成。算术单元可以进行8位算术运算和逻辑运算,ALU单元是其中一种运算器,18个存储设备,暂存设备的积累设备进行协调,程序状态寄存器PSW积累了2个输入端的计数等检查暂时作为一个操作往往由人来操作,谁储存1输入的是它使操作去上暂时计数,另有一个操作的结果,回环协调。此外,协调往往是作为对8051的数据传输转运站考虑。作为一般的微处理器,解码的顺序。振荡器和定时电路等的程序计数器是一个由8个计数器为2,总计16位。这是一个字节的地址,其实程序计数器,是将在个人电脑进行。从而改变它的容可以改变它的程序进行。在8051的单芯片电脑的电路,

虚拟仪器温度采集系统

内蒙古科技大学虚拟仪器期末大作业 题目:虚拟仪器温度采集系统 姓名:王伍波 专业:测控技术与仪器 学号:1067112240 班级:测控10-2班 教师:肖俊生 时间:2013年6月18日

一、设计题目:虚拟仪器温度采集系统 二、设计要求: 1.连续采集温度信号,并存储 2.温度上下限报警功能,上下限可调 3.华氏、摄氏可转换显示 三、设计思路: 该设计是以计算机和单片机数据采集系统为核心,单片机数据采集系统主要完成对温度信号进行数据采集,计算机主要完成温度信号的分析、显示和控制等功能。设计中采用Intel 公司的89C51 单片机完成数据采集,采用A D 5 7 4 完成数据的A/D 转换。图2 为AD574 与89C51 单片机的接口电路。 1.设计虚拟前面板 温度监测软件设计本系统以labview8.5 作为开发工具。现以仿真数据为例来讲述系统软件对温度的监测、报警及显示功能。利用labview8.5编程使温度可以在华氏和摄氏之间随时进行切换,同时对温度实时监测。当温度超过上限要求时会及时点亮报警灯进行报警并显示每次采集过程中累加的报警次数,报警的上限值可以通过前面板的输入控件改变其值。采集进度定义为每次采集100 点。为了防止程序陷入死循环每次采集之间的时间间隔为1000ms。开始采集后在整个采集过程中可以暂停采集以便随时对温度进行观察。 2、编辑流程图 每一个程序前面板都对应着一段框图程序框图程序用

LabVIEW 图形编程语言编写.可以把它理解成传统程序的源代码。框 图程序由端口、节点、.图框和连线构成。其中端口被用来同程序前 面板的控制和显示传递数据.节点被用来实现函数和功能调用.图框 被用来实现结构化程序控制命令.而连线代表程序执行过程中的数据流.定义了框图内的数据流动方向 3、运行检验 检验是否能够完成系统的功能.改变相应参数进行进一步验证.以方便根据实际情况修改设计.从而方便实际器件的设计、调试。4、功能描述 创建一个VI程序模拟温度测量:把创建的温度计程、序 T(hermometerVI1作为一个子程序用在当前新建程序里.先前的温 度计子程序用于采集数据.而当前的程序用于显示温度曲线.并在前 面板上设定测量次数和每次测量间隔的延时;再创建一个新VI程序,进行温度测量,并把结果在波形图表上显示:利用新创建的VI程序.再输入新的字符串;据采集过程中。实时地显示数据;当采集 过程结束后,在图表上画出数据波形.并算出最大值、最小值和平 均值(此处只使用摄氏温度单位):修改TemperatureAnalysis.VI DemoReadVohageVI程序以检测温度是否超出范围.当温度超出上限(High Limit)时,前面板上的LED点亮,并且有一个蜂鸣器发声。5、设计过程 创建一个VI程序模拟温度测量假设传感器输出电压与温度成 正比。例如.当温度为70时,传感器输出电压为0.7V。本程序也

