当前位置:文档之家› 降压型PWM AC-DC开关电源设计

降压型PWM AC-DC开关电源设计

降压型PWM AC-DC开关电源设计
降压型PWM AC-DC开关电源设计

电力电子技术课程设计报告

降压型PWM AC-DC开关电源的设计

指导教师:戴欣

学生:赵昕

学号:20075123

专业:自动化

班级:2007级6班

重庆大学自动化学院

2009年12月

课程设计指导教师评定成绩表

项目分

优秀

(100>x≥90)

良好

(90>x≥80)

中等

(80>x≥70)

及格

(70>x≥

60)

不及格

(x<60)

分参考标准参考标准参考标准参考标准参考标准

学习态度15

学习态度认

真,科学作风

严谨,严格保

证设计时间并

按任务书中规

定的进度开展

各项工作

学习态度比较

认真,科学作风

良好,能按期圆

满完成任务书

规定的任务

学习态度尚

好,遵守组织

纪律,基本保

证设计时间,

按期完成各

项工作

学习态度

尚可,能

遵守组织

纪律,能

按期完成

任务

学习马虎,

纪律涣散,

工作作风

不严谨,不

能保证设

计时间和

进度

技术水平

与实际能力25

设计合理、理

论分析与计算

正确,实验数

据准确,有很

强的实际动手

能力、经济分

析能力和计算

机应用能力,

文献查阅能力

强、引用合理、

调查调研非常

合理、可信

设计合理、理论

分析与计算正

确,实验数据比

较准确,有较强

的实际动手能

力、经济分析能

力和计算机应

用能力,文献引

用、调查调研比

较合理、可信

设计合理,理

论分析与计

算基本正确,

实验数据比

较准确,有一

定的实际动

手能力,主要

文献引用、调

查调研比较

可信

设计基本

合理,理

论分析与

计算无大

错,实验

数据无大

设计不合

理,理论分

析与计算

有原则错

误,实验数

据不可靠,

实际动手

能力差,文

献引用、调

查调研有

较大的问

创新10 有重大改进或

独特见解,有

一定实用价值

有较大改进或

新颖的见解,实

用性尚可

有一定改进

或新的见解

有一定见

观念陈旧

论文(计算

书、图纸)撰写质量50

结构严谨,逻

辑性强,层次

清晰,语言准

确,文字流畅,

完全符合规范

化要求,书写

工整或用计算

机打印成文;

图纸非常工

整、清晰

结构合理,符合

逻辑,文章层次

分明,语言准

确,文字流畅,

符合规范化要

求,书写工整或

用计算机打印

成文;图纸工

整、清晰

结构合理,层

次较为分明,

文理通顺,基

本达到规范

化要求,书写

比较工整;图

纸比较工整、

清晰

结构基本

合理,逻

辑基本清

楚,文字

尚通顺,

勉强达到

规范化要

求;图纸

比较工整

内容空泛,

结构混乱,

文字表达

不清,错别

字较多,达

不到规范

化要求;图

纸不工整

或不清晰

指导教师评定成绩:

指导教师签名:年月日

自动化学院2007级自动化专业

电力电子技术课程设计任务书

一、课程设计的教学目的和任务

电力电子技术是研究利用电力电子器件、电路理论和控制技术,实现对电能的控制、变换和传输的科学,其在电力、工业、交通、通信、航空航天等很多领域具有广泛的应用。电力电子技术不但本身是一项高新技术,而且还是其它多项高新技术发展的基础。因此,提高学生的电力电子领域综合设计和综合应用能力是教学计划中必不可少的重要一环。

通过电力电子技术的课程设计达到以下几个目的:

1、培养学生文献检索的能力,特别是如何利用Intel网检索需要的文献资料。

2、培养学生综合分析问题、发现问题和解决问题的能力。

3、培养学生运用知识的能力和工程设计的能力。

4、提高学生的电力电子装置分析和设计能力。

5、提高学生课程设计报告撰写水平。

二、课程设计的基本要求

1. 教师确定方向,在教师的指导下,学生自立题目

注意事项:

①所立题目必须是某一电力电子装置或电路的设计,题目难度和工作量要适应在一周内完成,题目要结合工程实际。学生也可以选择规定题目方向外的其他电力电子装置设计,如开关电源、调光灯、镇流器、UPS电源等,但不允许选择其他班题目方向的内容设计(复合变换除外)。

②通过图书馆和Intel网广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计题目。自立题目后,首先要明确自己课程设计的设计内容。要给出所要设计装置(或电路)的主要技术数据(如输入要求,输出要达到的目标,装置容量的大小以及装置要具有哪些功能)。如:

直流电动机调压调速可控整流电源设计

主要技术数据

输入交流电源:

三相380V 10% f=50Hz

直流输出电压:

0~220V

50~220V范围内,直流输出电流额定值100A

直流输出电流连续的最小值为10A

设计内容:

整流电路的选择

整流变压器额定参数的计算

晶闸管电流、电压额定的选择

平波电抗器电感值的计算

保护电路的设计

触发电路的设计

画出完整的主电路原理图和控制电路原理图

列出主电路和控制电路所用元器件的明细表

2. 在整个设计中要注意培养灵活运用所学的电力电子技术知识和创造

性的思维方式以及创造能力。要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过刨析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。(注意:所确定的主电路方案如果没有论证说明,成绩不能得优;设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引注,否则也不能得优)。

3. 在整个设计中要注意培养独立分析和独立解决问题的能力。要求学

生在教师的指导下,独力完成所设计的系统主电路和控制电路等详细的设计(包括计算和器件选型),严禁抄袭。

4. 课题设计的主要内容是主电路的设计,主电路的分析说明,主电路

元器件的计算和选型,以及控制电路设计。

5. 课题设计报告要求图表规范,文字通顺,逻辑性强。

三、课程设计的工作计划

课程设计时间6天。第1天上午,指导教师向学生讲授课程设计的目的、任务、设计方法和注意事项。第1天下午和第2天学生到图书馆和Intel网上

按照指导教师的要求查找所需要的文献,并在阅读分析中确定自己的研究题目、技术数据和设计内容,交指导教师审阅。第3天学生的主要任务是确定方案。第4天和第5天上午,学生的任务是综合所学知识,进行主电路和控制电路的设计。第5天下午和第6天学生的主要任务是撰写课程设计报告。

