当前位置:文档之家› 航空发动机涡轮叶片断裂原因分析

航空发动机涡轮叶片断裂原因分析

航空发动机涡轮叶片断裂原因分析
航空发动机涡轮叶片断裂原因分析

航空发动机涡轮叶片断裂原因分析

【摘要】本文针对实际使用中航空发动机涡轮叶片断裂的故障,从理论上分析造成断裂的机理,分析实际中引起涡轮叶片断裂的原因,并提出预防措施,对飞行安全起到一定的参考价值。

【关键词】航空发动机;涡轮叶片;断裂分析

0 引言

涡轮叶片是航空发动机最主要的结构件之一,由于其长期工作在高温燃气包围下,承受转子高速旋转时叶片自身的离心力、气动力、热应力以及振动负荷,是发动机中工作条件最为恶劣的零件。

在实际的使用过程中,由于各种原因,涡轮叶片可能发生断裂。当涡轮叶片断裂时,不仅会出现发动机振动进而引起飞机振动,还会打坏其他机件、甚至导致飞机着火等现象,这将严重影响到飞行安全。长期以来,由于涡轮叶片断裂引发的飞行事故在飞行中屡见不鲜。

本文从涡轮叶片的工作条件出发,分析了引起涡轮叶片断裂故障的原因,并举例分析,在此基础上指出预防措施。

1 涡轮叶片故障机理

从理论上看,涡轮叶片断裂的故障机理有疲劳、超应力、蠕变、腐蚀、磨损等。

1.1 疲劳

发动机工作时,由于经常起动、加速、减速、停车以及其他条件的影响,发动机内流扰动、自激振动、流动畸变、转子不平衡、燃气温度分布不均等激励因素的作用,会使涡轮各部件承受复杂的循环载荷作用,使得叶片经受大量弹性应力循环,最终引起高周疲劳、低周疲劳或热疲劳,使得涡轮叶片断裂。其中,高周疲劳是指失效循环数范围在105—107周次的疲劳。低周疲劳是指失效循环数低于104—105周次的疲劳。高周疲劳和低周疲劳都能够引起涡轮叶片断裂,实际使用中,断裂还会来自于高低周复合疲劳[1-3]。热疲劳是来自于涡轮叶片温度的循环变化。涡轮叶片的温度的循环变化来自于燃气温度的变化。

1.2 超应力

涡轮叶片的组成包括叶根、叶身和叶冠。由于其形状的不规则,叶片中存在应力集中部位。尽管在设计中已经采取了一些措施,实际上,超应力仍然是造成涡轮叶片断裂的一个原因。

防止某型号燃气轮机叶片断裂的措施

防止某型号燃气轮机叶片断裂的措施 一概述 燃气轮机发电机机组具有起、停快,负荷调节灵活,为电网提供电源和调峰.MS6001B型燃气轮机发电机组在我国燃机电厂中是比较多类型机组,由于新设备技术新,没有足够的运行、维护检修经验和相应的技术措施,在燃气轮机运行中,曾经发生了一些非正常故障和叶片断裂事件,增加了机组的运营成本,也影响了企业的经济效益和社会效益. 透平动叶是燃气轮机的重要部件,引起透平动叶断裂的主要因素有: (1)可调进气导向叶片(IGV)卡涩,转动失灵,造成压气机喘振;致使透平动叶断裂. (2)透平叶片因腐蚀,蠕变产生的断裂. 二压气机进气导向叶片(IGV) 的合理间隙 燃气轮机在运行过程中, IGV叶片是以燃机的转速信号和透平排气温度为控制基准,由电液伺服阀控制其开度,最小开度为32°,最大开度84°, IGV 叶片在此范围内连续可调. 叶片在燃汽轮机起停机等低转速过程中是防止压气机喘振的重要机构之一. 燃气轮机在低速运行时,空气容积流量低,压气机前12级容易发生气流旋转脱离现象,进一步发展会形成喘振,其表现为压气机空气流量、压力出现脉动,时高时低,严重时出现压气机气流倒流的现象,同时还会发生低频的怒吼声,机组伴随强烈的震动.由于叶片受到变速的强烈振动,易产生疲劳甚至共振断裂,造成机组灾难性的事故.因此, IGV叶片的安全可靠性,对于燃气轮机至关重要.而IGV叶片的安全可靠性主要取决于其是否卡涩;转动是否失灵,叶顶与进气内缸的间隙、叶根与进气外缸间隙是否超过规范,详见图1、图2。