多路温度检测.显示与报警系统设计

课程设计报告 课题多路温度检测、显示与报警系统设计小组成员 指导老师

目录 一、前言2222222222222222222222222222222222222222222222221 二、方案论证222222222222222222222222222222222222222222221 2.1测温元件的选择2222222222222222222222222222222222221 2.1.1热电偶和热电阻的选择222222222222222222222222221 2.1.2热电偶的分类22222222222222222222222222222222222 2.2采集模块的选择2222222222222222222222222222222222223 2.2.1多功能采集卡22222222222222222222222222222222223 2.2.2 USB采集卡2222222222222222222222222222222222224 2.2.3采集模块ADAM-4000系列2222222222222222222222224 2.2.4采集模块ADAM-5000系列2222222222222222222222225 三、硬件电路设计22222222222222222222222222222222222222222226 3.1系统结构方框图2222222222222222222222222222222222227 3.2采集模块与主机电路222222222222222222222222222222227 3.3采集模块与设备电路222222222222222222222222222222228 四、软件设计222222222222222222222222222222222222222222222229 4.1组态界面的设计2222222222222222222222222222222222229 4.2报警系统的设计2222222222222222222222222222222222229 4.3实时温度数据曲线的设计22222222222222222222222222211

关于基于MAX6675多路温度采集系统的设计与实现

关于基于MAX6675多路温度采集系统的设计与实现 K型热电偶是当前工业生产、科学实验较为常用的一种温度传感器,它可以直接测量各种生产中0~1 300℃范围内的液体蒸汽,气体介质和固体表面温度。由于它的测量范围及其较高的性价比,使得K型热电偶应用广泛。然而K型热电偶存在非线性、冷补偿等问题,特别是在处理补偿问题时,需要付出较高的代价且难以有较好的成效。所以本文介绍的MAX6675温度采集芯片,弥补了K型热电偶上述缺陷。将MAX6675和K 型热电偶结合并用于工业生产和实验,能为工程带来诸多便利且减少繁琐的附加电路。本文给出了基于CPLD的多路温度采集系统电路、内部逻辑设计模块、误差分析和实验统计报告,以及MAX6675多路温度采集系统的应用过程和性能报告。 1 MAX6675介绍MAX6675是美国Maxim公司生产的带有冷端补偿、线性校正、热电偶断线检测的串行K型热电偶模数转换器,它的温度分辨能力为0.25 ℃;冷端补偿范围为-20~+80℃;工作电压为3.0~5.5 V。 根据热电偶测温原理,热电偶的输出热电势不仅与测量端的温度有关,而且与冷端的温度有关。在以往的应用中,有多种冷端补偿方法,如冷端冰点法或电桥补偿法等,但调试较复杂。另外,由于热电偶的非线性,以往是采用微处理器表格法或线性电路等方法,来减小热电偶本身非线性带来的测量误差,但这些增加了程序编制及调试电路的难度。而MAX6675对其内部元器件的参数进行了激光修正,从而对热电偶的非线性进行了内部修正。同时,MAX6675内部集成的冷端补偿电路、非线性校正电路、断线检测电路都给K 型热电偶的使用带来了便利。MAX6675的特点有:(1)内部集成有冷端补偿电路;(2)带有简单的3位串行接口;(3)可将温度信号转换成12位数字量,温度分辨率达0.25℃;(4)内含热电偶断线检测电路。其内部原理图如图1所示。 2 系统构架系统框架如图2所示,该系统以CPLD为核心,由多路K型热电偶和MAX6675将外界温度模拟信号采集并转换成数字信号,并将数据传入CPLD进行相应的处理,然后通过通信模块将数据传送给计算机,最后用计算机做数据统计及处理。系统中的通信模块

单片机实验温度采集系统

单片机原理与运用 课 程 设 计 课题名称:专业班级:学生姓名:指导老师:完成时间:温度采集与显示系统2012年7月4号

摘要 随着信息技术的飞速发展,嵌入式智能电子技术已渗透到社会生产、工业 控制以及人们日常生活的各个方面。单片机又称为嵌入式微型控制器,在智能 仪表、工业控制、智能终端、通信设备、医疗器械、汽车电器、导航系统和家 用电器等很多领域都有着广泛的应用,已成为当今电子信息领域应用最广泛的 技术之一。 本文主要介绍了一个基于STC89C52单片机的温度采集与显示系统,详细 描述了利用液晶显示器件温度传感器DS18B20开发测温系统的原理,重点对传感器与单片机的硬件连接和软件编程进行了详细分析。主要地介绍了数字温度 传感器DS18B20的数据采集过程,进而对各部分硬件电路的工作原理进行了介绍。温度传感器DS18B20与STC89C52结合构成了最简温度检测系统,该系统可以方便的实现温度采集和显示,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合我们日常生活和工、农业生产中的温 度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。 单片机综合实验的目的是训练单片机应用系统的编程及调试能力,通过对 一个单片机应用系统进行系统的编程和调试,掌握单片机应用系统开发环境和 仿真调试工具及仪器仪表的实用,掌握单片机应用程序代码的编写和编译,掌 握利用单片机硬件仿真调试工具进行单片机程序的跟踪调试和排错方法,掌握 示波器和万用表等杆塔工具在单片机系统调试中应用。 关键词:单片机STC89C52、DS18B20温度传感器、液晶显示器LCD1602、AT24C02数据存储芯片