四、各班的题目方向

4班题目方向:可控整流技术的工程应用(AC-DC)

5班题目方向:交流调压或交流调功技术的工程应用(AC-AC)或无源逆变

技术的工程营养

6班题目方向:直流斩波技术的工程应用(DC-DC)。

摘要

电源半导体产品近期呈现快速增长趋势,甚至超过了数字处理器和存储器等半导体的增长速度。大部分增长来源于高容量电池供电的电子产品,如手机和数字音乐播放器。由于所有电子产品都需要有电源供电,所以电源管理技术变得至关重要。在这样的前提下,设计开发高效率、高频、小体积的DC-DC开关电源芯片,无论是从经济角度,还是从科学研究上来讲都是很有价值的。

本文对开关电源的发展历史、当下发展状况以及将来的发展趋势作了简要的介绍,随后阐述了降压型AC-DC开关电源的核心部分——DC-DC转换器(降压斩波电路)的拓扑结构及其工作原理,描述了DC-DC转换器的控制方法——脉宽调制控制(PWM)。在此基础上设计了一款基于电压控制模式的PWM降压型AC-DC 开关电源,设计的内容包括主电路的设计、控制及驱动电路的设计、保护电路的设计以及各个部分的电路设计图,并给出设计参数。

关键词:DC-DC降压斩波电路脉宽调制控制(PWM)

目录

1.引言............................... 错误!未定义书签。

1.1开关电源的概念................... 错误!未定义书签。

1.1.1 PWM技术简介................ 错误!未定义书签。

1.1.2 降压型DC-DC开关电源原理简介错误!未定义书签。

1.2 开关电源的发展简介 (3)

1.2.1 开关电源的发展史 (4)

1.3 开关电源的发展展望 (4)

2. 降压型PWM AC-DC开关电源设计的基本要求 (5)

3. 电路总体方案的设计及相关原理 (5)

4.主电路设计及参数计算 (6)

4.1 主电路的设计 (6)

4.2 主电路的参数确定 (8)

5.控制电路、驱动电路及保护电路的设计.... 错误!未定义书签。

5.1 控制及驱动电路设计............... 错误!未定义书签。

5.2 保护电路的设计................... 错误!未定义书签。

6.课程设计总结 ......................... 错误!未定义书签。参考文献............................... 错误!未定义书签。附录................................... 错误!未定义书签。

1.引言

1.1开关电源的概念

开关电源(Switch Mode Power Supply,SMPS)是以功率半导体器件为开关元件,利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源电路主要由整流滤波电路、DC-DC控制器(内含变压器)、开关占空比控制器以及取样比较电路等模块组成。

1.1.1 PWM技术简介1

脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。广泛应用在从测量、通信到功率控制与变换的许多领域中。

脉冲宽度调制(PWM)基于采样控制理论中的一个重要结论,即冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。在控制时对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形.按一定

的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可

改变输出频率.PWM运用于开关电源控制时首先保持主电路开关元件的恒定工作周期(T=ton+toff),再由输出信号与基准信号的差值来控制闭环反馈,以调节导通时间ton,最终控制输出电压(或电流)的稳定。

PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。

对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。

11.1.1小节部分引用于(美) Raymond A. Mack Jr.的《开关电源入门》

1.1.2 降压型DC-DC 开关电源原理简介2

将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC 交换完成这一变幻的电路称为DC-DC 转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC 转换器和隔离式DC-DC 转换器。降压型DC-DC 开关电源属于非隔离式的。

降压型DC-DC 转换器主电路图如下:

其中,功率IGBT 为开关调整元件,它的导通与关断由控制电路决定;L 和C 为滤波元件。驱动VT 导通时,负载电压Uo=Uin ,负载电流Io 按指数上升;控制VT 关断时,二极管VD 可保持输出电流连续,所以通常称为 续流二极管。负载电流经二极管VD 续流,负载电压Uo 近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L 值较大的电感。至一个周期T 结束,在驱动VT 导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为

式中,ton 为VT 处于导通的时间,toff 为VT 处于关断的时间;T 为开关管控制信号的周期,即ton+toff ;α为开关管导通时间与控制信号周期之比,通常称为控制信号的占空比。从该式可以看出,,占空比最大为1,若减小占空比,该电路输出电压总是低于输入电压,因此将其称为降压型DC-DC 转换器。负载电流的平均值为

若负载中电感值较小,则在VT 管断后,负载电流会在一个周期内衰减为零,出现负载电流断续的情况。因此有降压DC-DC 开关电源有非连续电流模式(DCM )和连续电流模式(CCM)两种工作模式。波形图如下所示:

2

1.1.2小节部分引用于王兆安编写的《电力电子交流技术(第4版)》和王兆安与黄俊共同编写的《电力电子技术》 VD

Uin

VT

L

C

R Uo

Io

in on in off on on in o U

T

t U t t t

U

U α==+=R

U I o

o =

1.2 开关电源的发展简介3

能源在每个国家中的地位都是举足轻重,关乎兴衰的,所以如何开发并合理 利用能源是一个重要的课题。特别对于我国这样的能源消耗大国和贫乏国,更是

3

1.2节部分引用于脱立芳的硕士学位论文《降压型PWMDC_DC 开关电源技术研究》和赵同贺的《开关电源设计技术与应用实例》 负载电流连续时的波形

负载电流断续时的波形

GE

U GE

U o

i o

U o

U o

i t

t

t

t

t

t

o o

o o o o

on t T

off

t T

on

t off

t

如此。我国、美国和俄罗斯等大国始终把能源技术列为国家关键性的科技领域。能源技术的其中一个重要方面就是电力电子技术,这是一门结合了微电子学、

电机学、控制理论等多种学科的交叉性边沿学科,它利用功率半导体器件对电网功率、电流、电压、频率、相位进行精确控制和处理,使得电力电子装置小型化、高频化、智能化,效率和性能得以大幅度提高。