机组在经过多次起停、水洗等过程后,叶片叶根转轴的铜质垫片A可能会产生腐蚀或锈蚀,尤其是在燃机水洗时,带有污垢的水可能会残留在叶根转轴的台阶孔和垫片A之间,这种残留物会导致垫片A锈蚀变形,进而导致IGV叶片沿转轴孔向叶顶径向移动,于是,叶片叶顶与进气内缸的间隙X1变小。通常该情况主要表现在进气缸的下半缸,因为下半缸中叶根转轴的台阶孔和垫片A之间的间隙容易残留水洗时带来的污垢。(图3) 与此同时,下半缸内缸叶顶转轴石墨衬套的松动,在重力的作用下,向下径向移动,使得叶片叶顶与进气内缸的间隙X1变小更成为可能,严重时,IGV叶片叶顶切入到石墨衬套,石墨衬套破损,叶片发生卡涩,使叶片转动失灵,叶片甚至翘曲变形或断裂,严重影响机组运行的安全性。某电厂就因石墨衬套脱落被IGV叶片切成碎片吸入压气机,酿成压气机叶片外物损坏(FOD)的严重事件。 三透平动叶膨胀间隙的要求 由于燃气轮机透平转子在高温高压燃气的环境中运行,透平动叶必定产生一些膨胀,即透平动叶叶根部分在冷态下(停机状态)需保留一定的间隙(如表1),才能是透平叶片在高温状态下运行时膨胀后处于正常的工作状态。透平一、二、

航空发动机涡轮叶片

摘要 摘要 本论文着重论述了涡轮叶片的故障分析。首先引见了涡轮叶片的一些根本常识;对涡轮叶片的结构特点和工作特点进行了详尽的论述,为进一步分析涡轮叶片故障做铺垫。接着对涡轮叶片的系统故障与故障形式作了阐明,涡轮叶片的故障形式主要分为裂纹故障和折断两大类,通过图表的形式来阐述观点和得出结论;然后罗列出了一些实例(某型发动机和涡轮工作叶片裂纹故障、涡轮工作叶片折断故障)对叶片的故障作了详细剖析。最后通过分析和研究,举出了一些对故障的预防措施和排除故障的方法。 关键词:涡轮叶片论述,涡轮叶片故障及其故障类型,故障现象,故障原因,排除方法

ABSTRACT ABSTRACT This paper emphatically discusses the failure analysis of turbine blade.First introduced some basic knowledge of turbine blades;The structure characteristics and working characteristics of turbine blade were described in she wants,for the further analysis of turbine blade failure Then the failure and failure mode of turbine blades;Turbine blade failure form mainly divided into two major categories of crack fault and broken,Through the graph form to illustrate ideas and draw conclusions ;Then lists some examples(WJ5 swine and turbine engine blade crack fault,turbine blade folding section)has made the detailed analysis of the blade.Through the analysis and research,finally give the preventive measures for faults and troubleshooting methods. Key words: The turbine blades is discussed,turbine blade fault and failure type,The fault phenomenon,fault caus,Elimination method

航空发动机涡扇叶片及其成形工艺

航空发动机涡扇叶片及其成形工艺 涡扇发动机具有耗油率低、起飞动力大、噪音低和迎风面积大等特点。60年代中期,它只应用于客机和轰炸机,当时人们普遍认为,它很难在高速歼击机上应用。自70年代以来,带加力的高推比涡扇发动机的相继问世,使战斗机的性能提高到了一个新的水平,从而彻底改变了人们对涡扇发动机的偏见。90年代中期,又为第四代战斗机成功研制了推重比10带加力的涡扇发动机。与此同时,为满足发展巨型、远程运输机、宽机身客机的需要,国外先进的发动机厂家又研制成功了大推力、低耗油率、大流量比的涡扇发动机。时至今日,涡扇发动机已是应用数量最多、范围最广和最有发展前景的航空发动机。 风扇叶片是涡扇发动机最具代表性的重要零件,涡扇发动机的性能与它的发展密切相关。初期的风扇叶片材料为钛合金,具有实心、窄弦、带阻尼凸台结构。现今,风扇叶片在材料、结构方面已改进许多。为了增强刚性,防止振动或颤振,提高风扇叶片的气动效率,用宽弦结构代表了窄弦、带阻尼凸台结构;为了减轻重量,用夹芯或空心结构取代了实心结构;为了增大流量比,提高大推力涡扇发动机推进效率,风扇转子直径已增大到了3242mm,风扇叶尖速度已高达457m/s。而这些材料新、叶身长、叶弦宽、结构复杂的风扇叶片的成形工艺是非常复杂的。因此,风扇叶片的成形工艺始终是涡扇发动机的关键制造技术之一。 1早期风扇叶片 早期风扇叶片为大尺寸实心结构,为防止共振及颤振,它的叶身中部常带有一个阻尼凸台(又称减振凸台)。所有叶片的凸台连成一环状,既增强了刚性又改变了叶片固有频率,减小了叶根弯曲和扭转应力。阻尼凸台接合面喷涂有耐磨合金,当叶片振动时,接合面相互摩擦可起阻尼作用。阻尼凸台一般位于距叶根约整个叶片长度的50%~70%处。阻尼凸台的存在带来一系列问题,如:由于它的存在及它与叶身连接处的局部加厚,使流道面积减少约2%,使空气流量降低,造成气流压力损失,使压气机效率下降,发动机耗油率增加;增加了叶身重量,使叶片离心力负荷加大;使叶片制造工艺更加复杂。在有些风扇叶片上,为了增强抗外物撞击损伤能力,叶身上除了阻尼凸台以外,还有较厚的加强筋。 CFM56-3和CFM56-5发动机风扇转子直径约1700mm,风扇叶片长约600mm,由整体钛合金锻件经机械加工而成。风扇叶片毛坯先镦锻出叶根和阻尼凸台,经预锻成形,再精锻、切边。叶身成形可用数控铣、数控仿形磨、电解加工和抛光等工艺。随着叶片批量生产的增加,应尽量采用精锻法生产出钛合金风扇叶片的锻坯,以提高材料的利用率,减少机械加工工作量和提高风扇叶片的使用寿命。但生产这样大的风扇叶片精锻毛坯,需要使用昂贵的高精度的万吨级机械压力机或螺旋压力机,所需模具的尺寸大、精度也高。因此,精锻工序的成本很高。4钛合金宽弦无凸台空心风扇叶片5高韧性环氧复合材料风扇叶片