基于单片机的多路温湿度检测系统设计

基于单片机的多路温湿度检测系统设计 潘磊 (天津冶金职业技术学院电气工程系,天津300400) 摘要:介绍了以C8051F120单片机和PC 机为核心的温湿度检测系统,论述了系统的组成,各模块硬件电路设计以及系统上位机、下位机的软件设计。系统下位机实时收集多路SHT71传感器采集的数据并显示上传,上位机利用VB 中MSComm 控件完成数据接收和处理,实现了对环境温湿度的现场显示和远距离控制。 关键词:温湿度检测;C8051F120;SHT71;VB 中图分类号:TP274文献标识码:A 文章编号:1673-1131(2013)01-0065-02 随着社会生产的不断发展进步,许多工农业生产过程以 及民用场合都需要对环境的温度和湿度进行检测并控制,比 如:粮仓、温室蔬菜大棚、通信基站、电力变电房、药厂、图书馆、 博物馆等。为此本文设计了一个系统实现对环境温度湿度的 检测控制。 1系统结构 本系统主要由电源模块、单片机系统、键盘及LCD 显示 模块、温度湿度传感器采集模块、时钟芯片模块、语音报警模 块、通信模块以及上位机系统组成。系统能够实时采集四处 检测环境的温度和湿度,并把采集数据显示在LCD 屏上,通 过键盘预先设置温湿度上下限数值,当所检测的温度或湿度 超过所设定的数值语音报警模块报警。同时,下位机上传温 度湿度数据,上位机对数据进行存储、显示以及数据分析。系 统框图如图1 所示。 图1系统框图 2系统硬件设计 2.1单片机系统 本系统选用Cygnal 公司的C8051F120单片机作为核心 处理器,此款单片机有64位I/O 口,满足本系统外设较多的需 求,减少系统I/O 扩展,也为增加检测通路和系统扩展预留接 口。单片机峰值处理速度达到100Mips ,大大提高了系统的实 时性,内部带有128KB FLASHROM 能够满足多路实时数据 的大容量存储,集成2个UART ,1个I 2C ,1个SPI 接口便于与 外围设备及上位机传输数据。 2.2温度湿度传感器采集模块 传统模拟式温湿传感器的测量精度和分辨率很低,只有 1%左右,同时要获得高精度还需要更高精度的基准电压。另 外,所测得的模拟量还要进过A/D 转换才能送入微处理器 进行处理。为避免上述问题本系统采用全校准数字输出相 对湿度和温度传感器SHT71,与单片机接口电路图如图2所 示。图2 温度湿度传感器采集模块图3LCD 显示模块为了实现多点同时测量减少采集等待时间,同时尽量少的占用I/O 口资源,本系统将SHT71的时钟线SCK 都连接到P1.0口,数据线DATA 分别连接到P1口其他4个I/O 口上,并在数据线DATA 端加入上拉电阻。通过软件程序写入命令 即可完成温湿度数据采集,但传感器输出的测量量并不是实 际值,还需进行数据转换。2013年第1期 (总第123期)2013(Sum.No123) 信息通信INFORMATION &COMMUNICATIONS