开关电源技术属于电力电子技术,它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。由于其高效节能可带来巨大经济效益,因而引起社会各方面的重视而得到迅速推广。

电源管理芯片实际上也是指具有自动控制环路和保护电路的DC-DC变换芯片,是开关电源的核心控制芯片。电源管理芯片在90年代中后期问世,由于替换了大部分分立器件,使开关电源的整体性能得到大幅度提高,同时降低了成本,因而显示出强大的生命力。

我国开关电源起源于1970年代末期,到1980年代中期,开关电源产品开始推广应用。那时的开关电源产品采用的是频率为20 kHz以下的PWM技术,其效率只能达到60%~70%。经过20多年的不断发展,新型功率器件的研发为开关电源的高频化莫定了基础,功率MOSFET和IGBT的应用使中、小功率开关电源工作频率高达到400kHz(AC/DC)和1MHz(DC/DC)。软开关技术的出现,真正实现了开关电源的高频化,它不仅可以减少电源的体积和重量,而且提高了开关电源的效率。目前,采用软开关技术的国产开关电源,其效率已达到93%。但是,目前我国的开关电源技术与世界上先进的国家相比仍有较大的差距。

1.2.1 开关电源的发展史

开关电源的发展历史可以追溯到几十年前,可分为下列几个时期:

1.电子管稳压电源时期(1950年代)。此时期主要为电子管直流电源和磁饱

和交流电源,这种电源体积大、耗能多、效率低。

2.晶体管稳压电源时期(1960年代-1970年代中期)。随着晶体管技术的发

展,晶体管稳压电源得到迅速发展,电子管稳压电源逐渐被淘汰。

3.低性能稳压电源时期(1970年代-1980年代末期)。出现了晶体管自激式

开关稳压电源,工作频率在20kHz以下,工作效率60%左右。随着压控率器件的出现,促进了电源技术的极大发展,它可使兆瓦级的逆变电源设计简化,可取代需要强迫换流的晶闸管,目前仍在使用。功率MOSFET的出现,构成了高频电力电子技术,其开关频率可达l00kHz以上,并且可并联大电流输出。

4.高性能的开关稳压电源时期(1990年代~至今)。随着新型功率器件和脉

宽调制(PWM)电路的出现和各种零电压、零电流变换拓扑电路的广泛应用

出现了小体积、高效率、高可靠性的混合集成DC-DC电源。

1.3 开关电源的发展展望

1.半导体和电路器件是开关电源发展的重要支撑。

2.高频、高效、低压化、标准化是开关电源主要发展趋势:

1)低电压化

半导体工艺等级在未来十年将从0.18微米向50纳米工艺迈进,芯片所需最低电压最终将变为0.6V,但输出电流将朝着大电流方向发展。

2)高效化

应用各种软开关技术,包括无源无损软开关技术、有源软开关技术,如ZVS/ZCS谐振、准谐振;恒频零开关技术;零电压、零电流转换技术及目前同步整流用MOSFET代替整流二极管都能大大地提高模块在低输出电压时的效率,而效率的提高使得敞开式无散热器的电源模块有了实现的可能。

3)大电流、高密度化

4)高频化

为了缩小开关电源的体积,提高电源的功率密度并改善其动态响应,小功率DC-DC变换器的开关频率已将现在的200~500kHz提高到1MHz以上,但高频

化又会产生新的问题,如开关损耗以及无源元件的损耗增大,高频寄生参数以及高频电磁干扰增大等。

5)在封装结构上正朝着薄型,甚至超薄型方向发展

2.降压型PWM AC-DC开关电源设计的基本要求

设计一款降压型PWM AC-DC开关电源,设计参数如下:

输入参数:

1.输入交流电压:单相AC220V

2.输入电压变动范围:±20%

3.输入频率:50Hz±2Hz

输出参数:

1.输出直流电压:24V

2.输出功率:约200W

设计基本要求:

1.设计主电路;

2.设计控制电路和保护电路;

3.计算主电路电力电子器件参数;

4.绘制主电路、控制电路和保护电路电路图;

5.绘制完整电路图。

3.电路总体方案的设计及相关原理

电源有一种输入,即单相220V交流电压,设计输入电压变动范围为±20%。

有一种输出:24V 直流电压,输出功率约为200W 。交流220V 经过一个滤波整流电路后得到直流电压,送入DC-DC 降压斩波电路,控制电路提供控制信号控制IGBT 的关断,调节直流电压的占空比,最后经过LC 滤波电路的到所需电压。通过对输出电压的取样,比较和放大,调节控制脉冲的宽度,以达到稳压输出的目的。开关电源原理框图如下:

整流部分是利用具有单向导通性的二极管构成桥式电路来实现的;滤波部分是利用电容电感器件的储能效应,构成LC 电路来实现的;降压部分是利用降压斩波电路来实现,控制方式为脉宽调制控制(PWM ),即在控制时对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。本次设计的开关电源控制时首先保持主电路开关元件的恒定工作周期(T=ton+toff ),再由输出信号与基准信号的差值来控制闭环反馈,以调节导通时间ton ,最终控制输出电压(或电流)的稳定。

4.主电路设计及参数计算

4.1 主电路的设计

主电路主要完成对交流的整流滤波,对直流电压降压和滤波三个工作。 整流电路图设计如下:

T 220VAC

50Hz

+

VD1

VD3

VD2

VD4

C1

L1

R1

··

+_

Uo1

Io1R0

整流滤波降压斩波电路滤波

保护电路

脉宽调制控制(PWM )驱动

+220V AC

+24V DC

工作时的波形图如下:

将整流后的得到的直流电压送入降压斩波电路,通过脉宽调制控制调节输出电压平均值,在经过LC 滤波电路是电压稳定。降压斩波电路设计如下图:

脉宽调制控制型号有IGBT 驱动电路发出;RCD 保护电路用以缓冲IGBT 在高频工作环境下关断时因为正向电流迅速降低而由线路电感在器件两端感应出的过电压。

整流电路工作时波形

in

U 1

o i 1

o U t

t

t

o

o

o 脉宽调制控制

C2

RCD 保护电路

L2

VD

R2

+12o in U U o

U +

_

Io2

工作时的波形图如下:

降压斩波电路工作时的波形

2

in U o

U 2

o i t

t

t

o

o

o

GE

U t

o on t T

off

t

4.2 主电路的参数确定

设计输入电流为频率50Hz 的单相220V 交流电,其脉冲周期为:

经过整流后得到的是只有正半部分的正弦波幅值与输入电压一样,但周期为输入电压一般,即

s

Hz

f T in in μ205011===s

s T T in μμ102

202===

设计输出电压为直流24V 稳压,电流为8A 直流。占空比α通常取0.4~0.45,该电路取α=0.42,考虑IGBT 和二极管的导通压降取0.8V ,电感压降取0.2V 。于是可以得到:

设计输出功率为200W ,所以可以确定:

又由于Uin2=Uo1,确定电阻R1=100Ω,一次侧与二次侧线圈匝数比N1/N2=2,可以确定整流滤波电路中的回路电流及分压电阻R0为:

对于整流滤波电路中的四个二极管VD1、VD2、VD3、VD4,它们承受的反向最大峰值电压为输入电压Uin 最大值的一半,约为77.8V ;流过的最大平均电流约为0.5952A 。所以我们可以选择正向平均电流I(A V)大于0.62A ,反向重复峰值电压Urrm 大于156V 的电力二极管用来构成全桥。

对于斩波电路中的电力二极管VD ,承受的最大反向重复峰值电压约为84.2V ,最大正向平均电流I(A V)约为8.33A ,所以我们可以选择正向平均电流

V V V

U U s s t T t s s T t o in on off on 52.5942

.025)2.08.0(8.5)2.410(2.442.0*102==++=

=-=-====α

μμμμαΩ

======88.233.82433.824200222

A

V I U R A V

w U P I o o o o o Ω

=--=

---==Ω==8.815952.08.152.591102.08.0*22

1

5952.010052.591

20121A

V V V I V V U U R A

V R U I o in in in o

I(A V)大于8.5A,反向重复峰值电压Urrm大于169V的电力二极管作为续流二极管。

对于斩波电路中的IGBT VT,集射极承受的最大电压Uce约为84.2V,流过的最大电流值约为8.33A,则最大耗散功率约为701.2W。所以我们可以选择最大集射极间电压大于85V,最大集电极电流大于8.5A,最大集电极功耗大于723W 的IGBT。

综上所述,主电路的主要参数如下:

所用电力二极管和IGBT的导通压降约为0.8V,电感压降约为0.2V

1.整流滤波电路部分:

一次侧与二次侧线圈匝数比N1/N2:2

输入电压Uin:单相220V交流

输出电压Uo1:59.52V直流

回路电流平均值Io1:0.5952A

电阻R0:81.8Ω

电阻R1:100Ω

电力二极管VD1、VD2、VD3、VD4参数:

正向平均电流I(AV)≥0.62A,反向重复峰值电压Urrm≥156V

2.降压斩波电路部分:

输入电压Uin2:59.52V直流

输出电压Uo:24V稳压直流

回路电流平均值(输出电流)Io2:8.33A

输出功率:200W

电阻R2:2.88Ω

占空比α:0.42

电力二极管:

正向平均电流I(AV)≥8.5A,反向重复峰值电压Urrm≥169V

IGBT参数:

最大集射极间电压Uces≥85V,最大集电极电流Ic≥8.5A

最大集电极功耗Pcm≥723W

5.控制电路、驱动电路及保护电路的设计

5.1 控制及驱动电路设计4

本文设计的开关电源的控制及驱动电路的核心为三菱公司的M579系列驱动器。电路图如下所示:

45.1节参考了王水平.编写的《PWM控制与驱动器使用指南及应用电路》和童诗白、华成英共同编写的《模拟电子技术第四版》

该集成驱动器的内部包含有检测电路、定时及复位电路和电气隔离环节,可在发生过电流时能快速响应但慢速关断IGBT 。输出的正驱动电压为+15V ,负驱动电压为-10V 。

5.2 保护电路的设计

本文设计的电源电路主要需要对IGBT 在开通时采取di/dt 保护和在关断时采取过电压保护,可选择复合缓冲电路作为IGBT 的保护电路,电路图如下:

M57962L

1

4

5

6

13

14

快恢复Trr ≤0.2μs

30V

-10V

15V

3.1Ω+5V

100μF

100μF RCD 保护电路di/dt 抑制

6.课程设计总结

通过本次课程设计,使我更加深刻地理解了直流斩波电路以及开关电源,了解了开关电源的基本结构、设计过程和实现的功能。使我了解到开关电源在电子设备、电力设备和通信系统的直流供电中得到广泛应用,在高频开关电源中,DC-DC变换是其核心。随着半导体技术的发展,高集成度,功能强大的大规模集成电路不断出现,使电子设备不断缩小,重量不断减轻,相应地要求系统供电电源的体积和重量相应减小,如何减小开关电源的体积,提高其效率,是将在在设计开关电源的过程需要着重考虑的一个方面。

本文首先对开关电源的发展历史、当下发展状况以及将来的发展趋势作了简要的介绍,随后阐述了降压型AC-DC开关电源的核心部分——DC-DC转换器(降压斩波电路)的拓扑结构及其工作原理,描述了DC-DC转换器的控制方法——脉宽调制控制(PWM),并详细介绍了该控制方法的基本原理。在此基础上设计了一款基于电压控制模式的PWM降压型AC-DC开关电源,设计的内容包括主电路的设计、控制及驱动电路的设计和保护电路的设计,每个部分均给出设计电路图,重点分析了主电路的工作原理,并给出设计参数。

参考文献

[1]. 王兆安、黄俊. 电力电子技术. 机械工业出版社.2000

[2]. 赵同贺.开关电源设计技术与应用实例. 人民邮电出版社.2007

[3]. (美) Raymond A. Mack Jr. 开关电源入门.人民邮电出版社.2007

[4]. 童诗白、华成英.模拟电子技术(第四版).高等教育出版社.2006

[5]. 王水平. PWM控制与驱动器使用指南及应用电路. 西安电子科技大学出办社.2005

[6]. 王兆安.电力电子交流技术(第4版).机械工业出版杜.2007

[7].脱立芳.降压型PWMDC_DC开关电源技术研究.西安电子科技大学硕士学位论文.2008

附录

本文所设计的降压型PWM AC-DC 开关电源完整电路图如下:

T

+

VD1VD3VD2

VD4

C1L1

R1

··Io1R0

C2

L2

VD

R2

+

+

_

Io2M57962L

1

4

5

6

13

14

快恢复

Trr ≤0.2μs 30V

-10V

15V

3.1Ω+5V

100μF

Uo

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

精通开关电源设计

《精通开关电源设计》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

电子工程师的设计经验笔记

电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。

电感是电容的死对头。另外,电感还有这样一个特点:电流和磁场必需同时存在。电流要消失,磁场会消失;磁场要消失,电流会消失;磁场南北极变化,电流正负极也会变化。 电感内部的电流和磁场一直在“打内战”,电流想变化,磁场偏不让变化;磁场想变化,电流偏不让变化。但,由于外界原因,电流和磁场都可能一定要发生变化。给电感线圈加上电压,电流想从零变大,可是磁场会反对,因此电流只好慢慢的变大;给电感去掉电压,电流想从大变成零,可是磁场又要反对,可是电流回路都没啦,电流已经被强迫为零,磁场就会发怒,立即在电感两端产生很高的电压,企图产生电流并维持电流不变。这个电压很高很高,甚至会损坏电子元件,这就是线圈的自感现象。 给一个电感线圈外加一个变化磁场,只要线圈有闭合的回路,线圈就会产生电流。如果没回路的话,就会在线圈两端产生一个电压。产生电压的目的就是要企图产生电流。当两个或多个丝圈共用一个磁芯(聚集磁力线的作用)或共用一个磁场时,线圈之间的电流和磁场就会互相影响,这就是电流的互感现象。 大家看得见,电感其实就是一根导线,电感对直流的电阻很小,甚至能够忽略不计。电感对交流电呈现出很大的电阻作用。 电感的串联、并联非常复杂,因为电感实际上就是一根导线在按一定的位置路线分布,所以,电感的串联、并联也跟电感的位置相关(主要是磁力场的互相作用相关),如果不考虑磁场作用及分布电容、导线电阻(Q值)等影响的话就相当于电阻的串联、并联效果。 交流电的频率越高,电感的阻碍作用越大。交流电的频率越低,电感的阻碍作用越小。 电感和充满电的电容并联在一起时,电容放电会给电感,电感产生磁场,磁场会维持电流,电流又会给电容反向充电,反向充电后又会放电,周而复始……如果没损耗,或能及时的补充这种损耗,就会产生稳定的振荡。 电子工程师必备基础知识(四)

降压式开关电源

开关电源主电路 第1节开关电源概述 一、开关电源的构成 开关电源采用功率半导体器件(GTR MOSFETIGBT等)作为调整管,通过控制电路控制调整管的导通时间,使输出电压保持稳定。 开关电源的电路构成如图4-1所示。 AC输入DC输出 图4-1开关电源的电路构成 (一)一次整流/滤波电路 将交流输入电压(通常是市电电网的交流电压220V或380V)进行整流滤波,转化成为直流电压(300V或500V),然后将直流电压供给DC/AC变换器。相比与线性直流稳压电源,开关电源在这一环节可以省去工频变压器,消除了工频变压器带来的损耗。(二)D C/AC变换器 DC/AC变换器的主要作用是将一次整流/滤波电路提供的直流电压变换成高频交流电压(一般频率可达到几十KHZ到几百KHZ甚至更高)。 (三)二次整流/滤波电路 将DC/AC变换器变换输出的高频交流电压进行整流滤波,转化成平滑的直流输出电压。 (四)反馈网络

反馈网络包括基准电压、采样电路和比较电路。采样电路把输出电压的一部分或者全部采样回来,采样到的电压和基准电压送入比较电路进行比较,比较的 结果送给控制电路。 (五)控制电路 控制电路根据反馈网络的结果输出占空比可调的控制脉冲去控制调整管的通断时间,这是所谓的“时间控制法”。 (六)辅助电路 开关电源中常见的其它电路主要有软启动电路、输出过压保护电路、输出过流保护电路、驱动电路等等。 二、开关电源的分类 开关电源的分类方式有很多,可以按激励方式、调制方式、调整管类型、输入电压/输出电压大小、调整管的连接方式和储能电感的连接方式等分类方式进行分类。 (一)按激励方式划分 开关电源按激励方式划分可分为自激式开关电源和它激式开关电源。在自激式开关电源中功率开关管既作为调整管,又兼作控制脉冲信号产生的振荡管。在它激式开关电源中则专门设置有产生控制脉冲信号的控制电路。 (二)按调制方式划分 开关电源按调制方式划分可分为脉宽调制型开关电源、脉频调制型开关电源 和混合调制型开关电源。脉宽调制(PWM指的是控制脉冲周期不变,导通时间改变,进而改变占空比的调制方式。脉频调制(PFM指的是控制脉冲导通时间不变,周期(频率)改变,进而改变占空比的调制方式。混合调制指的是控制脉冲导通时间和周期都改变,进而改变占空比的调制方式。 (三)按调整管的类型划分 开关电源根据调整管的类型不同可分为晶体管(GTR开关电源、场效应管 (MOSFET开关电源和绝缘栅双极型晶体管(IGBT开关电源。 (四)按输入/输出电压大小划分