大修航空发动机涡轮叶片的检修技术示范文本

大修航空发动机涡轮叶片的检修技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大修航空发动机涡轮叶片的检修技术示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测 等预处理,以及包括表面损伤修理、叶顶修复、热静压、 喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的 航空发动机上,涡轮叶片都采用了性能优异但价格十分昂 贵的镍基和钴基高温合金材料以及复杂的制造工艺,例 如,定向凝固叶片和单晶叶片。在维修车间采用先进的修 理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿 命,减少更换叶片,可获得可观的经济收益。为了有效提 高航空发动机的工作可靠性和经济性,涡轮叶片先进的修 理技术日益受到发动机用户和修理单位的重视,并获得了

广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术手段。 1.1清洗 由于涡轮叶片表面黏附有燃料燃烧后的沉积物以及涂层和(或)基体经过高温氧化腐蚀后所产生的热蚀层,一般统称为积炭。积炭致使涡轮效率下降,热蚀层会降低叶片的机械强度和叶片表面处理的工艺效果,同时积炭也掩盖了叶片表面的损伤,不便于检测。因此,叶片在进行检测和修理前,要清除积炭。 1.2无损检测 在修理前,使用先进的检测仪器对叶片的叶型完整性

某电厂3号燃气轮机压气机叶片故障的原因分析

第36卷 第1期热力透平Vol136No11 2007年3月THER M A L T UR BI NE Mar12007某电厂3号燃气轮机压气机叶片故障的原因分析 朱宝田,肖俊锋,祁文玉 (西安热工研究院,西安,710032) 摘 要: 对某电厂3号燃气轮机压气机叶片的故障原因进行分析,调查了故障发生经过、运行记录、控制系统记录、机组分解现场、零部件损坏情况,对叶片材质和断口进行了理化检验分析,得出故障原因,对机组的修复和今后的安全运行具有重要的意义。故障与运行操作无直接关系。故障原因分析的结论成为电厂向制造商索赔的技术依据。 关键词: 发电厂;燃气轮机;压气机;叶片;故障;原因分析 中图分类号:T K47418 文献标识码:A 文章编号:1672-5549(2007)01-0067-04 Analysis on Compressor Blade Failure of No13G as Turbine in a Certain Plant Z H U B ao2ti an,X I A O J un2f eng,QI W en2y u (Thermal Power Research Institute,Xi’an710032,China) Abstract: An analysis on the compressor blade failure of No13gas turbine in a certain plant was analyzed1 The failure occurring,operating record,control system record,unit decomposition site and components damage status were investigated1The physical and chemical inspection analysis for blade material and blade fracture were done to obtain the failure causes,which has a great significance to the rehabilitation of unit and later safe operation1The failure had no direct relation to operation.The conclusion of failure analysis could be considered as technical material used for the plant,who claimed for damages f rom manufacturer1 K ey w ords: power plant;gas turbine;compressor;blade;failure;analysis 1 机组情况 某电厂3号燃气轮机为GE2AL STOM公司制造的P G65812B型燃气轮机,额定功率42100kW(天然气燃料),额定转速5163r/min。2004年9月24日简单循环投运,2005年9月4日,联合循环投运。3号燃气轮机累计点火运行1004314小时;累计启动80次,事故跳闸9次(因燃气轮机引起的跳闸仅本次事故);系统周波4919~5012Hz。机组正常运行负荷在30~40MW之间,平均负荷33MW,冬季环境温度低时最高负荷48MW,调峰时最低负荷25MW。 2 故障情况 故障前,3号燃气轮机负荷37MW。 2005年12月6日凌晨5点左右,1号轴承两个振动监测值由原来的0189mm/s、0197mm/s分别增至1182mm/s、119mm/s。 9时许,1号轴承振动监测值增至316mm/s、3156mm/s,2号轴承两个振动监测值由113mm/ s、1144mm/s增至3139mm/s、3109mm/s;由于上述振动监测值与GE公司规定的报警值1217mm/s尚有距离,机组继续运行。 11:52分,控制系统出现“燃机排气温度高”报警,机组跳闸。跳闸前报警信息如下: 时间 报警信息 2005/12/06 11:52:231343燃机排气温度高2005/12/06 11:52:231343排气超温跳闸2005/12/06 11:52:241718发电机短路器跳闸2005/12/06 11:52:451343高振动跳闸或停机机组跳闸前后燃机有短促异常声响。跳闸后机组惰走时间11分20秒,与正常停机6走时间 收稿日期:2006-09-27 作者简介:朱宝田(1948-),男,西安热工研究院首席研究员,享受国务院政府特殊津贴的专家,从事发电厂设备和系统的研究。本文为2006年中国动力工程学会透平专委会论文研讨会宣读论文,获优秀论文奖。