基于51单片机的多路温度采集控制系统设计

基于51单片机的多路温度采集控制系统设计 前言: 随着现代信息技术的飞速发展,温度测量控制系统在工业、农业及人们的日常生活中扮演着一个越来越重要的角色,它对人们的生活具有很大的影响,所以温度采集控制系统的设计与研究有十分重要的意义。 本次设计的目的在于学习基于51单片机的多路温度采集控制系统设计的基本流程。本设计采用单片机作为数据处理与控制单元,为了进行数据处理,单片机控制数字温度传感器,把温度信号通过单总线从数字温度传感器传递到单片机上。单片机数据处理之后,发出控制信息改变报警和控制执行模块的状态,同时将当前温度信息发送到LED进行显示。本系统可以实现多路温度信号采集与显示,可以使用按键来设置温度限定值,通过进行温度数据的运算处理,发出控制信号达到控制蜂鸣器和继电器的目的。 我所采用的控制芯片为AT89c51,此芯片功能较为强大,能够满足设计要求。通过对电路的设计,对芯片的外围扩展,来达到对某一车间温度的控制和调节功能。 关键词:温度多路温度采集驱动电路 正文: 1、温度控制器电路设计 本电路由89C51单片机温度传感器、模数转换器ADC0809、窜入并出移位寄存器74LS164、数码管、和LED显示电路等组成。由热敏电阻温度传感器测量环境温度,将其

电压值送入ADC0809的IN0通道进行模数转换,转换所得的数字量由数据端D7-D0输出到89C51的P0口,经软件处理后将测量的温度值经单片机的RXD端窜行输出到74LS164,经74LS164 窜并转换后,输出到数码管的7个显示段,用数字形式显示出当前的温度值。89C51的P2.0、P2.1、P2.2分别接入ADC0809通道地址选择端A、B、C,因此ADC0809的IN0通道的地址为F0FFH。输出驱动控制信号由p1.0输出,4个LED为状态指示,其中,LED1为输出驱动指示,LED2为温度正常指示,LED3为高于上限温度指示,LED4为低于下限温度指示。当温度高于上限温度值时,有p1.0输出驱动信号,驱动外设电路工作,同时LED1亮、LED2灭、LED3亮、LED4灭。外设电路工作后,温度下降,当温度降到正常温度后,LED1亮、LED2亮、LED3灭、LED4灭。温度继续下降,当温度降到下限温度值时,p1.0信号停止输出,外设电路停止工作,同时LED1灭、LED2灭、LED3灭、LED4亮。当外设电路停止工作后,温度开始上升,接着进行下一工作周期。 2、温度控制器程序设计 本软件系统有1个主程序,6个子程序组成。6个子程序为定时/计数器0中断服务程序、温度采集及模数转换子程序ADCON、温度计算子程序CALCU、驱动控制子程序DRVCON、十进制转换子程序METRICCON及数码管显示子程序DISP。 (1)主程序 主程序进行系统初始化操作,主要是进行定时/计数器的初始化。 (2)定时/计数器0中断服务程序 应用定时计数器0中断的目的是进行定时采样,消除数码管温度显示的闪烁现象,用户可以根据实际环境温度变化率进行采样时间调整。每当定时时间到,调用温度采集机模数转换子程序ADCON,得到一个温度样本,并将其转换为数字量,传送给89C51单片机,

温度数据采集系统

第三章 系统硬件设计温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器 DS18B20,数据的发送和接收采用无线数据收 发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由 DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个 DS18B20,很方便。具有以下特点:(1)具有独特的 1-Wire 接口,只需要一个端口引脚就可以进行通信;(2)具备多节点能力,能够简化分布式温度检测应用中的设计;(3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在 3~5.5V ;(5)在待机状态下可以不消耗电源电量;(6)测量温度范围在-55~+125℃;(7)在-10~+85℃时测量精度在±0.5℃;(8)可以用程序设定 9~12 位分辨率;(9)用户可根据需要定义温度的上下限报警设置。DS18B203 脚封装的管脚排列图如图 3.1.1 所示。、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