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

高频开关电源中隔离降压式DC

高频开关电源中隔离降压式DC/DC变换器的制作方法 电力电子技术中,高频开关电源的设计主要分为两部分,一是电路部分的设计,二是磁路部分的设计。相对电路部分的设计而言,磁路部分的设计要复杂得多。磁路部分的设计,不但要求设计者拥有全面的理论知识,而且要有丰富的实践经验。在磁路部分设计完毕后,还必须放到实际电路中验证其性能。由此可见,在高频开关电源的设计中,真正难以把握的是磁路部分的设计。高频开关电源的磁性元件主要包括变压器、电感器。为此,本文将对高频开关电源变压器的设计,特别是正激变换器中变压器的设计,给出详细的分析,并设计出一个用于输入48V(36~72V),输出2.2V、20A的正激变换器的高频开关电源变压器。 2正激变换器中变压器的制作方法 正激变换器是最简单的隔离降压式DC/DC变换器,其输出端的LC滤波器非常适合输出大电流,可以有效抑制输出电压纹波。所以,在所有的隔离DC/DC变换器中,正激变换器成为低电压大电流功率变换器的首选拓扑结构。但是,正激变换器必须进行磁复位,以确保励磁磁通在每一个开关周期开始时处于初始值。正激变换器的复位方式很多,包括第三绕组复位、RCD复位[1,2]、有源箝位复位[3]、LCD无损复位[4,5]以及谐振复位[6]等,其中最常见的磁复位方式是第三绕组复位。本文设计的高频开关电源变压器采用第三绕组复位,拓扑结构如图1所示。 开关电源变压器是高频开关电源的核心元件,其作用有三:磁能转换、电压变换和绝缘隔离。在开关管的作用下,将直流电转变成方波施加于开关电源变压器上,经开关电源变压器的电磁转换,输出所需要的电压,将输入功率传递到负载。开关变压器的性能好坏,不仅影响变压器本身的发热和效率,而且还会影响到高频开关电源的技术性能和可靠性。所以在设计和制作时,对磁芯材料的选择,磁芯与线圈的结构,绕 图1 第三绕组复位正激变换器 正激变换器中变压器的制作 制工艺等都要有周密考虑。开关电源变压器工作于高频状态,分布参数的影响不能忽略,这些分布参数有漏感、分布电容和电流在导线中流动的趋肤效应。一般根据高频开关电源电路设计的要求提出漏感和分布电容限定值,在变压器的线圈结构设计中实现,而趋肤效应影响则作为选择导线规格的条件之一。 2.1变压器设计的基本原则 在给定的设计条件下磁感应强度B和电流密度J是进行变压器设计时必须计算的参数。当电路主拓扑结构、工作频率、磁芯尺寸给出后,变压器的功率P与B和J的乘积成正比,即P∝B·J。 当变压器尺寸一定时,B和J选得高一些,则某一给定的磁芯可以输出更大的功率;反之,为了得到某一给定的输出功率,B和J选得高一些,变压器的尺寸就可以小一些,因而可减小体积,减轻重量。但是,B和J的提高受到电性能各项技术要求的制约。例如,若B过大,激磁电流过大,造成波形畸变严重,会影响电路安全工作并导致输出纹波增加。若J很大,铜损增大,温升将会超过规定值。因此,在确定磁感应强度和电流密度时,应把对电性能要求和经济设计结合起来考虑。 2.2各绕组匝数的计算方法 正激变换器中的变压器的磁芯是单向激磁,要求磁芯有大的脉冲磁感应增量。变压器初级工作时,次级也同时工作。 1)计算次级绕组峰值电流IP2 变压器次级绕组的峰值电流IP2等于高频开关电源的直流输出电流Io,即

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

最新开关电源学习笔记

开关电源学习笔记

开关电源学习笔记 阅读书记名称《集成开关电源的设计调试与维修》 开关电源术语: 效率:电源的输出功率与输入功率的百分比。其测量条件是满负载,输入交流电压标准值。 ESR:等效串联电阻。它表示电解电容呈现的电阻值的总和。一般情况下,ESR值越低的电容,性能越好 输出电压保持时间:在开关电源输出电压撤消后,依然保持其额定输出电压的时间。 启动浪涌保护:它属于保护电路。它对电源启动时产生的尖蜂电流起限制作作用。为了防止不必要的功率损耗,在设计这一电路时候,一定要保证滤波电容充满电之前,就起到限流的作用。 隔离电压:电源电路中的任何一部分与电源基板之间的最大电压。或者能够加在开关电源的输入与输出端之间的最大直流电压。 线性调整率:输出电压随负载在指定范围内的变化百分率。条件是线电压和环境温度不变。 噪音和波纹:附加在直流信号上的交流电压的高频尖锋信号的峰值。通常是mV度量。 隔离式开关电源:一般指开关电源。它从输入的交流电源直接进行整流滤波,不使用低频隔离变压器。 输出瞬态响应时间:从输出负载电路产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间。

过载过流保护:防止因负载过重,是电流超过原设计的额定值而造成电源的损坏的电。远程检测:电压检测的一种方法。为了补偿电源输出的电压降,直接从负载上检测输出电压的方法。 软启动:在系统启动时,一种延长开关波形的工作周期的方法。工作周期是从零到它的正常工作点所用的时间。 快速短路保护电路:一种用于电源输出端的保护电路。当出现过压现象时,保护电路启动,将电源输出端电压快速短路。 占空比:开关电源中,开关元件导通的时间和变换工作周期之比。 元件选择和电路设计: 一:输入整流器的一些参数 最大正向整流电流:这个参数主要根据开关电源输出功率决定,所选择的整流二极管的稳态电流容量至少应是计算值的2倍。 峰值反向截止电压(PIV):由于整流器工作在高压的环境,所以它们必须有较高的PIV值。一般600V以上。 要有能承受高的浪涌电流的能力:浪涌电源是用开关管导通时的峰值电流产生。 二:输入滤波电容 输入滤波电容对开关电源的影响 电源输出端的低频交流纹波电压 输出电压的保持时间 滤波电容的计算公式: C=(I*t)/ΔV

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

常用开关电源拓扑结构

开关电源拓扑结构概述(降压,升压,反激、正激) 主回路—开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck拓扑型开关电源就是属于串联式的开关电源https://www.doczj.com/doc/9116053029.html,/blog/100019740 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输

史上最全的开关电源设计经验资料

三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。 则代入k 后,dB =μ0×I ×dl ×R/4πR 3 对其积分可得B = 3 40R C R Idl ?? π μ