航天发动机涡轮叶片失效分析

航空发动机涡轮叶片失效分析 涡轮叶片是航空发动机最主要的部件之一,高温1600-1800度长期工作、要承受300米/秒左右的风速、高负荷(根据作用力的大小确定)、结构复杂的典型热端机械构件,它的设计制造性能和可靠性直接关系到整台发动机的性能水平耐久性和寿命。为了提高发动机的推重比,叶片设计时常采用比强度高的新材料;采用先进复杂的冷却结构及工艺;降低工作裕度等措施来实现。因此,研究涡轮叶片失效分析对提高发动机工作安全及正确评估叶片的损伤形式和损伤程度有重要意义。 1.涡轮转子叶片结构特点 现代航空发动机多处采用多级轴流式涡轮。涡轮叶片具有气动力翼型型面,为了使燃气系统排出的燃气流竜在整个叶片长度上做等量得功,并保证燃气流以均匀的轴向速度进入排气系统从叶根到叶尖有一个扭角,叶尖处的扭角比叶根处要大。 涡轮转子叶片在涡轮盘上的固定方法十分重要,现代大多数燃气涡轮发动机转子都采用“枞树形”榫齿。这种榫齿精确加工和设计,以保证所有榫齿都能按比例承受载荷。当涡轮静止时,叶片在榫槽内有一定的切向活动量;而当涡轮转动时,离心力将叶根拉紧在盘上。 涡轮叶片材料是保证涡轮性能和可靠性的基础,涡轮叶片早期是用变形高温合金,采用锻造的方法制造。由于发动机设计与精铸技术的发展,发动机涡轮叶片从变形合金发展为铸造合金从实心发展为空心,从多晶发展为单晶,从而大大提高了叶片的耐热性能。由于镍基单晶超合金具有卓越的高温蠕变性能已成为制造航空发动机热端部件的重要材料。 涡轮叶片的工作条件和受力分析 2.叶片的工作条件 涡轮叶片时直接利用高温高速燃气做功的关键部件,温度高负荷大应力状态复杂工作环境非常恶劣。涡轮叶片在高温燃气的工作条件下,高温氧化和燃气腐蚀则是其主要的表面损伤形式。氧和硫是影响镍基合金高温合金氧化抗力最有害的两种元素。氧化晶界扩散与晶界上的Cr。Al..。和Ti等元素发生化学反应形成氧化物,然后氧化物开裂,使疲劳裂纹萌生与扩展。硫以引起晶界脆化的方式加速疲劳裂纹的萌生与扩展。 涡轮转子叶片在工作中一直处于高温工作状态,因此热疲劳和高温蠕变性能也是涡轮转子叶片的重要失效抗力指标。