《多路温度检测系统》

《多路温度检测系统》 设计报告 一:统整体设计 多路温度检测系统以8051单片机系统为核心,能对多点的温度进行实时控制巡检。各检测单元(从机)能独立完成各自功能,根据主控机的指令对温度进行实时或定时采集,测量结果不仅能在本地储存、显示,而且可以利用单片机串行口,通过RS-485总线及通信协议将将采集的数据传送到主控机,进行进一步的分析、存档、处理和研究。主控机负责控制指令发送,控制各个从机进行温度采集,收集测量数据,并对测量结果(包括历史数据)进行整理、显示和打印。主控机与各从机之间能够相互联系、相互协调,从而达到了系统整体统一、和谐的控制效果。系统框图如下: 温度测点1温度测点2温度测点3温度测点4丛机1 丛机2 丛机3 丛机4 4 8 5 通 讯 电 缆主 控 机 键盘 显示器 打印机图1 系统框图 声光报警 本系统的特点是: ?具有实时检测功能,能够同时检测4路温度,检测温度范围0℃~400℃; ?使用12位AD转换,采用过采样和工频周期求均值技术,分辨率达到16位,检测温度变化最小值达到0.007℃; ?使用RS-485串行总线进行传输,MAX485驱动芯片进行电平转换,传送距离大于1200m,抗干扰能力强; ?可由主控机统一设置系统时间和温度修正值; ?可由主控机分别设置各从机的温度报警上下限,主机、从机均具有声光报警功能; ?具有定时、整点收集各从机数据功能,使用I2C串行E2PROM,可保存各从机以往24小时的数据,具有数据更新 与掉电保护功能; ?具有数据分析功能,能显示各从机以往24小时的温度变化曲线与平均值; ?从机可显示当前温度、时间、报警阈值等信息; ?从机之间可通过主机中转进行通信,根据用户需要观察其他从机实时温度值; ?主从机均采用中文点阵式液晶显示器,人机界面友好; ?具有打印功能; ?自制了主控机和从机所使用的直流稳压电源。

多路温度采集与控制1(C51、ADC0808)

单片机原理与应用课程设计 设计题目:温度测控系统设计 设计时间:2011-2012第一学期 专业班级:电自化2008级3班 姓名学号:王勇20082390 指导老师:赵丽清 2011 年12 月25 日

目录 目录 0 第一章设计要求及目的 (2) 第二章系统总体方案选择与说明 (3) 第三章系统方框图与工作原理 (4) 第四章器件说明 (6) 4.1 单片机89C51说明 (6) 4.2 ADC0809说明 (6) 4.3 ADC0809 应用说明 (7) 4.4 LED显示器 (8) 4.5 8255可编程器件扩展并行接口 (9) 第五章软件设计与说明.................. 错误!未定义书签。 5.1 程序设计 (17) 总结.................................. 错误!未定义书签。参考文献 (25)

第一章设计要求及目的 数据采集系统用于将模拟信号转换为计算机可以识别的数字信号.该系统目的是便于对某些物理量进行监视.数据采集系统的好坏取决于他的精度和速度.设计时,应在保证精度的情况下尽可能的提高速度以满足实时采样、实时处理、实时控制的要求.在科学研究中应用该系统可以获得大量动态;是研究瞬间物理过程的重要手段;亦是获取科学奥秘的重要手段之一.这次设计用到的集成芯片主要有8051单片机、ADC0808等.ADC0800主要作用是对八路模拟信号进行选择采集,并将其转化为八位数字信号,再送至主控制器(8051单片机);软件部分即为控制单片机的工作进程,程序由汇编语言完成并在PROTEUCE开发软件中进行的调试与仿真. 设计要求: ●温度检测范围0 ℃ ~ 64℃; ●选择合适的方式对采集的值应进行数字滤波; ●数码管显示,同时显示通道号; ●具有超限报警功能; ●可通过键盘设置上、下限值。

温湿度采集系统设计

目录 第1章设计意义及要求 (1) 1.1 设计意义 (1) 1.2 设计要求 (1) 第2章硬件设计 (2) 2.1 AT89S52芯片介绍 (2) 2.2 液晶显示器LCD1602 (3) 2.2.1 液晶显示原理 (3) 2.2.2 液晶显示器分类 (3) 2.2.3 显示原理 (3) 2.2.4 LCD1602的基本参数及引脚功能 (4) 2.3 温湿度模块DHT11介绍 (6) 2.3.1 DHT11概述 (6) 2.3.2 DHT11传感特性说明 (7) 2.3.3 DHT11封装信息 (8) 2.3.4 串行接口(单线双向) (8) 第3章设计实现 (11) 3.1 设计框图及流程 (11) 3.2 设计结果及分析 (11) 第4章设计总结 (13) 参考文献 (14) 附录 (15)