反激设计最牛笔记

【最牛笔记】大牛开关电源设计全过程笔记! 反激变换器设计笔记 1、概述 开关电源的设计是一份非常耗时费力的苦差事,需要不断地修正多个设计变量,直到性能达到设计目标为止。本文step-by-step 介绍反激变换器的设计步骤,并以一个6.5W 隔离双路输出的反激变换器设计为例,主控芯片采用NCP1015。 基本的反激变换器原理图如图1 所示,在需要对输入输出进行电气隔离的低功率(1W~60W)开关电源应用场合,反激变换器(Flyback Converter)是最常用的一种拓扑结构(Topology)。简单、可靠、低成本、易于实现是反激变换器突出的优点。 2、设计步骤

接下来,参考图2 所示的设计步骤,一步一步设计反激变换器 1.Step1:初始化系统参数 ------输入电压范围:Vinmin_AC 及Vinmax_AC ------电网频率:fline(国内为50Hz) ------输出功率:(等于各路输出功率之和) ------初步估计变换器效率:η(低压输出时,η取0.7~0.75,高压输出时,η取0.8~0.85)根据预估效率,估算输入功率: 对多路输出,定义KL(n)为第n 路输出功率与输出总功率的比值:

单路输出时,KL(n)=1. 2. Step2:确定输入电容Cbulk Cbulk 的取值与输入功率有关,通常,对于宽输入电压(85~265VAC),取2~3μF/W;对窄范围输入电压(176~265VAC),取1μF/W 即可,电容充电占空比Dch 一般取0.2 即可。

一般在整流后的最小电压Vinmin_DC 处设计反激变换器,可由Cbulk 计算Vinmin_DC: 3. Step3:确定最大占空比Dmax 反激变换器有两种运行模式:电感电流连续模式(CCM)和电感电流断续模式(DCM)。两种模式各有优缺点,相对而言,DCM 模式具有更好的开关特性,次级整流二极管零电流关断,因此不存在CCM 模式的二极管反向恢复的问题。此外,同功率等级下,由于DCM模式的变压器比CCM 模式存储的能量少,故DCM 模式的变压器尺寸更小。但是,相比较CCM 模式而言,DCM 模式使得初级电流的RMS 增大,这将会增大MOS 管的导通损耗,同时会增加次级输出电容的电流应力。因此,CCM 模式常被推荐使用在低压大电流输出的场合,DCM 模式常被推荐使用在高压小电流输出的场合。

降压性开关稳压电源

Hefei University 课程设计报告 课题名称:降压型开关稳压电源 作者姓名: 刘尚阳 1405012027 张颖 1405012028 闫悦悦 1405012029 许特松 1405012043 荚丹丹 1405012030 班级: 电子二班 指导教师:倪敏生 完成时间: 2017年5月24日

摘要 本设计是开关稳压电源,系统由稳压电源、DC-DC变换器、采用LM7812,LM7805稳压芯片,为芯片供电,DC-DC变换器采用TL494产生PWM波,控制开关周期为恒定值,通过调节脉冲宽度来改变占空比,在经过由IR2109构成的驱动电路驱动后级电路,此时引入电压反馈检测电压幅值并反馈给前级保证输出电压稳定,当输入电压超过20V时,控制IR2109片选端,切断电路。 关键字:稳压;DC-DC变换; 目录 1引言 (3) 2方案设计与选择 (3) 2.1总体设计 (3) 2.2各模块方案设计与论证 (3) 2.2.1驱动模块方案设计与选择 (3) 2.2.2稳压电源方案设计与选择 (4) 3硬件设计与实现 (4) 3.1设计思路 (4) 3.2各个模块硬件设计与实现 (5) 3.2.1辅助电源模块 (5) 3.2.2 DC-DC模块 (5) 4理论分析与参数计算 (5) 4.1 DC/DC变换方法 (5) 4.2 稳压控制方法 (6) 4.3 输入过压电路设计 (6) 4.4buck电路参数的计算 (7) 4.4.1电感值的计算 (7) 4.4.2电容的计算 (7) 4.4.3输出电压的计算 (8) 5测试仪器与方法 (8) 5.1输出电压测试 (8) 5.2效率测量 (8) 参考文献 (9)

开关电源设计技巧之一:为电源选择正确的工作频率

开关电源设计技巧之一:为电源选择正确的工作频率 为电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。 我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低。其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。 图1.1显示的是降压电源频率与体积的关系。频率为100 kHz时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝色区域)开始占据较大的空间比例。 图1.1 电源组件体积主要由半导体占据 该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与 MOSFET 的裸片面积成反比关系。MOSFET 面积越大,其电阻和传导损耗就越低。 开关损耗与MOSFET 开关的速度以及MOSFET 具有多少输入和输出电容有关。这

仙童资料翻译:十三个步骤教你完整设计正激双路输出开关电源,妥妥的!

仙童资料翻译:十三个步骤教你完整设计正激双路输出开关 电源,妥妥的! 最新通知【通知】跳槽季电源企业怎么快速招到电源工程师?各地招聘电源工程师(点击下面蓝色标题直接查看)【东莞】诚聘开关电源技术人才,管理人才! 【上海】爱立信招聘电源工程师,磁性元器件工程师,电源验证工程师...... 步骤一确定系统对象图1线性电源范围 电压倍压电路如图1所示,通常是用于正激式电路,在普通电压输入的情况下。所以最小的线性电压是实际电压的2倍。——线性频率fL——最大输出功率P0——预计功率:这是需要估计这功率转换器的效率去计算出这最大的输入电压。如果无法参考资料,设Eff=0.7~0.75,用于低电压输出的设备;设Eff=0.8~0.85,用于高电压输出的设备。确定的估计效率,这最大的输出功率是基于输入最大功率,选择适合的开关芯片。因为MOSFET管的两端电压是转换器的两倍电压,一个额定电压是800V的开关芯片,MOS管就可用于一般的电压输入。开关芯片的种类的额定功率已经在设计软件之内。步骤二确定DC电容()和DC电压范围图2这最大的DC电压(DC link voltage)波纹是: Dch是是链电容(DC link capacitor)占空比,如图2,通常值为