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

航空发动机涡轮叶片修复中的裂纹控制

航空发动机涡轮叶片修复中的裂纹控制 航空发动机是飞机的动力核心,随着我国航空事业的发展,我国加快了对于航空发动机的研制步伐,通过引进、研发、生产的这一发展战略提高我国航空发动机的效率和使用寿命。在航空发动机的各组成部件中,涡轮叶片是其中最为重要同时也是受负荷最大的部件,涡轮叶片在工作的过程中会承受着高温燃气的高速冲刷、撞击、黏着磨损等从而使得涡轮叶片的使用效率和使用寿命持续下降。并导致涡轮叶片的叶冠间隙增大进而影响到涡轮叶片叶冠的阻尼效果,严重的会导致涡轮叶片在工作中断裂从而威胁到飞机的飞行安全。在航空发动机使用一段时间进行检修时需要对涡轮叶片进行检查处理,通过采用焊接的方式消除涡轮叶片叶冠阻尼凸台缺陷,并注意做好堆焊处理后涡轮叶片焊接处的裂纹控制和处理。提高涡轮叶片的使用效率和使用寿命。 标签:涡轮叶片;叶冠;裂纹;堆焊 前言 航空发动机涡轮叶片在长时间的使用后会导致涡轮叶片叶冠出现阻尼凸台,这一缺陷的存在会对航空发动机的正常使用造成较大的危害。通过采用氩弧焊堆焊的方式来对涡轮叶片叶冠阻尼凸台进行处理的过程中发现在涡轮叶片叶冠焊接处存在焊接热裂纹,为确保涡轮叶片的使用寿命,在做好涡轮叶片叶冠阻尼凸台焊接裂缝分析的基础上通过对涡轮叶片叶冠阻尼凸台氩弧焊堆焊工艺进行改进用以消除热裂纹缺陷,保障航空发动机涡轮叶片的安全、高效的使用。 1 航空发动机涡轮叶片叶冠阻尼凸台焊接热裂纹产生的原因 某航空发动机在长时间使用后进行检修的过程中发现涡轮叶片叶冠存在阻尼凸台从而使得航空发动机涡轮叶片的阻尼效果变差。航空发动机涡轮叶片采用K403型号的材质,为做好航空发动机涡轮叶片的维修通过采用航空发动机涡轮叶片叶冠阻尼凸台氩弧焊堆焊的处理方法,在对航空发动机涡轮叶片叶冠阻尼凸台焊接处理后检查后发现航空发动机涡轮叶片焊接处存在焊缝热影响区裂缝,从而对航空发动机涡轮叶片的安全使用埋下了安全隐患。为提高航空发动机使用的安全性需要做好航空发动机涡轮叶片焊接热影响区裂纹产生的原因分析并针对性的对航空发动机涡轮叶片的热焊接工艺进行改进优化,以确保航空发动机涡轮叶片的修复质量。 在对航空发动机涡轮叶片焊接热影响区进行分析时为避免裂纹对显微观测结果造成影响,在对航空发动机涡轮叶片进行分析的过程中采用金相分析、电镜扫描观测、能谱仪相配合的方式来做好对于裂纹的分析,用以对航空发动机涡轮叶片焊接热影响区裂纹的产生机理进行分析用以对后续的航空发动机涡轮叶片热焊接工艺进行改进,提高航空发动机涡轮叶片的焊接效果。 航空发动机涡轮叶片裂纹观测结果:

燃气轮机故障类型及原因

燃气轮机故障监测及诊断 1. 国内燃气轮机主要类型 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。 燃气轮机分为: (1)轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。 (2)重型燃气轮机为工业型燃气轮机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 燃气轮机有不同的分类方法,一般情况如图1-1所示。 图1-1

2. 燃气轮机故障类型 1.燃机在启动过程中“热挂” 2.压气机喘振 3.机组运行振动大 4.点火失败 5.燃烧故障 6.启动不成功 7.燃机大轴弯曲 8.燃机轴瓦烧坏 9.燃机严重超速 10.燃机通流部分损坏 11.润滑油温度高 12.燃机排气温差大 3. 燃气轮机故障原因 “热挂”的原因: (1)启动系统的问题。启动柴油机出力不足;液力变扭器故障等。 (2)压气机进气滤网堵塞、压气机流道脏,压缩效率下降。 (3)燃机控制系统故障。 (4)燃油雾化不良。 (5)透平出力不足。 产生压气机喘振的原因: 压气机喘振主要发生在启动和停机过程中。引起喘振的原因主要有:机组在启动过程升速慢,压气机偏离设计工况;机组启动时防喘放气阀不在打开状态;停机过程防喘放气阀没有打开。 机组运行振动大的原因: 引起燃气轮机运行振动的原因较多,对机组安全运行构成威胁,因此应高度重视。下面列举部分引起机组振动的情况: (1)机组启动过程过临界转速时振动略微升高,属正常现象,但在临界转速后振动会下降。按正常程序启动燃气轮机时,机组会快速越过临界转速,如果由于升速慢引起振动偏高,应检查处理升速较慢的原因。 (2)启动过程中由于压气机喘振引起的振动偏高,喘振时压气机内部发