第1章设计意义及要求 1.1 设计意义 最近几年来,随着科技的飞速发展,单片机领域正在不断的走向社会各个角落,还带动传统控制检测日新月异更新。在实时运作和自动控制的单片机应用到系统中,单片机如今是作为一个核心部件来使用,仅掌握单片机方面知识是不够的,还应根据其具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。 现代社会越来越多的场所会涉及到温度与湿度并将其显示。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,例如:冬天温度为18至25℃,湿度为30%至80%;夏天温度为23至28℃,湿度为30%至60%。在此范围内感到舒适的人占95%以上。在装有空调的室内,室温为19至24℃,湿度为40%至50%时,人会感到最舒适。如果考虑到温、湿度对人思维活动的影响,最适宜的室温度应是工作效率高。18℃,湿度应是40%至60%,此时,人的精神状态好,思维最敏捷。所以,本课程设计就是通过单片机驱动LCD1602,液晶显示温湿度,通过此设计,可以发现本设计有一定的扩展性,而且可以作为其他有关设计的基础。如何高效、稳定地对数据(包括温度、湿度光线、压力等项目)进行实时采集对于现代的企业、工厂、研究所等对数据精度要求较高的单位具有非常重要的意义。 1.2 设计要求 本系统设计采用温度和湿度作为采集对象,是以单片机为核心的温度、湿度采集、数字显示系统,用液晶显示出当前温度、湿度的信息。以此了解AT89S52芯片为核心外接温度传感器和湿度传感器模块在液晶显示屏上显示当前的温度和湿度的过程。

最新刘世鹏--多路温度采集系统设计

刘世鹏--多路温度采集系统设计

课程设计报告 课程名称:多路温度采集系统设计 学生姓名:刘世鹏 学号: 201016020214 专业班级: T10102 指导教师:李文圣 完成时间: 2013年6月10日 报告成绩: 评阅意见: 评阅教师日期

多路温度采集系统设计 1 课程设计目的 温度是一种最基本的环境参数,人们的生活与环境温度息息相关,因此研究温度的测量方法和装置具有重要的意义。温度测量装置的关键是温度传感器,温度传感器的发展经历了三个发展阶段:(1)传统的分立式温度传感器,(2)模拟集成温度传感器,(3)智能集成温度传感器。目前,国际上新型温度传感器正从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展。 本人选择数字式多路温度采集系统设计。 系统主要技术指标: (1)2路温度采集电路及以上; (2)采集测温范围为-50~+110 ℃; (3)温度精度,误差在0.1 ℃以内; (4)显示模块,采用LED数码管显示。

2设计步骤 按照系统设计功能的要求,系统由5个模块组成:主控制器、温度采集电路[1]、温度显示电路、报警控制电路及键盘输入控制电路。数字式多路温度采集系统总体电路结构框图如图1所示。 图1 数字式多路温度采集系统结构框图 采用智能温度传感器(DS18B20)采集环境温度并进行简单的模数转换;单片机(AT89C51)执行程序对温度传感器传输的数据进行进一步的分析处理,转换成环境对应的温度值,通过I/O口输出到数码显示管(LED)显示;由键盘输入控制选择某采集电路检测温度及显示;报警电路对设定的最高最低报警温度进行监控报警。 2.1温度采集电路设计 温度采样处理电路由温度传感器、放大电路、A/D转换电路等组成。采用分块结构的温度采样处理电路,其硬件电路结构复杂,也不便于数据的处理。采用智能温度传感器采样处理电路,能够方便的进行温度的采集及简单的数据处理。并且可以达到设计的技术指标要求。本系统选择智能温度传感器DS18B20作为温度采集电路的核心器件。由DS18B20及辅助电路构成温度采集电路。