0.2。 用于倍压器的两个电容要串联,每个电容值是方程(2)中所需电容的2倍。在已知的最大电压波纹,那么这最小和最大的直流链电压(DC link voltage)是:步骤三确定变压器重置方式和最大占空比(Dmax)正激式开关电源一个固有的限制,在MOSFET关闭的时候,就是变压器必须重置。因此,额外的重置方案应该被纳入。现有两个重置方案:a.辅绕组重置该方案有益于效能,因为能量被储存在磁化电感中,且能量会释放回输入电路中。但是额外的绕组会使得变压器的构造更复杂。图3 MOSFET管上最大的电压和最大占空比是:Np和Nr和分别分别是初级(primary winding)匝数(笔者注:初级=主绕组)和辅绕组匝数。由方程(5)(6)可得,当Dmax逐渐减少,在MOSFET管上最大的电压会跟着减少。然而,减小的Dmax 导致在次边的电压应力上升。因此,在一般输入电压下,设定Dmax=0.45和Np和Nr是比较合适的。在辅边重置电路中,开关芯片内部已经限制占空比低于50%,用于阻止磁饱和现象发生在变压器上。b.RCD重置图4画出带有RCD 重置的正激式简化电路图。缺点是储存在磁电感中的能量被消耗。在RCD缓冲器中,不像辅绕组重置方案可以返还能量于输入电压中,但是,因为它简单,这方案广泛应用于许多预算有限的开关电源中。

降压型开关稳压电源设计

1 开关电源概述 开关电源是开关稳压电源的简称,一般指输入为交流电压、输出为直流电压的AC/DC变换器。开关电源内部的功率开关管工作在高频开关状态,本身消耗的能量很低,电源效率可达75%-90%,比普通线性稳压电源提高近一倍。 表1.1电源分类 2 降压式开关稳压器原理

2.1 给低通滤波器输入方波 图2.1.1表示给低通滤波器输入方波时的情况。如果一个低通滤波器的截止频率比输入信号频率低很多,当给它输入方波信号时,由于方波被低通滤波器平滑,所以输出信号变成了直流(只有微小的脉流)。(为什么?方波信号相当于一个直流分量加一个交流分量的和,经过低通滤波器后,直流分量通过,交流分量被滤掉,所以只剩下直流分量了,即输出平滑了。如果低通滤波器的截止频率比输入信号频率高,那么交流分量就全部通过了,起不到滤波的作用,所以低通滤波器的截止频率要比输入信号的频率低很多才行。) 降压型开关电源是把输入的直流信号转换成方波,再把这个方波经低通滤波器平滑,又得到直流信号的电路。之所以通过这样复杂的过程来降低电压是为了减少电压变换时的损失。线性稳压电源只所以效率低就因为直接进行电压变换的时候功耗大。 图2.1.1 给低通滤波器输入方波 2.2 开关电路+滤波器=降压型开关电源 降压式开关稳压器的原理如图2.2.1所示,图2.2.2和2.2.3分别是当开关闭合、断开时的电流路径。在实际的电路中,还需要实施反馈使输出电压稳定。一般反馈都集成到电源芯片中。 图2.2.1 简化电路

图2.2.2 开关闭合时的电流路径 图2.2.3 开关断开时的电流路径 (1)当开关闭合时续流二极管VD截至,由于输入电压UI与储能电感L接通,因此输入-输出压差(UI-Uo)就加在L上,使通过L的电流IL线性地增加。(为什么?由公式L*di/dt=U可以看出,U、L不变,则di/dt为常数,即I线性增加。)在此期间除向负载供电外,还有一部分电能储存在L和C中,流过负载RL的电流为Io,参见图2.2.2。 (2)当开关断开时,L与UI断开,但由于电感电流不能在瞬间发生突变,因此在L上就产生反向电动势以维持通过电感的电流不变。此时续流二极管VD 导通,储存在L中的电能就经过由VD构成的回路向负载供电,维持输出电压不变。开关断开时,C对负载放电,这有利于维持Uo和Io不变,参加图2.2.3。(为什么?请看以下图例比较)

开关电源学习书籍推荐

《开关电源入门》,图灵出版的和美国半导体总工写的.《开关电源设计与优化》写的不适合初学者 1、《开关电源指南》第2版,浙江大学徐德鸿翻译的,也有可能是他的学生翻译,他署名出版而已.说实话,翻译水平很烂,错误相当多,但里面很多内容,相当不错,很适合入门.英文水平高的,可以看英文原版. 2、《开关电源设计》第2版,华南理工大学王志强翻译的,挺厚的,黑白相间的书皮,也不错. 3、《电力电子系统建模》浙大徐德鸿翻译,《开关变换器的建模与控制》, 张卫平著. 这两本书,详细讲解了开关电源的建模方式和环路补偿,怎么调整电源环路的稳态性能和暂态性能.这两本书看懂了,做电源,我个人觉得,理论水平已经达到一定高度了. 4、《直流开关电源的软开关技术》和《全桥移相软开关技术》,南航阮新波的博士论文,整理后出版的两本书,国内凡是写软开关的书,大部分都是照抄它们或者无一不参考它们.其中后一本书已经绝版了,市场上已经买不到,淘宝网上有复印版本卖,大概45元,质量很不错的. 5、《开关电源磁性元器件》,赵修科著.磁性器件,可以说是开关电源的心脏,不懂磁,想做好电源,那是不可能的.这本书对磁的理解深刻而全面. 6、control loop cookbook 德州仪器的技术资料,作者就是提出著名右半平面零点概念的那个人,相当的好. 其他的书嘛,就是大学教材,模拟电路和经典控制理论,一定是要读通掌握才行.总的来说,软开关,就看阮新波足够;环路方面,主要还是看外国人写的;磁和变压器方面,主要看赵修科和台湾人写的. 仿真软件还是要掌握一些的. 1、orcad pspice适合做电路元件级级仿真,仿模拟电路和开关电源小信号模型,效果相当好. 2、saber适合做系统级仿真,特别适合开关电源这种含有脉冲式信号的电路,模型库参数全,仿真精度高,尤其是强大的仿真结果后续处理能力,是我用过的仿真软件中,功能最强大的一款.不过,在国内普及程度,没有pspice高,一套正版8

相关主题
文本预览
相关文档 最新文档