航 空 发 动 机 叶 片 涂 层

航空发动机叶片涂层技术 一.涡轮叶片是先进航空发动机核心关键之一 航空发动机被称为现代工业“皇冠上的明珠”,航空发动机是飞机的“心脏”,价值一般占到整架飞机的20%-25%。目前,能独立研制、生产航空发动机的国家只有美、英、法、俄、中5个。但是,无论“昆仑”、“秦岭”发动机、还是“太行”系列,我国航空发动机的水平距离这一领域的“珠穆朗玛”依然存在不小的差距。美、俄、英、法四个顶级“玩家”能够自主研发先进航空发动机。西方四国由于对未来战场与市场的担忧,在航空发动机核心技术上一直对中国实施禁运和封锁。技术难关有很多。本人认为涡轮叶片是先进航空发动机的核心技术之一。 随着航空航天工业的发展,对发动机的性能要求越来越高,要使发动机具有高的推重比和大的推动力,所采用的主要措施是提高涡轮进口温度。国外在20世纪90年代,要求涡轮前燃气进口温度达1850-1950K。美国在IHPTET计划中要求:在海平面标准大气条件下,航空燃气涡轮机的的涡轮进口温度高达2366K。涡轮进口温度的提高要求发动机零件必须具有更高的抗热冲击、耐高温腐蚀、抗热交变和复杂应力的能力。对于舰载机,由于在海洋高盐雾环境下长期服役,要求发动机的叶片的耐腐蚀性更高;常在沙漠上飞行的飞机,发动机的叶片要具有更好的耐磨蚀。 众所周知:镍基和钴基高温合金具有优异的高温力学和腐蚀性

能,广泛用于制造航空发动机和各类燃气轮机的涡轮叶片(blade and vane)。就材质来看:各国的高温合金型号虽各不相同,但就相近成分的高温合金来说,其性能相近(生产工艺方法不同有也造成性能有大的差异)。好的高温合金的使用温度也只有1073K左右,为达到前面所说的要求温度,采用的方法有二:一是制成空心的叶片。空心叶片自20世纪60年代中期出现以来,经历了对流冷却、冲击冷却、气膜冷却以及综合冷却的发展历程,使进气口温度高出叶片材料约300—500℃,内腔的走向复杂化和细致化。这一步的改进仍难满足需要,且英国发展计划将取消冷却。二是涂层,常进行多材质多层次涂层。 PVT公司研究表明:军用直升机上的发动机叶片采用涂层,在沙漠上飞行,寿命可提高3倍左右,不仅大大降低了制造发动机叶片的成本,同时也使飞机的维护时间延长了两倍。 二.涡轮叶片的涂层 高温合金的生产方法或晶形结构对产品的性能是有很大影响的,如图1所示,GE公司20年前开始采用单晶高温合金制作战机用发 Fig.1 Comparative preperties of polycrystal,columnar and single-crystal superallys

大修航空发动机涡轮叶片的检修技术通用版

解决方案编号:YTO-FS-PD367 大修航空发动机涡轮叶片的检修技术 通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

大修航空发动机涡轮叶片的检修技 术通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测等预处理,以及包括表面损伤修理、叶顶修复、热静压、喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的航空发动机上,涡轮叶片都采用了性能优异但价格十分昂贵的镍基和钴基高温合金材料以及复杂的制造工艺,例如,定向凝固叶片和单晶叶片。在维修车间采用先进的修理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿命,减少更换叶片,可获得可观的经济收益。为了有效提高航空发动机的工作可靠性和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术