基于labView的温度采集系统设计

基于LabVIEW的温度采集系统设计 摘要:设计了基于LabV IEW的温度采集系统。它利用DS18B20数字温度传感器和STC公司生产的STC89C52单片机采集被测环境温度,将测得的数据经串口传给计算机。计算机利用LabV IEW的V ISA读取串口数据并进行处理和显示,实现基于V ISA的串口温度采集。 关键词:温度传感器;单片机;LabV IEW;温度采集 1引言 虚拟仪器(Virtual Instrument)是基于计算机的软硬件测试平台,它可代替传统的测量仪器。LabVIEW是由美国国家仪器公司(National Instruments Co.)推出的、主要面向计算机测控领域的虚拟仪器软件开发平台,是一种基于图形开发、调试和运行的集成化环境[1]。 利用LabVIEW设计的数据采集系统,可模拟采集各种信号,但是配备NI 公司的数据采集板卡比较贵,因此,可以选择单片机小系统作为前端数据采集系统,进行采集数据,然后通过RS-232串口通讯将数据送给计算机,在LabVIEW 开发平台下,对数据进行各种处理、分析并对信号进行存储、显示和打印,从而实现了一种在LabVIEW环境下的单片机数据采集系统。 2 温度采集系统设计 本系统采用STC公司生产STC89C52单片机作为温度数据采集和传输的主控芯片,温度传感器采用单总线方式的集成数字温度传感器DS18B20。采集得到的数据利用单片机经串口通信的方式传输至计算机的串口。计算机上位机软件采用数据处理能力超强的LabV IEW软件编写,利用其所带的V ISA驱动进行串口的数据采集和处理,实现了基于V ISA的串口温度采集。 2.1温度采集系统的硬件设计 本系统以AT89C51为中央处理单元,利用DS18B20数字温度传感器对温度信号进行采集,采集到的信号被送到AT89C51中, 将采集到的温度值在LCD上显示并通过串口发送到上位机,其原理图如1所示(见附录1)。 2.1.1 中央处理单元——STC89C51 本设计选用的中央处理单元是STC89C52单片机,STC89C52是一种带8K 字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Eras-able Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除。该器件采用ATMEL高密度非易失存储器制

多路温度检测系统的设计

多路温度检测系统的设计 【目录】 第一章前言 (1) 第二章整体方案设计 (2) 2.1电源电路设计 (2) 2.2整体框架图 (3) 2.3技术特点 (3) 第三章芯片介绍 (4) 3.18751芯片 (4) 3.1.1电源引脚 (4) 3.1.2外接晶振引脚 (4) 3.1.3输入输出引脚 (4) 3.1.4控制引脚 (5) 3.1.5存储器结构 (5) 3.28255可编程并行接口芯片 (5) 3.3ADC0804转换器 (7) 3.4AD590传感器 (8) 3.5LED七段数码管 (9) 3.6BCD 七段译码器7447 (11) 第四章LDE显示电路及流程图 (13) 4.1LED显示电路 (13) 4.2程序流程图 (14) 第五章硬件设计 (15) 5.1键盘控制输入显示电路 (15) 5.28751与8255的连接 (16) 5.3ADC0804外围电路 (16) 第六章结论 (17) 【谢辞】 (18) 【参考文献】 (19)

【摘要】 随着电子技术发展,特别是随着大规模的集成电路的产生,给人们的是生活带来了根本性质变化。微型计算机的出现使现代的科学研究得到质的飞跃,而单片机技术的出现则是给现代工业控制以及日常生活带来了极大的方便,正是应用电子技术的发展推动了工业生产及人们的日常生活水平。单片机多点温度控制利用具有极高的性价比,体积小,重量轻,抗干扰能力强对环境的要求不高, 但可靠性,运算精度高的8751系列单片机,同时利用AD590温度传感器采集温度,利用8255实现对本系统人工温度的设置,设置值在LED上显示。 关键词:8751单片机 AD590温度传感器 8255芯片 LED LM7805 【Abstract】 With the development of electronic technology, especially with the large-scale production of integrated circuits, to the lives of the people is the fundamental nature of change. The emergence of modern microcomputer qualitative leap in scientific research, but there is asingle-chip technology to the everyday life of modern industrial control, and has brought great convenience, it is the application of electronic technology to promote the development of industrial production and people's of daily living. The use of single-chipmulti-point temperature control has a very high cost, small size, light weight, anti-interference ability of the less demanding on the environment, but the reliability, operationand high precision 8751 series of microcontrollers, while using AD590 temperaturesensors collect temperature, the use of 8255 to achieve the set temperature of the systemmanually, set the value on the LED display. Keywords: 8751 single-chip AD590 temperature sensor chip LED LM7805 8255

相关主题
文本预览
相关文档 最新文档