燃气轮机涡轮叶片多轴疲劳_蠕变寿命研究_彭立强

第22卷第2期燃气涡轮试验与研究Vol.22,No.2 2009年5月Gas Turbine Experiment and Research May,2009 燃气轮机涡轮叶片多轴疲劳/蠕变寿命研究 彭立强,王健 (大连理工大学汽车工程学院,辽宁大连116023) 摘要:本文针对电厂用燃气轮机涡轮转子叶片工作环境,对Manson-Coffin多轴疲劳预测方程和SWT公式进行修正,同时采用尚德广多轴疲劳损伤参量,给出涡轮叶片新的疲劳寿命预测方法,以适应涡轮叶片高温变幅非比例加载 下的疲劳损伤情况。通过算例计算了某涡轮叶片疲劳寿命及10000h的总损伤,其结果与叶片实际疲劳破坏相吻合, 验证了该高温多轴疲劳损伤计算模型的准确性。 关键词:涡轮叶片;高温多轴疲劳;疲劳寿命;蠕变;燃气轮机 中图分类号:TK47文献标识码:A文章编号:1672-2620(2009)02-0034-04 Research of Multiaxial Fatigue-creep Life Prediction for Turbine Blade PENG Li-qiang,WANG Jian (School of Automotive Engineering,Dalian University of Technology,Dalian116023,China) Abstract:This paper amended Manson-Coffin equation of multiaxial fatigue prediction and SWT formula, based on the working condition of gas turbine blade in power generation application.Also,this paper brought forward a new method of fatigue life prediction of turbine blade for non-proportional loading of turbine blade fatigue damage at high temperature with using SHANG De-guang multiaxial fatigue damage model.A prediction was made to turbine blade fatigue life and the total damage after10000hours,which was consistent with the actual blade fatigue damage.So the model of multiaxial fatigue prediction was validated. Key words:turbine blade;multiaxial fatigue at high temperature;fatigue life;creep;gas turbine 1引言 燃气轮机作为大型动力装置,广泛应用于发电及各种工业领域。电厂用燃气-蒸汽轮机联合循环发电机组中的燃气轮机涡轮叶片是燃气轮机中承受温度载荷最剧烈和工作环境最恶劣的部件之一,在高温下要承受很大、很复杂的应力和应变。涡轮叶片在工作时不仅要承受很大的离心载荷、热载荷、气动载荷等,同时还要承受燃气腐蚀、氧化等作用。燃气轮机涡轮叶片疲劳寿命研究对确保热力发电设备的安全、经济运行具有重要意义。 高温疲劳主要研究材料在疲劳和蠕变共同作用下的力学行为。应该指出,“高温”这个概念通常是指使金属点阵中的原子具有较大的热运动能力的温度环境,它因不同的材料而异。一般认为,当合金的工作温度与合金熔点的比值大于0.5时,材料的蠕变现象不可忽略,这时认为零件处于高温工作状态。多轴疲劳是指多向应力或应变作用下的疲劳,也称复合疲劳。 当前,涡轮叶片疲劳寿命预测理论主要基于局部-应力应变的疲劳寿命预测模型,该方法通常采用经典Manson-Coffin方程的Morrow修正公式,同时利用Von-Mises等效应变方法[1]或采用SWT损伤公式[2]。以上方法基本为高温单轴寿命预测方法,经修正和改进后可推广到高温多轴疲劳寿命预测中。然而,直接采用单轴推广过来的疲劳损伤参量来预 收稿日期:2008-10-20;修回日期:2009-04-10 基金项目:国家重点基础研究发展计划—— —973计划(2007CB70770103) 作者简介:彭立强(1983-),男,山东巨野人,硕士研究生,主要从事燃气轮机零部件强度及疲劳寿命研究。34

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.$ 6.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 7.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。8.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 9.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 < 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 10.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 11.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 12.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 13.| 14.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 15.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 16.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源;

航空发动机涡轮叶片断裂原因分析

航空发动机涡轮叶片断裂原因分析 【摘要】本文针对实际使用中航空发动机涡轮叶片断裂的故障,从理论上分析造成断裂的机理,分析实际中引起涡轮叶片断裂的原因,并提出预防措施,对飞行安全起到一定的参考价值。 【关键词】航空发动机;涡轮叶片;断裂分析 0 引言 涡轮叶片是航空发动机最主要的结构件之一,由于其长期工作在高温燃气包围下,承受转子高速旋转时叶片自身的离心力、气动力、热应力以及振动负荷,是发动机中工作条件最为恶劣的零件。 在实际的使用过程中,由于各种原因,涡轮叶片可能发生断裂。当涡轮叶片断裂时,不仅会出现发动机振动进而引起飞机振动,还会打坏其他机件、甚至导致飞机着火等现象,这将严重影响到飞行安全。长期以来,由于涡轮叶片断裂引发的飞行事故在飞行中屡见不鲜。 本文从涡轮叶片的工作条件出发,分析了引起涡轮叶片断裂故障的原因,并举例分析,在此基础上指出预防措施。 1 涡轮叶片故障机理 从理论上看,涡轮叶片断裂的故障机理有疲劳、超应力、蠕变、腐蚀、磨损等。 1.1 疲劳 发动机工作时,由于经常起动、加速、减速、停车以及其他条件的影响,发动机内流扰动、自激振动、流动畸变、转子不平衡、燃气温度分布不均等激励因素的作用,会使涡轮各部件承受复杂的循环载荷作用,使得叶片经受大量弹性应力循环,最终引起高周疲劳、低周疲劳或热疲劳,使得涡轮叶片断裂。其中,高周疲劳是指失效循环数范围在105—107周次的疲劳。低周疲劳是指失效循环数低于104—105周次的疲劳。高周疲劳和低周疲劳都能够引起涡轮叶片断裂,实际使用中,断裂还会来自于高低周复合疲劳[1-3]。热疲劳是来自于涡轮叶片温度的循环变化。涡轮叶片的温度的循环变化来自于燃气温度的变化。 1.2 超应力 涡轮叶片的组成包括叶根、叶身和叶冠。由于其形状的不规则,叶片中存在应力集中部位。尽管在设计中已经采取了一些措施,实际上,超应力仍然是造成涡轮叶片断裂的一个原因。

(7)航空发动机叶片-15页文档资料

发动机叶片 一、发动机与飞机 1.发动机种类 1)涡轮喷气发动机(WP)WP5、WP6、WP7、……WP13 2)涡轮螺桨发动机(WJ)WJ5、WJ6、WJ7 3)涡轮风扇发动机(WS)WS9、WS10、WS11 4)涡轮轴发动机(WZ)WZ5、WZ6、WZ8、WZ9 5)活塞发动机(HS)HS5、HS6、HS9 2.发动机的结构与组成 燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5) 3. 工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡

轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 热力过程:用p-υ或T-S 图来表示发动机的热力过程: 4. 发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。如: 1) 军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发 动机。 2) 强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS 类发动机。 3) 军民用直升机装用WZ 类发动机。 二、 叶片 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,

7航空发动机叶片

发动机叶片 一、 发动机与飞机 1. 发动机种类 1) 涡轮喷气发动机(WP )WP5、WP6、WP7、……WP13 2) 涡轮螺桨发动机(WJ )WJ5、WJ6、WJ7 3) 涡轮风扇发动机(WS )WS9、WS10、WS11 4) 涡轮轴发动机(WZ )WZ5、WZ6、WZ8、WZ9 5) 活塞发动机(HS )HS5、HS6、HS9 2. 发动机的结构与组成 燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5) 3. 发动机工作原理及热处理过程

工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 热力过程:用p-υ或T-S 图来表示发动机的热力过程: 4. 飞机与发动机 发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。如: 1) 军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发 动机。 2) 强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS 类发动机。 3) 军民用直升机装用WZ 类发动机。 二、 叶片 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的 叶片完成对气体的

压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家正以最大的努力来提高叶片的性能,生产能力及质量满足需要。 1.叶片为什么一定要扭 在流道中,由于在不同的半径上,圆周速度是不同的,因此在不同的半径基元级中,气流的攻角相差极大,在叶尖、由于圆周速度最大,造成很大的正攻角,结果使叶型叶背产生严重的气流分离;在叶根,由于圆周速度最小,造成很大的负攻角,结果使叶型的叶盆产生严重的气流分离。因此,对于直叶片来说。除了最近中径处的一部分还能工作之外,其余部分都会产生严重的气流分离,也就是说,用直叶片工作的压气机或涡轮,其效率极其低劣的,甚至会达到根本无法运转的地步。 发动机叶片数量统计如下(以WJ6、WS11为例)表: 1.WJ6 压气机叶片数量见表1 表1 涡轮叶片数量见表2 表2

航空发动机叶片CAD技术综述

航空发动机叶片CAD技术综述

pressure and high load conditions, but also with h i g h e f f i c i e n c y,s m a l l s i z e a n d l o w w e i g h t c h a r a c t e r i s t i c s. This paper introduces the major aero-engine blades CAD technology. Key Words:Aero-engine, Blades, CAD 1.引言 航空发动机是飞机的“心脏”。航空发动机研制技术复杂,投资巨大,周期长。各国航空发动机行业在突破航空发动机设计技术、材料科学技术和制造技术的同时,广泛采用CAD技术,大力推进产品的信息化。航空发动机叶片是航空燃气涡轮发动机中的关键零件,其中的高压涡轮叶片更是被誉为“现代制造业皇冠上的明珠”,不仅因为其单个产品上万美元的价值,更因其集中体现了各项性能设计要求之间的矛盾。航空发动机叶片属于功能和结构都比较复杂 的产品,既要工作在高温、高压和高负荷的条件下,又要具有高效率、小体积和低重量的特点。因此,航空发动机叶片设计问题受到行业内的重

点关注。 2.国外航空发动机CAD技术简介 2.1 GE公司 20世纪60年代后期开始了CAD技术在航空发动机研发中的应用,1980年建立了飞机发动机部门的CIMS,使生产率提高、成本降低。1985年,在发动机设计优化技术基础上,着手开发了一个用于设计优化、自动化集成优化的软件平台Engineous,将Engineous与自主研发的涡轮设计软件和非设计状态分析系统TDOD、压气机设计软件CUS等集成,在压气机和涡轮的国内已开始有关这方面的研究开发工作,但没形成系列化产品。2000年海尔集团与哈尔滨工业大学,共同组建机器人技术有限公司。2002年哈尔滨工业大学机器人研究所成功研制出智能吸尘机器人。浙江大学早在1996年之前就开始了智能吸尘机器人的研究,在路径规划算法、多传感器信息融合等技术领域取得了一定的成果。其他一些国内知名大学和自动化研究所等科研单位也陆续涉足吸尘机器人领域并先后制造出了自己的试验样机。2.2 RR公司 20世纪60年代中期,开始在叶片的设计中

相关主题
文本预览
相关文档 最新文档